WO2014064859A1 - Fuel cell system and method for manufacturing same - Google Patents

Fuel cell system and method for manufacturing same Download PDF

Info

Publication number
WO2014064859A1
WO2014064859A1 PCT/JP2013/003426 JP2013003426W WO2014064859A1 WO 2014064859 A1 WO2014064859 A1 WO 2014064859A1 JP 2013003426 W JP2013003426 W JP 2013003426W WO 2014064859 A1 WO2014064859 A1 WO 2014064859A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
exhaust gas
impurity remover
housing
Prior art date
Application number
PCT/JP2013/003426
Other languages
French (fr)
Japanese (ja)
Inventor
徹 壽川
鵜飼 邦弘
谷口 昇
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014543118A priority Critical patent/JP6195123B2/en
Publication of WO2014064859A1 publication Critical patent/WO2014064859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell system including an impurity remover for removing impurities contained in a raw material gas, and a method for manufacturing the fuel cell system.
  • steam reforming using steam is used to reform the raw material gas.
  • a steam reforming catalyst is used to promote this steam reforming, but the raw material gas contains, for example, a sulfur compound as an odorant, and these steam reforming catalysts are deteriorated by these. There is a fear. Therefore, in order to prevent deterioration of the steam reforming catalyst, a desulfurizer that reduces the sulfur compound contained in the raw material gas is used.
  • a sulfur compound is reacted with hydrogen on a catalyst (Ni—Mo system, Co—Mo system) to convert it into hydrogen sulfide, and the hydrogen sulfide is taken into zinc oxide and removed.
  • a catalyst Ni—Mo system, Co—Mo system
  • Examples thereof include a hydrodesulfurization apparatus that performs desulfurization by a so-called hydrodesulfurization method.
  • the hydrodesulfurization apparatus requires hydrogen when desulfurization is performed by the hydrodesulfurization method, and requires temperature control suitable for the desulfurization reaction. Therefore, a fuel cell system having a configuration for controlling the temperature of the desulfurizer has been proposed (for example, Patent Documents 1 to 3).
  • the desulfurizer 110 is heated by heat transfer such as radiant heat discharged from the fuel cell stack 104 or the reformer 103 as shown in FIG. Further, the temperature of the desulfurizer 110 is controlled by selecting the gas (cooling gas or heating gas) to be circulated by the control device and adjusting the flow rate so that the temperature of the desulfurizer 110 becomes 100 to 300 ° C.
  • a desulfurizer 202 is installed between the heat insulating tank 201 and the internal housing 216, and the desulfurizer 202 is heated by propagation of combustion heat released from the combustor 207.
  • a desulfurizer 301 is provided outside a high-temperature heat insulating portion provided so that the inside is kept at a high temperature. And it is comprised so that the desulfurizer 301 may be maintained in a predetermined
  • Patent Documents 4 and 5 a fuel cell system that heats the desulfurizer using high-temperature exhaust gas generated from the fuel cell has been proposed (for example, Patent Documents 4 and 5).
  • the fuel cell system (SOFC system) of Patent Document 4 the fuel cell 430 is accommodated and the high-temperature exhaust gas discharged from the fuel cell 430 is shielded from the outside, or as shown in FIG.
  • a configuration in which a desulfurizer 411 is housed in a heating chamber 400 provided separately from the combustion chamber 420 is disclosed.
  • the desulfurizer 411 in the combustion chamber 420 or the heating chamber 400 is heated by exhaust gas.
  • Patent Document 5 in a housing (housing) 500, a preheater 501 that heats a raw material gas, an oxidant gas, and water, and a reformer that performs steam reforming on the raw material gas.
  • a fuel cell system that houses a mass device 502 and a fuel cell main body 503 is disclosed.
  • the exhaust gas discharged from the fuel cell main body 503 is guided to a desulfurizer 504 disposed outside the housing 500, and the desulfurizer 504 is heated.
  • the desulfurizer 110 is heated by heat transfer such as radiant heat discharged from the fuel cell stack 104 or the reformer 103, and therefore the entire desulfurizer is uniformly distributed without temperature unevenness. It is difficult to heat the glass quickly, and it is difficult to prevent overheating. Further, as shown in FIG. 24, there is a problem that switching of a plurality of valves and a control device are separately required. Similarly, the fuel cell systems disclosed in Patent Documents 2 and 3 are configured to heat the desulfurizer by the propagation of combustion heat released from the combustor as shown in FIGS. Problems similar to Patent Document 1 such as generation of unevenness and excessive temperature rise cannot be avoided.
  • the fuel cell system (SOFC system) disclosed in Patent Document 4 includes a water heating means 410, a vaporizer 412 and a desulfurizer 411 in the same casing (heating chamber 400). These are provided in close proximity to each other.
  • the water heating means 410 and the vaporizer 412 consume a large amount of heat to vaporize water and kerosene, the temperature distribution of the exhaust gas in the heating chamber 400 becomes non-uniform. For this reason, there is a problem that it becomes difficult to heat the entire desulfurizer 411 with exhaust gas at a uniform temperature.
  • exhaust gas is used as a heating source of the desulfurizer 504.
  • the entire desulfurizer 504 is not covered with the exhaust gas and heated, and the entire desulfurizer 504 is not heated. There is a problem that it becomes difficult to heat the glass at a uniform temperature.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a fuel cell system capable of heating the entire impurity remover for removing impurities at a uniform temperature and a method for manufacturing the same. There is.
  • the fuel cell system includes an impurity remover that removes impurities contained in the supplied source gas, and an evaporator that evaporates the supplied water to generate water vapor.
  • a reformer that generates a reformed gas as a fuel by a reforming reaction from the water vapor generated by the evaporator and the source gas from which impurities have been removed by the impurity remover; the supplied air; and
  • a fuel cell that generates power by a power generation reaction using fuel, a combustion unit that burns unused fuel in the fuel cell, and the evaporator, the reformer, the fuel cell, and the combustion unit are accommodated
  • the exhaust gas passage through which the exhaust gas flows and the exhaust gas in the middle of the exhaust gas route Provided so as to constitute a part of the scan path, and a housing space for placing the impurity remover.
  • the fuel cell system according to the present invention is configured as described above, and has an effect that the entire impurity remover can be heated at a uniform temperature.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 1.
  • FIG. In the structure of the fuel cell system which concerns on Embodiment 1, it is the schematic diagram which showed the structure at the time of isolate
  • 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 2.
  • FIG. 1 In the structure of the fuel cell system which concerns on Embodiment 1, it is the schematic diagram which showed the structure at the time of isolate
  • 6 is a schematic diagram illustrating an example of a configuration of a fuel
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 2.
  • FIG. 5 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 1 of Embodiment 2.
  • 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 2 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 3 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 4 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 4 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 5 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 6 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 6 of Embodiment 2.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification Example 7 of Embodiment 2.
  • 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3.
  • FIG. 6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3.
  • FIG. 10 is a diagram illustrating an example of a configuration in which a container is separated from a housing in a fuel cell system according to a modification of the third embodiment.
  • 5 is a flowchart showing an example of a method for manufacturing a fuel cell system according to Embodiments 1 and 3.
  • It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system.
  • the present invention provides the following aspects.
  • the fuel cell system includes an impurity remover that removes impurities contained in a supplied raw material gas, an evaporator that evaporates supplied water to generate water vapor, and the evaporator
  • a reformer that generates a reformed gas to be a fuel by a reforming reaction from the water vapor generated by the impurity and the source gas from which impurities have been removed by the impurity remover, and the supplied air and the fuel are used
  • a fuel cell that generates power by a power generation reaction, a combustion unit that burns unused fuel in the fuel cell, a housing that houses the evaporator, the reformer, the fuel cell, and the combustion unit;
  • an exhaust gas path through which the exhaust gas flows and a part of the exhaust gas path are formed in the middle of the exhaust gas path.
  • the accommodation space provided in the exhaust gas path is formed by, for example, a container that is provided to communicate with the exhaust gas path in the middle of the exhaust gas path (arbitrary position) and that can accommodate the impurity remover. It may be a space. Alternatively, if the path cross section of the exhaust gas path is sufficiently large to accommodate the impurity remover, a space formed by the exhaust gas path itself may be used.
  • the entire impurity remover can be covered with the exhaust gas generated in the combustion section and heated.
  • the exhaust gas guided to the impurity remover is heat-utilized by the evaporator and the reformer accommodated in the casing, and is in a predetermined temperature range when leaving the casing. .
  • the temperature unevenness in the exhaust gas is eliminated at the time of exiting from the housing. Therefore, the entire impurity remover can be heated by the exhaust gas in a predetermined temperature range without temperature unevenness.
  • the fuel cell system according to the first aspect of the present invention has the effect that the entire impurity remover can be heated at a uniform temperature.
  • the impurity remover may be a desulfurizer that removes a sulfur component as an impurity from the raw material gas.
  • the impurity remover is a desulfurizer, it is possible to remove a sulfur component that causes deterioration of the catalyst as an impurity contained in the raw material gas.
  • the fuel cell system according to a third aspect of the present invention is the fuel cell system according to the second aspect described above, wherein a raw material gas path for circulating the raw material gas to supply the raw material gas to the desulfurizer, A recycle path for guiding gas to the source gas path, and the desulfurizer uses the hydrogen-containing gas flowing through the source gas path to remove sulfur components as impurities from the source gas by hydrodesulfurization. It may be configured to be removed. According to the above configuration, since the desulfurizer can remove the sulfur component from the raw material gas by the hydrodesulfurization, the sulfur component can be removed with high efficiency.
  • the fuel cell system according to a fourth aspect of the present invention is the fuel cell system according to the third aspect, wherein a part of the reformed gas generated by the reformer circulates in the recycling path as the hydrogen-containing gas. It may be configured as follows.
  • the reformed gas that is a hydrogen-containing gas can be guided to the raw material gas path.
  • the remover is a desulfurizer that performs hydrodesulfurization, it is necessary for this hydrodesulfurization. Hydrogen can be supplied.
  • the impurity remover may have a flat plate shape. Since the impurity remover has a flat plate shape, the impurity remover disposed in the exhaust gas path can be covered substantially uniformly with the exhaust gas discharged from the casing. For this reason, the impurity remover can be heated with exhaust gas without temperature unevenness.
  • the fuel cell system according to a sixth aspect of the present invention is the fuel cell system according to any one of the first to fifth aspects, wherein the exhaust gas is cooled by heat exchange between the air supplied to the fuel cell and the exhaust gas.
  • An air heat exchanger may be provided in the housing.
  • the air heat exchanger since the air heat exchanger is provided, the temperature of the exhaust gas from the combustion section can be adjusted to an appropriate temperature in the casing. For this reason, the impurity remover can be heated at an appropriate temperature by heat exchange with the exhaust gas adjusted to an appropriate temperature.
  • a fuel cell system includes, in any one of the first to sixth aspects described above, a storage device that forms the storage space for disposing the impurity remover.
  • the container may be configured to be connected to the housing.
  • the storage device for forming the storage space for storing the impurity remover since the storage device for forming the storage space for storing the impurity remover is provided, it is easy to control the temperature of the impurity remover disposed in the storage device with the exhaust gas flowing through the exhaust gas path. Become. In addition, since the impurity remover can be stored and managed in the container, the impurity remover can be easily managed.
  • the fuel cell system according to the eighth aspect of the present invention may be configured such that in the seventh aspect described above, the container can be attached to and detached from the housing.
  • the manufacturing process for attaching the container to the housing becomes easy, and it becomes easy to remove the container from the housing when replacement is necessary for maintenance or the like.
  • the fuel cell system according to a ninth aspect of the present invention is the fuel cell system according to any one of the first to eighth aspects, wherein the housing includes at least the evaporator, the reformer, the fuel cell, and the fuel cell system.
  • You may be comprised so that the 1st housing
  • the wall can be provided twice with the first casing and the second casing, heat radiation from the inside of the casing to the outside can be suppressed.
  • a heat insulating material is accommodated in at least a part between the first casing and the second casing. May be.
  • a fuel cell system manufacturing method includes a fuel cell that generates power by a power generation reaction using supplied air and fuel generated from a raw material gas, and is not used in the fuel cell.
  • a combustion section that burns the fuel, an impurity remover that removes impurities contained in the raw material gas using the heat held in the exhaust gas generated by the combustion in the combustion section, and water vapor that evaporates the supplied water
  • the exhaust gas path through which the exhaust gas circulates and is detachable from the housing and is provided so as to constitute a part of the exhaust gas path in the middle of the exhaust gas path, and the impurity remover is disposed
  • a container for housing the impurity remover in a state where the impurity remover is removed from the housing A first step of heating, a second step of reducing the catalyst filled in the impurity remover, and a third step of attaching the container to the housing.
  • the step of performing the heating and reduction treatment necessary for activating the catalyst filled in the impurity remover that is, the first step and the second step are performed, and the impurity remover is provided in the casing. Can be done before installation. Therefore, it is not necessary to add components to the impurity removal device or the container other than the container that contains the impurity removal device in the heating and reduction process, and an efficient fuel cell system manufacturing method can be realized without using wasted energy. It becomes.
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the fuel cell system according to the first embodiment.
  • FIG. 1 the structure when the fuel cell system which concerns on Embodiment 1 is seen from the side part is shown typically.
  • the fuel cell system includes a raw material gas path 1, an impurity remover 3, a reformer 4, an air heat exchanger 5, a fuel cell 6, an evaporator 9, an air path 10, and a reformed water path 11.
  • Reformed air path 12 post-desulfurization source gas path 14, fuel gas path 16, air supply path 17, decompression section 18, recycle path 19, casing 7, first heat insulating section (heat insulating material) 22, and combustion section 23. It is the structure which comprises.
  • the reformer 4, the air heat exchanger 5, the fuel cell 6, the evaporator 9, and the combustion unit 23 are arranged in the space surrounded by the casing 7. And inside the housing
  • the casing 7 includes a first casing 7 a that houses at least the fuel cell 6 and the combustion unit 23, and a second casing 7 b that surrounds the outer periphery of the first casing 7 a. It is configured. And the 1st heat insulation part (heat insulation material) 22 is provided in at least one part between these 1st housing
  • the members accommodated in the housing 7 are not limited to these members, and it is sufficient that at least the fuel cell 6 and the combustion unit 23 are accommodated in the housing 7. That is, the reformer 4 and the air heat exchanger 5 are not necessarily provided in the housing 7.
  • the fuel cell 6 may be a fuel cell that generates power at a high temperature (600 ° C. or higher), such as a molten carbonate fuel cell or a solid oxide fuel cell.
  • a high temperature 600 ° C. or higher
  • the reformer 4 is not provided in the housing 7 in the case of a configuration in which power is generated by performing internal reforming.
  • a configuration in which the reformer 4 is provided in the first casing 7a will be described as an example.
  • a solid oxide fuel cell can be more suitably used as the fuel cell 6.
  • a configuration using a solid oxide fuel cell as the fuel cell 6 will be described as an example.
  • the reformer 4 reforms the raw material gas (raw fuel gas) supplied from the outside of the casing 7 (first casing 7a and second casing 7b).
  • the fuel cell 6 is configured to generate electric power by a power generation reaction using the reformed reformed gas and air supplied from the outside.
  • the gas supplied from the outside through the raw material gas path 1 is referred to as a raw material gas (raw material)
  • the sulfur component is removed from the raw material gas
  • the quality gas is referred to as fuel gas (fuel).
  • the combustion unit 23 burns fuel gas and air that have not been used for the power generation reaction to generate high-temperature exhaust gas, and its thermal energy. Highly efficient operation is realized by effectively using the.
  • the generated exhaust gas flows out through the exhaust gas path 20 communicating from the inside of the first housing 7a to the outside.
  • the exhaust gas guided from the first housing 7a to the exhaust gas path 20 is heat-utilized by the reformer 4, the air heat exchanger 5, the evaporator 9 and the like disposed in the first housing 7a.
  • the temperature is within a predetermined temperature range.
  • the exhaust gas is in a state in which temperature unevenness generated due to the difference in the amount of heat consumed in each member arranged in the first housing 7a is eliminated.
  • the exhaust gas temperature is lower than in other places, the combustion unit 23 is moved upward.
  • the exhaust gas is guided by being diffused substantially uniformly. For this reason, as a result, the temperature distribution on the upper surface side of the housing 7 is made substantially uniform.
  • the impurity remover 3 is disposed in the accommodating space provided in the exhaust gas path 20, so that the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20 are disposed. It is configured to exchange heat. That is, the exhaust gas flowing through the exhaust gas path 20 covers the entire impurity removing device 3 and passes through, so that the entire impurity removing device 3 can be heated. Further, the impurity remover 3 has, for example, a flat plate shape as shown in FIG. 1 so as to be heated as uniformly as possible by the exhaust gas introduced through the exhaust gas passage 20.
  • the shape of the impurity remover 3 is not limited to this flat plate shape, and the impurity can be sufficiently removed from the supplied raw materials, and the exhaust gas flowing around the outer periphery of the impurity remover 3 is used as a whole. Any shape that can be uniformly heated may be used.
  • a first heat insulating portion (heat insulating member) 22 made of a heat insulating material is provided between the first housing 7a and the second housing 7b, and the interior of the first housing 7a. It is configured to block heat dissipation from the outside to the outside as much as possible.
  • the booster 2 is disposed outside the first casing 7a and the second casing 7b.
  • voltage rise part 2 is comprised so that the source gas supplied through the source gas path
  • the source gas supplied through the source gas path 1 city gas or gas mainly composed of hydrocarbons such as propane gas can be used.
  • the desulfurizer which removes a sulfur component by a hydrodesulfurization system is used as the impurity removal device 3 which removes the impurity contained in source gas.
  • the source gas and impurity remover 3 are not limited to those described above.
  • gas produced from biomass or waste can be used as a raw material gas.
  • the impurity remover 3 can be a heavy metal removing device filled with an impurity removing agent for removing impurities such as mercury or halides.
  • the impurity remover 3 is housed in a housing 27 that forms a housing space together with a part of the exhaust gas path 20. Then, the impurity remover 3 is heated using heat transfer by heat transfer of the exhaust gas as a heat source.
  • the fuel cell system according to Embodiment 1 further includes an air heat exchanger 5 in the first casing 7a for exchanging heat between the exhaust gas from the combustion unit 23 and the air supplied to the fuel cell 6. It has become. If such a structure is taken, it can cool with the air heat exchanger 5 so that the temperature of the waste gas from the combustion part 23 may become a predetermined range. Therefore, it becomes easier to maintain the impurity remover 3 at an appropriate temperature without separately providing a temperature adjusting unit for adjusting the temperature of the impurity remover 3. In addition, since the air heat exchanger 5 uses the amount of heat recovered by heat exchange with the exhaust gas for heating the air supplied to the fuel cell 6, an efficient operation is possible.
  • examples of the desulfurizer filled in the impurity remover 3 include a desulfurizer containing copper and zinc (for example, Patent Document 6).
  • the desulfurizing agent is not limited to this desulfurizing agent as long as hydrodesulfurization can be performed, and may be a combination of a Ni—Mo based or Co—Mo based catalyst and zinc oxide.
  • the impurity remover 3 hydrocrackes organic sulfur in the raw material gas in a temperature range of 350 to 400 ° C. Then, the impurity remover 3 removes the generated H 2 S by adsorbing it to ZnO in a temperature range of 350 to 400 ° C.
  • dimethyl sulfide C 2 H 6 S, DMS
  • DMS dimethyl sulfide
  • This DMS is removed by the desulfurization agent in the impurity remover 3 in the form of ZnS according to the following reaction formulas (formulas (1) and (2)) or in the form of physical adsorption.
  • the odorant is not limited to the above-described DMS, and may be another sulfur compound such as TBM (C 4 H 10 S) or THT (C 4 H 8 S).
  • the impurity remover 3 When the desulfurizing agent to be filled contains copper and zinc, the impurity remover 3 performs desulfurization in a temperature range of about 10 to 400 ° C., preferably about 150 to 300 ° C.
  • This copper zinc-based desulfurization agent has a physical adsorption capability in addition to a hydrodesulfurization capability, and can mainly perform physical adsorption at low temperatures and chemical adsorption (H 2 S + ZnO ⁇ H 2 O + ZnS) at high temperatures.
  • the sulfur content contained in the raw material gas after desulfurization is 1 vol ppb (parts per billion) or less, usually 0.1 vol ppb or less.
  • the impurity remover 3 when the impurity remover 3 is filled with a Ni—Mo-based or Co—Mo-based catalyst, or a desulfurizing agent containing either copper and zinc, the amount of sulfur component removed per unit volume increases. . Therefore, when the above-described desulfurizing agent is used, the amount of the desulfurizing agent necessary for removing sulfur to a desired sulfur concentration can be reduced.
  • the raw material gas desulfurized by the impurity remover 3 as described above is supplied to the reformer 4 (evaporator 9) through the raw material gas path 14 after desulfurization.
  • the reformer 4 may be used for partial oxidation reforming. However, in order to realize more efficient operation, the reformer 4 is designed to perform not only partial oxidation reforming reaction but also steam reforming reaction. It is advantageous to keep it.
  • an evaporator 9 is arranged on the upstream side of the reformer 4 (the side where the raw material gas path 14 after desulfurization is arranged), and the reforming water path 11 is externally provided by the evaporator 9. Water (reformed water) supplied through is evaporated to generate water vapor. The steam generated by the evaporator 9 and the desulfurized source gas are mixed and supplied to the reformer 4.
  • the Al 2 O 3 (alumina) sphere surface is impregnated with Ni and supported, or the Al 2 O 3 sphere surface is provided with ruthenium. Can be used as appropriate.
  • a partial oxidation reforming reaction represented by the following formula (3) is performed to generate hydrogen gas and carbon monoxide as a hydrogen-containing gas.
  • the temperature of the reformer 4 increases. That is, the partial oxidation reforming reaction represented by the above formula (3) is an exothermic reaction, and furthermore, the heat of the exhaust gas generated in the combustion unit 23 and the radiant heat from the combustion heat 23 (due to the combustion of the combustion unit 23) The temperature of the reformer 4 is raised by the combustion heat. And if the temperature of the reformer 4 becomes 400 degreeC or more, for example, it will become possible to perform the steam reforming reaction represented by the following formula
  • the steam reforming reaction represented by the formula (4) described above has a larger amount of hydrogen that can be generated from the same amount of hydrocarbon (C n H m ). As a result, the amount of reformed gas available for the power generation reaction in the fuel cell 6 increases. That is, the reforming gas can be generated more efficiently by the steam reforming reaction.
  • the steam reforming reaction shown in the formula (4) is an endothermic reaction
  • the heat generated by the partial oxidation reforming reaction shown in the formula (3), the heat held in the exhaust gas discharged from the combustion unit 23, and the combustion unit 23 The steam reforming reaction is allowed to proceed while supplementing the necessary amount of heat using the radiant heat from.
  • the temperature of the reformer 4 becomes 600 ° C. or more, for example, the amount of heat necessary for the steam reforming reaction of the formula (4) can be supplemented only with the heat of the exhaust gas and the radiant heat from the combustion section 23. Therefore, it is possible to switch to the operation of only the steam reforming reaction.
  • the evaporator 9 is installed to perform a steam reforming reaction in the reformer 4.
  • the water (reformed water) supplied from the reformed water path 11 is vaporized using the heat of the exhaust gas discharged from the combustor 23 and the radiant heat from the combustor 23, and the impurity remover 3. And mixed with the raw material gas after desulfurization supplied from. Then, the evaporator 9 introduces the mixed raw material gas into the reformer 4.
  • the fuel cell 6 generates power by a power generation reaction using the fuel (reformed gas) supplied through the fuel gas path 16 and the air (power generation air) supplied through the air supply path 17.
  • the solid oxide fuel cell used for the fuel cell 6 has a fuel electrode to which fuel (reformed gas) is supplied and an air electrode to which power generation air is supplied, and is provided between the fuel electrode and the air electrode.
  • a cell stack is formed by connecting a plurality of fuel cell single cells that generate power by performing a power generation reaction in series.
  • the fuel cell 6 is good also as a structure which connected the cell stack further connected in series in parallel.
  • the fuel cell unit cell constituting the solid oxide fuel cell used for the fuel cell 6 includes, for example, a zirconia doped with yttria (YSZ), a zirconia doped with yttrium or scandium, or a lanthanum gallate solid electrolyte.
  • YSZ zirconia doped with yttria
  • yttrium or scandium zirconia doped with yttrium or scandium
  • a lanthanum gallate solid electrolyte a single cell can be used.
  • the power generation reaction is performed in a temperature range of about 600 to 900 ° C., depending on the thickness.
  • the fuel gas supply path 16 toward the fuel cell 6 is branched in the middle, and a part of the reformed gas supplied from the reformer 4 is used as a hydrogen-containing gas as a raw material gas.
  • a recycling path 19 for returning to the path 1 is provided. For this reason, it becomes possible to add hydrogen to the raw material gas that flows through the raw material gas path 1 and is supplied to the impurity remover 3, and the impurity remover 3 uses the hydrogen to perform the hydrodesulfurization described above. It is configured to be able to do.
  • a decompression unit 18 is provided in the vicinity of the branch point between the fuel gas supply path 16 and the recycle path 19 and in the recycle path 19.
  • the decompression unit 18 adjusts the flow rate of the reformed gas flowing through the recycle path 19 and can be realized by, for example, a capillary tube. That is, the decompression unit 18 is configured so that the reformed gas flows through the recycle path 19 by a desired flow rate by narrowing the flow path with a capillary tube or the like and increasing the pressure loss.
  • the impurity remover 3 is housed in the container 27.
  • the container 27 extends in the left-right direction in FIG. 1 on the upper surface of the housing 7 and has a structure in which the inside is hollow.
  • the protrusion part which protruded below in the perpendicular direction is formed so that it may connect with the exhaust gas path
  • the other end (the right end in FIG. 1) is formed with a protruding portion that protrudes upward in the vertical direction so that the exhaust gas flowing through the container 27 is discharged outside the system. .
  • the container 27 and the exhaust gas path 20 communicate with each other. In other words, at least a part of the exhaust gas path 20 is formed in the container 27.
  • a second heat insulating part (heat insulating material) 33 is provided inside the container 27.
  • the housing 7 and the container 27 are connected by a raw material gas path connection part (second connection part) 32 and an exhaust gas path connection part 31.
  • route connection part 31 are comprised so that the source gas or waste gas which distribute
  • a joint represented by Swagelok registered trademark
  • the fuel cell system according to Embodiment 1 has a configuration in which the container 27 can be detached from the housing 7 via the exhaust gas path connection portion 31 and the second connection portion 32.
  • FIG. 2 is a schematic diagram showing a configuration when the casing 7 and the container 27 are separated from each other in the configuration of the fuel cell system according to the first embodiment.
  • the storage device 27 containing the impurity remover 3 can be easily attached to the housing 7 when the fuel cell system is manufactured. Is possible. Further, even after a long time has passed since the fuel cell system was operated, even if the catalyst charged in the impurity remover 3 is deteriorated and the impurity remover 3 needs to be replaced, the container 7 can be replaced with the container. It is easy to remove 27 and remove the impurity remover 3 accommodated in the container 27. Therefore, a fuel cell system excellent in maintainability can be configured.
  • the temperature range of 350 to 400 ° C. or the desulfurization agent is copper.
  • the temperature is set to about 10 to 400 ° C., preferably about 150 to 300 ° C. Therefore, for example, as shown in FIG. 16 to be described later, a raw material gas path connection portion (first connection portion) 30 for connecting the impurity remover 3 in the storage device 27 and the raw material gas path 14 after desulfurization, and the storage device.
  • the exhaust gas path connection portion 31 that connects the exhaust gas path 27 and the exhaust gas path 20 also has the same temperature range as the impurity remover 3.
  • connection parts are also configured to be accommodated in the first heat insulating part (heat insulating material part) 22 or in the second heat insulating part (heat insulating material part) 33, so that radiation from the combustion part 23 and exhaust gas from Due to heat transfer such as heat transfer, it is possible to suppress the occurrence of problems such as exposure to high temperatures (400 ° C. or higher) for a long time and thermal degradation.
  • FIG. 3 is a schematic diagram showing an example of the configuration of a fuel cell system according to a modification of Embodiment 1 of the present invention.
  • FIG. 3 the structure when the fuel cell system which concerns on the modification of Embodiment 1 is seen from the side part is shown typically.
  • the fuel cell system according to the modification of the first embodiment is different from the first embodiment in the position where the container 27 is disposed. Specifically, in the fuel cell system according to Embodiment 1, the container 27 is disposed on the upper surface of the second casing 7b. On the other hand, in the fuel cell system according to the modification of the first embodiment, as shown in FIG. 3, the container 27 is disposed so as to be accommodated between the first casing 7a and the second casing 7b. ing. That is, the surface exposed to the outside of the container 27 is disposed so as to be substantially at the same height as the upper surface of the second housing 7b.
  • the fuel cell system according to the modification of the first embodiment has the same configuration as the fuel cell system according to the first embodiment except for the arrangement of the container 27. For this reason, the same code
  • the container 27 is disposed at the above-described position. Therefore, the container 27 is further provided from the upper surface of the second housing 7b as in the fuel cell system according to the first embodiment.
  • the size of the entire fuel cell system can be reduced.
  • casing 7a and the container 27 is taken sufficiently, by heat transfer, such as radiant heat from the 1st housing
  • the fuel cell system according to the modification of the first embodiment includes the second connection portion 32 and the exhaust gas path connection portion 31 as in the fuel cell system according to the first embodiment. Therefore, as shown in FIG. 27 can be attached to and detached from the housing 7 (second housing 7b).
  • FIG. 4 is a schematic diagram showing a configuration when the first casing 7a and the container 27 are separated in the configuration of the fuel cell system according to the modification of the first embodiment. Since the container 27 is configured to be detachable from the second housing 7b as described above, the impurity remover 3 can be easily detached or attached in the fuel cell system. Therefore, manufacture and maintenance of the fuel cell system are facilitated.
  • the impurity remover 3 is housed in the container 27 and heated to be maintained at a predetermined temperature by the exhaust gas flowing through the exhaust gas path 20.
  • the impurity remover 3 is not limited to the configuration housed in the container 27 as described above, and is inside the housing 7, that is, between the first housing 7a and the second housing 7b.
  • the structure which the impurity removal device 3 is provided in the heat insulation part provided in the middle may be sufficient.
  • the case of such a configuration will be described as a second embodiment.
  • FIGS. 5 and 6 are schematic diagrams illustrating an example of the configuration of the fuel cell system according to Embodiment 2.
  • FIG. 5 the structure when the fuel cell system which concerns on Embodiment 2 is seen from the side part is shown typically.
  • FIG. 6 the structure when the inside of the housing
  • the housing 7 is composed of a first housing 7a and a second housing 7b as in the first embodiment, but is not particularly shown here.
  • the fuel cell system according to the second embodiment is similar to the fuel cell system according to the first embodiment described above, with the impurity remover 3, the reformer 4, the air heat exchanger 5, The fuel cell 6, the evaporator 9, and the decompression unit 18 are arranged inside the housing 7.
  • a combustion unit 23 is provided on the upper portion of the fuel cell 6 so as to face the reformer 4.
  • the raw material gas (raw fuel gas) supplied from the outside of the housing 7 is reformed by the reformer 4 as in the fuel cell system according to the first embodiment described above.
  • the fuel cell 6 is configured to generate power by a power generation reaction using the reformed reformed gas and air supplied from the outside.
  • the fuel cell system according to Embodiment 2 is different from the fuel cell system according to Embodiment 1 in that the impurity remover 3 is housed in the first heat insulating portion 22 instead of the housing 27. . Since it becomes the same structure except it, the same code
  • the impurity remover 3 can be a desulfurizer that removes sulfur components contained in the raw material gas by, for example, a hydrodesulfurization method.
  • the impurity remover 3 is disposed below the side surface on the right side of the casing 7 in FIG.
  • the decompression unit 18 is provided in the housing 7, but the position where the decompression unit 18 is provided is not limited to this position.
  • a decompression unit 18 may be provided outside the housing 7.
  • the exhaust gas path 20 is formed in the 1st heat insulation part 22, and it is comprised so that the heat radiation from this exhaust gas path 20 can be reduced as much as possible.
  • the fuel utilization rate (ratio consumed by the fuel cell 6 as a fuel by power generation reaction) of the fuel gas and air (power generation air) in the fuel cell 6 is shown. It is possible to control by adjusting.
  • the fuel utilization rate of the fuel gas and air in the fuel cell 6 is set so that the temperature range of the combustion unit 23 is about 600 to 900 ° C.
  • the reformer 4 is first heated by the exhaust gas generated by burning unused fuel gas and air in the combustion unit 23. Thereby, a part of the heat of the exhaust gas is consumed. Further, the air heat exchanger 5 is heated by the exhaust gas in which a part of the heat is consumed. Due to the heat exchange between the air and the exhaust gas by the air heat exchanger 5, the heat of the exhaust gas is further deprived and the temperature is lowered to an appropriate temperature for heating the impurity remover 3. The exhaust gas whose temperature has been lowered in this way flows through the exhaust gas path 20 and is supplied to the impurity remover 3.
  • the temperature of the exhaust gas generated in the combustion section 23 is as high as about 600 ° C. to 900 ° C., for example.
  • the reformer 4 is heated by this exhaust gas, and heat exchange with air is further performed by the air heat exchanger 5, and the air is heated, the temperature of the exhaust gas decreases until reaching the exhaust gas path 20.
  • the air heat exchanger 5 has a large amount of heat. Is required. Therefore, this necessary amount of heat is covered by the amount of heat of the exhaust gas.
  • the temperature of the exhaust gas flowing through the exhaust gas path 20 includes the flow rate and temperature of the exhaust gas generated in the combustion unit 23, the amount of heat absorbed by the reformer 4, the amount of heat absorbed by the air heat exchanger 5, and the like. Is controlled to take a desired value. Then, the exhaust gas that has reached the exhaust gas path 20 circulates in the path and flows to the impurity remover 3. And exhaust gas is discharged
