JP2009226355A - Reduction treatment device - Google Patents

Reduction treatment device Download PDF

Info

Publication number
JP2009226355A
JP2009226355A JP2008077614A JP2008077614A JP2009226355A JP 2009226355 A JP2009226355 A JP 2009226355A JP 2008077614 A JP2008077614 A JP 2008077614A JP 2008077614 A JP2008077614 A JP 2008077614A JP 2009226355 A JP2009226355 A JP 2009226355A
Authority
JP
Japan
Prior art keywords
reduction
hydrogen
amount
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008077614A
Other languages
Japanese (ja)
Inventor
Isao Nakagawa
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008077614A priority Critical patent/JP2009226355A/en
Publication of JP2009226355A publication Critical patent/JP2009226355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reduction treatment device which can determine the end of reduction at a low cost in a short time. <P>SOLUTION: A water level gage 20 is set so that the amount of water produced after gas-liquid separation determined by the amount of a CO modification catalyst 15 packed in a catalyst reactor 14 can be detected by a liquid level in a cooler 17. When it is detected that the level of the produced water in the cooler 17 reaches a detection level by the water level gage 20, a cutoff valve 21 is opened by a control device 24 to discharge the produced water in the cooler 17 into a produced water storage tank 22, the amount of the produced water discharged in the produced water storage tank 22 is measured with a balance 23, and the end of reduction is determined from the results of the measurement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、予め還元処理が必要な触媒が充填された反応器の触媒還元装置に関する。   The present invention relates to a catalytic reduction device for a reactor filled with a catalyst that requires a reduction treatment in advance.

燃料電池システムは、一般に都市ガス、LPG(Liquefied Petroleum Gas)、灯油等の燃料を水蒸気改質して水素を取り出し、取り出した水素と空気中の酸素を化学反応させることにより発電を行うものであるが、この燃料の改質にあたっては、複数の触媒反応器が必要である。例えば、りん酸形燃料電池システムの改質装置は、燃料に含まれる硫黄分を除去するための脱硫器、脱硫後の燃料から水素を生成するための改質器、そして、燃料電池本体の被毒物質となる一酸化炭素を1%以下まで低減させるCO変成器により構成されている。   A fuel cell system generally generates electricity by steam-reforming a fuel such as city gas, LPG (Liquefied Petroleum Gas), kerosene, etc. to extract hydrogen, and chemically reacting the extracted hydrogen with oxygen in the air. However, a plurality of catalytic reactors are required for reforming the fuel. For example, a reformer of a phosphoric acid fuel cell system includes a desulfurizer for removing sulfur contained in fuel, a reformer for generating hydrogen from the desulfurized fuel, and a fuel cell body cover. It is composed of a CO converter that reduces carbon monoxide, which is a toxic substance, to 1% or less.

上述の改質装置として、脱硫器において、都市ガスに含まれているジメチルサルファイド、ターシャリーブチルメルカプタンなどの有機硫黄化合物を、水添脱硫法により除去する方法が知られている。また、近年は、銅亜鉛系触媒を用いた脱硫方式も開発されている。改質装置では、脱硫器で硫黄分を除去した後、水素を生成させる水蒸気改質反応により水素リッチな改質ガスを得ている。水素リッチな改質ガスは、後段の銅亜鉛系触媒を用いたCO変成器に導入されてCO濃度が1%以下に低減された後、燃料電池本体に供給される。これらの触媒反応器に使用されている触媒には、性能を発現させるために予め還元処理を行う必要がある。例えば、脱硫器、CO変成器に使用される銅亜鉛系触媒は、還元処理を行ってから使用するのが一般的な代表的な触媒である(例えば、特許文献1参照)。   As the above-described reformer, there is known a method of removing organic sulfur compounds such as dimethyl sulfide and tertiary butyl mercaptan contained in city gas by a hydrodesulfurization method in a desulfurizer. In recent years, a desulfurization method using a copper zinc-based catalyst has also been developed. In the reformer, after removing sulfur with a desulfurizer, a hydrogen-rich reformed gas is obtained by a steam reforming reaction that generates hydrogen. The hydrogen-rich reformed gas is introduced into a CO converter using a copper zinc-based catalyst in the subsequent stage and the CO concentration is reduced to 1% or less, and then supplied to the fuel cell body. The catalyst used in these catalytic reactors needs to be subjected to a reduction treatment in advance in order to exhibit performance. For example, a copper zinc-based catalyst used in a desulfurizer and a CO converter is a typical catalyst that is generally used after reduction treatment (see, for example, Patent Document 1).