  • the combustion section 23 is set so that the exhaust gas temperature when reaching the impurity remover 3 is about 150 to 350 ° C.
  • the flow rate and temperature of the exhaust gas generated in step 1, the amount of heat absorbed by the reformer 4, the amount of heat absorbed by the air heat exchanger 5, and the like are adjusted. In this way, the impurity remover 3 is set to a temperature (150 to 300 ° C.) suitable for hydrodesulfurization.
  • the exhaust gas temperature when reaching the impurity remover 3 is about 350 to 450 ° C.
  • the flow rate and temperature of the exhaust gas generated in the combustion unit 23, the amount of heat absorbed by the reformer 4, and the amount of heat absorbed by the air heat exchanger 5 are adjusted.
  • the impurity remover 3 is similarly set to a temperature (350 to 400 ° C.) suitable for hydrodesulfurization.
  • the impurity remover 3 can be set to a desired temperature suitable for hydrodesulfurization.
  • the impurity remover 3 is installed so as to be covered with the first heat insulating portion 22. By doing so, it is possible to prevent heat from being removed from the impurity remover 3 and to prevent the impurity remover 3 from being directly exposed to the heat of 500 to 600 ° C. in the housing 7. Furthermore, since the impurity remover 3 is covered by the first heat insulating portion 22, the temperature distribution in the impurity remover 3 can be made as uniform as possible to suppress variations. Therefore, temperature control in the impurity remover 3 can be facilitated.
  • the impurity remover 3 is detachable from the housing 7. For this reason, it is possible to operate for a longer time by simply replacing the impurity remover 3 with the deteriorated reforming catalyst with a new impurity remover 3.
  • FIG. 7 is a schematic diagram showing an example of the configuration of a fuel cell system according to Modification 1 of Embodiment 2.
  • FIG. 7 the structure when the fuel cell system which concerns on the modification 1 of Embodiment 2 is seen from the side part is shown typically.
  • the structure when the inside of the housing 7 of the fuel cell system according to Modification 1 of Embodiment 2 is viewed from above is similar to the structure of the fuel cell system shown in FIG. 6, it is not shown.
  • the fuel cell system according to Modification 1 of Embodiment 2 is different from the fuel cell system according to Embodiment 2 described above in that an exhaust gas heat exchanger 21 is further provided on the outer periphery of the impurity remover 3. For this reason, the same code
  • the exhaust gas heat exchanger 21 heats the impurity remover 3 to a desired temperature by exchanging heat between the exhaust gas flowing in the exhaust gas path 20 and the impurity remover 3.
  • the exhaust gas heat exchanger 21 is also formed in the first heat insulating portion 22. Since the fuel cell system according to the first modification of the second embodiment includes the exhaust gas heat exchanger 21 as described above, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20 is increased and the heat is increased. The transmission rate can be improved. Therefore, it is possible to quickly heat the impurity remover 3 so that the temperature is suitable for hydrodesulfurization.
  • FIG. 8 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 2 of Embodiment 2.
  • FIG. 8 the structure when the fuel cell system which concerns on the modification 2 of Embodiment 2 is seen from the side part is shown typically.
  • casing 7 of the fuel cell system which concerns on the modification 2 of Embodiment 2 is seen from the top becomes the same as that of the structure of the fuel cell system shown in FIG. 6, it is not illustrated.
  • the fuel cell system according to Modification 2 of Embodiment 2 is different from the fuel cell system according to Embodiment 2 described above in that it further includes an exhaust gas heat exchanger 21 and a condenser 24. That is, the fuel cell system according to Modification 2 of Embodiment 2 is a configuration further including a condenser 24 in the configuration of the fuel cell system according to Modification 1 of Embodiment 2. For this reason, the same code
  • the condenser 24 is provided in the recycle path 19 and condenses water contained in the fuel gas flowing through the recycle path 19.
  • the water obtained by condensation is stored in a drain tank (not shown).
  • the fuel cell system according to Modification 2 of Embodiment 2 includes the condenser 24. Therefore, when the circulating fuel gas is cooled in the recycling path 19, the condenser 24 collects moisture. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
  • FIG. 9 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 3 of Embodiment 2.
  • FIG. 9 the structure when the fuel cell system which concerns on the modification 3 of Embodiment 2 is seen from the side part is shown typically.
  • casing 7 of the fuel cell system which concerns on the modification 3 of Embodiment 2 is seen from the top becomes the same as the structure shown in FIG. 6, it is not illustrated.
  • the fuel cell system according to Modification 3 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 described above in that it further includes an exhaust gas heat exchanger 21, a condenser 24, and a fan 25. . That is, the fuel cell system according to Modification 3 of Embodiment 2 has a configuration in which the fan 25 is further provided outside the housing 7 in the configuration of the fuel cell system according to Modification 2 of Embodiment 2. For this reason, the same code
  • the fan 25 is a blower for sending air to cool the impurity remover 3. Since the fuel cell system according to Modification 3 of Embodiment 2 includes the fan 25, when the temperature of the impurity remover 3 rises excessively, it is easily cooled to a desired temperature by forced convection from the fan 25. be able to.
  • the surface on the side where the impurity remover 3 is cooled by the fan 25 is not covered with the first heat insulating portion 22 in order to increase the cooling efficiency.
  • FIGS. 10 and 11 are schematic views showing an example of the configuration of a fuel cell system according to Modification 4 of Embodiment 2.
  • FIG. 10 the structure when the fuel cell system which concerns on the modification 4 of Embodiment 2 is seen from the side part is shown typically.
  • FIG. 11 the structure when the inside of the housing
  • the fuel cell system according to Modification 4 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the casing 7, whereas the fuel cell system according to the fourth modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. For this reason, the same code
  • the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23.
  • the exhaust gas holding the heat generated by the fuel cell 6 and the combustion heat generated by the combustion of the combustion section 23 rises toward the upper surface of the casing 7, first heating the reformer 4, and then the air heat exchanger In the state where a part of the heat held by heat exchange with the heat exchanger 5 is taken away, it goes to the impurity remover 3 above the combustion section 23. That is, the exhaust gas goes to the impurity remover 3 in a state where the exhaust gas is lowered to a temperature suitable for the desulfurizing agent charged in the impurity remover 3.
  • the temperature distribution on the upper surface side of the housing 7 is made substantially uniform. Therefore, the temperature distribution of the impurity remover 3 can be made uniform, and the hydrodesulfurization can be efficiently performed on the impurity remover 3. And the exhaust gas which heated the impurity removal device 3 uniformly in this way distribute
  • the upper surface of the housing 7 is detachable, and the impurity remover 3 is detachable from the upper surface. For this reason, when replacing the impurity remover 3, first, the upper surface of the housing 7 is removed, and then the impurity remover 3 is removed from the upper surface of the housing 7.
  • FIG. 12 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 5 of Embodiment 2.
  • FIG. 12 the structure when the fuel cell system which concerns on the modification 5 of Embodiment 2 is seen from the side part is shown typically.
  • casing 7 of the fuel cell system which concerns on the modification 5 of Embodiment 2 is seen from the top becomes the same as the structure of the modification 4 shown in FIG. 11, it is not illustrated.
  • the fuel cell system according to Modification 5 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the housing 7, whereas the fuel cell system according to the fifth modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. Another difference is that a condenser 24 is further provided in the recycling path 19. That is, it can be said that the fuel cell system according to Modification 5 of Embodiment 2 has a configuration in which the condenser 24 is further provided in the recycling path 19 in the configuration of Modification 4 of Embodiment 2 described above. For this reason, the same code
  • the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23.
  • a condenser 24 is provided in the recycle path 19.
  • the fuel cell system according to Modification 5 of Embodiment 2 includes the condenser 24, and therefore, when the circulating fuel gas is cooled in the recycling path 19, water is collected by the condenser 24. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
  • FIGS. 13 and 14 are schematic views showing an example of the configuration of a fuel cell system according to Modification 6 of Embodiment 2.
  • FIG. 13 the structure when the fuel cell system which concerns on the modification 6 of Embodiment 2 is seen from the side part is shown typically.
  • FIG. 14 the structure when the inside of the housing
  • the fuel cell system according to Modification 6 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the housing 7, whereas the fuel cell system according to the sixth modification of the second embodiment It is different in that it is arranged at a substantially central portion on the upper surface side of the body 7. Further, the exhaust gas path 20 is different in that it includes an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20.
  • the fuel cell system according to Modification 6 of Embodiment 2 has a configuration in which the exhaust gas heat exchanger 21 is further provided in the exhaust gas path 20 in the configuration of Modification 4 of Embodiment 2 described above.
  • symbol is attached
  • the impurity remover 3 is disposed on the upper surface side of the casing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23.
  • the fuel cell according to Modification 6 of Embodiment 2 includes the exhaust gas heat exchanger 21 in the exhaust gas path 20, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. Can be expanded and the heat transfer rate can be improved. Therefore, it is possible to raise the temperature to a temperature suitable for performing hydrodesulfurization quickly while keeping the temperature distribution of the impurity remover 3 uniform.
  • FIG. 15 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 7 of Embodiment 2.
  • FIG. 15 schematically shows a configuration when the fuel cell system according to Modification 7 of Embodiment 2 is viewed from the side.
  • casing 7 of the fuel cell system which concerns on the modification 7 of Embodiment 2 is seen from the top becomes the same as the structure of the modification 6 shown in FIG. 14, it is not illustrated.
  • the fuel cell system according to Modification 7 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the casing 7, whereas the fuel cell system according to the seventh modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. Further, the exhaust gas path 20 is different in that it includes an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas that flows through the exhaust gas path 20, and also includes a condenser 24 in the recycle path 19.
  • the fuel cell system according to Modification 7 of Embodiment 2 has a configuration in which the condenser 24 is further provided in the recycling path 19 in the configuration of Modification 6 of Embodiment 2 described above.
  • symbol is attached
  • the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23.
  • the fuel cell according to Modification 7 of Embodiment 2 includes the exhaust gas heat exchanger 21 in the exhaust gas path 20, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. Can be expanded and the heat transfer rate can be improved. Therefore, it is possible to raise the temperature to a temperature suitable for performing hydrodesulfurization quickly while keeping the temperature distribution of the impurity remover 3 uniform.
  • a condenser 24 is provided in the recycling path 19.
  • the fuel cell system according to Modification 7 of Embodiment 2 includes the condenser 24, when the circulating fuel gas is cooled in the recycle path 19, water is collected by the condenser 24. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
  • the fuel cell system according to Embodiment 2 can provide a fuel cell system that operates stably with high efficiency.
  • the fuel cell system according to Embodiment 2 uses a fuel cell 6 (for example, a solid oxide fuel cell) that generates electricity by a power generation reaction using supplied fuel and air, and is unused in the fuel cell 6.
  • a reforming gas to be the fuel is generated from the supplied raw material by a reforming reaction using the combustion part 23 that burns fuel and air, and the heat of the exhaust gas that holds the combustion heat generated by the combustion of the combustion part 23
  • the reformer 4, the evaporator 9 that evaporates the water supplied by using the heat of the exhaust gas and generates water vapor, and the heat of the exhaust gas after being used by the reformer 4
  • the air heat exchanger 5 that heats the air supplied to the battery 6 and the heat of the exhaust gas after being heat-utilized by the air heat exchanger 5 are used to hydrodesulfurize the sulfur component contained in the supplied raw material. Removing impurities and supplying them to the reformer 4 Vessel 3 (e.g., desulfurizer) is provided with a, a.
  • the fuel cell system according to Embodiment 2 includes the impurity remover 3
  • the fuel cell system can be supplied to the reformer 4 with the sulfur component removed from the raw material. For this reason, since the deterioration of the reforming catalyst of the reformer 4 due to the sulfur component can be prevented, the reformer 4 can be used for a long term. Therefore, in the fuel cell system, the long-term durability of the system can be ensured.
  • the impurity remover 3 is configured to perform hydrodesulfurization using the heat of the exhaust gas that has been used by the reformer 4 and the air heat exchanger 5 and has been lowered to a predetermined temperature. That is, the impurity remover 3 can be heated with exhaust gas so as to have a desired temperature suitable for hydrodesulfurization.
  • the fuel cell system according to Embodiment 2 can control the temperature of the impurity remover 3 so as to be a temperature suitable for hydrodesulfurization and ensure long-term durability. Furthermore, the fuel cell system according to Embodiment 2 is a configuration in which the impurity remover 3 may be disposed above the combustion unit 23 and at a position facing the fuel cell system in the configuration described above.
  • the exhaust gas that retains the heat generated by the fuel cell 6 and the combustion heat generated by the combustion of the combustion section 23 heats the position above and facing the combustion section 23 with a substantially uniform temperature distribution.
  • the impurity remover 3 is disposed above and corresponding to the combustion unit 23, so that the impurity remover 3 can be heated uniformly. For this reason, the impurity remover 3 can efficiently desulfurize the raw material gas.
  • the impurity remover 3 is arranged in a housing space (housing device 27) provided so as to constitute a part of the exhaust gas route 20 in the middle of the exhaust gas route 20, and circulates around the outer periphery of the impurity remover 3. It is the structure heated by the waste gas which does. For this reason, the entire impurity remover 3 can be heated substantially uniformly by the exhaust gas.
  • the fuel cell system according to Embodiment 2 may further include an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas in the configuration described above.
  • the exhaust gas heat exchanger 21 since the exhaust gas heat exchanger 21 is provided, it is possible to expand the heat transfer area and improve the heat transfer coefficient between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20.
  • the temperature of the impurity remover 3 can be quickly set to a desired temperature.
  • the fuel cell system according to Embodiment 2 is configured such that, in the configuration described above, the reformer 4 has an evaporator 9 for vaporizing water supplied for use in the steam reforming reaction. It may be.
  • the fuel cell system according to Embodiment 2 may be configured such that the impurity remover 3 is detachably provided in the fuel cell system in the configuration described above.
  • the impurity remover 3 since the impurity remover 3 is detachably provided in the fuel cell system, the impurity remover 3 can be easily replaced when the desulfurization catalyst charged in the impurity remover 3 deteriorates. it can. Therefore, further long-term operation of the fuel cell system can be facilitated.
  • the fuel cell system according to Embodiment 2 has the above-described configuration, and a housing 7 that houses at least the fuel cell 6, the combustion unit 23, the reformer 4, the air heat exchanger 5, and the impurity remover 3,
  • a first heat insulating part 22 disposed on the inner wall of the housing 7, and at least a part of the impurity remover 3 may be disposed within the first heat insulating part 22.
  • the fuel cell system according to Embodiment 2 accommodates at least the fuel cell 6, the combustion unit 23, the reformer 4, the air heat exchanger 5, the impurity remover 3, and the exhaust gas heat exchanger 21 in the configuration described above.
  • the impurity remover 3 and the exhaust gas heat exchanger 21 are disposed in the first heat insulating portion 22, heat radiation from the impurity remover 3 or the exhaust gas heat exchanger 21 can be suppressed. . Therefore, the impurity remover 3 can be easily heated to a desired temperature.
  • the fuel cell system according to Embodiment 2 may be configured to further include a fan 25 that cools the impurity remover 3 outside the housing 7 in the configuration described above.
  • the fan 25 since the fan 25 is provided, when the impurity remover 3 is excessively heated, it can be easily cooled by forced convection from the fan 25.
  • the fuel cell system according to Embodiment 2 is provided in the recycling path 19 and the boosting section 2 that boosts the raw material flowing through the raw material gas path 1 and supplies it to the impurity remover 3 in the configuration described above.
  • a condenser 24 that condenses moisture contained in the fuel flowing through the recycle path 19, and the recycle path 19 may be configured to guide a part of the fuel to the upstream side of the booster 2 in the source gas path 1. .
  • the condenser 24 is provided in the recycling path 19. For this reason, when the fuel flowing through the recycling path 19 is lowered in temperature, water can be collected by the condenser 24, so that water clogging in the path due to condensed water can be suppressed.
  • the recycle path 19 is configured to guide part of the fuel to the upstream side of the booster 2. For this reason, this fuel can be guided to the pressure-increasing unit 2 in a state in which moisture generated by the low temperature of the fuel is recovered by the condenser 24. Therefore, it is possible to suppress problems such as corrosion or breakage of the booster 2 due to moisture.
  • the catalyst filled in the impurity remover 3 such as a desulfurizer is deteriorated by use, and therefore needs to be replaced.
  • the impurity remover 3 is installed in the internal space of the housing (for example, the heat insulating tank 102 of Patent Document 1), impurities There was a problem that it was difficult to remove the remover 3 itself.
  • the upper surface of the housing 7 provided with the impurity remover 3 can be removed from the main body of the housing 7. It may be possible to replace the impurity remover 3. However, even in such a configuration, when the size of the housing 7 is large, it is difficult to remove the upper surface from the housing 7, and the impurity remover 3 may not be easily removed.
  • the inventor has made it possible to easily remove the impurity remover 3 and studied the configuration of the fuel cell system that can be easily manufactured and maintained. As a result, the fuel cell system according to Embodiment 1 described above has been studied. As described above, it has been found that it is effective to adopt a configuration in which the impurity remover 3 is stored in the container 27.
  • FIGS. 16 and 17 are schematic views showing an example of the configuration of the fuel cell system according to the third embodiment.
  • FIG. 16 the structure when the fuel cell system which concerns on Embodiment 3 is seen from the side part is shown typically.
  • FIG. 17 shows an example of a configuration when the container 27 described later is separated from the casing 7 in the fuel cell system shown in FIG.
  • the fuel cell system according to Embodiment 3 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is accommodated in the first heat insulating portion 22, whereas in the fuel cell system according to the third embodiment, the impurity remover 3 is accommodated. It is different in that it is accommodated in the container 27.
  • the impurity remover 3 is disposed below the right side surface of the casing 7, whereas in the fuel cell system according to the third embodiment, the upper surface of the casing 7 is arranged. It differs also in the point arrange
  • the arrangement of the impurity remover 3 according to the third embodiment is not limited to this, and may be a configuration arranged below the right side surface of the housing 7 as in the fuel cell system according to the second embodiment. Good.
  • an exhaust gas path 20 is provided for guiding the exhaust gas in the housing 7 into the container 27 and for guiding the exhaust gas circulated in the container 27 to the outside of the container 27, so that the exhaust gas path 20 communicates with the upstream side exhaust gas. It differs also in the point provided with the two exhaust gas path connection parts 31 for connecting the path
  • the storage device side exhaust gas path connection portion 31 a is provided on the bottom surface of the storage device 27 serving as a surface in contact with the housing 7.
  • the casing-side exhaust gas path connection portion 31 b is provided with a casing-side exhaust gas path connection portion 31 b at the bottom of a recess formed on the upper surface of the casing 7 so that the container 27 can be accommodated.
  • the housing-side exhaust gas path connection portion 31b is a position corresponding to the housing-side exhaust gas path connection portion 31a when the storage device 27 is attached to the housing 7 at the bottom of the recess. 1 is provided in the heat insulating portion 22.
  • first connecting portion 30 that connects the housing 7 and the container 27 so that the source gas path 1 and the impurity remover 3 communicate with each other, and the source gas path 14 and the impurity remover 3 after deflowing communicate with each other.
  • a second connection portion 32 for connecting the housing 7 and the container 27 is provided.
  • the first connection part 30 and the second connection part 32 realize the source gas path connection part of the present invention.
  • the container 27 is connected to the housing 7 by the raw material gas path connection portion (the first connection portion 30 and the second connection portion 32). Further, the container 27 is connected to the housing 7 by two exhaust gas path connection portions 31. Except for the points described above, the configuration is the same as that of the second embodiment.
  • a container 27 that contains the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. . Then, the exhaust gas holding the reaction heat generated in the fuel cell 6 and the combustion heat generated by the combustion of the combustion unit 23 rises toward the upper surface of the casing 7, and first heats the reformer 4 and the evaporator 9. Furthermore, the heat removal with the air heat exchanger 5 proceeds toward the impurity remover 3 above the combustion unit 23 in a state where a part of the heat held is taken away. That is, the exhaust gas goes to the impurity remover 3 in a state where the exhaust gas is lowered to a temperature suitable for the desulfurizing agent charged in the impurity remover 3.
  • the reformer 4, the evaporator 9, and the air heat exchanger 5 are configured to take away a part of the heat held by the exhaust gas. For this reason, the exhaust gas produced
  • the impurity remover 3 can be easily maintained at an appropriate temperature. Further, since the heat recovered by the air heat exchanger 5 through heat exchange with the exhaust gas can be used for heating the air supplied to the fuel cell, an efficient operation of the fuel cell system can be realized.
  • the exhaust gas lowered to a temperature suitable for the desulfurizing agent filled in the impurity removing device 3 is formed in the storage device 27 from one end side of the storage device 27 through the upstream exhaust gas path 20a.
  • route 20c in a storage device and the impurity removal device 3 exchange heat.
  • the temperature of the exhaust gas can be lowered to a temperature suitable for the desulfurizing agent 3.
  • the radiant heat from the combustion unit 23 or the heat possessed by the exhaust gas which has become a high temperature due to a system failure or the like, heats the first heat insulating unit 22, and the temperature of the impurity remover 3 is higher than the appropriate temperature.
  • the temperature becomes high it can be cooled by the exhaust gas flowing through the in-container exhaust gas flow path 20c. Therefore, in the fuel cell system according to Embodiment 3, it is easy to maintain the impurity remover 3 at an appropriate temperature.
  • the exhaust gas that has flowed through the in-container exhaust gas path 20 c flows out from the other end side of the storage container 27 to the downstream exhaust gas path 20 b and is guided to the outside of the housing 7.
  • the impurity remover 3 is arranged in the middle of the exhaust gas path 20 as in the fuel cell system according to Embodiment 2.
  • An upstream exhaust gas path 20 a is disposed upstream of the impurity remover 3, and a downstream exhaust gas path 20 b is disposed downstream of the impurity remover 3.
  • the container 27 in which the impurity remover 3 is housed is provided with a second heat insulating part (second heat insulating material part) 33 on the inside thereof, and heat is radiated from the inside of the container 27 to the outside and from the outside. It is configured to block heat transfer as much as possible.
  • the second heat insulating portion 33 is provided inside the surface of the storage device 27 excluding the bottom surface where the storage device side exhaust gas path connection portion 31 a is formed. Yes. That is, at least a part (the bottom surface in FIG. 16) of the container 27 is provided so as to be detachable from the housing 7 in contact with the first heat insulating portion 22.
  • a second heat insulating portion 33 is provided at least inside the surface of the container 27 that is not in contact with the first heat insulating portion 22.
  • the impurity remover 3 while heating the impurity remover 3 so that it may become a suitable temperature by heat exchange with exhaust gas, the heat of impurities other than the heat which the exhaust gas has transmitted to the impurity remover 3 is interrupted, and the temperature of the impurity remover 3 is made suitable temperature Can be maintained.
  • the material of the 2nd heat insulation part 33 may be the same as the material of the 1st heat insulation part 22, and a different material may be sufficient as it.
  • the second heat insulating portion 33 since the second heat insulating portion 33 is not exposed to a higher temperature than the first heat insulating portion 22, the second heat insulating portion 33 does not need to be made of a material that can withstand a higher temperature than the first heat insulating portion 22.
  • housing 7 and the container 27 are connected by the first connection part 30, the second connection part 32, and the two exhaust gas path connection parts 31 as described above. And these 1st connection parts 30, the 2nd connection part 32, and the waste gas path connection part 31 are airtight so that the flowing source gas or exhaust gas may not leak.
  • the container 27 is stored in the housing 7 by the first connection part 30, the second connection part 32, and the exhaust gas path connection part 31 described above. Is configured to be removable.
  • the first connection part 30, the second connection part 32, and the exhaust gas path connection part 31 are, for example, the same as the raw material gas path connection part (first connection part 30) and the exhaust gas path connection part 31 of the first embodiment. It may be a fastening member represented by a registered trademark.
  • the container 27 is removed from the housing 7 and the container 27 is removed.
  • the impurity remover 3 can be easily taken out from the inside. Therefore, a fuel cell system excellent in maintainability can be configured.
  • the impurity remover 3 has a temperature range of 350 to 400 ° C. when the desulfurizing agent is a combination of a Ni—Mo based or Co—Mo based catalyst and zinc oxide, or the desulfurizing agent is copper. In the case of containing zinc and zinc, the temperature range is about 10 to 400 ° C., preferably about 150 to 300 ° C.
  • the first connection part 30 (the container side first connection part 30a, the housing side first connection part 30b) and the second connection part 32 (the container side second connection part).
  • 32 a and the housing side second connection tool 32 b) are configured to be accommodated in the first heat insulating part 22 or the second heat insulating part 33.
  • the exhaust gas path connecting portion 31 is also accommodated in the first heat insulating portion 22.
  • the first connection part 30, the second connection part, and the exhaust gas path connection part 31 are exposed to high-temperature heat (for example, heat of 400 ° C. or more) for a long time due to radiant heat from the combustion part 23 or heat of the exhaust gas. It is possible to suppress the occurrence of problems such as thermal degradation.
  • high-temperature heat for example, heat of 400 ° C. or more
  • the in-container exhaust gas path 20 c is formed in the container 27 so as to surround the outer periphery of the impurity remover 3.
  • it is not limited to the configuration in which the in-container exhaust gas path 20c is formed in this way.
  • FIG. 18 is a schematic diagram showing an example of the configuration of the fuel cell system according to Embodiment 3 of the present invention.
  • one side surface of the impurity remover 3 is in contact with the second heat insulating portion 33, and the in-container exhaust gas path 20 c is formed only on the other side surface side of the impurity remover 3. That is, when the impurity remover 3 is thin enough to be maintained at an appropriate temperature by heat exchange with the exhaust gas flowing through the in-container exhaust gas path 20c formed only on one side surface of the impurity remover 3, the impurity removal is performed.
  • the in-container exhaust gas path 20c It is not necessary to form the in-container exhaust gas path 20c so as to surround the outer periphery of the container 3.
  • the exhaust gas path 20c in the container is formed only on one side surface side of the impurity remover 3
  • the thickness of the container 3 that accommodates the impurity remover 3 can be further reduced and the size can be reduced. Can be planned.
  • the impurity remover 3 is configured to be maintained at an appropriate temperature by heat exchange with the exhaust gas flowing through the in-container exhaust gas path 20c.
  • the heat possessed by the exhaust gas in the housing 7 and the radiant heat of the combustion unit 23 may be configured to heat the first heat insulating unit 22 so that the temperature of the impurity remover 3 becomes an appropriate temperature.
  • Such a configuration will be specifically described with reference to FIGS. 19 and 20 as a modification of the third embodiment.
  • FIGS. 19 and 20 are schematic diagrams illustrating an example of the configuration of a fuel cell system according to a modification of the third embodiment.
  • FIG. 19 the structure when the fuel cell system which concerns on the modification of Embodiment 3 is seen from the side part is shown typically.
  • FIG. 20 shows an example of the configuration when the container 27 is separated from the housing 7 in the fuel cell system shown in FIG.
  • the fuel cell system according to the modified example of the third embodiment is different from the fuel cell system of the third embodiment described above in that the container exhaust gas path 20c is not formed in the container 27. Another difference is that the upstream exhaust gas path 20a and the downstream exhaust gas path 20b are not configured to be connected to the in-container exhaust gas path 20c by the exhaust gas path connection portion 31. That is, in the fuel cell system according to the modification of the third embodiment, the exhaust gas path 20 extends from the inside of the casing 7 through the first heat insulating portion 22 and extends to the outside of the casing 7.
  • the configuration of the fuel cell system according to the modification of the third embodiment is the same as the configuration of the fuel cell system of the third embodiment.
  • symbol is attached
  • the container 27 that houses the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23.
  • the exhaust gas holding the reaction heat generated in the fuel cell 6 and the combustion heat generated by the combustion of the combustion unit 23 rises toward the upper surface of the casing 7, and first heats the reformer 4 and the evaporator 9.
  • the heat which is held by the heat exchange with the air heat exchanger 5 is deprived to the upper side of the combustion unit 23.
  • the reformer 4 and the air heat exchanger 5 are configured to take away a part of the heat retained by the exhaust gas. For this reason, the exhaust gas produced
  • the configuration in which the exhaust gas is guided into the container 27 and heat exchange is performed between the exhaust gas and the impurity remover 3 causes the impurity remover 3 to have a higher temperature. In this case, it is advantageous in that the temperature can be lowered to an appropriate temperature by exhaust gas.
  • the container 27 in which the impurity remover 3 is housed is provided with a second heat insulating portion 33 on the inner side in the same manner as in the configuration shown in the third embodiment, and heat is radiated from the inside of the container 27 to the outside. It is configured to block as much as possible.
  • the housing 7 and the container 27 are connected by the first connection part 30 and the second connection part 32. And these 1st connection parts 30 and the 2nd connection part 32 are ensuring airtightness so that the flowing raw material gas may not leak.
  • the container 27 can be attached to and detached from the housing 7 by the first connection portion 30 and the second connection portion 32. It is configured. In this way, if the container 27 is configured to be detachable from the housing 7, the container 27 containing the impurity remover 3 can be easily attached to the housing 7 when the fuel cell system is manufactured. Can be attached.
  • the container 27 is removed from the housing 7 and the container 27 is removed.
  • the impurity remover 3 can be easily taken out from the inside. Therefore, a fuel cell system excellent in maintainability can be configured.
  • the first connection portion 30 (the container side first connection portion 30a, the housing side first connection portion 30b) and the second connection portion 32 (the container side first connection).
  • casing side 2nd connection tool 32b) are comprised so that it may be accommodated in the 1st heat insulation part 22 or the 2nd heat insulation part 33.
  • FIG. since these connection parts are accommodated in the 1st heat insulation part 22 or the 2nd heat insulation part 33, they are not directly exposed to the high temperature inside the housing
  • first connection part 30 and the second connection part 32 are exposed to a high temperature (for example, 400 ° C. or more) for a long time due to the radiant heat from the combustion part 23 and the heat of the exhaust gas. Can be suppressed.
  • a high temperature for example, 400 ° C. or more
  • FIG. 21 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification of the third embodiment.
  • the configuration including the air heat exchanger 5 is advantageous in that the amount of heat recovered by heat exchange with the exhaust gas can be used for heating the air supplied to the fuel cell.
  • the container 27 is configured to be accommodated in the first heat insulating portion 22 of the housing 7.
  • the container 27 is not limited to such a configuration.
  • the container 27 may be attached in a state of protruding upward from the upper surface of the housing 7.
  • FIG. 22 is a diagram illustrating an example of a configuration in which the container 27 is separated from the housing 7 in the fuel cell system according to the modification of the third embodiment.
  • the configuration of the fuel cell system according to the modification of the third embodiment is described as an example.
  • the fuel cell system according to the third embodiment can be similarly configured. It is.
  • the container 27 has a substantially U-shaped cross section in which both end portions in the longitudinal direction protrude downward.
  • a second heat insulating portion 33 is provided in the portion protruding downward, and the container-side first connection portion 30a and the container-side second in the second heat insulating portion 33 at the end of the protruding portion. Connection portions 32a are provided.
  • the housing 7 is formed with a recess so as to accommodate the protruding end of the container 27 at a position where the container 27 is attached.
  • casing side 2nd connection part 32b are each provided in the 1st heat insulation part 22 at the bottom of this recessed part.
  • abut may be sufficient.
  • the container 27 may be attached so as to protrude outward from the housing 7.
  • FIG. 23 is a flowchart illustrating an example of a manufacturing method of the fuel cell system according to Embodiments 1 and 3.
  • FIG. 23 is a flowchart showing an example of a method for manufacturing a fuel cell system according to Embodiment 1 or Embodiment 3 of the present invention.
  • heating and reduction treatment is performed in order to activate the catalyst (for example, Patent Document 7). Therefore, in the manufacturing method of the present invention, heating and reduction treatment are performed before the container 27 is attached to the housing 7.
  • first step (S1) heat treatment is performed so as to reach a temperature (150 to 300 ° C.) for activating the catalyst charged in the impurity remover 3.
  • This first step (S1) can be performed only on the impurity remover 3 in a state where it is removed from the housing 7, but it can also be performed on the container 27 containing the impurity remover 3. Is possible.
  • a reducing gas containing 0.1 to 5% hydrogen in an inert gas for example, nitrogen
  • an inert gas for example, nitrogen
  • the reduction process is performed by distributing the flow through the container 27. With this reducing gas, the oxidized catalyst is reduced and the catalyst is activated.
  • the container 27 that houses the impurity remover 3 is attached to the second casing 7b.
  • the above-described first step (S1) and second step (S2) necessary for activating the catalyst charged in the impurity remover 3 are accommodated in the second casing 7b. This can be done before the third step of attaching the vessel 27. Therefore, it is not necessary to add components other than the impurity remover 3 or the storage device 27 to the heating and reduction process, so that unnecessary energy and gas consumption can be suppressed. Therefore, an efficient manufacturing method of the fuel cell system can be realized.
  • the fuel cell system of the present invention has a configuration capable of managing the impurity remover 3 that performs hydrodesulfurization so as to be in an appropriate temperature range. Therefore, it can be widely applied to fuel cell systems equipped with a desulfurizer that removes sulfur components from raw material gas by hydrodesulfurization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