銅亜鉛系触媒の還元操作は、CuO(酸化銅)をCu(金属銅)に変える反応であり、著しい発熱反応を伴う。
CuO+H→Cu+H0 −20.7(kcal/mol)…(1)
したがって、触媒の還元操作時には温度の暴走を回避するため、不活性ガスとしてキャリアーガスに窒素を用いて、還元性ガスを低濃度で混合し、触媒層内に設置された触媒層温度を計測しながら、異常な発熱が起こらないように還元温度を制御することが重要であった。還元操作を実施する際のGHSV(Gas Hourly Space Velocity、残留濃度の空間速度)は、200−1500(1/h)の範囲に設定し、圧力は常圧、キャリアーガスを200℃〜240℃程度に加熱する。銅亜鉛系触媒の還元操作では触媒1(m)当り水素を130−140(m)必要とし、生成する水の量は110(kg)程度に相当する。これは銅亜鉛触媒の酸化銅の割合により変化するものであるが、酸化銅の割合が40%程度の銅亜鉛触媒では、上述の水素消費量と生成水が得られる。
The reduction operation of the copper-zinc catalyst is a reaction for changing CuO (copper oxide) to Cu (metal copper), and involves a remarkable exothermic reaction.
CuO + H 2 → Cu + H 2 0 −20.7 (kcal / mol) (1)
Therefore, in order to avoid temperature runaway during the catalyst reduction operation, nitrogen is used as the carrier gas as the inert gas, the reducing gas is mixed at a low concentration, and the temperature of the catalyst layer installed in the catalyst layer is measured. However, it was important to control the reduction temperature so that no abnormal heat generation occurred. GHSV (Gas Hourly Space Velocity, space velocity of residual concentration) when carrying out the reduction operation is set in the range of 200-1500 (1 / h), the pressure is normal pressure, and the carrier gas is about 200 ° C. to 240 ° C. Heat to. The reduction operation of the copper-zinc catalyst requires 130-140 (m 3 ) of hydrogen per catalyst (m 3 ), and the amount of water produced corresponds to about 110 (kg). This changes depending on the copper oxide ratio of the copper-zinc catalyst. However, in the case of a copper zinc catalyst having a copper oxide ratio of about 40%, the above-described hydrogen consumption and generated water can be obtained.

従来は、こうした還元操作を手動操作によりキャリアーガスである窒素と水素の流量調整を行いながら温度の制御を実施し、また触媒反応器の入出口の水素の濃度分析結果により、消費水素量が無くなり、入出口の水素の収支が一致した時点を持って、還元の終了を判定していた。
特開2006−142224号公報
Conventionally, this reduction operation is controlled manually while adjusting the flow rates of nitrogen and hydrogen, which are carrier gases, and the amount of hydrogen consumed is eliminated based on the results of hydrogen concentration analysis at the inlet and outlet of the catalytic reactor. When the balance of hydrogen at the entrance and exit coincided, the end of the reduction was judged.
JP 2006-142224 A

しかしながら、還元終了の判定を反応器入出口の水素濃度を分析することで行うには、水素濃度を分析するための機器が必要であることからコストが嵩むと共に、また消費水素量が無くなるまでその量を監視しなければならないことから、還元終了の判定に時間がかかるという問題があった。   However, the determination of the end of reduction by analyzing the hydrogen concentration at the inlet / outlet of the reactor requires equipment for analyzing the hydrogen concentration, which increases the cost and increases the consumption of hydrogen until there is no more consumption. Since the amount has to be monitored, there is a problem that it takes time to determine the end of the reduction.

本発明は、かかる点に鑑みてなされたものであり、還元終了の判定を低コストで且つ短時間に行うことができる還元処理装置を提供することを目的とする。   The present invention has been made in view of this point, and an object of the present invention is to provide a reduction processing apparatus that can perform a reduction end determination at a low cost and in a short time.

本発明の還元処理装置は、既知量の触媒が充填された触媒反応器と、前記触媒反応器の処理ガスを冷却して気液分離を行う冷却器と、前記触媒の還元処理を開始してから前記冷却器での気液分離により生成された生成水量に基づいて前記触媒反応器における還元の終了を判定する制御部とを具備したことを特徴とする。   The reduction processing apparatus of the present invention includes a catalytic reactor filled with a known amount of catalyst, a cooler that cools a processing gas of the catalytic reactor and performs gas-liquid separation, and starts reduction processing of the catalyst. And a controller for determining the end of reduction in the catalytic reactor based on the amount of water produced by gas-liquid separation in the cooler.

この構成によれば、気液分離において生ずる生成水の量に基づいて還元終了の判定を行うので、反応器出入口の水素濃度を分析することなく、還元終了時点を正確に求めることができ、当該判定を低コストで且つ短時間で行うことができる。   According to this configuration, since the end of reduction is determined based on the amount of product water generated in gas-liquid separation, the end point of reduction can be accurately obtained without analyzing the hydrogen concentration at the reactor inlet / outlet. The determination can be performed at a low cost and in a short time.

また本発明は、上記還元処理装置において、前記制御部は、前記触媒反応器に充填された触媒量から求められる還元終了時点の生成水量に基づいて還元の終了を判定することを特徴とする。   Moreover, the present invention is characterized in that, in the above reduction treatment apparatus, the control unit determines the end of the reduction based on the amount of generated water at the end of reduction determined from the amount of catalyst charged in the catalytic reactor.

この構成により、触媒反応器に充填された触媒量から還元終了時点の生成水量を予め計算できるので、かかる生成水量を還元終了判定の基準とすることで反応器出入口の水素濃度を分析することなく、還元終了時点を正確に求めることができる。   With this configuration, the amount of generated water at the end of reduction can be calculated in advance from the amount of catalyst charged in the catalytic reactor, so that the amount of generated water can be used as a criterion for determining the end of reduction without analyzing the hydrogen concentration at the inlet / outlet of the reactor. Thus, the end point of reduction can be accurately obtained.

また本発明は、上記還元処理装置において、前記制御部が前記生成水量に基づいた還元終了判定の後、温度上限値を超えない範囲で還元性ガスの濃度を上げ、前記触媒反応器に設けた温度センサの検出結果から異常な発熱反応が発生していないことを確認してから、還元操作を完了することを特徴とする。   Further, the present invention provides the above-described reduction treatment apparatus, wherein the controller raises the concentration of the reducing gas within a range not exceeding the upper temperature limit after the reduction end determination based on the amount of generated water, and is provided in the catalytic reactor. The reduction operation is completed after confirming that no abnormal exothermic reaction has occurred from the detection result of the temperature sensor.

この構成により、制御部が生成水量から還元終了判定を行うと共に還元終了判定後に温度管理下で異常な発熱反応の有無を判定するので、煩雑な温度管理を削減でき、還元操作全体の工程管理を易しくすることができる。   With this configuration, the control unit determines the end of reduction from the amount of generated water and determines whether there is an abnormal exothermic reaction under temperature control after the end of reduction determination, so that complicated temperature management can be reduced and process management of the entire reduction operation can be performed. Can be easy.