This fuel cell system is provided with: an impurity removal device (3) for removing impurities that are contained in a starting material gas; an evaporator (9) for producing water vapor by evaporating water supplied thereto; a reformer (4) for producing a reformed gas, which serves as a fuel, by means of a reforming reaction between the water vapor produced by the evaporator (9) and the starting material gas from which impurities are removed by the impurity removal device (3); a fuel cell (6) which generates power by means of a power generation reaction utilizing the fuel and air supplied thereto; a combustion unit (23) for combusting some fuel that has been unused in the fuel cell (6); a case (7) for housing the evaporator (9), the reformer (4), the fuel cell (6) and the combustion unit (23); an exhaust gas passage (20) where an exhaust gas produced by the combustion in the combustion unit (23) passes through in order to be discharged from the inside of the case (7) to the outside of the system; and a housing space which is provided midway along the exhaust gas passage (20) so as to constitute a part of the exhaust gas passage (20), and in which the impurity removal device (3) is arranged.

Description

燃料電池システムとその製造方法Fuel cell system and manufacturing method thereof
 本発明は、原料ガスに含まれる不純物を除去する不純物除去器を備えた燃料電池システムとその製造方法に関するものである。 The present invention relates to a fuel cell system including an impurity remover for removing impurities contained in a raw material gas, and a method for manufacturing the fuel cell system.
 原料ガスとして炭化水素を用いる燃料電池システムでは、この原料ガスを改質するために、例えば、水蒸気を用いた水蒸気改質が利用されている。この水蒸気改質を促進するために水蒸気改質触媒が用いられているが、原料ガス中には付臭剤として例えば、硫黄化合物が含まれており、これらによってこの水蒸気改質触媒が劣化させられるおそれがある。そこで、水蒸気改質触媒の劣化を防止するために、原料ガス中に含まれる硫黄化合物を低減させる脱硫器が利用されている。 In a fuel cell system using hydrocarbons as a raw material gas, for example, steam reforming using steam is used to reform the raw material gas. A steam reforming catalyst is used to promote this steam reforming, but the raw material gas contains, for example, a sulfur compound as an odorant, and these steam reforming catalysts are deteriorated by these. There is a fear. Therefore, in order to prevent deterioration of the steam reforming catalyst, a desulfurizer that reduces the sulfur compound contained in the raw material gas is used.
 このような脱硫器としては、例えば、硫黄化合物を触媒(Ni-Mo系、Co-Mo系)上で水素と反応させて硫化水素に変換し、この硫化水素を酸化亜鉛に取り込んで除去する、いわゆる水添脱硫法により脱硫を行なう水添脱硫装置が挙げられる。 As such a desulfurizer, for example, a sulfur compound is reacted with hydrogen on a catalyst (Ni—Mo system, Co—Mo system) to convert it into hydrogen sulfide, and the hydrogen sulfide is taken into zinc oxide and removed. Examples thereof include a hydrodesulfurization apparatus that performs desulfurization by a so-called hydrodesulfurization method.
 水添脱硫装置は、水添脱硫法により脱硫を行なう際に水素を必要とするとともに、脱硫反応に適した温度制御が必要となる。そこで、脱硫器の温度制御を行う構成を有した燃料電池システムが提案されている(例えば、特許文献1~3)。 The hydrodesulfurization apparatus requires hydrogen when desulfurization is performed by the hydrodesulfurization method, and requires temperature control suitable for the desulfurization reaction. Therefore, a fuel cell system having a configuration for controlling the temperature of the desulfurizer has been proposed (for example, Patent Documents 1 to 3).
 より具体的には、特許文献1では、図24に示すように燃料電池スタック104や改質器103から排出される輻射熱等の伝熱により脱硫器110を加熱する。また、脱硫器110の温度が100~300℃となるように制御装置で流通させるガス(冷却用ガスまたは加熱用ガス)の選択および流量の調整をすることで脱硫器110の温度制御を行う。 More specifically, in Patent Document 1, the desulfurizer 110 is heated by heat transfer such as radiant heat discharged from the fuel cell stack 104 or the reformer 103 as shown in FIG. Further, the temperature of the desulfurizer 110 is controlled by selecting the gas (cooling gas or heating gas) to be circulated by the control device and adjusting the flow rate so that the temperature of the desulfurizer 110 becomes 100 to 300 ° C.
 また、特許文献2では、図25に示すように断熱槽201と内部筐体216の間に脱硫器202を設置し、燃焼器207から放出される燃焼熱の伝播により脱硫器202を加熱する。 Further, in Patent Document 2, as shown in FIG. 25, a desulfurizer 202 is installed between the heat insulating tank 201 and the internal housing 216, and the desulfurizer 202 is heated by propagation of combustion heat released from the combustor 207.
 また、特許文献3では、図26に示すように、内部が高温状態に保たれるように設けられた高温断熱部の外側に脱硫器301が設けられている。そして、高温断熱部を介して伝播する固体酸化物形燃料電池の排熱を利用して脱硫器301が所定の温度範囲に保たれるように構成されている。 In Patent Document 3, as shown in FIG. 26, a desulfurizer 301 is provided outside a high-temperature heat insulating portion provided so that the inside is kept at a high temperature. And it is comprised so that the desulfurizer 301 may be maintained in a predetermined | prescribed temperature range using the waste heat of the solid oxide fuel cell which propagates through a high temperature heat insulation part.
 また、燃料電池から発生する高温の排ガスを利用して脱硫器を加熱する燃料電池システムも提案されている(例えば、特許文献4、5)。特許文献4の燃料電池システム(SOFCシステム)では、燃料電池430を収容し、この燃料電池430から放出される高温の排ガスを外部に対して遮蔽する燃焼室420内、あるいは、図27に示すようにこの燃焼室420とは別に設けられた加熱室400内に脱硫器411を収納する構成が開示されている。特許文献4の燃料電池システムでは、排ガスにより燃焼室420内または加熱室400内にある脱硫器411を加熱する構成となっている。 Also, a fuel cell system that heats the desulfurizer using high-temperature exhaust gas generated from the fuel cell has been proposed (for example, Patent Documents 4 and 5). In the fuel cell system (SOFC system) of Patent Document 4, the fuel cell 430 is accommodated and the high-temperature exhaust gas discharged from the fuel cell 430 is shielded from the outside, or as shown in FIG. Further, a configuration in which a desulfurizer 411 is housed in a heating chamber 400 provided separately from the combustion chamber 420 is disclosed. In the fuel cell system of Patent Document 4, the desulfurizer 411 in the combustion chamber 420 or the heating chamber 400 is heated by exhaust gas.
 また、特許文献5では、図28に示すようにハウジング(筐体)500内に、原料ガス、酸化剤ガス、および水を加熱する予熱器501と、原料ガスに対して水蒸気改質を行う改質器502と、燃料電池本体503と、を収容した燃料電池システムが開示されている。特許文献5の燃料電池システムでは、燃料電池本体503から排出される排ガスをハウジング500の外部に配置された脱硫器504に導き、この脱硫器504を加熱する構成となっている。 Further, in Patent Document 5, as shown in FIG. 28, in a housing (housing) 500, a preheater 501 that heats a raw material gas, an oxidant gas, and water, and a reformer that performs steam reforming on the raw material gas. A fuel cell system that houses a mass device 502 and a fuel cell main body 503 is disclosed. In the fuel cell system of Patent Document 5, the exhaust gas discharged from the fuel cell main body 503 is guided to a desulfurizer 504 disposed outside the housing 500, and the desulfurizer 504 is heated.
特開2010-272333号公報JP 2010-272333 A 特開2011-216308号公報JP 2011-216308 A 特許第4911927号公報Japanese Patent No. 4911927 特開2006-309982号公報JP 2006-309982 A 特開2012-155978号公報JP 2012-155978 A 特許第2993507号公報Japanese Patent No. 2999307 特開昭63-44934号公報JP 63-44934 A
 しかしながら、特許文献1に開示されている燃料電池システムでは、燃料電池スタック104や改質器103から排出される輻射熱等の伝熱により脱硫器110を加熱するため、脱硫器全体を温度ムラなく均一に加熱することが難しく、過昇温を未然に防止することが難しい。また、図24に示すように複数の弁の切り替えや制御装置が別途必要になるという課題がある。また、特許文献2、3に開示されている燃料電池システムも同様に、図25、図26に示すように燃焼器から放出される燃焼熱の伝播により脱硫器を加熱する構成であるため、温度ムラの発生や過昇温といった特許文献1と同様の課題を避けることができない。 However, in the fuel cell system disclosed in Patent Document 1, the desulfurizer 110 is heated by heat transfer such as radiant heat discharged from the fuel cell stack 104 or the reformer 103, and therefore the entire desulfurizer is uniformly distributed without temperature unevenness. It is difficult to heat the glass quickly, and it is difficult to prevent overheating. Further, as shown in FIG. 24, there is a problem that switching of a plurality of valves and a control device are separately required. Similarly, the fuel cell systems disclosed in Patent Documents 2 and 3 are configured to heat the desulfurizer by the propagation of combustion heat released from the combustor as shown in FIGS. Problems similar to Patent Document 1 such as generation of unevenness and excessive temperature rise cannot be avoided.
 また、特許文献4に開示されている燃料電池システム(SOFCシステム)は、図27に示すように水加熱手段410および気化器412と、脱硫器411とが同じ筐体(加熱室400)内に設けられており、これらはそれぞれ近接して配置されている。ここで水加熱手段410および気化器412は、水、灯油を気化させるために大きな熱量を消費するため、加熱室400内における排ガスの温度分布が不均一となる。このため、脱硫器411全体を排ガスにより均一の温度で加熱することが困難となるという問題がある。 In addition, as shown in FIG. 27, the fuel cell system (SOFC system) disclosed in Patent Document 4 includes a water heating means 410, a vaporizer 412 and a desulfurizer 411 in the same casing (heating chamber 400). These are provided in close proximity to each other. Here, since the water heating means 410 and the vaporizer 412 consume a large amount of heat to vaporize water and kerosene, the temperature distribution of the exhaust gas in the heating chamber 400 becomes non-uniform. For this reason, there is a problem that it becomes difficult to heat the entire desulfurizer 411 with exhaust gas at a uniform temperature.
 特許文献5に開示されている燃料電池システムでは、脱硫器504の加熱源として排ガスを利用しているが、脱硫器504全体を排ガスで覆って加熱する構成となっておらず、脱硫器504全体を均一の温度で加熱することが困難となるという問題がある。 In the fuel cell system disclosed in Patent Document 5, exhaust gas is used as a heating source of the desulfurizer 504. However, the entire desulfurizer 504 is not covered with the exhaust gas and heated, and the entire desulfurizer 504 is not heated. There is a problem that it becomes difficult to heat the glass at a uniform temperature.
 本発明は、上述した問題点に鑑みてなされたものであり、その目的は、不純物を除去する不純物除去器全体を、均一の温度で加熱することができる燃料電池システムとその製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a fuel cell system capable of heating the entire impurity remover for removing impurities at a uniform temperature and a method for manufacturing the same. There is.
 本発明に係る燃料電池システムは、上記した課題を解決するために、供給された原料ガスに含まれる不純物を除去する不純物除去器と、供給された水を蒸発させて水蒸気を生成する蒸発器と、前記蒸発器により生成された水蒸気と、前記不純物除去器により不純物が除去された前記原料ガスとから改質反応により燃料となる改質ガスを生成する改質器と、供給された空気と前記燃料とを利用して発電反応により発電する燃料電池と、前記燃料電池で未利用の燃料を燃焼する燃焼部と、前記蒸発器、前記改質器、前記燃料電池、および前記燃焼部を収容する筐体と、前記燃焼部における燃焼により生じた排ガスを、前記筐体内から当該燃料電池システム外へと排出させるため、該排ガスが流通する排ガス経路と、前記排ガス経路の途中に該排ガス経路の一部を構成するように設けられ、前記不純物除去器を配置するための収容空間と、を備える。 In order to solve the above-described problem, the fuel cell system according to the present invention includes an impurity remover that removes impurities contained in the supplied source gas, and an evaporator that evaporates the supplied water to generate water vapor. A reformer that generates a reformed gas as a fuel by a reforming reaction from the water vapor generated by the evaporator and the source gas from which impurities have been removed by the impurity remover; the supplied air; and A fuel cell that generates power by a power generation reaction using fuel, a combustion unit that burns unused fuel in the fuel cell, and the evaporator, the reformer, the fuel cell, and the combustion unit are accommodated In order to exhaust the exhaust gas generated by the combustion in the housing and the combustion section from the inside of the housing to the outside of the fuel cell system, the exhaust gas passage through which the exhaust gas flows and the exhaust gas in the middle of the exhaust gas route Provided so as to constitute a part of the scan path, and a housing space for placing the impurity remover.
 本発明にかかる燃料電池システムは、以上に説明したように構成され、不純物除去器全体を、均一の温度で加熱することができるという効果を奏する。 The fuel cell system according to the present invention is configured as described above, and has an effect that the entire impurity remover can be heated at a uniform temperature.
実施形態1に係る燃料電池システムの構成の一例を示した模式図である。1 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 1. FIG. 実施形態1に係る燃料電池システムの構成において、筐体と収納器とを分離した際の構成を示した模式図である。In the structure of the fuel cell system which concerns on Embodiment 1, it is the schematic diagram which showed the structure at the time of isolate | separating a housing | casing and a container. 本発明の実施形態1の変形例に係る燃料電池システムの構成の一例を示した模式図である。It is the schematic diagram which showed an example of the structure of the fuel cell system which concerns on the modification of Embodiment 1 of this invention. 実施形態1の変形例に係る燃料電池システムの構成において、筐体と収納器とを分離した際の構成を示した模式図である。In the structure of the fuel cell system which concerns on the modification of Embodiment 1, it is the schematic diagram which showed the structure at the time of isolate | separating a housing | casing and a container. 実施形態2に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 2. FIG. 実施形態2に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 2. FIG. 実施形態2の変形例1に係る燃料電池システムの構成の一例を示した模式図である。FIG. 5 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 1 of Embodiment 2. 実施形態2の変形例2に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 2 of Embodiment 2. FIG. 実施形態2の変形例3に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 3 of Embodiment 2. 実施形態2の変形例4に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 4 of Embodiment 2. 実施形態2の変形例4に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 4 of Embodiment 2. 実施形態2の変形例5に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 5 of Embodiment 2. 実施形態2の変形例6に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 6 of Embodiment 2. 実施形態2の変形例6に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 6 of Embodiment 2. 実施形態2の変形例7に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification Example 7 of Embodiment 2. 実施形態3に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3. FIG. 実施形態3に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3. FIG. 実施形態3に係る燃料電池システムの構成の一例を示した模式図である。6 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Embodiment 3. FIG. 実施形態3の変形例に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3. 実施形態3の変形例に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3. 実施形態3の変形例に係る燃料電池システムの構成の一例を示した模式図である。FIG. 10 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification example of Embodiment 3. 実施形態3の変形例に係る燃料電池システムにおいて、筐体から収納器を分離させた構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a configuration in which a container is separated from a housing in a fuel cell system according to a modification of the third embodiment. 実施形態1、3に係る燃料電池システムの製造方法の一例を示すフローチャートである。5 is a flowchart showing an example of a method for manufacturing a fuel cell system according to Embodiments 1 and 3. 従来技術を示すものであり、燃料電池システムの構成の一例を示した模式図である。It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. 従来技術を示すものであり、燃料電池システムの構成の一例を示した模式図である。It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. 従来技術を示すものであり、燃料電池システムの構成の一例を示した模式図である。It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. 従来技術を示すものであり、燃料電池システムの構成の一例を示した模式図である。It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system. 従来技術を示すものであり、燃料電池システムの構成の一例を示した模式図である。It is a schematic diagram which shows a prior art and shows an example of a structure of a fuel cell system.
 本発明では以下に示す態様を提供する。 The present invention provides the following aspects.
 本発明の第1の態様に係る燃料電池システムは、供給された原料ガスに含まれる不純物を除去する不純物除去器と、供給された水を蒸発させて水蒸気を生成する蒸発器と、前記蒸発器により生成された水蒸気と、前記不純物除去器により不純物が除去された前記原料ガスとから改質反応により燃料となる改質ガスを生成する改質器と、供給された空気と前記燃料とを利用して発電反応により発電する燃料電池と、前記燃料電池で未利用の燃料を燃焼する燃焼部と、前記蒸発器、前記改質器、前記燃料電池、および前記燃焼部を収容する筐体と、前記燃焼部における燃焼により生じた排ガスを、前記筐体内から当該燃料電池システム外へと排出させるため、該排ガスが流通する排ガス経路と、前記排ガス経路の途中に該排ガス経路の一部を構成するように設けられ、前記不純物除去器を配置するための収容空間と、を備える。 The fuel cell system according to the first aspect of the present invention includes an impurity remover that removes impurities contained in a supplied raw material gas, an evaporator that evaporates supplied water to generate water vapor, and the evaporator A reformer that generates a reformed gas to be a fuel by a reforming reaction from the water vapor generated by the impurity and the source gas from which impurities have been removed by the impurity remover, and the supplied air and the fuel are used A fuel cell that generates power by a power generation reaction, a combustion unit that burns unused fuel in the fuel cell, a housing that houses the evaporator, the reformer, the fuel cell, and the combustion unit; In order to exhaust the exhaust gas generated by the combustion in the combustion section from the inside of the housing to the outside of the fuel cell system, an exhaust gas path through which the exhaust gas flows and a part of the exhaust gas path are formed in the middle of the exhaust gas path. Provided to, and a housing space for placing the impurity remover.
 ここで、排ガス経路中に設けられた収容空間とは、例えば、排ガス経路の途中(任意の位置)に該排ガス経路と連通するように設けられ、不純物除去器を収容可能とする容器などによって形成された空間であってもよい。あるいは、排ガス経路の経路断面が不純物除去器を収容できるほど十分に大きい場合は、排ガス経路そのものによって形成された空間であってもよい。 Here, the accommodation space provided in the exhaust gas path is formed by, for example, a container that is provided to communicate with the exhaust gas path in the middle of the exhaust gas path (arbitrary position) and that can accommodate the impurity remover. It may be a space. Alternatively, if the path cross section of the exhaust gas path is sufficiently large to accommodate the impurity remover, a space formed by the exhaust gas path itself may be used.
 上記した構成によると、前記不純物除去器が前記排ガス経路の途中に設けられた収容空間内配置されているため、この不純物除去器全体を燃焼部で生じた排ガスで覆って加熱することができる。ここで、不純物除去器に導かれる排ガスは、筐体内に収容された蒸発器および改質器で熱利用されたものであり、筐体から出て行く時点では、所定の温度範囲となっている。また、筐体から出て行く時点では排ガス中における温度ムラが解消された状態となっている。それゆえ、不純物除去器全体をこの温度ムラのない所定の温度範囲の排ガスにより加熱することができる。 According to the above-described configuration, since the impurity remover is disposed in the accommodating space provided in the middle of the exhaust gas path, the entire impurity remover can be covered with the exhaust gas generated in the combustion section and heated. Here, the exhaust gas guided to the impurity remover is heat-utilized by the evaporator and the reformer accommodated in the casing, and is in a predetermined temperature range when leaving the casing. . In addition, the temperature unevenness in the exhaust gas is eliminated at the time of exiting from the housing. Therefore, the entire impurity remover can be heated by the exhaust gas in a predetermined temperature range without temperature unevenness.
 したがって、本発明の第1の態様に係る燃料電池システムは、不純物除去器全体を均一の温度で加熱することができるという効果を奏する。 Therefore, the fuel cell system according to the first aspect of the present invention has the effect that the entire impurity remover can be heated at a uniform temperature.
 また、本発明の第2の態様に係る燃料電池システムは、上記した第1の態様において、前記不純物除去器は、前記原料ガスから不純物として硫黄成分を除去する脱硫器であってもよい。 Further, in the fuel cell system according to the second aspect of the present invention, in the first aspect described above, the impurity remover may be a desulfurizer that removes a sulfur component as an impurity from the raw material gas.
 上記した構成によると、前記不純物除去器が脱硫器であるため、原料ガスに含まれる不純物として、触媒の劣化要因となる硫黄成分を取り除くことができる。 According to the above configuration, since the impurity remover is a desulfurizer, it is possible to remove a sulfur component that causes deterioration of the catalyst as an impurity contained in the raw material gas.
 また、本発明の第3の態様に係る燃料電池システムは、上記した第2の態様において、前記脱硫器に前記原料ガスを供給するために、該原料ガスを流通させる原料ガス経路と、水素含有ガスを前記原料ガス経路へと導くためのリサイクル経路とを備え、前記脱硫器が、前記原料ガス経路を流通する水素含有ガスを利用して、水添脱硫により前記原料ガスから不純物として硫黄成分を除去するように構成されていてもよい。上記した構成によると、脱硫器が水添加脱硫により原料ガスから硫黄成分を除去することができるため、硫黄成分を高効率に除去することができる。 The fuel cell system according to a third aspect of the present invention is the fuel cell system according to the second aspect described above, wherein a raw material gas path for circulating the raw material gas to supply the raw material gas to the desulfurizer, A recycle path for guiding gas to the source gas path, and the desulfurizer uses the hydrogen-containing gas flowing through the source gas path to remove sulfur components as impurities from the source gas by hydrodesulfurization. It may be configured to be removed. According to the above configuration, since the desulfurizer can remove the sulfur component from the raw material gas by the hydrodesulfurization, the sulfur component can be removed with high efficiency.
 また、本発明の第4の態様に係る燃料電池システムは、上記した第3の態様において、前記水素含有ガスとして、前記改質器により生成した改質ガスの一部が前記リサイクル経路を流通するように構成されていてもよい。 The fuel cell system according to a fourth aspect of the present invention is the fuel cell system according to the third aspect, wherein a part of the reformed gas generated by the reformer circulates in the recycling path as the hydrogen-containing gas. It may be configured as follows.
 上記した構成によると、水素含有ガスである改質ガスを原料ガス経路へと導くことができるため、例えば、除去器が水添脱硫を行う脱硫器である場合、この水添脱流に必要な水素を供給することができる。 According to the configuration described above, the reformed gas that is a hydrogen-containing gas can be guided to the raw material gas path. For example, when the remover is a desulfurizer that performs hydrodesulfurization, it is necessary for this hydrodesulfurization. Hydrogen can be supplied.
 また、本発明の第5の態様に係る燃料電池システムは、上記した第1から第4のいずれか1つの態様において、前記不純物除去器が平板型形状であってもよい。不純物除去器が平板型形状であるため、排ガス経路内に配置されたこの不純物除去器を筐体から排出された排ガスにより全体的に略均一に覆うことができる。このため、不純物除去器を、温度ムラなく排ガスにより加熱することができる。 Further, in the fuel cell system according to the fifth aspect of the present invention, in any one of the first to fourth aspects described above, the impurity remover may have a flat plate shape. Since the impurity remover has a flat plate shape, the impurity remover disposed in the exhaust gas path can be covered substantially uniformly with the exhaust gas discharged from the casing. For this reason, the impurity remover can be heated with exhaust gas without temperature unevenness.
 また、本発明の第6の態様に係る燃料電池システムは、上記した第1から第5のいずれか1つの態様において、前記燃料電池に供給する空気と前記排ガスとの熱交換により該排ガスを冷却する空気熱交換器を前記筐体内に備えるように構成されていてもよい。 The fuel cell system according to a sixth aspect of the present invention is the fuel cell system according to any one of the first to fifth aspects, wherein the exhaust gas is cooled by heat exchange between the air supplied to the fuel cell and the exhaust gas. An air heat exchanger may be provided in the housing.
 上記した構成によると、空気熱交換器を備えるため、筐体内において燃焼部からの排ガスの温度を適温まで下げるように調整することができる。このため、適温に調整された排ガスとの熱交換により不純物除去器を適温で加熱することができる。 According to the configuration described above, since the air heat exchanger is provided, the temperature of the exhaust gas from the combustion section can be adjusted to an appropriate temperature in the casing. For this reason, the impurity remover can be heated at an appropriate temperature by heat exchange with the exhaust gas adjusted to an appropriate temperature.
 また、本発明の第7の態様に係る燃料電池システムは、上記した第1から第6のいずれか1つの態様において、前記不純物除去器を配置するための前記収容空間を形成する収納器を備え、前記収納器は前記筐体に接続されるように構成されていてもよい。 In addition, a fuel cell system according to a seventh aspect of the present invention includes, in any one of the first to sixth aspects described above, a storage device that forms the storage space for disposing the impurity remover. The container may be configured to be connected to the housing.
 上記した構成によると不純物除去器を収容するための収容空間を形成する収納器を備えるため、排ガス経路を流通する排ガスで収納器内に配置された不純物除去器の温度制御を行うことが容易となる。また、不純物除去器を収納器内に収容し管理することができるため、不純物除去器の管理が容易となる。 According to the above configuration, since the storage device for forming the storage space for storing the impurity remover is provided, it is easy to control the temperature of the impurity remover disposed in the storage device with the exhaust gas flowing through the exhaust gas path. Become. In addition, since the impurity remover can be stored and managed in the container, the impurity remover can be easily managed.
 また、本発明の第8の態様に係る燃料電池システムは、上記した第7の態様において、前記筐体に対して前記収納器が着脱可能となるように構成されていてもよい。 In addition, the fuel cell system according to the eighth aspect of the present invention may be configured such that in the seventh aspect described above, the container can be attached to and detached from the housing.
 上記した構成によると、筺体に収納器を取り付ける製造工程が容易となったり、メンテナンス等で交換が必要となった際に筺体から収納器を取り外すことが容易となったりする。 According to the above-described configuration, the manufacturing process for attaching the container to the housing becomes easy, and it becomes easy to remove the container from the housing when replacement is necessary for maintenance or the like.
 また、本発明の第9の態様に係る燃料電池システムは、上記した第1から第8のいずれか1つの態様において前記筐体は、少なくとも前記蒸発器、前記改質器、前記燃料電池および前記燃焼部を収容する第一の筐体と、前記第一の筐体の外周を囲む第二の筐体とを備えるように構成されていてもよい。 The fuel cell system according to a ninth aspect of the present invention is the fuel cell system according to any one of the first to eighth aspects, wherein the housing includes at least the evaporator, the reformer, the fuel cell, and the fuel cell system. You may be comprised so that the 1st housing | casing which accommodates a combustion part and the 2nd housing | casing surrounding the outer periphery of said 1st housing | casing may be provided.
 上記した構成によると、第一の筐体と第二の筐体と2重に壁を設けることができるため、筐体内から外部への放熱を抑制することができる。 According to the configuration described above, since the wall can be provided twice with the first casing and the second casing, heat radiation from the inside of the casing to the outside can be suppressed.
 また、本発明の第10の態様に係る燃料電池システムは、上記した第9の態様において、前記第一の筐体と第二の筐体との間の少なくとも一部に断熱材が収容されていてもよい。 In the fuel cell system according to the tenth aspect of the present invention, in the ninth aspect described above, a heat insulating material is accommodated in at least a part between the first casing and the second casing. May be.
 上記した構成によると、第一の筐体と第二の筐体との間において、断熱材が収容されているため、筐体内から外部への放熱を更に確実に抑制することができる。 According to the configuration described above, since the heat insulating material is accommodated between the first housing and the second housing, heat radiation from the inside of the housing to the outside can be further reliably suppressed.
 また、本発明の第11の態様に係る燃料電池システムの製造方法は、供給された空気と原料ガスから生成した燃料とを利用して発電反応により発電する燃料電池と、前記燃料電池で未利用の燃料を燃焼する燃焼部と、前記燃焼部における燃焼により生じた排ガスが保有する熱を利用して、原料ガスに含まれる不純物を除去する不純物除去器と、供給された水を蒸発させ水蒸気を生成する蒸発器と、前記蒸発器により生成された水蒸気と、前記不純物除去器によって不純物が除去された原料ガスとから改質反応により燃料となる改質ガスを生成する改質器と、前記燃料電池、前記燃焼部、前記蒸発器、および前記改質器を収容する筐体と、前記燃焼部における燃焼により生じた排ガスを、前記筐体内から当該燃料電池システム外へと排出させるため、該排ガスが流通する排ガス経路と、前記筐体に対して着脱可能であるとともに、前記排ガス経路の途中に該排ガス経路の一部を構成するように設けられ、前記不純物除去器を配置するための収容空間を形成する収容器と、を備えた燃料電池システムの製造方法であって、前記筐体から取り外された状態で、前記不純物除去器または該不純物除去器を収容する前記収納器を加熱する第一の工程と、前記不純物除去器に充填された触媒を還元する第二の工程と、前記収納器を前記筐体に取り付ける第三の工程と、を含む。 A fuel cell system manufacturing method according to an eleventh aspect of the present invention includes a fuel cell that generates power by a power generation reaction using supplied air and fuel generated from a raw material gas, and is not used in the fuel cell. A combustion section that burns the fuel, an impurity remover that removes impurities contained in the raw material gas using the heat held in the exhaust gas generated by the combustion in the combustion section, and water vapor that evaporates the supplied water An evaporator to be generated, a reformer that generates a reformed gas as a fuel by a reforming reaction from water vapor generated by the evaporator and a raw material gas from which impurities have been removed by the impurity remover, and the fuel A casing housing the battery, the combustion section, the evaporator, and the reformer; and exhaust gas generated by combustion in the combustion section is discharged from the casing to the outside of the fuel cell system. Therefore, the exhaust gas path through which the exhaust gas circulates and is detachable from the housing, and is provided so as to constitute a part of the exhaust gas path in the middle of the exhaust gas path, and the impurity remover is disposed And a container for housing the impurity remover in a state where the impurity remover is removed from the housing. A first step of heating, a second step of reducing the catalyst filled in the impurity remover, and a third step of attaching the container to the housing.
 上記した方法によると、不純物除去器に充填した触媒を活性させるのに必要になる加熱及び還元処理を行う工程、すなわち前記第一の工程と第二の工程とを、筐体に不純物除去器を取り付ける前に行うことができる。したがって、不純物除去器または不純物除去器を収容する収納器以外の構成部品まで加熱及び還元工程に加える必要がなく、無駄なエネルギーを投入することなく効率的な燃料電池システムの製造方法の実現が可能となる。 According to the above-described method, the step of performing the heating and reduction treatment necessary for activating the catalyst filled in the impurity remover, that is, the first step and the second step are performed, and the impurity remover is provided in the casing. Can be done before installation. Therefore, it is not necessary to add components to the impurity removal device or the container other than the container that contains the impurity removal device in the heating and reduction process, and an efficient fuel cell system manufacturing method can be realized without using wasted energy. It becomes.
 (実施形態1)
 以下、本発明の実施の形態(実施形態1)を、図面を参照して説明する。なお、以下では全ての図を通じて同一又は対応する構成部材には同一の参照符号を付して、その説明については省略する。
(Embodiment 1)
Hereinafter, an embodiment (Embodiment 1) of the present invention will be described with reference to the drawings. In the following, the same or corresponding components are denoted by the same reference numerals throughout all the drawings, and the description thereof is omitted.
 図1を参照して本発明の実施形態1に係る燃料電池システムについて説明する。図1は、実施形態1に係る燃料電池システムの構成の一例を示した模式図である。図1では、実施形態1に係る燃料電池システムを側部から見たときの構成を模式的に示している。 A fuel cell system according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating an example of the configuration of the fuel cell system according to the first embodiment. In FIG. 1, the structure when the fuel cell system which concerns on Embodiment 1 is seen from the side part is shown typically.