本発明によれば、気液分離後の生成水を計量し、計量した生成水量にて還元終了の判定を行うので、還元終了の判定を低コストで且つ短時間に行うことができる。   According to the present invention, the product water after gas-liquid separation is weighed and the end of reduction is determined based on the measured amount of product water. Therefore, the end of reduction can be determined at low cost and in a short time.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る還元処理装置の概略的な構成図である。
本実施の形態の還元処理装置は、窒素用配管L1の流入口近傍に手動操作で窒素(キャリアーガス)の流入量を調節するための窒素調節弁1が配設されている。水素用配管L2の流入口近傍に手動操作で水素(還元性ガス)の流入量を調節するための水素調節弁2が配設されている。窒素調節弁1の後流側の窒素用配管L1に窒素圧力計4が配設され、窒素の流入による管内圧力を計測している。また、水素調節弁2の後流側の水素用配管L2に水素圧力計5が配設され、水素の流入による管内圧力を計測している。窒素圧力計4の後流側の窒素用配管L1に電磁弁で構成された窒素遮断弁7が配設され、窒素の後流側への流入を遮断できるようにしている。この窒素遮断弁7は制御装置24によって開閉制御される。水素圧力計5の後流側の水素用配管L2には電磁弁で構成された水素遮断弁8が配設され、水素の後流側への流入を遮断できるようにしている。この水素遮断弁8は制御装置24によって開閉制御される。また、窒素遮断弁7の後流側の窒素用配管L1には窒素流量計10が配設され、窒素遮断弁7を通過した窒素を所定流量に調整できるようにしている。水素遮断弁8の後流側の水素用配管L2には水素流量計11が配設され、水素遮断弁8を通過した水素を所定流量に調整できるようにしている。窒素用配管L1及び水素用配管L2の終端は供給配管L3に連結されており、窒素と水素の混合ガスを加熱器13へ供給するように配管されている。加熱器13は、窒素流量計10を通過した窒素と水素流量計11を通過した水素を加熱するものであり、加熱量の調整は制御装置24によって行われる。加熱器13の後流側に触媒反応器14は配設されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a reduction processing apparatus according to an embodiment of the present invention.
In the reduction treatment apparatus of the present embodiment, a nitrogen control valve 1 for adjusting the inflow amount of nitrogen (carrier gas) by manual operation is disposed near the inlet of the nitrogen pipe L1. A hydrogen control valve 2 for manually adjusting the inflow amount of hydrogen (reducing gas) is disposed near the inlet of the hydrogen pipe L2. A nitrogen pressure gauge 4 is arranged in the nitrogen pipe L1 on the downstream side of the nitrogen control valve 1 to measure the pressure in the pipe due to the inflow of nitrogen. Further, a hydrogen pressure gauge 5 is provided in the hydrogen pipe L2 on the downstream side of the hydrogen regulating valve 2, and the pressure in the pipe due to the inflow of hydrogen is measured. A nitrogen shut-off valve 7 composed of an electromagnetic valve is disposed in the nitrogen pipe L1 on the downstream side of the nitrogen pressure gauge 4 so that the inflow of nitrogen to the downstream side can be blocked. The nitrogen shut-off valve 7 is controlled to open and close by the control device 24. The hydrogen pipe L2 on the downstream side of the hydrogen pressure gauge 5 is provided with a hydrogen cutoff valve 8 constituted by an electromagnetic valve so that the inflow of hydrogen to the downstream side can be blocked. The hydrogen shut-off valve 8 is controlled to open and close by the control device 24. Further, a nitrogen flow meter 10 is disposed in the nitrogen pipe L1 on the downstream side of the nitrogen cutoff valve 7, so that the nitrogen passing through the nitrogen cutoff valve 7 can be adjusted to a predetermined flow rate. A hydrogen flow meter 11 is disposed in the hydrogen pipe L2 on the downstream side of the hydrogen shut-off valve 8 so that the hydrogen passing through the hydrogen shut-off valve 8 can be adjusted to a predetermined flow rate. The ends of the nitrogen pipe L1 and the hydrogen pipe L2 are connected to a supply pipe L3, and are connected so as to supply a mixed gas of nitrogen and hydrogen to the heater 13. The heater 13 heats the nitrogen that has passed through the nitrogen flow meter 10 and the hydrogen that has passed through the hydrogen flow meter 11, and the amount of heating is adjusted by the control device 24. A catalytic reactor 14 is disposed on the downstream side of the heater 13.