 図1に示すように、燃料電池システムは、原料ガス経路1、不純物除去器3、改質器4、空気熱交換器5、燃料電池6、蒸発器9、空気経路10、改質水経路11、改質空気経路12、脱硫後原料ガス経路14、燃料ガス経路16、空気供給経路17、減圧部18、リサイクル経路19、筐体7、第1断熱部(断熱材)22、および燃焼部23を備えてなる構成である。 As shown in FIG. 1, the fuel cell system includes a raw material gas path 1, an impurity remover 3, a reformer 4, an air heat exchanger 5, a fuel cell 6, an evaporator 9, an air path 10, and a reformed water path 11. , Reformed air path 12, post-desulfurization source gas path 14, fuel gas path 16, air supply path 17, decompression section 18, recycle path 19, casing 7, first heat insulating section (heat insulating material) 22, and combustion section 23. It is the structure which comprises.
 実施形態1に係る燃料電池システムでは、筐体7によって囲われた空間には、改質器4、空気熱交換器5、燃料電池6、蒸発器9、および燃焼部23が配置されている。そして、筐体7内部では、燃料電池6の上部において改質器4と対向するように燃焼部23が設けられている。 In the fuel cell system according to the first embodiment, the reformer 4, the air heat exchanger 5, the fuel cell 6, the evaporator 9, and the combustion unit 23 are arranged in the space surrounded by the casing 7. And inside the housing | casing 7, the combustion part 23 is provided in the upper part of the fuel cell 6 so that the reformer 4 may be opposed.
 筐体7は、図1に示すように、少なくとも燃料電池6および燃焼部23を収容する第一の筐体7aと、この第一の筐体7aの外周を囲む第二の筐体7bとから構成されている。そして、これら第一の筐体7aと第二の筐体7bとの間における少なくとも一部には、第1断熱部(断熱材)22が設けられている。 As shown in FIG. 1, the casing 7 includes a first casing 7 a that houses at least the fuel cell 6 and the combustion unit 23, and a second casing 7 b that surrounds the outer periphery of the first casing 7 a. It is configured. And the 1st heat insulation part (heat insulation material) 22 is provided in at least one part between these 1st housing | casing 7a and 2nd housing | casing 7b.
 なお、筐体7内に収容される部材はこれらの部材に限定されるものではなく、筐体7内には、少なくとも燃料電池6および燃焼部23が収容されていればよい。すなわち、改質器4および空気熱交換器5が必ずしも筐体7内に設けられる必要はない。例えば、実施形態1に係る燃料電池システムにおいて、燃料電池6としては溶融炭酸塩形燃料電池や固体酸化物形燃料電池等の高温(600℃以上)で発電を行う燃料電池を用いることができる。これらの燃料電池を用いる場合、改質器4を設けなくても、原料ガスを燃料電池の電極にて内部改質を行い発電することが可能である。このため、内部改質を行い発電する構成の場合は、筐体7内に改質器4は設けられないこととなる。ただし、燃料電池の耐久性を鑑みれば、改質器4を設けた方が望ましい。このため、実施形態1に係る燃料電池システムでは第一の筐体7a内に改質器4を設けた構成を例に挙げ説明する。 Note that the members accommodated in the housing 7 are not limited to these members, and it is sufficient that at least the fuel cell 6 and the combustion unit 23 are accommodated in the housing 7. That is, the reformer 4 and the air heat exchanger 5 are not necessarily provided in the housing 7. For example, in the fuel cell system according to Embodiment 1, the fuel cell 6 may be a fuel cell that generates power at a high temperature (600 ° C. or higher), such as a molten carbonate fuel cell or a solid oxide fuel cell. When these fuel cells are used, it is possible to generate power by internally reforming the raw material gas at the electrode of the fuel cell without providing the reformer 4. For this reason, the reformer 4 is not provided in the housing 7 in the case of a configuration in which power is generated by performing internal reforming. However, in view of the durability of the fuel cell, it is desirable to provide the reformer 4. For this reason, in the fuel cell system according to Embodiment 1, a configuration in which the reformer 4 is provided in the first casing 7a will be described as an example.
 また、燃料電池システムにおいて、適切に加温された空気が燃料電池6に導かれるように構成されている場合は、空気熱交換器5を備える必要はない。このため、適切に加温された空気が燃料電池6に導かれる構成の場合、筐体7内には空気熱交換器5が設けられないこととなる。 Further, in the fuel cell system, when the appropriately heated air is guided to the fuel cell 6, it is not necessary to provide the air heat exchanger 5. For this reason, when the air heated appropriately is guided to the fuel cell 6, the air heat exchanger 5 is not provided in the housing 7.
 この燃料電池システムでは、燃料電池6として固体酸化物形燃料電池をより好適に用いることができる。このため、本発明の実施形態1では、燃料電池6として固体酸化物形燃料電池を用いた構成を例に挙げ説明するものとする。 In this fuel cell system, a solid oxide fuel cell can be more suitably used as the fuel cell 6. For this reason, in Embodiment 1 of the present invention, a configuration using a solid oxide fuel cell as the fuel cell 6 will be described as an example.
 (燃焼電池システムの構成)
 実施形態1に係る燃料電池システムでは、筐体7(第一の筐体7aおよび第二の筐体7b)の外部から供給された原料ガス(原燃料ガス)を改質器4で改質し、改質された改質ガスと外部から供給された空気とを利用して燃料電池6が発電反応により発電するように構成されている。なお、本明細書では、原料ガス経路1を通じて外部から供給されるガスを原料ガス(原料)と称し、原料ガスから硫黄成分が取り除かれ、改質器4において改質反応により改質された改質ガスを燃料ガス(燃料)と称するものとする。
(Composition of combustion battery system)
In the fuel cell system according to Embodiment 1, the reformer 4 reforms the raw material gas (raw fuel gas) supplied from the outside of the casing 7 (first casing 7a and second casing 7b). The fuel cell 6 is configured to generate electric power by a power generation reaction using the reformed reformed gas and air supplied from the outside. In this specification, the gas supplied from the outside through the raw material gas path 1 is referred to as a raw material gas (raw material), the sulfur component is removed from the raw material gas, and the reformer reformed by the reforming reaction in the reformer 4. The quality gas is referred to as fuel gas (fuel).
 燃料電池システムは、燃料電池6の動作時(発電時)には、燃焼部23にて、発電反応に利用されなかった燃料ガスと空気とを燃焼させ、高温の排ガスを生成し、その熱エネルギーを有効に利用することで高効率な運転を実現している。生成した排ガスは第一の筐体7a内から外部へと連通する排ガス経路20を通じて流出する。なお、第一の筐体7a内から排ガス経路20に導かれる排ガスは、第一の筐体7a内に配置された、改質器4、空気熱交換器5、および蒸発器9等によって熱利用され、所定の温度範囲となっている。また、この排ガスは、第一の筐体7a内に配置された各部材において消費される熱量の違いに起因して発生する温度ムラが解消された状態となっている。すなわち、例えば、大きな熱量を消費する蒸発器9の近傍では他の場所よりも排ガス温度が低くなるなど筐体7内において温度分布が均一とならない状態が発生したとしても、燃焼部23の上方へは、排ガスが略均一的に拡散して導かれる。このため、結果として筐体7の上面側の温度分布は略均一化するようになっている。 In the fuel cell system, when the fuel cell 6 operates (power generation), the combustion unit 23 burns fuel gas and air that have not been used for the power generation reaction to generate high-temperature exhaust gas, and its thermal energy. Highly efficient operation is realized by effectively using the. The generated exhaust gas flows out through the exhaust gas path 20 communicating from the inside of the first housing 7a to the outside. The exhaust gas guided from the first housing 7a to the exhaust gas path 20 is heat-utilized by the reformer 4, the air heat exchanger 5, the evaporator 9 and the like disposed in the first housing 7a. Thus, the temperature is within a predetermined temperature range. In addition, the exhaust gas is in a state in which temperature unevenness generated due to the difference in the amount of heat consumed in each member arranged in the first housing 7a is eliminated. That is, for example, even if a state in which the temperature distribution is not uniform in the casing 7 occurs, such as in the vicinity of the evaporator 9 that consumes a large amount of heat, the exhaust gas temperature is lower than in other places, the combustion unit 23 is moved upward. The exhaust gas is guided by being diffused substantially uniformly. For this reason, as a result, the temperature distribution on the upper surface side of the housing 7 is made substantially uniform.
 本発明の実施形態1に係る燃料電池システムでは、不純物除去器3を排ガス経路20中に設けられた収容空間内に配置することによって、不純物除去器3と排ガス経路20を流通する排ガスとの間で熱交換するように構成されている。すなわち、排ガス経路20を流通する排ガスが不純物除去器3全体を覆って通過することで、不純物除去器3全体を加熱することができる。また、不純物除去器3は排ガス経路20を流通して導かれる排ガスによりできるだけ均一に加熱されるように、例えば、図1に示すように平板型形状となっている。なお、不純物除去器3の形状はこの平板型形状に限定されるものではなく、供給される原料から不純物を十分に取り除くことができ、かつ不純物除去器3の外周を流通する排ガスにより、全体が均一に加熱されるような形状であればよい。 In the fuel cell system according to the first embodiment of the present invention, the impurity remover 3 is disposed in the accommodating space provided in the exhaust gas path 20, so that the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20 are disposed. It is configured to exchange heat. That is, the exhaust gas flowing through the exhaust gas path 20 covers the entire impurity removing device 3 and passes through, so that the entire impurity removing device 3 can be heated. Further, the impurity remover 3 has, for example, a flat plate shape as shown in FIG. 1 so as to be heated as uniformly as possible by the exhaust gas introduced through the exhaust gas passage 20. The shape of the impurity remover 3 is not limited to this flat plate shape, and the impurity can be sufficiently removed from the supplied raw materials, and the exhaust gas flowing around the outer periphery of the impurity remover 3 is used as a whole. Any shape that can be uniformly heated may be used.
 また、燃料電池システムでは、第一の筐体7aと第二の筐体7bの間に断熱材からなる第1断熱部(断熱部材)22が備えられており、第一の筐体7aの内部から外部への放熱を可能な限り遮断するように構成されている。 Further, in the fuel cell system, a first heat insulating portion (heat insulating member) 22 made of a heat insulating material is provided between the first housing 7a and the second housing 7b, and the interior of the first housing 7a. It is configured to block heat dissipation from the outside to the outside as much as possible.
 また、本発明の実施形態1に係る燃料電池システムでは、第一の筐体7a及び第二の筐体7bの外部に昇圧部2が配置されている。そして、昇圧部2は、原料ガス経路1を通じて供給された原料ガスを昇圧し、筐体7b内に配置されている不純物除去器3に導入するように構成されている。なお、原料ガス経路1を通じて供給される原料ガスとしては、都市ガスまたは、プロパンガスなどの炭化水素を主成分とするガスを用いることができる。そして、本発明の実施形態1に係る燃料電池システムでは、原料ガスに含まれる不純物を除去する不純物除去器3として、水添脱硫方式により硫黄成分を除去する脱硫器を用いる。 Further, in the fuel cell system according to Embodiment 1 of the present invention, the booster 2 is disposed outside the first casing 7a and the second casing 7b. And the pressure | voltage rise part 2 is comprised so that the source gas supplied through the source gas path | route 1 may be pressure | voltage-rised, and it may introduce into the impurity remover 3 arrange | positioned in the housing | casing 7b. In addition, as the source gas supplied through the source gas path 1, city gas or gas mainly composed of hydrocarbons such as propane gas can be used. And in the fuel cell system which concerns on Embodiment 1 of this invention, the desulfurizer which removes a sulfur component by a hydrodesulfurization system is used as the impurity removal device 3 which removes the impurity contained in source gas.
 なお、原料ガスおよび不純物除去器3は、上述したものに限定されない。例えば、資源の有効活用および廃棄物の減量化の観点から原料ガスとしてバイオマスまたは廃棄物から製造したガスを利用することもできる。ただし、原料ガスとしてバイオマスまたは廃棄物から製造したガスを利用する場合、ガス中から水銀またはハロゲン化物等の不純物を除去する必要がある。そこで、このようなガスを原料ガスとして利用する場合、不純物除去器3は、水銀またはハロゲン化物等の不純物を除去する不純物除去剤が充填された重金属除去装置とすることができる。 The source gas and impurity remover 3 are not limited to those described above. For example, from the viewpoint of effective use of resources and reduction of waste, gas produced from biomass or waste can be used as a raw material gas. However, when a gas produced from biomass or waste is used as a raw material gas, it is necessary to remove impurities such as mercury or halide from the gas. Therefore, when such a gas is used as a raw material gas, the impurity remover 3 can be a heavy metal removing device filled with an impurity removing agent for removing impurities such as mercury or halides.
 なお、実施形態1に係る燃料電池システムでは図1に示すように、不純物除去器3は排ガス経路20の一部とともに、収容空間を形成する収納器27内に収容されている。そして、不純物除去器3は排ガスの熱伝達による伝熱を熱源として加熱される。 In the fuel cell system according to the first embodiment, as shown in FIG. 1, the impurity remover 3 is housed in a housing 27 that forms a housing space together with a part of the exhaust gas path 20. Then, the impurity remover 3 is heated using heat transfer by heat transfer of the exhaust gas as a heat source.
 また、実施形態1に係る燃料電池システムは、燃焼部23からの排ガスと燃料電池6に供給する空気とが熱交換する空気熱交換器5を第一の筐体7a内に更に備えた構成となっている。このような構成をとれば、燃焼部23からの排ガスの温度が所定範囲となるように空気熱交換器5により冷却することができる。したがって、不純物除去器3の温度調整する温度調整部などを別途設けることなく、該不純物除去器3を適温に維持することが更に容易となる。また、空気熱交換器5は、排ガスとの熱交換により回収した熱量を、燃料電池6に供給する空気の加熱に用いるため、効率の良い動作が可能となる。 The fuel cell system according to Embodiment 1 further includes an air heat exchanger 5 in the first casing 7a for exchanging heat between the exhaust gas from the combustion unit 23 and the air supplied to the fuel cell 6. It has become. If such a structure is taken, it can cool with the air heat exchanger 5 so that the temperature of the waste gas from the combustion part 23 may become a predetermined range. Therefore, it becomes easier to maintain the impurity remover 3 at an appropriate temperature without separately providing a temperature adjusting unit for adjusting the temperature of the impurity remover 3. In addition, since the air heat exchanger 5 uses the amount of heat recovered by heat exchange with the exhaust gas for heating the air supplied to the fuel cell 6, an efficient operation is possible.
 不純物除去器3が脱硫器として機能する場合、この不純物除去器3に充填する脱硫剤としては、例えば、銅および亜鉛を含む脱硫剤が挙げられる(例えば、特許文献6)。なお、脱硫剤は、水添脱硫を行うことができればこの脱硫剤に限定されるものではなく、Ni-Mo系又はCo-Mo系触媒と酸化亜鉛との組み合わせであってもよい。Ni-Mo系又はCo-Mo系触媒と酸化亜鉛とを組み合わせた脱硫剤の場合、不純物除去器3は350~400℃の温度範囲にて、原料ガス中の有機硫黄を水添分解する。そして、不純物除去器3は、生成したHSを、350~400℃の温度範囲にてZnOに吸着させて除去する。 When the impurity remover 3 functions as a desulfurizer, examples of the desulfurizer filled in the impurity remover 3 include a desulfurizer containing copper and zinc (for example, Patent Document 6). The desulfurizing agent is not limited to this desulfurizing agent as long as hydrodesulfurization can be performed, and may be a combination of a Ni—Mo based or Co—Mo based catalyst and zinc oxide. In the case of a desulfurization agent in which a Ni—Mo or Co—Mo catalyst and zinc oxide are combined, the impurity remover 3 hydrocrackes organic sulfur in the raw material gas in a temperature range of 350 to 400 ° C. Then, the impurity remover 3 removes the generated H 2 S by adsorbing it to ZnO in a temperature range of 350 to 400 ° C.
 例えば、原料ガスが都市ガスの場合、付臭剤として硫黄化合物であるジメチルスルフィド(dimethl sulfide ;CS,DMS)が含有されている。このDMSは、不純物除去器3において、以下の反応式(式(1)、(2))によるZnSの形、または物理吸着の形で脱硫剤によって除去される。
S+2H→2CH+HS   ・・・(1)
S+ZnO→HO+ZnS     ・・・(2)
なお、付臭剤は、上述したDMSに限定されるものではなく、TBM(C10S)またはTHT(CS)等の他の硫黄化合物であってもよい。
For example, when the source gas is city gas, dimethyl sulfide (C 2 H 6 S, DMS), which is a sulfur compound, is contained as an odorant. This DMS is removed by the desulfurization agent in the impurity remover 3 in the form of ZnS according to the following reaction formulas (formulas (1) and (2)) or in the form of physical adsorption.
C 2 H 6 S + 2H 2 → 2CH 4 + H 2 S (1)
H 2 S + ZnO → H 2 O + ZnS (2)
The odorant is not limited to the above-described DMS, and may be another sulfur compound such as TBM (C 4 H 10 S) or THT (C 4 H 8 S).
 充填する脱硫剤が銅および亜鉛を含む場合、不純物除去器3は、10~400℃程度、好ましくは150~300℃程度の温度範囲で脱硫を行う。この銅亜鉛系脱硫剤は、水添脱硫能力に加えて物理吸着能力もあり、低温では主に物理吸着、高温では化学吸着(HS+ZnO→HO+ZnS)を行うことができる。この場合、脱硫後の原料ガスに含まれる硫黄含有量は、1vol ppb(parts per billion)以下、通常は0.1vol ppb以下となる。 When the desulfurizing agent to be filled contains copper and zinc, the impurity remover 3 performs desulfurization in a temperature range of about 10 to 400 ° C., preferably about 150 to 300 ° C. This copper zinc-based desulfurization agent has a physical adsorption capability in addition to a hydrodesulfurization capability, and can mainly perform physical adsorption at low temperatures and chemical adsorption (H 2 S + ZnO → H 2 O + ZnS) at high temperatures. In this case, the sulfur content contained in the raw material gas after desulfurization is 1 vol ppb (parts per billion) or less, usually 0.1 vol ppb or less.
 このように、不純物除去器3において、Ni-Mo系又はCo-Mo系触媒、あるいは銅および亜鉛のいずれかを含む脱硫剤が充填されている場合、単位体積あたりの硫黄成分除去量が大きくなる。それゆえ、上述した脱硫剤を用いる場合、所望の硫黄濃度まで硫黄を除去するために必要となる脱硫剤の量を低減させることができる。 Thus, when the impurity remover 3 is filled with a Ni—Mo-based or Co—Mo-based catalyst, or a desulfurizing agent containing either copper and zinc, the amount of sulfur component removed per unit volume increases. . Therefore, when the above-described desulfurizing agent is used, the amount of the desulfurizing agent necessary for removing sulfur to a desired sulfur concentration can be reduced.
 以上のようにして不純物除去器3によって脱硫された原料ガスは、脱硫後原料ガス経路14を通じて、改質器4(蒸発器9)へと供給される。 The raw material gas desulfurized by the impurity remover 3 as described above is supplied to the reformer 4 (evaporator 9) through the raw material gas path 14 after desulfurization.
 次に改質器4について説明する。改質器4は、部分酸化改質用として用いられるものであってもよいが、更に高効率な動作を実現するために、部分酸化改質反応だけでなく、水蒸気改質反応も行える仕様にしておくことが有利である。図1に示すように実施形態1では改質器4の上流側(脱硫後原料ガス経路14が配置される側)に蒸発器9を配置し、この蒸発器9によって外部から改質水経路11を通じて供給された水(改質水)を蒸発させ水蒸気を生成する。そして、蒸発器9によって生成された水蒸気と脱硫された原料ガスとが混合され改質器4に供給される構成となっている。 Next, the reformer 4 will be described. The reformer 4 may be used for partial oxidation reforming. However, in order to realize more efficient operation, the reformer 4 is designed to perform not only partial oxidation reforming reaction but also steam reforming reaction. It is advantageous to keep it. As shown in FIG. 1, in the first embodiment, an evaporator 9 is arranged on the upstream side of the reformer 4 (the side where the raw material gas path 14 after desulfurization is arranged), and the reforming water path 11 is externally provided by the evaporator 9. Water (reformed water) supplied through is evaporated to generate water vapor. The steam generated by the evaporator 9 and the desulfurized source gas are mixed and supplied to the reformer 4.
 なお、改質器4に充填される改質触媒としては、Al(アルミナ)の球体表面にNiを含浸し、担持したものや、Alの球体表面にルテニウムを付与したものを適宜用いることができる。 As the reforming catalyst filled in the reformer 4, the Al 2 O 3 (alumina) sphere surface is impregnated with Ni and supported, or the Al 2 O 3 sphere surface is provided with ruthenium. Can be used as appropriate.
 ところで、燃料電池システムの起動時では、改質器4において吸熱反応である水蒸気改質反応を行うためには熱エネルギーが不足している。そこで、燃料電池システムの起動時には、改質水経路11から蒸発器9に水を供給させずに、改質空気経路12を通じて改質器4に導入した空気を利用して、改質器4は以下の式(3)で表される部分酸化改質反応を行い、水素含有ガスとして水素ガスおよび一酸化炭素を生成する。 By the way, when the fuel cell system is started, heat energy is insufficient to perform the steam reforming reaction which is an endothermic reaction in the reformer 4. Therefore, when the fuel cell system is started, the reformer 4 uses the air introduced into the reformer 4 through the reformed air path 12 without supplying water from the reformed water path 11 to the evaporator 9. A partial oxidation reforming reaction represented by the following formula (3) is performed to generate hydrogen gas and carbon monoxide as a hydrogen-containing gas.
 C + (n/2)O → n・CO +(m/2)H(n,mは任意の自然数)・・・(3)
そして、これらの水素ガスおよび一酸化炭素を、燃料ガス供給経路16を通じて燃料電池6に供給し、空気供給経路17を通じて供給された空気と合わせて、発電反応を行う。
C n H m + (n / 2) O 2 → n · CO + (m / 2) H 2 (n, m is an arbitrary natural number) (3)
Then, these hydrogen gas and carbon monoxide are supplied to the fuel cell 6 through the fuel gas supply path 16, and together with the air supplied through the air supply path 17, a power generation reaction is performed.
 燃料電池システムが起動して発電が進むにつれ、改質器4の温度が上昇していく。すなわち、上記の式(3)で表される部分酸化改質反応は発熱反応であり、更に、燃焼部23で生成された排ガスが有する熱及び燃焼熱23からの輻射熱(燃焼部23の燃焼による燃焼熱)により、改質器4の温度が上昇させられる。そして、改質器4の温度が、例えば、400℃以上になれば以下の式(4)で表される水蒸気改質反応を並行して行うことが可能となる。 As the fuel cell system starts and power generation proceeds, the temperature of the reformer 4 increases. That is, the partial oxidation reforming reaction represented by the above formula (3) is an exothermic reaction, and furthermore, the heat of the exhaust gas generated in the combustion unit 23 and the radiant heat from the combustion heat 23 (due to the combustion of the combustion unit 23) The temperature of the reformer 4 is raised by the combustion heat. And if the temperature of the reformer 4 becomes 400 degreeC or more, for example, it will become possible to perform the steam reforming reaction represented by the following formula | equation (4) in parallel.
 C + n・HO → n・CO +(m/2+ n)H(n,mは任意の自然数)・・・(4)
上述した式(4)で示される水蒸気改質反応は、式(3)で示される部分酸化改質反応と比較すると、同じ量の炭化水素(C)から生成できる水素量がより多くなり、その結果、燃料電池6での発電反応に利用可能な改質ガスの量が多くなる。つまり、水蒸気改質反応の方が効率よく改質ガスを生成することができる。
C n H m + n · H 2 O → n · CO + (m / 2 + n) H 2 (n, m is an arbitrary natural number) (4)
Compared with the partial oxidation reforming reaction represented by the formula (3), the steam reforming reaction represented by the formula (4) described above has a larger amount of hydrogen that can be generated from the same amount of hydrocarbon (C n H m ). As a result, the amount of reformed gas available for the power generation reaction in the fuel cell 6 increases. That is, the reforming gas can be generated more efficiently by the steam reforming reaction.
 また、式(4)に示す水蒸気改質反応は吸熱反応であるため、式(3)に示す部分酸化改質反応による発熱と燃焼部23から排出された排ガスが保有する熱、及び燃焼部23からの輻射熱を利用し、必要な熱量を補いつつ、水蒸気改質反応を進行させる。そして、改質器4の温度が例えば、600℃以上になれば、式(4)の水蒸気改質反応に必要な熱量を排ガスの有する熱及び燃焼部23からの輻射熱だけで補うことが可能となるため、水蒸気改質反応のみの運転に切り替えることができる。 Further, since the steam reforming reaction shown in the formula (4) is an endothermic reaction, the heat generated by the partial oxidation reforming reaction shown in the formula (3), the heat held in the exhaust gas discharged from the combustion unit 23, and the combustion unit 23 The steam reforming reaction is allowed to proceed while supplementing the necessary amount of heat using the radiant heat from. And, if the temperature of the reformer 4 becomes 600 ° C. or more, for example, the amount of heat necessary for the steam reforming reaction of the formula (4) can be supplemented only with the heat of the exhaust gas and the radiant heat from the combustion section 23. Therefore, it is possible to switch to the operation of only the steam reforming reaction.
 蒸発器9は、改質器4にて水蒸気改質反応を行うために設置したものである。蒸発器9では、燃焼部23から排出された排ガスの熱及び燃焼部23からの輻射熱を利用して、改質水経路11から供給された水(改質水)を気化させ、不純物除去器3から供給された脱硫後の原料ガスと混合させる。そして、蒸発器9は、混合後の原料ガスを改質器4へと導入する。 The evaporator 9 is installed to perform a steam reforming reaction in the reformer 4. In the evaporator 9, the water (reformed water) supplied from the reformed water path 11 is vaporized using the heat of the exhaust gas discharged from the combustor 23 and the radiant heat from the combustor 23, and the impurity remover 3. And mixed with the raw material gas after desulfurization supplied from. Then, the evaporator 9 introduces the mixed raw material gas into the reformer 4.
 燃料電池6は、上述したように燃料ガス経路16を通じて供給された燃料(改質ガス)と、空気供給経路17を通じて供給された空気(発電用空気)とを利用して発電反応により発電を行うものである。すなわち、燃料電池6に用いる固体酸化物形燃料電池では、燃料(改質ガス)が供給される燃料極および発電空気が供給される空気極を有し、該燃料極と該空気極との間で発電反応を行って発電する燃料電池単セルを複数枚、直列に接続してセルスタックを形成している。なお、燃料電池6は、更に直列接続したセルスタックを並列に接続させた構成としてもよい。 As described above, the fuel cell 6 generates power by a power generation reaction using the fuel (reformed gas) supplied through the fuel gas path 16 and the air (power generation air) supplied through the air supply path 17. Is. That is, the solid oxide fuel cell used for the fuel cell 6 has a fuel electrode to which fuel (reformed gas) is supplied and an air electrode to which power generation air is supplied, and is provided between the fuel electrode and the air electrode. A cell stack is formed by connecting a plurality of fuel cell single cells that generate power by performing a power generation reaction in series. In addition, the fuel cell 6 is good also as a structure which connected the cell stack further connected in series in parallel.
 燃料電池6に用いる固体酸化物形燃料電池を構成する燃料電池単セルとしては、例えばイットリアをドープしたジルコニア(YSZ)、イットリビウムやスカンジウムをドープしたジルコニア、あるいはランタンガレート系の固体電解質からなる燃料電池単セルを用いることができる。例えば、燃料電池単セルがYSZの場合、厚みにもよるが、約600~900℃の温度範囲にて、発電反応が行われる。 The fuel cell unit cell constituting the solid oxide fuel cell used for the fuel cell 6 includes, for example, a zirconia doped with yttria (YSZ), a zirconia doped with yttrium or scandium, or a lanthanum gallate solid electrolyte. A single cell can be used. For example, when the single fuel cell is YSZ, the power generation reaction is performed in a temperature range of about 600 to 900 ° C., depending on the thickness.
 また、実施形態1に係る燃料電池システムでは、燃料電池6へと向かう燃料ガス供給経路16を途中で分岐させ、改質器4から供給される改質ガスの一部を水素含有ガスとして原料ガス経路1に戻すためのリサイクル経路19が設けられている。このため、原料ガス経路1を流通し、不純物除去器3へと供給される原料ガスに水素を添加することが可能となり、不純物除去器3は、この水素を利用して前述の水添脱硫を行うことができるように構成されている。 Further, in the fuel cell system according to Embodiment 1, the fuel gas supply path 16 toward the fuel cell 6 is branched in the middle, and a part of the reformed gas supplied from the reformer 4 is used as a hydrogen-containing gas as a raw material gas. A recycling path 19 for returning to the path 1 is provided. For this reason, it becomes possible to add hydrogen to the raw material gas that flows through the raw material gas path 1 and is supplied to the impurity remover 3, and the impurity remover 3 uses the hydrogen to perform the hydrodesulfurization described above. It is configured to be able to do.
 なお、燃料ガス供給経路16とリサイクル経路19との分岐点近傍でかつ、該リサイクル経路19内に減圧部18が設けられている。減圧部18は、リサイクル経路19内を流通する改質ガスの流量を調整するものであり、例えば、キャピラリチューブなどにより実現できる。すなわち、減圧部18は、キャピラリチューブなどにより流路を細くし圧力損失を大きくさせることで、リサイクル経路19内を所望の流量だけ改質ガスが流通するように構成されている。 A decompression unit 18 is provided in the vicinity of the branch point between the fuel gas supply path 16 and the recycle path 19 and in the recycle path 19. The decompression unit 18 adjusts the flow rate of the reformed gas flowing through the recycle path 19 and can be realized by, for example, a capillary tube. That is, the decompression unit 18 is configured so that the reformed gas flows through the recycle path 19 by a desired flow rate by narrowing the flow path with a capillary tube or the like and increasing the pressure loss.
 本発明の実施形態1では、不純物除去器3は収納器27に収容されている。収納器27は、図1に示すように筐体7の上面において図1の左右方向に延伸し、内部が中空となった構造をしている。そして、一方の端部(図1における、左側の端部)において排ガス経路20と接続するように、鉛直方向における下向きに突出した突出部が形成されている。他方の端部(図1における、右側の端部)には、当該収納器27内を流通した排ガスが系外へと排出されるように鉛直方向における上向きに突出した突出部が形成されている。このように、この収納器27と排ガス経路20とが連通している。換言すると、排ガス経路20の少なくとも一部を収納器27内において形成している。 In the first embodiment of the present invention, the impurity remover 3 is housed in the container 27. As shown in FIG. 1, the container 27 extends in the left-right direction in FIG. 1 on the upper surface of the housing 7 and has a structure in which the inside is hollow. And the protrusion part which protruded below in the perpendicular direction is formed so that it may connect with the exhaust gas path | route 20 in one edge part (left edge part in FIG. 1). The other end (the right end in FIG. 1) is formed with a protruding portion that protrudes upward in the vertical direction so that the exhaust gas flowing through the container 27 is discharged outside the system. . In this way, the container 27 and the exhaust gas path 20 communicate with each other. In other words, at least a part of the exhaust gas path 20 is formed in the container 27.
 さらにまた、収納器27の内側には第2断熱部(断熱材)33が設けられている。これにより、収納器27内から外部への放熱を可能な限り遮断することができる。更に、筐体7と収納器27とは、原料ガス経路接続部(第2接続部)32および排ガス経路接続部31によって接続される。そして、第2接続部32および排ガス経路接続部31は、経路内を流通する原料ガスまたは排ガスが外部に漏れないように構成されている。具体的には、排ガス経路接続部31、第2接続部32を構成する部材としては、例えばスウェージロック(登録商標)に代表される継ぎ手などを好適に用いることができる。 Furthermore, a second heat insulating part (heat insulating material) 33 is provided inside the container 27. Thereby, the heat radiation from the inside of the container 27 to the outside can be blocked as much as possible. Further, the housing 7 and the container 27 are connected by a raw material gas path connection part (second connection part) 32 and an exhaust gas path connection part 31. And the 2nd connection part 32 and the waste gas path | route connection part 31 are comprised so that the source gas or waste gas which distribute | circulates the inside of a path | route may not leak outside. Specifically, as a member constituting the exhaust gas path connection portion 31 and the second connection portion 32, for example, a joint represented by Swagelok (registered trademark) can be suitably used.
 図2に示すように、実施形態1に係る燃料電池システムは、排ガス経路接続部31および第2接続部32を介して筐体7から収納器27が着脱可能となる構成である。図2は実施形態1に係る燃料電池システムの構成において、筐体7と収納器27とを分離した際の構成を示した模式図である。 As shown in FIG. 2, the fuel cell system according to Embodiment 1 has a configuration in which the container 27 can be detached from the housing 7 via the exhaust gas path connection portion 31 and the second connection portion 32. FIG. 2 is a schematic diagram showing a configuration when the casing 7 and the container 27 are separated from each other in the configuration of the fuel cell system according to the first embodiment.
 このように、筐体7から収納器27が着脱可能となる構成とすることで、燃料電池システムを製造する際に、不純物除去器3を収容した収納器27を筐体7に容易に取り付けることが可能となる。更に、燃料電池システムが稼動して長時間経過した後、不純物除去器3に充填した触媒が劣化し、不純物除去器3を交換する必要が生じた場合であっても、筐体7から収納器27を取り外し、収納器27に収容されている不純物除去器3を取り出すことが容易である。したがって、メンテナンス性に優れた燃料電池システムを構成することができる。 In this way, by adopting a configuration in which the storage device 27 can be detached from the housing 7, the storage device 27 containing the impurity remover 3 can be easily attached to the housing 7 when the fuel cell system is manufactured. Is possible. Further, even after a long time has passed since the fuel cell system was operated, even if the catalyst charged in the impurity remover 3 is deteriorated and the impurity remover 3 needs to be replaced, the container 7 can be replaced with the container. It is easy to remove 27 and remove the impurity remover 3 accommodated in the container 27. Therefore, a fuel cell system excellent in maintainability can be configured.