触媒反応器14は、銅亜鉛系触媒のCO変成触媒15が充填されており、窒素と水素の混合ガスでCO変成触媒15を還元させる。触媒反応器14に窒素と水素の混合ガスが導入されることで、CO変成触媒15内で前述した式(1)の反応が行われて、酸化銅が金属銅に還元される。   The catalytic reactor 14 is filled with a CO conversion catalyst 15 of a copper-zinc catalyst, and the CO conversion catalyst 15 is reduced with a mixed gas of nitrogen and hydrogen. By introducing a mixed gas of nitrogen and hydrogen into the catalytic reactor 14, the reaction of the above-described formula (1) is performed in the CO conversion catalyst 15, and the copper oxide is reduced to metallic copper.

触媒反応器14内にはCO変成触媒15における温度を測定する温度検出器16が配設されている。温度検出器16は3つの熱電対16A〜16Cを有する。熱電対16Aは触媒層入口付近に位置して触媒反応器14の入口付近のCO変成触媒15の温度を検出する。熱電対16Bは触媒層中間付近に位置して触媒反応器14の中間付近のCO変成触媒15の温度を検出する。熱電対16Cは触媒層出口付近に位置して触媒反応器14の出口付近のCO変成触媒15の温度を検出する。各熱電対16A〜16Cで検出された温度は制御装置24に取り込まれ、触媒反応器14における温度管理に用いられる。   A temperature detector 16 for measuring the temperature of the CO shift catalyst 15 is disposed in the catalyst reactor 14. The temperature detector 16 has three thermocouples 16A to 16C. The thermocouple 16A is positioned near the catalyst layer inlet and detects the temperature of the CO shift catalyst 15 near the inlet of the catalyst reactor 14. The thermocouple 16B is located near the middle of the catalyst layer and detects the temperature of the CO shift catalyst 15 near the middle of the catalyst reactor. The thermocouple 16C is located near the catalyst layer outlet and detects the temperature of the CO shift catalyst 15 near the outlet of the catalytic reactor 14. The temperatures detected by the thermocouples 16 </ b> A to 16 </ b> C are taken into the control device 24 and used for temperature management in the catalytic reactor 14.

触媒反応器14の後流側に冷却器17が配設されている。冷却器17は、触媒反応器14から排出される処理ガスを冷却して気液分離を行う。冷却器17で気液分離されて排出されたガスは供給配管L3を経由して加熱器13に戻され、気液分離された水は生成水として生成水貯留タンク22に回収される。冷却器17には外部循環水が通流されており、クーラ19により冷却されながらポンプ18によって循環される。冷却器17内には水位レベル計20が配設されている。水位レベル計20によって冷却器17内に蓄えられた生成水の水位レベルを検知している。水位レベル計20の検知信号は制御装置24に取り込まれる。生成水の量は触媒反応器14に充填される触媒量によって決まる。したがって、還元終了時点での生成水量が計算にてわかるため、事前に冷却器17の容積から生成水が溜まる液面の高さに合わせて水位レベル計20を任意にセットしておくことができる。   A cooler 17 is disposed on the downstream side of the catalyst reactor 14. The cooler 17 cools the process gas discharged from the catalyst reactor 14 and performs gas-liquid separation. The gas that has been gas-liquid separated and discharged by the cooler 17 is returned to the heater 13 via the supply pipe L3, and the water separated from the gas-liquid is collected in the produced water storage tank 22 as produced water. External circulating water is passed through the cooler 17 and is circulated by the pump 18 while being cooled by the cooler 19. A water level meter 20 is disposed in the cooler 17. The water level level 20 detects the water level of the generated water stored in the cooler 17. The detection signal of the water level meter 20 is taken into the control device 24. The amount of produced water is determined by the amount of catalyst charged in the catalytic reactor 14. Therefore, since the amount of generated water at the end of the reduction can be known by calculation, the water level meter 20 can be arbitrarily set in advance according to the height of the liquid level where the generated water accumulates from the volume of the cooler 17. .