 また、前述にように、不純物除去器3において、Ni-Mo系又はCo-Mo系触媒と酸化亜鉛とを組み合わせた脱硫剤を充填する場合、350~400℃の温度範囲、または脱硫剤が銅および亜鉛を含む場合は、10~400℃程度、好ましくは150~300℃程度の温度範囲になるように構成される。それゆえ、例えば、後述する図16に示すような、収納器27内の不純物除去器3と脱硫後原料ガス経路14とを接続する原料ガス経路接続部(第1接続部)30、ならびに収納器27と排ガス経路20とを接続する排ガス経路接続部31も不純物除去器3と同じ温度範囲になる。そして、これらの接続部も第1断熱部(断熱材部)22内または第2断熱部(断熱材部)33内に収容するように構成することで、燃焼部23からの輻射や排ガスからの熱伝達等の伝熱により、高温(400℃以上)に長時間さらされ、熱劣化するといった不具合が生じることを抑制することができる。 In addition, as described above, when the impurity remover 3 is filled with a desulfurization agent in which a Ni—Mo or Co—Mo catalyst and zinc oxide are combined, the temperature range of 350 to 400 ° C. or the desulfurization agent is copper. When zinc is contained, the temperature is set to about 10 to 400 ° C., preferably about 150 to 300 ° C. Therefore, for example, as shown in FIG. 16 to be described later, a raw material gas path connection portion (first connection portion) 30 for connecting the impurity remover 3 in the storage device 27 and the raw material gas path 14 after desulfurization, and the storage device. The exhaust gas path connection portion 31 that connects the exhaust gas path 27 and the exhaust gas path 20 also has the same temperature range as the impurity remover 3. And these connection parts are also configured to be accommodated in the first heat insulating part (heat insulating material part) 22 or in the second heat insulating part (heat insulating material part) 33, so that radiation from the combustion part 23 and exhaust gas from Due to heat transfer such as heat transfer, it is possible to suppress the occurrence of problems such as exposure to high temperatures (400 ° C. or higher) for a long time and thermal degradation.
 (実施形態1の変形例)
 次に、図3を参照して本発明の実施形態1の変形例に係る燃料電池システムの構成について説明する。図3は、本発明の実施形態1の変形例に係る燃料電池システムの構成の一例を示した模式図である。図3では、実施形態1の変形例に係る燃料電池システムを側部から見たときの構成を模式的に示している。
(Modification of Embodiment 1)
Next, the configuration of a fuel cell system according to a modification of the first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic diagram showing an example of the configuration of a fuel cell system according to a modification of Embodiment 1 of the present invention. In FIG. 3, the structure when the fuel cell system which concerns on the modification of Embodiment 1 is seen from the side part is shown typically.
 実施形態1の変形例に係る燃料電池システムは、実施形態1と比較して、収納器27が配置される位置が異なる。具体的には、実施形態1に係る燃料電池システムでは、収納器27が第二の筐体7bの上面上に配置されていた。これに対して、実施形態1の変形例に係る燃料電池システムでは図3に示すように、収納器27が第一の筐体7aと第二の筐体7bとの間に収まるように配置されている。すなわち、収納器27の外側に露出する面が第二の筐体7bの上面とほぼ同じ高さ位置となるように配置されている。実施形態1の変形例に係る燃料電池システムは、この収納器27の配置以外は実施形態1に係る燃料電池システムと同様の構成である。このため、同じ部材には同じ符号を付し、それぞれ各部材の説明は省略する。 The fuel cell system according to the modification of the first embodiment is different from the first embodiment in the position where the container 27 is disposed. Specifically, in the fuel cell system according to Embodiment 1, the container 27 is disposed on the upper surface of the second casing 7b. On the other hand, in the fuel cell system according to the modification of the first embodiment, as shown in FIG. 3, the container 27 is disposed so as to be accommodated between the first casing 7a and the second casing 7b. ing. That is, the surface exposed to the outside of the container 27 is disposed so as to be substantially at the same height as the upper surface of the second housing 7b. The fuel cell system according to the modification of the first embodiment has the same configuration as the fuel cell system according to the first embodiment except for the arrangement of the container 27. For this reason, the same code | symbol is attached | subjected to the same member and description of each member is abbreviate | omitted, respectively.
 実施形態1の変形例に係る燃料電池システムでは、上述した位置に収納器27が配置されるため、実施形態1に係る燃料電池システムのように第二の筐体7bの上面からさらに収納器27が外部に突出した構成とならず、燃料電池システム全体の寸法を小型化することができる。また、第一の筐体7aと収納器27との間の第1断熱部22および第2断熱部33の厚みを十分に取れば、第一の筐体7aからの輻射熱等の伝熱により、不純物除去器3が加熱されることを防ぎ、排ガス経路20を流通する排ガスにより、不純物除去器3を温度制御することが可能となる。 In the fuel cell system according to the modification of the first embodiment, the container 27 is disposed at the above-described position. Therefore, the container 27 is further provided from the upper surface of the second housing 7b as in the fuel cell system according to the first embodiment. However, the size of the entire fuel cell system can be reduced. Moreover, if the thickness of the 1st heat insulation part 22 and the 2nd heat insulation part 33 between the 1st housing | casing 7a and the container 27 is taken sufficiently, by heat transfer, such as radiant heat from the 1st housing | casing 7a, The impurity remover 3 is prevented from being heated, and the temperature of the impurity remover 3 can be controlled by the exhaust gas flowing through the exhaust gas path 20.
 また、実施形態1の変形例に係る燃料電池システムは、実施形態1に係る燃料電池システムと同様に、第2接続部32および排ガス経路接続部31を備えるため、図4に示すように収納器27を筐体7(第二の筐体7b)に対して着脱可能とすることができる。図4は、実施形態1の変形例に係る燃料電池システムの構成において、第一の筐体7aと収納器27を分離した際の構成を示した模式図である。このように収容器27を第二の筐体7bに対して着脱可能となるように構成されているため、燃料電池システムにおいて不純物除去器3を容易に取り外したり、取り付けたりすることができる。よって、燃料電池システムの製造及びメンテナンスが容易となる。 In addition, the fuel cell system according to the modification of the first embodiment includes the second connection portion 32 and the exhaust gas path connection portion 31 as in the fuel cell system according to the first embodiment. Therefore, as shown in FIG. 27 can be attached to and detached from the housing 7 (second housing 7b). FIG. 4 is a schematic diagram showing a configuration when the first casing 7a and the container 27 are separated in the configuration of the fuel cell system according to the modification of the first embodiment. Since the container 27 is configured to be detachable from the second housing 7b as described above, the impurity remover 3 can be easily detached or attached in the fuel cell system. Therefore, manufacture and maintenance of the fuel cell system are facilitated.
 上記では、不純物除去器3が収納器27内に収納され、排ガス経路20を流通した排ガスにより、所定の温度状態に保たれるように加熱される構成であった。しかしながら、不純物除去器3は、このように収納器27に収納される構成に限定されるものではなく、筐体7の内側、すなわち、第一の筐体7aと第二の筐体7bとの間に設けられた断熱部内に不純物除去器3が設けられる構成であってもよい。このように構成される場合について、以下、実施形態2として説明する。 In the above description, the impurity remover 3 is housed in the container 27 and heated to be maintained at a predetermined temperature by the exhaust gas flowing through the exhaust gas path 20. However, the impurity remover 3 is not limited to the configuration housed in the container 27 as described above, and is inside the housing 7, that is, between the first housing 7a and the second housing 7b. The structure which the impurity removal device 3 is provided in the heat insulation part provided in the middle may be sufficient. Hereinafter, the case of such a configuration will be described as a second embodiment.
 (実施形態2)
 図5および図6を参照して実施形態2に係る燃料電池システムについて説明する。図5および図6は、実施形態2に係る燃料電池システムの構成の一例を示した模式図である。図5では、実施形態2に係る燃料電池システムを側部から見たときの構成を模式的に示している。図6では、実施形態2に係る燃料電池システムの筐体7内を上から見たときの構成を模式的に示している。なお、筐体7は、実施形態1と同様に第一の筐体7aと第二の筐体7bとから構成されているが、ここでは特に、図示しない。
(Embodiment 2)
A fuel cell system according to Embodiment 2 will be described with reference to FIGS. 5 and 6. 5 and 6 are schematic diagrams illustrating an example of the configuration of the fuel cell system according to Embodiment 2. FIG. In FIG. 5, the structure when the fuel cell system which concerns on Embodiment 2 is seen from the side part is shown typically. In FIG. 6, the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on Embodiment 2 is seen from the top is shown typically. The housing 7 is composed of a first housing 7a and a second housing 7b as in the first embodiment, but is not particularly shown here.
 図5および図6に示すように、実施形態2に係る燃料電池システムは、上述した実施形態1に係る燃料電池システムと同様に、不純物除去器3、改質器4、空気熱交換器5、燃料電池6、蒸発器9、および減圧部18を筐体7内部に配置してなる構成である。そして、燃料電池6の上部には改質器4と対向するように燃焼部23が設けられている。 As shown in FIGS. 5 and 6, the fuel cell system according to the second embodiment is similar to the fuel cell system according to the first embodiment described above, with the impurity remover 3, the reformer 4, the air heat exchanger 5, The fuel cell 6, the evaporator 9, and the decompression unit 18 are arranged inside the housing 7. A combustion unit 23 is provided on the upper portion of the fuel cell 6 so as to face the reformer 4.
 また、実施形態2に係る燃料電池システムでは、上述した実施形態1に係る燃料電池システムと同様に、筐体7の外部から供給された原料ガス(原燃料ガス)を改質器4で改質し、改質された改質ガスと外部から供給された空気とを利用して燃料電池6が発電反応により発電するように構成されている。 Further, in the fuel cell system according to the second embodiment, the raw material gas (raw fuel gas) supplied from the outside of the housing 7 is reformed by the reformer 4 as in the fuel cell system according to the first embodiment described above. The fuel cell 6 is configured to generate power by a power generation reaction using the reformed reformed gas and air supplied from the outside.
 すなわち、実施形態2に係る燃料電池システムは、実施形態1に係る燃料電池システムと比較して、不純物除去器3が収納器27ではなく、第1断熱部22内に収容されている点で異なる。それ以外は、同様の構成となるため、同様な部材には同じ符号を付し、その説明を省略する。 That is, the fuel cell system according to Embodiment 2 is different from the fuel cell system according to Embodiment 1 in that the impurity remover 3 is housed in the first heat insulating portion 22 instead of the housing 27. . Since it becomes the same structure except it, the same code | symbol is attached | subjected to the same member and the description is abbreviate | omitted.
 また、実施形態2に係る燃料電池システムにおいても、不純物除去器3は、例えば、水添脱硫方式により原料ガスに含まれる硫黄成分を除去する脱硫器とすることができる。実施形態2では、不純物除去器3は、図5において筐体7の紙面右側の側面下方に配置されている。 Also in the fuel cell system according to Embodiment 2, the impurity remover 3 can be a desulfurizer that removes sulfur components contained in the raw material gas by, for example, a hydrodesulfurization method. In the second embodiment, the impurity remover 3 is disposed below the side surface on the right side of the casing 7 in FIG.
 また、実施形態2に係る燃料電池システムでは、減圧部18は、筐体7内に設けられているが、減圧部18が設けられる位置はこの位置に限定されない、例えば、上述した実施形態1、あるいは後述する実施形態3に係る燃料電池システムで示すように、筐体7の外部に減圧部18が設けられていてもよい。 Further, in the fuel cell system according to Embodiment 2, the decompression unit 18 is provided in the housing 7, but the position where the decompression unit 18 is provided is not limited to this position. For example, the above-described Embodiment 1, Alternatively, as shown in the fuel cell system according to Embodiment 3 described later, a decompression unit 18 may be provided outside the housing 7.
 次に実施形態2に係る燃料電池システムの特徴的な構成である燃焼部23で生成した排ガスが排ガス経路20を流通する過程と、排ガス経路20中の一部において設けられた不純物除去器3とについて説明する。なお、排ガス経路20は、第1断熱部22内に形成されており、この排ガス経路20からの放熱をできる限り低減できるように構成されている。 Next, a process in which the exhaust gas generated in the combustion unit 23, which is a characteristic configuration of the fuel cell system according to Embodiment 2, circulates in the exhaust gas path 20, and an impurity remover 3 provided in a part of the exhaust gas path 20, Will be described. In addition, the exhaust gas path 20 is formed in the 1st heat insulation part 22, and it is comprised so that the heat radiation from this exhaust gas path 20 can be reduced as much as possible.
 ところで、燃焼部23で生成する排ガスの流量およびその温度については、燃料電池6における燃料ガス及び空気(発電空気)の燃料利用率(発電反応により、燃料として燃料電池6で消費される割合)を調整することにより、制御することが可能である。実施形態2では、例えば、燃焼部23の温度範囲を、約600~900℃になるように、燃料電池6における燃料ガス及び空気の燃料利用率を設定する。 By the way, about the flow volume and temperature of the exhaust gas produced | generated in the combustion part 23, the fuel utilization rate (ratio consumed by the fuel cell 6 as a fuel by power generation reaction) of the fuel gas and air (power generation air) in the fuel cell 6 is shown. It is possible to control by adjusting. In the second embodiment, for example, the fuel utilization rate of the fuel gas and air in the fuel cell 6 is set so that the temperature range of the combustion unit 23 is about 600 to 900 ° C.
 実施形態2では燃焼部23で未利用の燃料ガスと空気とを燃焼して生成した排ガスは、まず改質器4を加熱する。これにより排ガスの有する熱の一部が消費される。さらに、熱の一部が消費された排ガスによって空気熱交換器5を加熱する。この空気熱交換器5による空気と排ガスとの熱交換によって、排ガスが有する熱がさらに奪われ、不純物除去器3を加熱するのに適切な温度まで低下させられる。このように温度が低下させられた排ガスは排ガス経路20を流通して不純物除去器3へ供給される。 In the second embodiment, the reformer 4 is first heated by the exhaust gas generated by burning unused fuel gas and air in the combustion unit 23. Thereby, a part of the heat of the exhaust gas is consumed. Further, the air heat exchanger 5 is heated by the exhaust gas in which a part of the heat is consumed. Due to the heat exchange between the air and the exhaust gas by the air heat exchanger 5, the heat of the exhaust gas is further deprived and the temperature is lowered to an appropriate temperature for heating the impurity remover 3. The exhaust gas whose temperature has been lowered in this way flows through the exhaust gas path 20 and is supplied to the impurity remover 3.
 すなわち、燃焼部23で生成された排ガスの温度は、例えば約600℃~900℃と高温である。しかし、この排ガスによって、改質器4を加熱し、更に空気熱交換器5によって空気との熱交換を行い、空気を加熱すれば、排ガス経路20に到達するまでに排ガスの温度は低下する。特に、燃料電池を用いて、例えば1kWの発電を行う場合、50L/min以上の空気を外気温から約400~800℃になるまで加熱する必要があるため、空気熱交換器5では大量の熱量が必要となる。そこで、この必要な熱量を排ガスの熱量によって賄う。 That is, the temperature of the exhaust gas generated in the combustion section 23 is as high as about 600 ° C. to 900 ° C., for example. However, if the reformer 4 is heated by this exhaust gas, and heat exchange with air is further performed by the air heat exchanger 5, and the air is heated, the temperature of the exhaust gas decreases until reaching the exhaust gas path 20. In particular, when generating 1 kW, for example, using a fuel cell, it is necessary to heat air of 50 L / min or more from the outside temperature to about 400 to 800 ° C. Therefore, the air heat exchanger 5 has a large amount of heat. Is required. Therefore, this necessary amount of heat is covered by the amount of heat of the exhaust gas.
 以上のように、排ガス経路20を流通する排ガスの温度は、燃焼部23で生成する排ガスの流量と温度、改質器4に吸熱される熱量、および空気熱交換器5に吸熱される熱量などを考慮して所望の値となるように制御されている。そして、排ガス経路20に到達した排ガスは経路内を流通し、不純物除去器3へと流通する。そして、排ガスは不純物除去部3の外周を取り囲みながら流れ系外へと排出される。 As described above, the temperature of the exhaust gas flowing through the exhaust gas path 20 includes the flow rate and temperature of the exhaust gas generated in the combustion unit 23, the amount of heat absorbed by the reformer 4, the amount of heat absorbed by the air heat exchanger 5, and the like. Is controlled to take a desired value. Then, the exhaust gas that has reached the exhaust gas path 20 circulates in the path and flows to the impurity remover 3. And exhaust gas is discharged | emitted out of a flow system, surrounding the outer periphery of the impurity removal part 3. FIG.
 次に、不純物除去器3へ到達した際の排ガス温度について説明する。 Next, the exhaust gas temperature when reaching the impurity remover 3 will be described.
 不純物除去器3において、銅および亜鉛を含む脱硫剤(例えば、特許文献6)を充填する場合、不純物除去器3に到達した際の排ガス温度が約150~350℃になるように、燃焼部23で生成する排ガスの流量と温度、改質器4にて吸熱される熱量、空気熱交換器5にて吸熱される熱量等を調整する。このようにして、不純物除去器3を、水添脱硫を行うのに適した温度(150~300℃)とする。 When the impurity remover 3 is filled with a desulfurization agent containing copper and zinc (for example, Patent Document 6), the combustion section 23 is set so that the exhaust gas temperature when reaching the impurity remover 3 is about 150 to 350 ° C. The flow rate and temperature of the exhaust gas generated in step 1, the amount of heat absorbed by the reformer 4, the amount of heat absorbed by the air heat exchanger 5, and the like are adjusted. In this way, the impurity remover 3 is set to a temperature (150 to 300 ° C.) suitable for hydrodesulfurization.
 また、不純物除去器3において、Ni-Mo系又はCo-Mo系触媒と酸化亜鉛とを組み合わせた脱硫剤を充填する場合、不純物除去器3に到達した際の排ガス温度が約350~450℃になるように、燃焼部23で生成する排ガスの流量と温度、改質器4にて吸熱される熱量、空気熱交換器5にて吸熱される熱量を調整する。このようにして、同様に不純物除去器3を、水添脱硫を行うのに適した温度(350~400℃)とする。 In addition, when the impurity remover 3 is filled with a desulfurization agent that is a combination of a Ni—Mo or Co—Mo catalyst and zinc oxide, the exhaust gas temperature when reaching the impurity remover 3 is about 350 to 450 ° C. Thus, the flow rate and temperature of the exhaust gas generated in the combustion unit 23, the amount of heat absorbed by the reformer 4, and the amount of heat absorbed by the air heat exchanger 5 are adjusted. In this way, the impurity remover 3 is similarly set to a temperature (350 to 400 ° C.) suitable for hydrodesulfurization.
 以上のように、排ガス経路20に不純物除去器3を設置することにより、該不純物除去器3を、水添脱硫を行うのに適した所望の温度とすることができる。 As described above, by installing the impurity remover 3 in the exhaust gas path 20, the impurity remover 3 can be set to a desired temperature suitable for hydrodesulfurization.
 また、不純物除去器3は、第1断熱部22に覆われるように設置する。このようにすれば、不純物除去器3からの放熱を防ぐとともに筐体7内の500~600℃の熱に不純物除去器3が直接、曝されることを防ぐことができる。さらにまた、第1断熱部22によって不純物除去器3が覆われているため、不純物除去器3における温度分布をできるだけ一様とし、ばらつきを抑制することができる。よって、不純物除去器3における温度制御を容易とすることができる。 Further, the impurity remover 3 is installed so as to be covered with the first heat insulating portion 22. By doing so, it is possible to prevent heat from being removed from the impurity remover 3 and to prevent the impurity remover 3 from being directly exposed to the heat of 500 to 600 ° C. in the housing 7. Furthermore, since the impurity remover 3 is covered by the first heat insulating portion 22, the temperature distribution in the impurity remover 3 can be made as uniform as possible to suppress variations. Therefore, temperature control in the impurity remover 3 can be facilitated.
 また、長時間の運転の後、不純物除去器3に充填した改質触媒が劣化した際には、燃料電池システム全体の性能が著しく低下する懸念がある。そこで、不純物除去器3は筐体7から着脱可能となっている。このため、改質触媒が劣化した不純物除去器3を新しい不純物除去器3と交換するだけでさらに長時間の運転が可能となる。 In addition, when the reforming catalyst charged in the impurity remover 3 deteriorates after a long operation, there is a concern that the performance of the entire fuel cell system is remarkably lowered. Therefore, the impurity remover 3 is detachable from the housing 7. For this reason, it is possible to operate for a longer time by simply replacing the impurity remover 3 with the deteriorated reforming catalyst with a new impurity remover 3.
 (実施形態2の変形例1)
 次に、実施形態2に係る燃料電池システムの変形例1について図7を参照して説明する。図7は実施形態2の変形例1に係る燃料電池システムの構成の一例を示した模式図である。図7では、実施形態2の変形例1に係る燃料電池システムを側部から見たときの構成を模式的に示している。なお、実施形態2の変形例1に係る燃料電池システムの筐体7内を上から見たときの構成は、図6に示す燃料電池システムの構成と同様となるため図示していない。
(Modification 1 of Embodiment 2)
Next, Modification 1 of the fuel cell system according to Embodiment 2 will be described with reference to FIG. FIG. 7 is a schematic diagram showing an example of the configuration of a fuel cell system according to Modification 1 of Embodiment 2. In FIG. 7, the structure when the fuel cell system which concerns on the modification 1 of Embodiment 2 is seen from the side part is shown typically. In addition, since the structure when the inside of the housing 7 of the fuel cell system according to Modification 1 of Embodiment 2 is viewed from above is similar to the structure of the fuel cell system shown in FIG. 6, it is not shown.
 実施形態2の変形例1に係る燃料電池システムは、上述した実施形態2に係る燃料電池システムと比較して、不純物除去器3の外周に排ガス熱交換器21をさらに備えている点で異なる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 1 of Embodiment 2 is different from the fuel cell system according to Embodiment 2 described above in that an exhaust gas heat exchanger 21 is further provided on the outer periphery of the impurity remover 3. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 排ガス熱交換器21は、排ガス経路20内を流通する排ガスと不純物除去器3との間で熱交換を行い、不純物除去器3を所望の温度まで加熱するものである。排ガス経路20からの放熱をできる限り低減させるため、排ガス熱交換器21も第1断熱部22内に形成されていることが有益である。実施形態2の変形例1に係る燃料電池システムは、このように排ガス熱交換器21を備えるため、不純物除去器3と排ガス経路20を流通する排ガスとの間での伝熱面積の拡大及び熱伝達率の向上を図ることができる。したがって、水添脱硫を行うのに適した温度となるように不純物除去器3を迅速に加熱することが可能となる。 The exhaust gas heat exchanger 21 heats the impurity remover 3 to a desired temperature by exchanging heat between the exhaust gas flowing in the exhaust gas path 20 and the impurity remover 3. In order to reduce the heat radiation from the exhaust gas path 20 as much as possible, it is beneficial that the exhaust gas heat exchanger 21 is also formed in the first heat insulating portion 22. Since the fuel cell system according to the first modification of the second embodiment includes the exhaust gas heat exchanger 21 as described above, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20 is increased and the heat is increased. The transmission rate can be improved. Therefore, it is possible to quickly heat the impurity remover 3 so that the temperature is suitable for hydrodesulfurization.
 (実施形態2の変形例2)
 さらに、実施形態2に係る燃料電池システムの変形例2について図8を参照して説明する。図8は、実施形態2の変形例2に係る燃料電池システムの構成の一例を示した模式図である。図8では、実施形態2の変形例2に係る燃料電池システムを側部から見たときの構成を模式的に示している。なお、実施形態2の変形例2に係る燃料電池システムの筐体7内を上から見たときの構成は、図6に示す燃料電池システムの構成と同様となるため図示していない。
(Modification 2 of Embodiment 2)
Furthermore, Modification 2 of the fuel cell system according to Embodiment 2 will be described with reference to FIG. FIG. 8 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 2 of Embodiment 2. In FIG. 8, the structure when the fuel cell system which concerns on the modification 2 of Embodiment 2 is seen from the side part is shown typically. In addition, since the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 2 of Embodiment 2 is seen from the top becomes the same as that of the structure of the fuel cell system shown in FIG. 6, it is not illustrated.
 実施形態2の変形例2に係る燃料電池システムは、上述した実施形態2に係る燃料電池システムと比較して、排ガス熱交換器21と凝縮器24とをさらに備えている点で異なる。すなわち、実施形態2の変形例2に係る燃料電池システムは、実施形態2の変形例1に係る燃料電池システムの構成において凝縮器24をさらに備えた構成である。このため、実施形態2に係る燃料電池システムあるいは、実施形態2の変形例1に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 2 of Embodiment 2 is different from the fuel cell system according to Embodiment 2 described above in that it further includes an exhaust gas heat exchanger 21 and a condenser 24. That is, the fuel cell system according to Modification 2 of Embodiment 2 is a configuration further including a condenser 24 in the configuration of the fuel cell system according to Modification 1 of Embodiment 2. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, or the fuel cell system which concerns on the modification 1 of Embodiment 2, and the description shall be abbreviate | omitted.
 凝縮器24は、リサイクル経路19に設けられており、リサイクル経路19を流通する燃料ガス中に含まれる水分を凝縮させるものである。凝縮して得られた水は不図示の排水タンクに貯留される。 The condenser 24 is provided in the recycle path 19 and condenses water contained in the fuel gas flowing through the recycle path 19. The water obtained by condensation is stored in a drain tank (not shown).
 このように実施形態2の変形例2に係る燃料電池システムは、凝縮器24を備えるため、リサイクル経路19中において、流通する燃料ガスが低温化した際に、凝縮器24により水分を回収することができる。このため、結露水による流路(リサイクル経路19)内の水つまりや昇圧部2の腐食および破損といった不具合を抑制することができる。 As described above, the fuel cell system according to Modification 2 of Embodiment 2 includes the condenser 24. Therefore, when the circulating fuel gas is cooled in the recycling path 19, the condenser 24 collects moisture. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
 (実施形態2の変形例3)
 次に、実施形態2に係る燃料電池システムの変形例3について図9を参照して説明する。図9は、実施形態2の変形例3に係る燃料電池システムの構成の一例を示した模式図である。図9では、実施形態2の変形例3に係る燃料電池システムを側部から見たときの構成を模式的に示している。なお、実施形態2の変形例3に係る燃料電池システムの筐体7内を上から見たときの構成は、図6に示す構成と同様となるため図示していない。
(Modification 3 of Embodiment 2)
Next, Modification 3 of the fuel cell system according to Embodiment 2 will be described with reference to FIG. FIG. 9 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 3 of Embodiment 2. In FIG. 9, the structure when the fuel cell system which concerns on the modification 3 of Embodiment 2 is seen from the side part is shown typically. In addition, since the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 3 of Embodiment 2 is seen from the top becomes the same as the structure shown in FIG. 6, it is not illustrated.
 実施形態2の変形例3に係る燃料電池システムは、上述した実施形態2に係る燃料電池システムと比較して、排ガス熱交換器21、凝縮器24、およびファン25をさらに備えている点で異なる。すなわち、実施形態2の変形例3に係る燃料電池システムは、実施形態2の変形例2に係る燃料電池システムの構成において筐体7の外部にファン25をさらに備えた構成である。このため、実施形態2に係る燃料電池システムあるいはその変形例1、2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 3 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 described above in that it further includes an exhaust gas heat exchanger 21, a condenser 24, and a fan 25. . That is, the fuel cell system according to Modification 3 of Embodiment 2 has a configuration in which the fan 25 is further provided outside the housing 7 in the configuration of the fuel cell system according to Modification 2 of Embodiment 2. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, or the fuel cell system which concerns on the modifications 1 and 2, and the description shall be abbreviate | omitted.
 ファン25は、不純物除去器3を冷却するために風を送るための送風機である。実施形態2の変形例3に係る燃料電池システムは、ファン25を備えるため、不純物除去器3の温度が上昇しすぎた際、このファン25からの強制対流により、容易に所望の温度まで冷却させることができる。 The fan 25 is a blower for sending air to cool the impurity remover 3. Since the fuel cell system according to Modification 3 of Embodiment 2 includes the fan 25, when the temperature of the impurity remover 3 rises excessively, it is easily cooled to a desired temperature by forced convection from the fan 25. be able to.
 なお、不純物除去器3がファン25により冷却される側の面は、冷却効率を高めるために第1断熱部22によって覆われていない方が有利である。 In addition, it is advantageous that the surface on the side where the impurity remover 3 is cooled by the fan 25 is not covered with the first heat insulating portion 22 in order to increase the cooling efficiency.
 (実施形態2の変形例4)
 次に、図10、11を参照して実施形態2の変形例4に係る燃料電池システムについて説明する。図10および図11は、実施形態2の変形例4に係る燃料電池システムの構成の一例を示した模式図である。図10では、実施形態2の変形例4に係る燃料電池システムを側部から見たときの構成を模式的に示している。図11では、実施形態2の変形例4に係る燃料電池システムの筐体7内を上から見たときの構成を模式的に示している。
(Modification 4 of Embodiment 2)
Next, a fuel cell system according to Modification 4 of Embodiment 2 will be described with reference to FIGS. 10 and 11 are schematic views showing an example of the configuration of a fuel cell system according to Modification 4 of Embodiment 2. In FIG. 10, the structure when the fuel cell system which concerns on the modification 4 of Embodiment 2 is seen from the side part is shown typically. In FIG. 11, the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 4 of Embodiment 2 is seen from the top is shown typically.
 実施形態2の変形例4に係る燃料電池システムは、図5、6に示した実施形態2に係る燃料電池システムと比較して以下の点で異なる。すなわち、実施形態2に係る燃料電池システムでは、不純物除去器3が筐体7の右側側面の下方に配置されていたのに対して、実施形態2の変形例4に係る燃料電池システムは、筐体7の上面側における略中央部分(燃焼部23と対向する位置)に配置されている点で異なる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 4 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the casing 7, whereas the fuel cell system according to the fourth modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 実施形態2の変形例4に係る燃料電池システムでは、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3が配置されている。燃料電池6で生じる発電反応熱および燃焼部23の燃焼による燃焼熱を保有する排ガスは、筐体7の上面に向かって上昇する過程で、まず改質器4を加熱し、さらに空気熱交換器5との熱交換により保有する熱の一部が奪われた状態で燃焼部23の上方にある不純物除去器3に向かう。すなわち、不純物除去器3に充填された脱硫剤に適した温度まで低下させられた状態で排ガスは不純物除去器3に向かう。 In the fuel cell system according to Modification 4 of Embodiment 2, the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. The exhaust gas holding the heat generated by the fuel cell 6 and the combustion heat generated by the combustion of the combustion section 23 rises toward the upper surface of the casing 7, first heating the reformer 4, and then the air heat exchanger In the state where a part of the heat held by heat exchange with the heat exchanger 5 is taken away, it goes to the impurity remover 3 above the combustion section 23. That is, the exhaust gas goes to the impurity remover 3 in a state where the exhaust gas is lowered to a temperature suitable for the desulfurizing agent charged in the impurity remover 3.
 ここで、燃焼部23の上方へは、排ガスが略均一的に拡散して導かれるため、筐体7の上面側の温度分布が略均一化するようになっている。したがって、不純物除去器3の温度分布を均一とすることができ、不純物除去器3に対して水添脱硫を効率よく実施させることができる。そして、このように均一に不純物除去器3を加熱した排ガスは、排ガス経路20を流通して筐体7の外部に排出される。 Here, since the exhaust gas is diffused and guided substantially uniformly above the combustion section 23, the temperature distribution on the upper surface side of the housing 7 is made substantially uniform. Therefore, the temperature distribution of the impurity remover 3 can be made uniform, and the hydrodesulfurization can be efficiently performed on the impurity remover 3. And the exhaust gas which heated the impurity removal device 3 uniformly in this way distribute | circulates the exhaust gas path | route 20, and is discharged | emitted outside the housing | casing 7. FIG.
 なお、筐体7は上面が着脱可能となっており、さらにその上面から不純物除去器3が着脱可能となっている。このため、不純物除去器3を交換する場合、まず、筐体7の上面を取り外し、その後、不純物除去器3を筐体7の上面から取り外す。 The upper surface of the housing 7 is detachable, and the impurity remover 3 is detachable from the upper surface. For this reason, when replacing the impurity remover 3, first, the upper surface of the housing 7 is removed, and then the impurity remover 3 is removed from the upper surface of the housing 7.
 (実施形態2の変形例5)
 次に、図12を参照して実施形態2の変形例5に係る燃料電池システムについて説明する。図12は、実施形態2の変形例5に係る燃料電池システムの構成の一例を示した模式図である。図12では、実施形態2の変形例5に係る燃料電池システムを側部から見たときの構成を模式的に示している。なお、実施形態2の変形例5に係る燃料電池システムの筐体7内を上から見たときの構成は、図11に示す変形例4の構成と同様となるため図示していない。
(Modification 5 of Embodiment 2)
Next, a fuel cell system according to Modification 5 of Embodiment 2 will be described with reference to FIG. FIG. 12 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 5 of Embodiment 2. In FIG. 12, the structure when the fuel cell system which concerns on the modification 5 of Embodiment 2 is seen from the side part is shown typically. In addition, since the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 5 of Embodiment 2 is seen from the top becomes the same as the structure of the modification 4 shown in FIG. 11, it is not illustrated.
 実施形態2の変形例5に係る燃料電池システムは、図5、6に示した実施形態2に係る燃料電池システムと比較して以下の点で異なる。すなわち、実施形態2に係る燃料電池システムでは、不純物除去器3が筐体7の右側側面の下方に配置されていたのに対して、実施形態2の変形例5に係る燃料電池システムは、筐体7の上面側における略中央部分(燃焼部23と対向する位置)に配置されている点で異なる。さらに、リサイクル経路19中に凝縮器24をさらに備える点でも異なる。つまり、実施形態2の変形例5に係る燃料電池システムは、上述した実施形態2の変形例4の構成において、さらにリサイクル経路19中に凝縮器24を備えた構成であるともいえる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 5 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the housing 7, whereas the fuel cell system according to the fifth modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. Another difference is that a condenser 24 is further provided in the recycling path 19. That is, it can be said that the fuel cell system according to Modification 5 of Embodiment 2 has a configuration in which the condenser 24 is further provided in the recycling path 19 in the configuration of Modification 4 of Embodiment 2 described above. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 実施形態2の変形例5に係る燃料電池は、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3が配置されている。このため、燃焼部23が生成した排ガスによって略均一に不純物除去器3が加熱されることとなる。また、リサイクル経路19に凝縮器24が設けられている。このように実施形態2の変形例5に係る燃料電池システムは、凝縮器24を備えるため、リサイクル経路19中において、流通する燃料ガスが低温化した際に、凝縮器24により水分を回収することができる。このため、結露水による流路(リサイクル経路19)内の水つまりや昇圧部2の腐食および破損といった不具合を抑制することができる。 In the fuel cell according to Modification 5 of Embodiment 2, the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23. A condenser 24 is provided in the recycle path 19. As described above, the fuel cell system according to Modification 5 of Embodiment 2 includes the condenser 24, and therefore, when the circulating fuel gas is cooled in the recycling path 19, water is collected by the condenser 24. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
 (実施形態2の変形例6)
 次に、図13、14を参照して実施形態2の変形例6に係る燃料電池システムについて説明する。図13および図14は、実施形態2の変形例6に係る燃料電池システムの構成の一例を示した模式図である。図13では、実施形態2の変形例6に係る燃料電池システムを側部から見たときの構成を模式的に示している。図14では、実施形態2の変形例6に係る燃料電池システムの筐体7内を上から見たときの構成を模式的に示している。
(Modification 6 of Embodiment 2)
Next, a fuel cell system according to Modification 6 of Embodiment 2 will be described with reference to FIGS. 13 and 14 are schematic views showing an example of the configuration of a fuel cell system according to Modification 6 of Embodiment 2. In FIG. 13, the structure when the fuel cell system which concerns on the modification 6 of Embodiment 2 is seen from the side part is shown typically. In FIG. 14, the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 6 of Embodiment 2 is seen from the top is shown typically.
 実施形態2の変形例6に係る燃料電池システムは、図5、6に示した実施形態2に係る燃料電池システムと比較して以下の点で異なる。すなわち、実施形態2に係る燃料電池システムでは、不純物除去器3が筐体7の右側側面の下方に配置されていたのに対して、実施形態2の変形例6に係る燃料電池システムは、筐体7の上面側における略中央部分に配置されている点で異なる。また、排ガス経路20において、不純物除去器3と排ガス経路20を流通する排ガスとの熱交換を行う排ガス熱交換器21を備える点でも異なる。つまり、実施形態2の変形例6に係る燃料電池システムは、上述した実施形態2の変形例4の構成において、さらに排ガス経路20に排ガス熱交換器21を備えた構成であるともいえる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 6 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the housing 7, whereas the fuel cell system according to the sixth modification of the second embodiment It is different in that it is arranged at a substantially central portion on the upper surface side of the body 7. Further, the exhaust gas path 20 is different in that it includes an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. That is, it can be said that the fuel cell system according to Modification 6 of Embodiment 2 has a configuration in which the exhaust gas heat exchanger 21 is further provided in the exhaust gas path 20 in the configuration of Modification 4 of Embodiment 2 described above. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 実施形態2の変形例6に係る燃料電池は、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3が配置されている。このため、燃焼部23が生成した排ガスによって略均一に不純物除去器3が加熱されることとなる。特に、実施形態2の変形例6に係る燃料電池は、排ガス経路20に排ガス熱交換器21を備えているため、不純物除去器3と排ガス経路20を流通する排ガスとの間での伝熱面積の拡大および熱伝達率の向上を図ることができる。したがって、不純物除去器3の温度分布を均一に保ちつつ、迅速に水添脱硫を行うのに適した温度まで上げることができる。 In the fuel cell according to Modification 6 of Embodiment 2, the impurity remover 3 is disposed on the upper surface side of the casing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23. In particular, since the fuel cell according to Modification 6 of Embodiment 2 includes the exhaust gas heat exchanger 21 in the exhaust gas path 20, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. Can be expanded and the heat transfer rate can be improved. Therefore, it is possible to raise the temperature to a temperature suitable for performing hydrodesulfurization quickly while keeping the temperature distribution of the impurity remover 3 uniform.
 (実施形態2の変形例7)
 次に、図15を参照して実施形態2の変形例7に係る燃料電池システムについて説明する。図15は、実施形態2の変形例7に係る燃料電池システムの構成の一例を示した模式図である。図15では、実施形態2の変形例7に係る燃料電池システムを側部から見たときの構成を模式的に示している。なお、実施形態2の変形例7に係る燃料電池システムの筐体7内を上から見たときの構成は、図14に示す変形例6の構成と同様となるため図示していない。
(Modification 7 of Embodiment 2)
Next, a fuel cell system according to Modification 7 of Embodiment 2 will be described with reference to FIG. FIG. 15 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to Modification 7 of Embodiment 2. FIG. 15 schematically shows a configuration when the fuel cell system according to Modification 7 of Embodiment 2 is viewed from the side. In addition, since the structure when the inside of the housing | casing 7 of the fuel cell system which concerns on the modification 7 of Embodiment 2 is seen from the top becomes the same as the structure of the modification 6 shown in FIG. 14, it is not illustrated.
 実施形態2の変形例7に係る燃料電池システムは、図5、6に示した実施形態2に係る燃料電池システムと比較して以下の点で異なる。すなわち、実施形態2に係る燃料電池システムでは、不純物除去器3が筐体7の右側側面の下方に配置されていたのに対して、実施形態2の変形例7に係る燃料電池システムは、筐体7の上面側における略中央部分(燃焼部23と対向する位置)に配置されている点で異なる。また、排ガス経路20において、不純物除去器3と排ガス経路20を流通する排ガスとの熱交換を行う排ガス熱交換器21を備える点、ならびにリサイクル経路19中に凝縮器24をさらに備える点でも異なる。つまり、実施形態2の変形例7に係る燃料電池システムは、上述した実施形態2の変形例6の構成において、リサイクル経路19中に凝縮器24をさらに備えた構成であるといえる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 The fuel cell system according to Modification 7 of Embodiment 2 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the casing 7, whereas the fuel cell system according to the seventh modification of the second embodiment It differs in that it is arranged at a substantially central part (position facing the combustion part 23) on the upper surface side of the body 7. Further, the exhaust gas path 20 is different in that it includes an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas that flows through the exhaust gas path 20, and also includes a condenser 24 in the recycle path 19. That is, it can be said that the fuel cell system according to Modification 7 of Embodiment 2 has a configuration in which the condenser 24 is further provided in the recycling path 19 in the configuration of Modification 6 of Embodiment 2 described above. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 実施形態2の変形例7に係る燃料電池は、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3が配置されている。このため、燃焼部23が生成した排ガスによって略均一に不純物除去器3が加熱されることとなる。特に、実施形態2の変形例7に係る燃料電池は、排ガス経路20に排ガス熱交換器21を備えているため、不純物除去器3と排ガス経路20を流通する排ガスとの間での伝熱面積の拡大および熱伝達率の向上を図ることができる。したがって、不純物除去器3の温度分布を均一に保ちつつ、迅速に水添脱硫を行うのに適した温度まで上げることができる。 In the fuel cell according to Modification Example 7 of Embodiment 2, the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. For this reason, the impurity remover 3 is heated substantially uniformly by the exhaust gas generated by the combustion unit 23. In particular, since the fuel cell according to Modification 7 of Embodiment 2 includes the exhaust gas heat exchanger 21 in the exhaust gas path 20, the heat transfer area between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. Can be expanded and the heat transfer rate can be improved. Therefore, it is possible to raise the temperature to a temperature suitable for performing hydrodesulfurization quickly while keeping the temperature distribution of the impurity remover 3 uniform.
 また、リサイクル経路19に凝縮器24が設けられている。このように実施形態2の変形例7に係る燃料電池システムは、凝縮器24を備えるため、リサイクル経路19中において、流通する燃料ガスが低温化した際に、凝縮器24により水分を回収することができる。このため、結露水による流路(リサイクル経路19)内の水つまりや昇圧部2の腐食および破損といった不具合を抑制することができる。 Also, a condenser 24 is provided in the recycling path 19. Thus, since the fuel cell system according to Modification 7 of Embodiment 2 includes the condenser 24, when the circulating fuel gas is cooled in the recycle path 19, water is collected by the condenser 24. Can do. For this reason, it is possible to suppress problems such as water in the flow path (recycle path 19) due to condensed water, that is, corrosion and breakage of the pressure increasing unit 2.
 以上のように、実施形態2に係る燃料電池システムは、高効率かつ安定的に動作する燃料電池システムを提供することが可能である。 As described above, the fuel cell system according to Embodiment 2 can provide a fuel cell system that operates stably with high efficiency.
 すなわち、実施形態2に係る燃料電池システムは、供給された燃料と空気とを利用して発電反応により発電する燃料電池6(例えば、固体酸化物形燃料電池)と、燃料電池6で未利用の燃料と空気とを燃焼する燃焼部23と、燃焼部23の燃焼による燃焼熱を保有する排ガスの熱を利用して改質反応により、供給された原料から前記燃料となる改質ガスを生成する改質器4と、この排ガスの熱を利用して供給された水を蒸発させ水蒸気を生成する蒸発器9と、改質器4により熱利用された後の排ガスの熱を利用して、燃料電池6に供給する空気を加熱する空気熱交換器5と、空気熱交換器5により熱利用された後の排ガスの有する熱を利用して、供給された原料に含まれる硫黄成分を水添脱硫により除去し、改質器4へと供給する不純物除去器3(例えば、脱硫器)と、を備えている。 That is, the fuel cell system according to Embodiment 2 uses a fuel cell 6 (for example, a solid oxide fuel cell) that generates electricity by a power generation reaction using supplied fuel and air, and is unused in the fuel cell 6. A reforming gas to be the fuel is generated from the supplied raw material by a reforming reaction using the combustion part 23 that burns fuel and air, and the heat of the exhaust gas that holds the combustion heat generated by the combustion of the combustion part 23 The reformer 4, the evaporator 9 that evaporates the water supplied by using the heat of the exhaust gas and generates water vapor, and the heat of the exhaust gas after being used by the reformer 4 The air heat exchanger 5 that heats the air supplied to the battery 6 and the heat of the exhaust gas after being heat-utilized by the air heat exchanger 5 are used to hydrodesulfurize the sulfur component contained in the supplied raw material. Removing impurities and supplying them to the reformer 4 Vessel 3 (e.g., desulfurizer) is provided with a, a.
 このように、実施形態2に係る燃料電池システムは、不純物除去器3を備えるため、原料から硫黄成分を除去した状態で改質器4に供給することができる。このため硫黄成分による改質器4の改質触媒の劣化を防止することができるため、改質器4を長期的に使用可能とすることができる。それゆえ、燃料電池システムでは、当該システムの長期耐久性を確保できる。 Thus, since the fuel cell system according to Embodiment 2 includes the impurity remover 3, the fuel cell system can be supplied to the reformer 4 with the sulfur component removed from the raw material. For this reason, since the deterioration of the reforming catalyst of the reformer 4 due to the sulfur component can be prevented, the reformer 4 can be used for a long term. Therefore, in the fuel cell system, the long-term durability of the system can be ensured.
 また、この不純物除去器3は、改質器4および空気熱交換器5により熱利用され所定の温度まで低下させられた排ガスの熱を利用して水添脱硫を行う構成である。すなわち、排ガスにより不純物除去器3を、水添脱硫を行うのに適した所望の温度となるように加熱することができる。 The impurity remover 3 is configured to perform hydrodesulfurization using the heat of the exhaust gas that has been used by the reformer 4 and the air heat exchanger 5 and has been lowered to a predetermined temperature. That is, the impurity remover 3 can be heated with exhaust gas so as to have a desired temperature suitable for hydrodesulfurization.
 よって、実施形態2に係る燃料電池システムは、不純物除去器3の温度を、水添脱硫を行うのに適した温度となるように制御するとともに、長期耐久性を確保できる。さらにまた、実施形態2に係る燃料電池システムは、上述した構成において、不純物除去器3が燃焼部23の上方でかつ対向する位置に配置されていてもよい構成である。 Therefore, the fuel cell system according to Embodiment 2 can control the temperature of the impurity remover 3 so as to be a temperature suitable for hydrodesulfurization and ensure long-term durability. Furthermore, the fuel cell system according to Embodiment 2 is a configuration in which the impurity remover 3 may be disposed above the combustion unit 23 and at a position facing the fuel cell system in the configuration described above.
 ここで、燃料電池6で生じる発電反応熱および燃焼部23の燃焼による燃焼熱を保有する排ガスは燃焼部23の上方でかつ対向する位置を、温度分布が略均一な状態で加熱する。上記した構成によると、燃焼部23の上方でかつ対応する位置に不純物除去器3が配置されているため、不純物除去器3を均一に加熱することができる。このため、不純物除去器3は、効率よく原料ガスに対して脱硫を実施することができる。さらにまた、不純物除去器3は、排ガス経路20の途中に該排ガス経路20の一部を構成するように設けられた収容空間(収納器27)内に配置され、不純物除去器3の外周を流通する排ガスによって加熱される構成である。このため、排ガスによって不純物除去器3全体を略均一に加熱することができる。 Here, the exhaust gas that retains the heat generated by the fuel cell 6 and the combustion heat generated by the combustion of the combustion section 23 heats the position above and facing the combustion section 23 with a substantially uniform temperature distribution. According to the above-described configuration, the impurity remover 3 is disposed above and corresponding to the combustion unit 23, so that the impurity remover 3 can be heated uniformly. For this reason, the impurity remover 3 can efficiently desulfurize the raw material gas. Furthermore, the impurity remover 3 is arranged in a housing space (housing device 27) provided so as to constitute a part of the exhaust gas route 20 in the middle of the exhaust gas route 20, and circulates around the outer periphery of the impurity remover 3. It is the structure heated by the waste gas which does. For this reason, the entire impurity remover 3 can be heated substantially uniformly by the exhaust gas.
 また、実施形態2に係る燃料電池システムは、上述した構成において、不純物除去器3と排ガスとの間で熱交換させる排ガス熱交換器21をさらに備えるように構成してもよい。 In addition, the fuel cell system according to Embodiment 2 may further include an exhaust gas heat exchanger 21 that performs heat exchange between the impurity remover 3 and the exhaust gas in the configuration described above.
 この構成によると、排ガス熱交換器21を備えているため、不純物除去器3と排ガス経路20を流通する排ガスとの間での伝熱面積の拡大及び熱伝達率の向上を図ることができ、迅速に不純物除去器3の温度を所望の温度とすることができる。 According to this configuration, since the exhaust gas heat exchanger 21 is provided, it is possible to expand the heat transfer area and improve the heat transfer coefficient between the impurity remover 3 and the exhaust gas flowing through the exhaust gas path 20. The temperature of the impurity remover 3 can be quickly set to a desired temperature.
 また、実施形態2に係る燃料電池システムは、上述した構成において、改質器4が、水蒸気改質反応に利用するために供給された水を気化させるための蒸発器9を有するように構成されていてもよい。 Further, the fuel cell system according to Embodiment 2 is configured such that, in the configuration described above, the reformer 4 has an evaporator 9 for vaporizing water supplied for use in the steam reforming reaction. It may be.
 この構成によると、蒸発器9を備え、改質器4により、燃料ガスの水蒸気改質反応を行うことができるため、燃料効率に優れた燃料電池システムの実現が可能となる。 According to this configuration, since the evaporator 9 is provided and the reformer 4 can perform the steam reforming reaction of the fuel gas, a fuel cell system with excellent fuel efficiency can be realized.
 また、実施形態2に係る燃料電池システムは、上述した構成において、不純物除去器3は、当該燃料電池システムに着脱可能に設けられるように構成してもよい。 Further, the fuel cell system according to Embodiment 2 may be configured such that the impurity remover 3 is detachably provided in the fuel cell system in the configuration described above.
 この構成によると、不純物除去器3が燃料電池システムに着脱可能に設けられているため、不純物除去器3に充填した脱硫触媒が劣化した際に、不純物除去器3の取り換えを容易に行うことができる。したがって、燃料電池システムのさらなる長期運転を容易とすることができる。 According to this configuration, since the impurity remover 3 is detachably provided in the fuel cell system, the impurity remover 3 can be easily replaced when the desulfurization catalyst charged in the impurity remover 3 deteriorates. it can. Therefore, further long-term operation of the fuel cell system can be facilitated.
 また、実施形態2に係る燃料電池システムは、上述した構成において、少なくとも燃料電池6、燃焼部23、改質器4、空気熱交換器5、および不純物除去器3を収容する筐体7と、筐体7の内壁に配置された第1断熱部22と、をさらに備え、不純物除去器3の少なくとも一部が、第1断熱部22内に配置されるように構成されていてもよい。 Further, the fuel cell system according to Embodiment 2 has the above-described configuration, and a housing 7 that houses at least the fuel cell 6, the combustion unit 23, the reformer 4, the air heat exchanger 5, and the impurity remover 3, A first heat insulating part 22 disposed on the inner wall of the housing 7, and at least a part of the impurity remover 3 may be disposed within the first heat insulating part 22.
 また、実施形態2に係る燃料電池システムは、上述した構成において、少なくとも燃料電池6、燃焼部23、改質器4、空気熱交換器5、不純物除去器3、および排ガス熱交換器21を収容する筐体7と、筐体7の内壁に配置された第1断熱部22と、をさらに備え、不純物除去器3および排ガス熱交換器21の少なくとも一部が、第1断熱部22内に配置されるように構成されていてもよい。 Further, the fuel cell system according to Embodiment 2 accommodates at least the fuel cell 6, the combustion unit 23, the reformer 4, the air heat exchanger 5, the impurity remover 3, and the exhaust gas heat exchanger 21 in the configuration described above. And a first heat insulating portion 22 disposed on the inner wall of the housing 7, and at least a part of the impurity remover 3 and the exhaust gas heat exchanger 21 are disposed in the first heat insulating portion 22. It may be configured to be.
 この構成によると、不純物除去器3および排ガス熱交換器21の少なくとも一部を第1断熱部22内に配置するため、不純物除去器3または排ガス熱交換器21からの放熱を抑制することができる。したがって、不純物除去器3を所望の温度となるように容易に加熱することができる。 According to this configuration, since at least a part of the impurity remover 3 and the exhaust gas heat exchanger 21 is disposed in the first heat insulating portion 22, heat radiation from the impurity remover 3 or the exhaust gas heat exchanger 21 can be suppressed. . Therefore, the impurity remover 3 can be easily heated to a desired temperature.
 また、実施形態2に係る燃料電池システムは、上述した構成において、筐体7の外側に、不純物除去器3を冷却するファン25をさらに備えるように構成されていてもよい。 Further, the fuel cell system according to Embodiment 2 may be configured to further include a fan 25 that cools the impurity remover 3 outside the housing 7 in the configuration described above.
 この構成によると、ファン25を備えるため、不純物除去器3が昇温しすぎた際にこのファン25からの強制対流により容易に冷却することができる。 According to this configuration, since the fan 25 is provided, when the impurity remover 3 is excessively heated, it can be easily cooled by forced convection from the fan 25.
 また、実施形態2に係る燃料電池システムは、上述した構成において、原料ガス経路1を流通する原料を昇圧して不純物除去器3に供給する昇圧部2と、リサイクル経路19中に設けられ、該リサイクル経路19を流通する燃料に含有される水分を凝縮させる凝縮器24と、をさらに備え、リサイクル経路19は燃料の一部を原料ガス経路1における昇圧部2の上流側に導く構成としてもよい。 In addition, the fuel cell system according to Embodiment 2 is provided in the recycling path 19 and the boosting section 2 that boosts the raw material flowing through the raw material gas path 1 and supplies it to the impurity remover 3 in the configuration described above. And a condenser 24 that condenses moisture contained in the fuel flowing through the recycle path 19, and the recycle path 19 may be configured to guide a part of the fuel to the upstream side of the booster 2 in the source gas path 1. .
 この構成によると、リサイクル経路19中に凝縮器24が設けられている。このため、このリサイクル経路19を流通する燃料が低温化した場合、この凝縮器24により水分を回収することができるので、結露水による経路内の水つまりを抑制することができる。さらに、このリサイクル経路19では燃料の一部を昇圧部2の上流側に導くように構成されている。このため、燃料の低温化などで生じた水分を凝縮器24により回収した状態で、この燃料を昇圧部2に導くことができる。それゆえ、水分による昇圧部2の腐食または破損といった不具合を抑制することができる。 According to this configuration, the condenser 24 is provided in the recycling path 19. For this reason, when the fuel flowing through the recycling path 19 is lowered in temperature, water can be collected by the condenser 24, so that water clogging in the path due to condensed water can be suppressed. Further, the recycle path 19 is configured to guide part of the fuel to the upstream side of the booster 2. For this reason, this fuel can be guided to the pressure-increasing unit 2 in a state in which moisture generated by the low temperature of the fuel is recovered by the condenser 24. Therefore, it is possible to suppress problems such as corrosion or breakage of the booster 2 due to moisture.
 ところで、例えば脱硫器などの不純物除去器3内に充填されている触媒は、使用により劣化していくため、その交換が必要となる。しかしながら、例えば、特許文献1から3に開示されている燃料電池システムの構成では、不純物除去器3が筐体(例えば、特許文献1の断熱槽102)の内部空間に設置されているため、不純物除去器3自体を取り外すことが困難となるという問題があった。 By the way, for example, the catalyst filled in the impurity remover 3 such as a desulfurizer is deteriorated by use, and therefore needs to be replaced. However, for example, in the configuration of the fuel cell system disclosed in Patent Documents 1 to 3, since the impurity remover 3 is installed in the internal space of the housing (for example, the heat insulating tank 102 of Patent Document 1), impurities There was a problem that it was difficult to remove the remover 3 itself.
 また、例えば、実施形態2の変形例4で示した構成のように、不純物除去器3が設けられている筐体7の上面を、筐体7の本体から取り外すことができる構成とすることで不純物除去器3の交換を可能とすることも考えられえる。しかしながら、このような構成の場合であっても、筐体7のサイズが大きい場合は、上面を筐体7から取り外す作業は困難であり、容易に不純物除去器3の取り外しができない場合がある。 Further, for example, as in the configuration shown in the modification 4 of the second embodiment, the upper surface of the housing 7 provided with the impurity remover 3 can be removed from the main body of the housing 7. It may be possible to replace the impurity remover 3. However, even in such a configuration, when the size of the housing 7 is large, it is difficult to remove the upper surface from the housing 7, and the impurity remover 3 may not be easily removed.
 そこで、発明者は、不純物除去器3を容易に取り外すことができるようにし、製造およびメンテナンスを容易に行うことができる燃料電池システムの構成を検討したところ、上述した実施形態1に係る燃料電池システムのように、不純物除去器3を収納器27内に格納した構成とすることが有効であることを見出した。 Therefore, the inventor has made it possible to easily remove the impurity remover 3 and studied the configuration of the fuel cell system that can be easily manufactured and maintained. As a result, the fuel cell system according to Embodiment 1 described above has been studied. As described above, it has been found that it is effective to adopt a configuration in which the impurity remover 3 is stored in the container 27.
 以下では、不純物除去器3を収納器27内に格納した構成として、実施形態1とは異なる構成について具体的に実施形態3として説明する。なお、実施形態3については構成がより類似する実施形態2との比較によりその構成を説明するものとする。 Hereinafter, as a configuration in which the impurity remover 3 is stored in the container 27, a configuration different from the first embodiment will be specifically described as a third embodiment. The configuration of the third embodiment will be described by comparison with the second embodiment having a more similar configuration.
 (実施形態3)
 図16および図17を参照して実施形態3に係る燃料電池システムについて説明する。図16および図17は、実施形態3に係る燃料電池システムの構成の一例を示した模式図である。図16では、実施形態3に係る燃料電池システムを側部から見たときの構成を模式的に示している。図17では、図16に示す燃料電池システムにおいて、筐体7から後述する収納器27を分離させた際の構成の一例を示す。
(Embodiment 3)
A fuel cell system according to Embodiment 3 will be described with reference to FIGS. 16 and 17. 16 and 17 are schematic views showing an example of the configuration of the fuel cell system according to the third embodiment. In FIG. 16, the structure when the fuel cell system which concerns on Embodiment 3 is seen from the side part is shown typically. FIG. 17 shows an example of a configuration when the container 27 described later is separated from the casing 7 in the fuel cell system shown in FIG.
 実施形態3に係る燃料電池システムは、図5、6に示した実施形態2に係る燃料電池システムと比較して以下の点で異なる。すなわち、実施形態2に係る燃料電池システムでは、不純物除去器3は第1断熱部22内に収容されていたのに対して、実施形態3に係る燃料電池システムでは、不純物除去器3は、収納器27内に収容されている点で異なる。 The fuel cell system according to Embodiment 3 differs from the fuel cell system according to Embodiment 2 shown in FIGS. That is, in the fuel cell system according to the second embodiment, the impurity remover 3 is accommodated in the first heat insulating portion 22, whereas in the fuel cell system according to the third embodiment, the impurity remover 3 is accommodated. It is different in that it is accommodated in the container 27.
 また、実施形態2に係る燃料電池システムでは、不純物除去器3が筐体7の右側面の下方に配置されていたのに対して、実施形態3に係る燃料電池システムでは、筐体7の上面側における略中央部分(燃焼部23と対向する位置)に配置されている点でも異なる。ただし実施形態3に係る不純物除去器3の配置はこれに限定されるものではなく、実施形態2に係る燃料電池システムと同様に筐体7の右側面の下方に配置された構成であってもよい。 In the fuel cell system according to the second embodiment, the impurity remover 3 is disposed below the right side surface of the casing 7, whereas in the fuel cell system according to the third embodiment, the upper surface of the casing 7 is arranged. It differs also in the point arrange | positioned in the approximate center part (position facing the combustion part 23) in the side. However, the arrangement of the impurity remover 3 according to the third embodiment is not limited to this, and may be a configuration arranged below the right side surface of the housing 7 as in the fuel cell system according to the second embodiment. Good.
 また、筐体7内の排ガスを収納器27内に導くとともに、収納器27内を流通した排ガスを収納器27外に導く排ガス経路20を設け、この排ガス経路20が連通するように上流側排ガス経路20aと収納器内排ガス経路20cとを接続するとともに、下流側排ガス経路20bと収納器内排ガス経路20cとを接続するための2つの排ガス経路接続部31を備える点でも異なる。つまり、収納器27内には、不純物除去器3の外周を囲むように、排ガスが流通するための流路である収納器内排ガス経路20cが形成されている。そして、この収納器内排ガス経路20cは、排ガス経路接続部31によって、上流側排ガス経路20a、下流側排ガス経路20bそれぞれと接続されるように構成されている。 Further, an exhaust gas path 20 is provided for guiding the exhaust gas in the housing 7 into the container 27 and for guiding the exhaust gas circulated in the container 27 to the outside of the container 27, so that the exhaust gas path 20 communicates with the upstream side exhaust gas. It differs also in the point provided with the two exhaust gas path connection parts 31 for connecting the path | route 20a and the waste gas path 20c in a storage device, and connecting the downstream exhaust gas path 20b and the waste gas path 20c in a storage device. That is, an in-container exhaust gas path 20c, which is a flow path for exhaust gas to circulate, is formed in the container 27 so as to surround the outer periphery of the impurity remover 3. The in-container exhaust gas path 20c is configured to be connected to the upstream side exhaust gas path 20a and the downstream side exhaust gas path 20b by the exhaust gas path connection portion 31, respectively.
 図16に示す例では、排ガス経路接続部31のうち、収納器側排ガス経路接続部31aは、筐体7と接する側の面となる収納器27の底面に設けられている。一方、筐体側排ガス経路接続部31bは、収納器27を収容できるように筐体7の上面に形成された凹部の底に筐体側排ガス経路接続部31bが設けられている。より具体的には、筐体側排ガス経路接続部31bは、凹部の底において、筐体7に収納器27を取り付けた際に、収納器側排ガス経路接続部31aに対応する位置であり、かつ第1断熱部22内に設けられている。 In the example shown in FIG. 16, among the exhaust gas path connection portions 31, the storage device side exhaust gas path connection portion 31 a is provided on the bottom surface of the storage device 27 serving as a surface in contact with the housing 7. On the other hand, the casing-side exhaust gas path connection portion 31 b is provided with a casing-side exhaust gas path connection portion 31 b at the bottom of a recess formed on the upper surface of the casing 7 so that the container 27 can be accommodated. More specifically, the housing-side exhaust gas path connection portion 31b is a position corresponding to the housing-side exhaust gas path connection portion 31a when the storage device 27 is attached to the housing 7 at the bottom of the recess. 1 is provided in the heat insulating portion 22.
 さらにまた、原料ガス経路1と不純物除去器3とが連通するよう筐体7と収納器27とを接続する第1接続部30、ならびに脱流後原料ガス経路14と不純物除去器3とが連通するよう筐体7と収納器27とを接続する第2接続部32を備えている点でも異なる。なお、第1接続部30と第2接続部32とによって、本発明の原料ガス経路接続部を実現する。 Furthermore, the first connecting portion 30 that connects the housing 7 and the container 27 so that the source gas path 1 and the impurity remover 3 communicate with each other, and the source gas path 14 and the impurity remover 3 after deflowing communicate with each other. This is also different in that a second connection portion 32 for connecting the housing 7 and the container 27 is provided. The first connection part 30 and the second connection part 32 realize the source gas path connection part of the present invention.
 すなわち、実施形態3に係る燃料電池システムは、原料ガス経路接続部(第1接続部30および第2接続部32)によって収納器27を筐体7に接続している。さらには、2つの排ガス経路接続部31によっても収納器27を筐体7に接続している構成である。なお、上記した点を除けば、実施形態2と同様の構成となる。 That is, in the fuel cell system according to Embodiment 3, the container 27 is connected to the housing 7 by the raw material gas path connection portion (the first connection portion 30 and the second connection portion 32). Further, the container 27 is connected to the housing 7 by two exhaust gas path connection portions 31. Except for the points described above, the configuration is the same as that of the second embodiment.
 図16に示すように、実施形態3に係る燃料電池システムでは、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3を収容した収納器27が配置されている。そして、燃料電池6で生じる発電反応熱および燃焼部23の燃焼による燃焼熱を保有する排ガスは、筐体7の上面に向かって上昇する過程で、まず改質器4、蒸発器9を加熱し、さらに空気熱交換器5との熱交換により保有する熱の一部が奪われた状態で燃焼部23の上方にある不純物除去器3に向かう。すなわち、不純物除去器3に充填された脱硫剤に適した温度まで低下させられた状態で排ガスは不純物除去器3に向かう。 As shown in FIG. 16, in the fuel cell system according to Embodiment 3, a container 27 that contains the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. . Then, the exhaust gas holding the reaction heat generated in the fuel cell 6 and the combustion heat generated by the combustion of the combustion unit 23 rises toward the upper surface of the casing 7, and first heats the reformer 4 and the evaporator 9. Furthermore, the heat removal with the air heat exchanger 5 proceeds toward the impurity remover 3 above the combustion unit 23 in a state where a part of the heat held is taken away. That is, the exhaust gas goes to the impurity remover 3 in a state where the exhaust gas is lowered to a temperature suitable for the desulfurizing agent charged in the impurity remover 3.
 このように、実施形態3に係る燃料電池システムでは、改質器4、蒸発器9と空気熱交換器5とによって排ガスが保有する熱の一部を奪うように構成されている。このため、燃焼部23で生成された排ガスを適温まで冷却させ、収納器27内に供給する排ガスの保有する熱量を抑制することができる。 Thus, in the fuel cell system according to Embodiment 3, the reformer 4, the evaporator 9, and the air heat exchanger 5 are configured to take away a part of the heat held by the exhaust gas. For this reason, the exhaust gas produced | generated in the combustion part 23 can be cooled to appropriate temperature, and the calorie | heat amount which the exhaust gas supplied in the storage device 27 can be suppressed can be suppressed.