冷却器17と生成水貯留タンク22の間には電磁弁で構成され制御装置24から開閉制御される遮断弁21が配設されている。生成水貯留タンク22に排出された生成水の量を計量するための天秤23が設置されている。天秤23による生成水の計量値は制御装置24に取り込まれる。   Between the cooler 17 and the generated water storage tank 22, a shut-off valve 21 configured by an electromagnetic valve and controlled to be opened and closed by a control device 24 is disposed. A balance 23 for measuring the amount of generated water discharged to the generated water storage tank 22 is installed. The measurement value of the generated water by the balance 23 is taken into the control device 24.

制御装置24は、主にコンピュータによって構成されており、さらに窒素遮断弁7、水素遮断弁8及び遮断弁21を駆動するドライバ及び加熱器13を駆動するドライバと、マイコンと温度検出器16、水位レベル計20及び天秤23とを接続するインタフェース(いずれも図示略)等を備えて構成される。制御装置24は、温度検出器16からの情報により、加熱器13における加熱量の調整を行い、また窒素遮断弁7及び水素遮断弁8の開閉を行う。また、制御装置24は、水位レベル計20からの情報により、遮断弁21の開閉を行い、また天秤23からの情報の取り込みを行う。   The control device 24 is mainly configured by a computer, and further, a driver for driving the nitrogen cutoff valve 7, the hydrogen cutoff valve 8 and the cutoff valve 21, a driver for driving the heater 13, a microcomputer, a temperature detector 16, and a water level. An interface (not shown) for connecting the level meter 20 and the balance 23 is provided. The control device 24 adjusts the amount of heating in the heater 13 based on information from the temperature detector 16 and opens and closes the nitrogen cutoff valve 7 and the hydrogen cutoff valve 8. Further, the control device 24 opens and closes the shut-off valve 21 based on information from the water level meter 20 and takes in information from the balance 23.

次に、以上のように構成された本実施の形態に係る還元処理装置の動作を説明する。
まず窒素が窒素調節弁1にて圧力調整された後、窒素遮断弁7を介して窒素流量計10に流入し、窒素流量計10で所定流量に調整されて加熱器13に流入する。加熱器13に流入した窒素は加熱器11で予熱されて約200℃に昇温された状態で触媒反応器14に流入し、CO変成触媒15を昇温する。触媒反応器14内の温度は温度検出器16の各熱電対16A〜16Cで検出され、制御装置24に取り込まれる。触媒反応器14から排出されたガスは冷却器17に入り、冷却器17を通って加熱器13に戻される。
Next, the operation of the reduction processing apparatus according to the present embodiment configured as described above will be described.
First, after the pressure of the nitrogen is adjusted by the nitrogen control valve 1, the nitrogen flows into the nitrogen flow meter 10 through the nitrogen cutoff valve 7, is adjusted to a predetermined flow rate by the nitrogen flow meter 10, and flows into the heater 13. Nitrogen flowing into the heater 13 is preheated by the heater 11 and is heated to about 200 ° C., and then flows into the catalytic reactor 14 to raise the temperature of the CO shift catalyst 15. The temperature in the catalyst reactor 14 is detected by the thermocouples 16 </ b> A to 16 </ b> C of the temperature detector 16 and is taken into the control device 24. The gas discharged from the catalytic reactor 14 enters the cooler 17 and returns to the heater 13 through the cooler 17.