 したがって、収納器27に収容された不純物除去器3の温度調整をする温度調整部などを別途設ける必要がなく、容易に不純物除去器3を適温に維持することができる。また、空気熱交換器5が排ガスとの熱交換により回収した熱は、燃料電池に供給する空気の加熱に用いることができるため、燃料電池システムの効率的な稼動を実現できる。 Therefore, it is not necessary to separately provide a temperature adjusting unit for adjusting the temperature of the impurity remover 3 accommodated in the container 27, and the impurity remover 3 can be easily maintained at an appropriate temperature. Further, since the heat recovered by the air heat exchanger 5 through heat exchange with the exhaust gas can be used for heating the air supplied to the fuel cell, an efficient operation of the fuel cell system can be realized.
 また、不純物除去器3に充填された脱硫剤に適した温度まで低下させられた排ガスは、上流側排ガス経路20aを通じて収納器27の一方の端部側から、この収納器27内に形成されている収納器内排ガス経路20cに流入する。そして、収納器内排ガス経路20cを流通する排ガスと不純物除去器3とが熱交換をする。 Further, the exhaust gas lowered to a temperature suitable for the desulfurizing agent filled in the impurity removing device 3 is formed in the storage device 27 from one end side of the storage device 27 through the upstream exhaust gas path 20a. Into the exhaust gas path 20c. And the exhaust gas which distribute | circulates the waste gas path | route 20c in a storage device and the impurity removal device 3 exchange heat.
 このように、脱硫剤3に適した温度まで排ガスの温度を低下させることができる。このため、システムの故障等に起因して高温となった、燃焼部23からの輻射熱または排ガスが保有する熱などが第1断熱部22を熱移動し、不純物除去器3の温度が適温よりも高温になったとしても、収納器内排ガス流路20cを流通する排ガスによって冷却させることができる。よって、実施形態3に係る燃料電池システムでは、不純物除去器3を適温に維持することが容易となる。 Thus, the temperature of the exhaust gas can be lowered to a temperature suitable for the desulfurizing agent 3. For this reason, the radiant heat from the combustion unit 23 or the heat possessed by the exhaust gas, which has become a high temperature due to a system failure or the like, heats the first heat insulating unit 22, and the temperature of the impurity remover 3 is higher than the appropriate temperature. Even if the temperature becomes high, it can be cooled by the exhaust gas flowing through the in-container exhaust gas flow path 20c. Therefore, in the fuel cell system according to Embodiment 3, it is easy to maintain the impurity remover 3 at an appropriate temperature.
 収納器内排ガス経路20cを流通した排ガスは、収納器27の他方の端部側から、下流側排ガス経路20bに流出し、筐体7の外部に導かれる。なお、図16に示すように、実施形態3に係る燃料電池システムは、実施形態2に係る燃料電池システム同様に、排ガス経路20の途中に、不純物除去器3が配されている。そして、不純物除去器3よりも上流側に上流側排ガス経路20aが、不純物除去器3よりも下流側に下流側排ガス経路20bが配されている。 The exhaust gas that has flowed through the in-container exhaust gas path 20 c flows out from the other end side of the storage container 27 to the downstream exhaust gas path 20 b and is guided to the outside of the housing 7. As shown in FIG. 16, in the fuel cell system according to Embodiment 3, the impurity remover 3 is arranged in the middle of the exhaust gas path 20 as in the fuel cell system according to Embodiment 2. An upstream exhaust gas path 20 a is disposed upstream of the impurity remover 3, and a downstream exhaust gas path 20 b is disposed downstream of the impurity remover 3.
 不純物除去器3が収容されている収納器27は、その内側に第2断熱部(第2断熱材部)33が設けられており、この収納器27の内部から外部への放熱および外部からの伝熱を可能な限り遮断するように構成されている。実施形態3に係る燃料電池システムでは、図16に示すように、収納器27において収納器側排ガス経路接続部31aが形成されている底面を除く面の内側に第2断熱部33が設けられている。すなわち、収納器27は、少なくとも一部(図16では底面)が第1断熱部22と接して、筐体7に対して着脱可能に設けられている。さらに、少なくとも第1断熱部22と接していない収納器27の面の内側には第2断熱部33が設けられている。 The container 27 in which the impurity remover 3 is housed is provided with a second heat insulating part (second heat insulating material part) 33 on the inside thereof, and heat is radiated from the inside of the container 27 to the outside and from the outside. It is configured to block heat transfer as much as possible. In the fuel cell system according to Embodiment 3, as shown in FIG. 16, the second heat insulating portion 33 is provided inside the surface of the storage device 27 excluding the bottom surface where the storage device side exhaust gas path connection portion 31 a is formed. Yes. That is, at least a part (the bottom surface in FIG. 16) of the container 27 is provided so as to be detachable from the housing 7 in contact with the first heat insulating portion 22. Furthermore, a second heat insulating portion 33 is provided at least inside the surface of the container 27 that is not in contact with the first heat insulating portion 22.
 このため、不純物除去器3を排ガスとの熱交換で適温となるように加熱しつつ、不純物除去器3に排ガスが有する熱以外の熱が伝わることを遮ることで不純物除去器3の温度を適温に維持することができる。 For this reason, while heating the impurity remover 3 so that it may become a suitable temperature by heat exchange with exhaust gas, the heat of impurities other than the heat which the exhaust gas has transmitted to the impurity remover 3 is interrupted, and the temperature of the impurity remover 3 is made suitable temperature Can be maintained.
 なお、第2断熱部33の材質は、第1断熱部22の材質と同様であってもよいし、異なる材質であってもよい。例えば、第1断熱部22よりも第2断熱部33の方が高温に曝されないため、第2断熱部33は、第1断熱部22よりも高温に耐えうる材質とする必要がない。 In addition, the material of the 2nd heat insulation part 33 may be the same as the material of the 1st heat insulation part 22, and a different material may be sufficient as it. For example, since the second heat insulating portion 33 is not exposed to a higher temperature than the first heat insulating portion 22, the second heat insulating portion 33 does not need to be made of a material that can withstand a higher temperature than the first heat insulating portion 22.
 また、筐体7と収納器27とは、上述したように第1接続部30、第2接続部32、ならびに2つの排ガス経路接続部31とによって接続されている。そしてこれら第1接続部30、第2接続部32、および排ガス経路接続部31は、流通する原料ガスまたは排ガスが漏れないように気密性が確保されている。 Further, the housing 7 and the container 27 are connected by the first connection part 30, the second connection part 32, and the two exhaust gas path connection parts 31 as described above. And these 1st connection parts 30, the 2nd connection part 32, and the waste gas path connection part 31 are airtight so that the flowing source gas or exhaust gas may not leak.
 また、図17に示すように、実施形態3に係る燃料電池システムでは、上述した第1接続部30、第2接続部32、および排ガス経路接続部31によって、筐体7に対して収納器27を着脱可能となるように構成されている。第1接続部30、第2接続部32、および排ガス経路接続部31は、例えば、実施形態1の原料ガス経路接続部(第1接続部30)および排ガス経路接続部31と同様に、スウェージロック(登録商標)に代表される締め付け部材であってもよい。このように、筐体7に対して収納器27を着脱可能とする構成にすることで、燃料電池システムを製造する際に、不純物除去器3を筐体7に容易に取り付けることができる。 Further, as shown in FIG. 17, in the fuel cell system according to Embodiment 3, the container 27 is stored in the housing 7 by the first connection part 30, the second connection part 32, and the exhaust gas path connection part 31 described above. Is configured to be removable. The first connection part 30, the second connection part 32, and the exhaust gas path connection part 31 are, for example, the same as the raw material gas path connection part (first connection part 30) and the exhaust gas path connection part 31 of the first embodiment. It may be a fastening member represented by a registered trademark. Thus, by making the container 27 detachable from the casing 7, the impurity remover 3 can be easily attached to the casing 7 when the fuel cell system is manufactured.
 更に、長時間の使用後、不純物除去器3に充填した触媒が劣化し、不純物除去器3を交換する必要が生じた場合であっても、筐体7から収納器27を取り外し、収納器27内から不純物除去器3を容易に取り出すことができる。したがって、メンテナンス性に優れた燃料電池システムを構成することができる。 Further, even when the catalyst filled in the impurity remover 3 deteriorates after long use, and the impurity remover 3 needs to be replaced, the container 27 is removed from the housing 7 and the container 27 is removed. The impurity remover 3 can be easily taken out from the inside. Therefore, a fuel cell system excellent in maintainability can be configured.
 また、前述のように、不純物除去器3は、Ni-Mo系又はCo-Mo系触媒と酸化亜鉛とを組み合わせた脱硫剤を充填する場合は350~400℃の温度範囲、または脱硫剤が銅および亜鉛を含む場合は、10~400℃程度、好ましくは150~300℃程度の温度範囲になるように構成されている。 Further, as described above, the impurity remover 3 has a temperature range of 350 to 400 ° C. when the desulfurizing agent is a combination of a Ni—Mo based or Co—Mo based catalyst and zinc oxide, or the desulfurizing agent is copper. In the case of containing zinc and zinc, the temperature range is about 10 to 400 ° C., preferably about 150 to 300 ° C.
 ところで、実施形態3に係る燃料電池システムでは、第1接続部30(収納器側第1接続部30a、筐体側第1接続部30b)、ならびに第2接続部32(収納器側第2接続部32a、筐体側第2接続具32b)は、第1断熱部22内または第2断熱部33内に収容されるように構成されている。さらに、排ガス経路接続部31も第1断熱部22内に収容されている。このようにこれらの接続部は第1断熱部22または第2断熱部33内に収容されているため、筐体7内部の高温な熱に直接、曝されることがなく、不純物除去器3と同じ温度範囲に保たれる。 By the way, in the fuel cell system according to Embodiment 3, the first connection part 30 (the container side first connection part 30a, the housing side first connection part 30b) and the second connection part 32 (the container side second connection part). 32 a and the housing side second connection tool 32 b) are configured to be accommodated in the first heat insulating part 22 or the second heat insulating part 33. Further, the exhaust gas path connecting portion 31 is also accommodated in the first heat insulating portion 22. Thus, since these connection parts are accommodated in the 1st heat insulation part 22 or the 2nd heat insulation part 33, they are not directly exposed to the high temperature heat inside the housing | casing 7, but the impurity remover 3 and Keep in the same temperature range.
 したがって、燃焼部23からの輻射熱や排ガスの有する熱により、第1接続部30、第2接続部、ならびに排ガス経路接続部31が高温な熱(例えば400℃以上の熱)に長時間さらされ、熱劣化するといった不具合が発生することを抑制することができる。 Therefore, the first connection part 30, the second connection part, and the exhaust gas path connection part 31 are exposed to high-temperature heat (for example, heat of 400 ° C. or more) for a long time due to radiant heat from the combustion part 23 or heat of the exhaust gas. It is possible to suppress the occurrence of problems such as thermal degradation.
 また、実施形態3に係る燃料電池システムでは、図16および図17に示すように、収納器内排ガス経路20cは、収納器27において、不純物除去器3の外周を取り囲むように形成されていた。しかしながら、収納器内排ガス経路20cをこのように形成する構成に限定されるものではない。 Further, in the fuel cell system according to Embodiment 3, as shown in FIGS. 16 and 17, the in-container exhaust gas path 20 c is formed in the container 27 so as to surround the outer periphery of the impurity remover 3. However, it is not limited to the configuration in which the in-container exhaust gas path 20c is formed in this way.
 例えば、不純物除去器3の厚みが薄い場合、収納器内排ガス経路20cは、図18に示すような配置としてもよい。図18は本発明の実施形態3に係る燃料電池システムの構成の一例を示した模式図である。この図18に示すように、不純物除去器3の一方の側面が第2断熱部33と接しており、収納器内排ガス経路20cは不純物除去器3の他方の側面側にのみ形成されている。すなわち、不純物除去器3の一方の側面側にのみ形成された収納器内排ガス経路20cを流通する排ガスとの熱交換により適温に維持されるだけ十分に不純物除去器3が薄い場合は、不純物除去器3の外周を取り囲むように収納器内排ガス経路20cを形成する必要がない。このように収納器内排ガス経路20cが不純物除去器3の一方の側面側にのみ形成される構成の場合、不純物除去器3を収容する収納器3の厚みをより薄くすることができ小型化を図ることができる。 For example, when the thickness of the impurity remover 3 is thin, the in-container exhaust gas path 20c may be arranged as shown in FIG. FIG. 18 is a schematic diagram showing an example of the configuration of the fuel cell system according to Embodiment 3 of the present invention. As shown in FIG. 18, one side surface of the impurity remover 3 is in contact with the second heat insulating portion 33, and the in-container exhaust gas path 20 c is formed only on the other side surface side of the impurity remover 3. That is, when the impurity remover 3 is thin enough to be maintained at an appropriate temperature by heat exchange with the exhaust gas flowing through the in-container exhaust gas path 20c formed only on one side surface of the impurity remover 3, the impurity removal is performed. It is not necessary to form the in-container exhaust gas path 20c so as to surround the outer periphery of the container 3. Thus, when the exhaust gas path 20c in the container is formed only on one side surface side of the impurity remover 3, the thickness of the container 3 that accommodates the impurity remover 3 can be further reduced and the size can be reduced. Can be planned.
 上記した実施形態3に係る燃料電池システムでは、不純物除去器3が収納器内排ガス経路20cを流通する排ガスとの熱交換により適温に維持される構成であった。しかしながら、例えば、筐体7内の排ガスが保有する熱および燃焼部23の輻射熱が、第1断熱部22を熱移動して不純物除去器3の温度が適温となるように加熱させる構成としてもよい。このような構成を、実施形態3の変形例として図19、図20を参照して具体的に説明する。 In the fuel cell system according to Embodiment 3 described above, the impurity remover 3 is configured to be maintained at an appropriate temperature by heat exchange with the exhaust gas flowing through the in-container exhaust gas path 20c. However, for example, the heat possessed by the exhaust gas in the housing 7 and the radiant heat of the combustion unit 23 may be configured to heat the first heat insulating unit 22 so that the temperature of the impurity remover 3 becomes an appropriate temperature. . Such a configuration will be specifically described with reference to FIGS. 19 and 20 as a modification of the third embodiment.
 (実施形態3の変形例)
 以下、図19、図20を参照して実施形態3に係る燃料電池システムの変形例について説明する。図19、図20は、実施形態3の変形例に係る燃料電池システムの構成の一例を示した模式図である。図19では、実施形態3の変形例に係る燃料電池システムを側部から見たときの構成を模式的に示している。図20では、図19に示す燃料電池システムにおいて、筐体7から収納器27を分離させた際の構成の一例を示す。
(Modification of Embodiment 3)
Hereinafter, a modification of the fuel cell system according to Embodiment 3 will be described with reference to FIGS. 19 and 20. 19 and 20 are schematic diagrams illustrating an example of the configuration of a fuel cell system according to a modification of the third embodiment. In FIG. 19, the structure when the fuel cell system which concerns on the modification of Embodiment 3 is seen from the side part is shown typically. FIG. 20 shows an example of the configuration when the container 27 is separated from the housing 7 in the fuel cell system shown in FIG.
 実施形態3の変形例に係る燃料電池システムは、上記した実施形態3の燃料電池システムと比較して、収納器27において収納器内排ガス経路20cが形成されていない点で異なる。また、上流側排ガス経路20a、下流側排ガス経路20bそれぞれが排ガス経路接続部31によって収納器内排ガス経路20cに接続された構成ではない点でも異なる。すなわち、実施形態3の変形例に係る燃料電池システムでは、排ガス経路20は筐体7の内部から第1断熱部22を貫通し、筐体7の外部に延設されている。 The fuel cell system according to the modified example of the third embodiment is different from the fuel cell system of the third embodiment described above in that the container exhaust gas path 20c is not formed in the container 27. Another difference is that the upstream exhaust gas path 20a and the downstream exhaust gas path 20b are not configured to be connected to the in-container exhaust gas path 20c by the exhaust gas path connection portion 31. That is, in the fuel cell system according to the modification of the third embodiment, the exhaust gas path 20 extends from the inside of the casing 7 through the first heat insulating portion 22 and extends to the outside of the casing 7.
 上記した点を除けば、実施形態3の変形例に係る燃料電池システムの構成は、実施形態3の燃料電池システムの構成と同様の構成となる。このため、実施形態2に係る燃料電池システムと同様な部材には同じ符号を付し、その説明は省略するものとする。 Except for the points described above, the configuration of the fuel cell system according to the modification of the third embodiment is the same as the configuration of the fuel cell system of the third embodiment. For this reason, the same code | symbol is attached | subjected to the member similar to the fuel cell system which concerns on Embodiment 2, and the description shall be abbreviate | omitted.
 図19に示すように、実施形態3の変形例に係る燃料電池システムでは、筐体7の上面側であって、燃焼部23と対向する位置に不純物除去器3を収容した収納器27が配置されている。そして、燃料電池6で生じる発電反応熱および燃焼部23の燃焼による燃焼熱を保有する排ガスは、筐体7の上面に向かって上昇する過程で、まず改質器4、蒸発器9を加熱し、さらに空気熱交換器5との熱交換により保有する熱の一部が奪われた状態で燃焼部23の上方に向かう。そして、温度低下させられた状態の排ガスが保有する熱および燃焼部23からの輻射熱、すなわち燃焼部23の燃焼による燃焼熱が第1断熱部22を熱移動し不純物除去器3を加熱する。 As shown in FIG. 19, in the fuel cell system according to the modification of the third embodiment, the container 27 that houses the impurity remover 3 is disposed on the upper surface side of the housing 7 and at a position facing the combustion unit 23. Has been. Then, the exhaust gas holding the reaction heat generated in the fuel cell 6 and the combustion heat generated by the combustion of the combustion unit 23 rises toward the upper surface of the casing 7, and first heats the reformer 4 and the evaporator 9. Furthermore, the heat which is held by the heat exchange with the air heat exchanger 5 is deprived to the upper side of the combustion unit 23. And the heat which the waste gas of the state by which the temperature was lowered, and the radiant heat from the combustion part 23, ie, the combustion heat by combustion of the combustion part 23, heat-transfers the 1st heat insulation part 22, and heats the impurity removal device 3.
 このように、実施形態3の変形例に係る燃料電池システムでは、改質器4と空気熱交換器5とによって排ガスが保有する熱などの一部を奪うように構成されている。このため、燃焼部23で生成された排ガスを所望の温度まで冷却させ、第1断熱部22を通じて収納器27内に伝わる排ガスの保有する熱量を抑制することができる。 Thus, in the fuel cell system according to the modification of the third embodiment, the reformer 4 and the air heat exchanger 5 are configured to take away a part of the heat retained by the exhaust gas. For this reason, the exhaust gas produced | generated in the combustion part 23 can be cooled to desired temperature, and the calorie | heat amount which the exhaust gas transmitted in the container 27 through the 1st heat insulation part 22 can be suppressed can be suppressed.
 したがって、収納器27に収容された不純物除去器3の温度調整をする温度調整部などを別途設ける必要がなく、不純物除去器3を適温に維持することができる。ただし、実施形態3に係る燃料電池システムのように、収納器27内に排ガスを導き、この排ガスと不純物除去器3との熱交換を行う構成の方が、不純物除去器3が高温になった場合、排ガスにより適温まで温度を低下させることができる点で有利である。 Therefore, it is not necessary to separately provide a temperature adjusting unit for adjusting the temperature of the impurity remover 3 accommodated in the container 27, and the impurity remover 3 can be maintained at an appropriate temperature. However, as in the fuel cell system according to the third embodiment, the configuration in which the exhaust gas is guided into the container 27 and heat exchange is performed between the exhaust gas and the impurity remover 3 causes the impurity remover 3 to have a higher temperature. In this case, it is advantageous in that the temperature can be lowered to an appropriate temperature by exhaust gas.
 不純物除去器3が収容されている収納器27は、実施形態3で示した構成と同様にその内側に第2断熱部33が設けられており、この収納器27の内部から外部への放熱を可能な限り遮断するように構成されている。 The container 27 in which the impurity remover 3 is housed is provided with a second heat insulating portion 33 on the inner side in the same manner as in the configuration shown in the third embodiment, and heat is radiated from the inside of the container 27 to the outside. It is configured to block as much as possible.
 また、筐体7と収納器27とは、第1接続部30および第2接続部32によって接続されている。そしてこれら第1接続部30および第2接続部32は、流通する原料ガスが漏れないように気密性が確保されている。 Further, the housing 7 and the container 27 are connected by the first connection part 30 and the second connection part 32. And these 1st connection parts 30 and the 2nd connection part 32 are ensuring airtightness so that the flowing raw material gas may not leak.
 また、図20に示すように、実施形態3の変形例に係る燃料電池システムでは、第1接続部30および第2接続部32によって、筐体7に対して収納器27を着脱可能となるように構成されている。このように、筐体7に対して収納器27を着脱可能とする構成にしておけば、燃料電池システムを製造する際に、不純物除去器3を収容した収納器27を筐体7に容易に取り付けることができる。 Further, as shown in FIG. 20, in the fuel cell system according to the modification of the third embodiment, the container 27 can be attached to and detached from the housing 7 by the first connection portion 30 and the second connection portion 32. It is configured. In this way, if the container 27 is configured to be detachable from the housing 7, the container 27 containing the impurity remover 3 can be easily attached to the housing 7 when the fuel cell system is manufactured. Can be attached.
 更に、長時間の使用後、不純物除去器3に充填した触媒が劣化し、不純物除去器3を交換する必要が生じた場合であっても、筐体7から収納器27を取り外し、収納器27内から不純物除去器3を容易に取り出すことができる。したがって、メンテナンス性に優れた燃料電池システムを構成することができる。 Further, even when the catalyst filled in the impurity remover 3 deteriorates after long use, and the impurity remover 3 needs to be replaced, the container 27 is removed from the housing 7 and the container 27 is removed. The impurity remover 3 can be easily taken out from the inside. Therefore, a fuel cell system excellent in maintainability can be configured.
 また、実施形態3の変形例に係る燃料電池システムでは、第1接続部30(収納器側第1接続部30a、筐体側第1接続部30b)、ならびに第2接続部32(収納器側第2接続部32a、筐体側第2接続具32b)は、第1断熱部22内または第2断熱部33内に収容されるように構成されている。このようにこれらの接続部は第1断熱部22または第2断熱部33内に収容されているため、筐体7内部の高温に直接曝されることがなく、不純物除去器3と略同じ温度範囲に保たれる。 Further, in the fuel cell system according to the modification of the third embodiment, the first connection portion 30 (the container side first connection portion 30a, the housing side first connection portion 30b) and the second connection portion 32 (the container side first connection). 2 connection part 32a and the housing | casing side 2nd connection tool 32b) are comprised so that it may be accommodated in the 1st heat insulation part 22 or the 2nd heat insulation part 33. FIG. Thus, since these connection parts are accommodated in the 1st heat insulation part 22 or the 2nd heat insulation part 33, they are not directly exposed to the high temperature inside the housing | casing 7, but are substantially the same temperature as the impurity removal device 3. Kept in range.
 したがって、燃焼部23からの輻射熱および排ガスの有する熱により、第1接続部30および第2接続部32が高温(例えば400℃以上)に長時間さらされ、熱劣化するといった不具合が発生することを抑制することができる。 Accordingly, the first connection part 30 and the second connection part 32 are exposed to a high temperature (for example, 400 ° C. or more) for a long time due to the radiant heat from the combustion part 23 and the heat of the exhaust gas. Can be suppressed.
 なお、筐体7内において改質器4を加熱することで、燃焼部23からの輻射熱および排ガスなどが所望される温度まで低下する場合、図21に示すように空気熱交換器5を必ずしも備える必要はない。図21は、実施形態3の変形例に係る燃料電池システムの構成の一例を示した模式図である。ただし、空気熱交換器5を備える構成の方が、排ガスとの熱交換により回収した熱量を、燃料電池に供給する空気の加熱に用いることができる点で有利である。 In addition, when the reformer 4 is heated in the casing 7 and the radiant heat, exhaust gas, and the like from the combustion unit 23 are lowered to a desired temperature, the air heat exchanger 5 is necessarily provided as shown in FIG. There is no need. FIG. 21 is a schematic diagram illustrating an example of a configuration of a fuel cell system according to a modification of the third embodiment. However, the configuration including the air heat exchanger 5 is advantageous in that the amount of heat recovered by heat exchange with the exhaust gas can be used for heating the air supplied to the fuel cell.
 また、上記した実施形態3および実施形態3の変形例に係る燃料電池システムでは、収納器27が筐体7の第1断熱部22内に収まるように構成されていた。しかしながらこのような構成に限定されるものではない。 Further, in the fuel cell system according to the third embodiment and the modified example of the third embodiment, the container 27 is configured to be accommodated in the first heat insulating portion 22 of the housing 7. However, it is not limited to such a configuration.
 例えば、図22に示すように、収納器27を筐体7の上面から上方に突出した状態で取り付けられる構成であってもよい。 For example, as shown in FIG. 22, the container 27 may be attached in a state of protruding upward from the upper surface of the housing 7.
 図22は、実施形態3の変形例に係る燃料電池システムにおいて、筐体7から収納器27を分離させた構成の一例を示す図である。なお、図22では、説明の便宜上、実施形態3の変形例に係る燃料電池システムの構成を例に挙げて説明しているが、実施形態3に係る燃料電池システムでも同様に構成することは可能である。 FIG. 22 is a diagram illustrating an example of a configuration in which the container 27 is separated from the housing 7 in the fuel cell system according to the modification of the third embodiment. In FIG. 22, for convenience of explanation, the configuration of the fuel cell system according to the modification of the third embodiment is described as an example. However, the fuel cell system according to the third embodiment can be similarly configured. It is.
 図22に示すように、収納器27は、長手方向における両端部が下方に突出した、断面形状が略U字形状となっている。この下方に突出した部分には第2断熱部33が設けられており、この突出した部分の端部でかつ第2断熱部33の中に収納器側第1接続部30aおよび収納器側第2接続部32aがそれぞれ設けられている。 As shown in FIG. 22, the container 27 has a substantially U-shaped cross section in which both end portions in the longitudinal direction protrude downward. A second heat insulating portion 33 is provided in the portion protruding downward, and the container-side first connection portion 30a and the container-side second in the second heat insulating portion 33 at the end of the protruding portion. Connection portions 32a are provided.
 一方、筐体7では、収納器27が取り付けられる位置において、突出した収納器27の端部を収容できるように凹部が形成されている。そして、この凹部の底でかつ第1断熱部22内において筐体側第1接続部30bおよび筐体側第2接続部32bがそれぞれ備えられている。また、筐体7に形成された凹部の縁であり、かつ筐体7と収納器27とが接する位置に密封部材であるOリング34が備えられた構成であってもよい。 On the other hand, the housing 7 is formed with a recess so as to accommodate the protruding end of the container 27 at a position where the container 27 is attached. And the housing | casing side 1st connection part 30b and the housing | casing side 2nd connection part 32b are each provided in the 1st heat insulation part 22 at the bottom of this recessed part. Moreover, the structure provided with the O-ring 34 which is a sealing member in the position which is the edge of the recessed part formed in the housing | casing 7, and the housing | casing 7 and the container 27 contact | abut may be sufficient.
 このように、筐体7から外部に向かって突出するように収納器27が取り付けられるような構成としてもよい。 As described above, the container 27 may be attached so as to protrude outward from the housing 7.
 (実施形態1、3の燃料電池システムの製造方法)
 次に、燃料電池システムの製造方法について図23を参照して説明する。特に、不純物除去器3が収納器27内に格納されており、収納器27が燃料電池システムにおいて容易に着脱可能となった実施形態1、3に係る燃料電池システムの製造方法について説明する。図23は、実施形態1、3に係る燃料電池システムの製造方法の一例を示すフローチャートである。
(Method for Manufacturing Fuel Cell System of Embodiments 1 and 3)
Next, a manufacturing method of the fuel cell system will be described with reference to FIG. In particular, a method for manufacturing the fuel cell system according to Embodiments 1 and 3 in which the impurity remover 3 is stored in the storage device 27 and the storage device 27 can be easily attached to and detached from the fuel cell system will be described. FIG. 23 is a flowchart illustrating an example of a manufacturing method of the fuel cell system according to Embodiments 1 and 3.
 (燃料電池システムの製造方法)
 次に、上述した本発明の実施形態1または実施形態3に係る燃料電池システムの製造方法について図23を参照して説明する。図23は、本発明の実施形態1または実施形態3に係る燃料電池システムの製造方法の一例を示すフローチャートである。
(Manufacturing method of fuel cell system)
Next, a method for manufacturing the fuel cell system according to Embodiment 1 or Embodiment 3 of the present invention described above will be described with reference to FIG. FIG. 23 is a flowchart showing an example of a method for manufacturing a fuel cell system according to Embodiment 1 or Embodiment 3 of the present invention.
 一般的に、触媒を充填した装置を用いる際には、まず触媒を活性化させるために加熱及び還元処理がなされる(例えば、特許文献7)。そこで、本発明の製造方法では、筐体7に収納器27を取り付ける前に加熱及び還元処理を行う。 Generally, when using an apparatus filled with a catalyst, first, heating and reduction treatment is performed in order to activate the catalyst (for example, Patent Document 7). Therefore, in the manufacturing method of the present invention, heating and reduction treatment are performed before the container 27 is attached to the housing 7.
 具体的には、まず、第一の工程(S1)として、不純物除去器3に充填した触媒を活性化させる温度(150~300℃)になるように加熱処理を行う。この第一の工程(S1)を、筐体7から取り外された状態で、不純物除去器3のみに対して行うこともできるが、不純物除去器3を収容した収納器27に対して行うことも可能である。 Specifically, first, as a first step (S1), heat treatment is performed so as to reach a temperature (150 to 300 ° C.) for activating the catalyst charged in the impurity remover 3. This first step (S1) can be performed only on the impurity remover 3 in a state where it is removed from the housing 7, but it can also be performed on the container 27 containing the impurity remover 3. Is possible.
 次に、第二の工程(S2)では、不活性ガス(例えば、窒素)に0.1~5%の水素を含んだ還元ガスを、不純物除去器3または、不純物除去器3を収納した収容器27に流通させて還元処理を行う。この還元ガスにより、酸化されている触媒を還元し、触媒の活性化を行う。そして、第三の工程(S3)では第二の筐体7bに不純物除去器3を収納している収納器27を取り付ける。 Next, in the second step (S2), a reducing gas containing 0.1 to 5% hydrogen in an inert gas (for example, nitrogen) is stored in the impurity remover 3 or the impurity remover 3 accommodated therein. The reduction process is performed by distributing the flow through the container 27. With this reducing gas, the oxidized catalyst is reduced and the catalyst is activated. In the third step (S3), the container 27 that houses the impurity remover 3 is attached to the second casing 7b.
 以上の製造方法によると、不純物除去器3に充填した触媒を活性化させるのに必要な上述した第一の工程(S1)及び第二の工程(S2)を、第二の筐体7bに収納器27を取り付ける第三の工程を行う前にすることができる。したがって、不純物除去器3または収納器27以外の構成部品まで加熱及び還元工程に加える必要がないので、余計なエネルギーやガスの消費を抑えることができる。したがって、燃料電池システムの効率的な製造方法の実現が可能となる。 According to the above manufacturing method, the above-described first step (S1) and second step (S2) necessary for activating the catalyst charged in the impurity remover 3 are accommodated in the second casing 7b. This can be done before the third step of attaching the vessel 27. Therefore, it is not necessary to add components other than the impurity remover 3 or the storage device 27 to the heating and reduction process, so that unnecessary energy and gas consumption can be suppressed. Therefore, an efficient manufacturing method of the fuel cell system can be realized.
 上記発明から、当業者にとって、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above invention, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明の燃料電池システムは、水添脱硫を実施する不純物除去器3を、適切な温度範囲となるように管理することができる構成である。このため、原料ガスから水添脱硫により硫黄成分を取り除く脱硫器を備えた燃料電池システムにおいて幅広く適用できる。 The fuel cell system of the present invention has a configuration capable of managing the impurity remover 3 that performs hydrodesulfurization so as to be in an appropriate temperature range. Therefore, it can be widely applied to fuel cell systems equipped with a desulfurizer that removes sulfur components from raw material gas by hydrodesulfurization.
1    原料ガス経路
2    昇圧部
3    不純物除去器
4    改質器
5    空気熱交換器
6    燃料電池
7    筐体
7a   第一の筐体
7b   第二の筐体
9    蒸発器
10   空気供給経路
11   改質水経路
12   改質空気経路
14   脱硫後原料ガス経路
16   燃料ガス供給経路
17   空気供給経路
18   減圧部
19   リサイクル経路
20   排ガス経路
20a  上流側排ガス経路
20b  下流側排ガス経路
20c  収納器内排ガス経路
21   排ガス熱交換器
22   第1断熱部
23   燃焼部
24   凝縮器
25   ファン
27   収納器
30   第1接続部
30a  収納器側第1接続部
30b  筐体側第1接続部
31   排ガス経路接続部
31a  収納器側排ガス経路接続部
31b  筐体側排ガス経路接続部
32   第2接続部
32a  収納器側第2接続部
32b  筐体側第1接続部
33   第2断熱部
 
DESCRIPTION OF SYMBOLS 1 Source gas path | route 2 Booster part 3 Impurity remover 4 Reformer 5 Air heat exchanger 6 Fuel cell 7 Case 7a First case 7b Second case 9 Evaporator 10 Air supply path 11 Reformed water path 12 reformed air path 14 raw material gas path 16 after desulfurization fuel gas supply path 17 air supply path 18 decompression part 19 recycle path 20 exhaust gas path 20a upstream exhaust gas path 20b downstream exhaust gas path 20c exhaust gas path 21 in the container exhaust gas heat exchanger 22 1st heat insulation part 23 Combustion part 24 Condenser 25 Fan 27 Container 30 1st connection part 30a Container side 1st connection part 30b Case side 1st connection part 31 Exhaust gas path connection part 31a Container side exhaust gas path connection part 31b Case side exhaust gas path connection part 32 Second connection part 32a Container side second connection part 32b Case side first connection 33 and the second insulating section

Claims (11)

  1.  供給された原料ガスに含まれる不純物を除去する不純物除去器と、
     供給された水を蒸発させて水蒸気を生成する蒸発器と、
     前記蒸発器により生成された水蒸気と、前記不純物除去器により不純物が除去された前記原料ガスとから改質反応により燃料となる改質ガスを生成する改質器と、
     供給された空気と前記燃料とを利用して発電反応により発電する燃料電池と、
     前記燃料電池で未利用の燃料を燃焼する燃焼部と、
     前記蒸発器、前記改質器、前記燃料電池、および前記燃焼部を収容する筐体と、
     前記燃焼部における燃焼により生じた排ガスを、前記筐体内から当該燃料電池システム外へと排出させるため、該排ガスが流通する排ガス経路と、
     前記排ガス経路の途中に該排ガス経路の一部を構成するように設けられ、前記不純物除去器を配置するための収容空間と、を備える燃料電池システム。
    An impurity remover for removing impurities contained in the supplied source gas;
    An evaporator for evaporating supplied water to generate water vapor;
    A reformer that generates a reformed gas as a fuel by a reforming reaction from the water vapor generated by the evaporator and the raw material gas from which impurities are removed by the impurity remover;
    A fuel cell that generates electricity by a power generation reaction using the supplied air and the fuel;
    A combustion section for burning unused fuel in the fuel cell;
    A housing for housing the evaporator, the reformer, the fuel cell, and the combustion unit;
    In order to discharge the exhaust gas generated by combustion in the combustion section from the inside of the housing to the outside of the fuel cell system, an exhaust gas path through which the exhaust gas flows,
    A fuel cell system comprising: a housing space provided in the middle of the exhaust gas path so as to constitute a part of the exhaust gas path and for arranging the impurity remover.
  2.  前記不純物除去器は、前記原料ガスから不純物として硫黄成分を除去する脱硫器である請求項1に記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the impurity remover is a desulfurizer that removes a sulfur component as an impurity from the raw material gas.
  3.  前記脱硫器に前記原料ガスを供給するために、該原料ガスを流通させる原料ガス経路と、
     水素含有ガスを前記原料ガス経路へと導くためのリサイクル経路とを備え、
     前記脱硫器が、前記原料ガス経路を流通する水素含有ガスを利用して、水添脱硫により前記原料ガスから不純物として硫黄成分を除去する請求項2に記載の燃料電池システム。
    In order to supply the raw material gas to the desulfurizer, a raw material gas path through which the raw material gas is circulated,
    A recycling path for guiding the hydrogen-containing gas to the source gas path,
    The fuel cell system according to claim 2, wherein the desulfurizer uses a hydrogen-containing gas flowing through the raw material gas path to remove sulfur components as impurities from the raw material gas by hydrodesulfurization.
  4.  前記水素含有ガスとして、前記改質器により生成した改質ガスの一部が前記リサイクル経路を流通する請求項3に記載の燃料電池システム。 4. The fuel cell system according to claim 3, wherein a part of the reformed gas generated by the reformer circulates through the recycling path as the hydrogen-containing gas.
  5.  前記不純物除去器が平板型形状である請求項1から4のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 4, wherein the impurity remover has a flat plate shape.
  6.  前記燃料電池に供給する空気と前記排ガスとの熱交換により該排ガスを冷却する空気熱交換器を前記筐体内に備える請求項1から5のいずれか1項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, wherein an air heat exchanger that cools the exhaust gas by heat exchange between the air supplied to the fuel cell and the exhaust gas is provided in the housing.
  7.  前記不純物除去器を配置するための前記収容空間を形成する収納器を備え、
     前記収納器は前記筐体に接続されている請求項1から6のいずれか1項に記載の燃料電池システム。
    A storage device for forming the storage space for disposing the impurity remover;
    The fuel cell system according to claim 1, wherein the container is connected to the housing.
  8.  前記筐体に対して前記収納器が着脱可能となるように構成されている請求項7に記載の燃料電池システム。 The fuel cell system according to claim 7, wherein the container is configured to be detachable from the housing.
  9.  前記筐体は、少なくとも前記蒸発器、前記改質器、前記燃料電池、および前記燃焼部を収容する第一の筐体と、
     前記第一の筐体の外周を囲む第二の筐体と、を備える請求項1から8のいずれか1項に記載の燃料電池システム。
    The casing includes at least a first casing that houses the evaporator, the reformer, the fuel cell, and the combustion unit;
    A fuel cell system according to any one of claims 1 to 8, further comprising a second casing surrounding an outer periphery of the first casing.
  10.  前記第一の筐体と第二の筐体との間の少なくとも一部に断熱材が収容されている請求項9に記載の燃料電池システム。 10. The fuel cell system according to claim 9, wherein a heat insulating material is accommodated in at least a part between the first casing and the second casing.
  11.  供給された空気と原料ガスから生成した燃料とを利用して発電反応により発電する燃料電池と、
     前記燃料電池で未利用の燃料を燃焼する燃焼部と、
     前記燃焼部における燃焼により生じた排ガスが保有する熱を利用して、原料ガスに含まれる不純物を除去する不純物除去器と、
     供給された水を蒸発させ水蒸気を生成する蒸発器と、
     前記蒸発器により生成された水蒸気と、前記不純物除去器によって不純物が除去された原料ガスとから改質反応により燃料となる改質ガスを生成する改質器と、
     前記燃料電池、前記燃焼部、前記蒸発器、および前記改質器を収容する筐体と、
     前記燃焼部における燃焼により生じた排ガスを、前記筐体内から当該燃料電池システム外へと排出させるため、該排ガスが流通する排ガス経路と、
     前記筐体に対して着脱可能であるとともに、前記排ガス経路の途中に該排ガス経路の一部を構成するように設けられ、前記不純物除去器を配置するための収容空間を形成する収容器と、を備えた燃料電池システムの製造方法であって、
     前記筐体から取り外された状態で、前記不純物除去器または該不純物除去器を収容する前記収納器を加熱する第一の工程と、
     前記不純物除去器に充填された触媒を還元する第二の工程と、
     前記収納器を前記筐体に取り付ける第三の工程と、を含む燃料電池システムの製造方法。
    A fuel cell that generates power by a power generation reaction using supplied air and fuel generated from the raw material gas;
    A combustion section for burning unused fuel in the fuel cell;
    An impurity remover that removes impurities contained in the raw material gas using heat held by exhaust gas generated by combustion in the combustion section;
    An evaporator that evaporates the supplied water to generate water vapor;
    A reformer that generates a reformed gas as a fuel by a reforming reaction from the water vapor generated by the evaporator and the raw material gas from which impurities are removed by the impurity remover;
    A housing for housing the fuel cell, the combustion section, the evaporator, and the reformer;
    In order to discharge the exhaust gas generated by combustion in the combustion section from the inside of the housing to the outside of the fuel cell system, an exhaust gas path through which the exhaust gas flows,
    A container that is detachable with respect to the housing and is provided so as to constitute a part of the exhaust gas path in the middle of the exhaust gas path, and forms a storage space for arranging the impurity remover; A method of manufacturing a fuel cell system comprising:
    A first step of heating the impurity remover or the container containing the impurity remover in a state where the impurity remover is detached from the housing;
    A second step of reducing the catalyst charged in the impurity remover;
    And a third step of attaching the container to the housing.
PCT/JP2013/003426 2012-10-25 2013-05-30 Fuel cell system and method for manufacturing same WO2014064859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014543118A JP6195123B2 (en) 2012-10-25 2013-05-30 Fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012235453 2012-10-25
JP2012-235453 2012-10-25
JP2013039886 2013-02-28
JP2013-039886 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014064859A1 true WO2014064859A1 (en) 2014-05-01

Family

ID=50544248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003426 WO2014064859A1 (en) 2012-10-25 2013-05-30 Fuel cell system and method for manufacturing same

Country Status (2)

Country Link
JP (3) JP6195123B2 (en)
WO (1) WO2014064859A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225829A (en) * 2014-05-30 2015-12-14 Toto株式会社 Fuel battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309982A (en) * 2005-04-26 2006-11-09 Idemitsu Kosan Co Ltd Solid oxide fuel cell system
JP2009226355A (en) * 2008-03-25 2009-10-08 Fuji Electric Holdings Co Ltd Reduction treatment device
JP2010272333A (en) * 2009-05-21 2010-12-02 Jx Nippon Oil & Energy Corp Fuel cell system
JP2011216308A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Solid oxide fuel battery system
JP2012155978A (en) * 2011-01-25 2012-08-16 Noritz Corp Fuel cell system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578576B2 (en) * 1996-12-25 2004-10-20 東京瓦斯株式会社 Phosphoric acid fuel cell device
JP2002124289A (en) * 2000-10-19 2002-04-26 Hitachi Metals Ltd Solid electrolyte fuel cell system
US7008711B2 (en) * 2003-01-27 2006-03-07 Gas Technology Institute Thermally integrated fuel cell power system
JP2005209579A (en) * 2004-01-26 2005-08-04 Kyocera Corp Fuel cell assembly
JP4911927B2 (en) * 2004-07-12 2012-04-04 大阪瓦斯株式会社 Solid oxide fuel cell system
JP2012109256A (en) * 2005-03-25 2012-06-07 Kyocera Corp Fuel cell assembly
JP2007165118A (en) * 2005-12-14 2007-06-28 Ebara Ballard Corp Fuel cell unit and preheating unit
JP5021237B2 (en) * 2006-05-18 2012-09-05 本田技研工業株式会社 Fuel cell system
JP2008234994A (en) * 2007-03-20 2008-10-02 Osaka Gas Co Ltd Fuel cell system
JP5248829B2 (en) * 2007-09-19 2013-07-31 日本電信電話株式会社 Fuel cell module
JP2009277612A (en) * 2008-05-19 2009-11-26 Ebara Ballard Corp Exhaust port cover and fuel cell unit
JP5191840B2 (en) * 2008-09-01 2013-05-08 東京瓦斯株式会社 Cylindrical steam reformer with integrated hydrodesulfurizer
JP5348482B2 (en) * 2009-03-30 2013-11-20 アイシン精機株式会社 Fuel cell system
JP5486989B2 (en) * 2010-03-31 2014-05-07 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2012020898A (en) * 2010-07-14 2012-02-02 Panasonic Corp Hydrogen generating apparatus and fuel cell system provided with the same
JP2012134060A (en) * 2010-12-22 2012-07-12 Aisin Seiki Co Ltd Fuel cell system
JP5302989B2 (en) * 2011-02-10 2013-10-02 アイシン精機株式会社 Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309982A (en) * 2005-04-26 2006-11-09 Idemitsu Kosan Co Ltd Solid oxide fuel cell system
JP2009226355A (en) * 2008-03-25 2009-10-08 Fuji Electric Holdings Co Ltd Reduction treatment device
JP2010272333A (en) * 2009-05-21 2010-12-02 Jx Nippon Oil & Energy Corp Fuel cell system
JP2011216308A (en) * 2010-03-31 2011-10-27 Osaka Gas Co Ltd Solid oxide fuel battery system
JP2012155978A (en) * 2011-01-25 2012-08-16 Noritz Corp Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225829A (en) * 2014-05-30 2015-12-14 Toto株式会社 Fuel battery module

Also Published As

Publication number Publication date
JP6195123B2 (en) 2017-09-13
JP6583752B2 (en) 2019-10-02
JP6369771B2 (en) 2018-08-08
JPWO2014064859A1 (en) 2016-09-05
JP2017228536A (en) 2017-12-28
JP2018113260A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6488416B2 (en) Fuel cell system
JP5870320B2 (en) Fuel cell system
EP2988354B1 (en) Fuel-cell system
JP6098795B2 (en) Solid oxide fuel cell system
JP6405211B2 (en) Fuel cell system
US10700374B2 (en) High-temperature operating fuel cell system
JP6583752B2 (en) Fuel cell system
JP5102510B2 (en) Fuel cell system
JP2016207578A (en) Fuel cell power generation device
JP2014107220A (en) Solid oxide type fuel cell system
US20080311446A1 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JP2014107186A (en) Solid oxide fuel cell system
US8236260B2 (en) Fuel processor for fuel cell
JP4319490B2 (en) Liquid hydrocarbon fuel reformer
JP6218591B2 (en) Fuel cell system
JP2013242964A (en) Fuel cell system
JP2017199658A (en) Fuel cell device
JP2015133201A (en) fuel cell system
JP2016162635A (en) Solid oxide fuel cell system
KR101270790B1 (en) Pre-processing assembly and fuel cell system comprising the same
JP2013216543A (en) Hydrogen generator
JP2014005163A (en) Hydrogen generator
JP2014107185A (en) Solid oxide fuel cell system
JP2015118844A (en) Fuel cell system
JP2014086337A (en) Solid oxide fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849587

Country of ref document: EP

Kind code of ref document: A1