窒素が供給循環されてCO変成触媒15が所定温度である200℃まで昇温すると、制御装置24は水素遮断弁8を開く。水素遮断弁8が開かれると、水素が水素流量計11に流入し所定流量に調整される。このとき水素流量計11は、通常、水素濃度を1mol%〜2mol%程度に調節して後流側への供給を開始する。水素の供給により、CO変成触媒15の温度が予め設定した温度の上限値を超える場合、制御装置24は、水素遮断弁8を絞って水素の流量を低減させるか、あるいは窒素遮断弁7を開いて窒素の流量を増やすことで過度の温度上昇を制御する。   When nitrogen is supplied and circulated and the CO conversion catalyst 15 is heated to a predetermined temperature of 200 ° C., the control device 24 opens the hydrogen cutoff valve 8. When the hydrogen shut-off valve 8 is opened, hydrogen flows into the hydrogen flow meter 11 and is adjusted to a predetermined flow rate. At this time, the hydrogen flow meter 11 normally adjusts the hydrogen concentration to about 1 mol% to 2 mol% and starts the supply to the downstream side. When the temperature of the CO conversion catalyst 15 exceeds the preset upper limit due to the supply of hydrogen, the control device 24 throttles the hydrogen cutoff valve 8 to reduce the flow rate of hydrogen or opens the nitrogen cutoff valve 7. Control the excessive temperature rise by increasing the flow rate of nitrogen.

水素と窒素の混合ガスがCO変成触媒15に流入することにより、前述した式(1)の反応により水素により酸化銅が金属銅に還元される。また、同時に水が生成されることになる。このときに生成した水はガスの温度が高いため水蒸気の状態のまま冷却器17に導入され、ここで冷やされ生成水として回収される。そして、還元の進行にともない、また還元終了間際になると冷却器17に溜まった生成水が水位レベル計20で検知される。水位レベル計20で生成水が検知されると、制御装置24は遮断弁21を開いて、冷却器17に溜まった生成水を生成水貯留タンク22に排出する。この生成水の排出量は天秤23で計量される。排出生成水量は制御装置24に取り込まれる。制御装置24は、天秤23での計量結果を取り込むと、その計量結果を判定して還元操作の終了を判断する。   When the mixed gas of hydrogen and nitrogen flows into the CO conversion catalyst 15, copper oxide is reduced to metallic copper by hydrogen by the reaction of the above-described formula (1). At the same time, water is generated. Since the water generated at this time has a high gas temperature, it is introduced into the cooler 17 in the state of water vapor, cooled here, and recovered as generated water. Then, as the reduction progresses and when the reduction is about to end, the water level accumulated in the cooler 17 is detected by the water level meter 20. When the generated water is detected by the water level meter 20, the control device 24 opens the shut-off valve 21 and discharges the generated water accumulated in the cooler 17 to the generated water storage tank 22. The discharge amount of the generated water is measured by a balance 23. The discharged generated water amount is taken into the control device 24. When the control device 24 fetches the measurement result from the balance 23, the control device 24 determines the measurement result and determines the end of the reduction operation.

制御装置24は、還元終了を判断した後、水素遮断弁8を開いて水素供給量を水素濃度で50mol%を上限になるように増加させて、異常な発熱反応が発生していないことを温度測定器16の測定結果から判断できた時点で還元操作を完了し、水素遮断弁8を閉じて水素流量をゼロにする。また、窒素遮断弁7を絞って窒素の流量を減少させて加熱器13の熱源を切ることで、CO変成触媒15の降温操作に入り室温まで下げる。   After determining the end of the reduction, the control device 24 opens the hydrogen shutoff valve 8 and increases the hydrogen supply amount so that the upper limit of the hydrogen concentration is 50 mol%, and determines that no abnormal exothermic reaction has occurred. The reduction operation is completed when it can be determined from the measurement result of the measuring device 16, and the hydrogen cutoff valve 8 is closed to make the hydrogen flow rate zero. Further, the nitrogen shutoff valve 7 is throttled to reduce the flow rate of nitrogen and the heat source of the heater 13 is turned off, so that the temperature of the CO conversion catalyst 15 is lowered and the temperature is lowered to room temperature.

以上の手順により還元に必要な触媒の充填容積から、生成水の量を事前に計算し、水位レベル計20を任意の位置にセットしておくことで、自動的に還元操作を完了させることができる。   By the above procedure, the amount of produced water is calculated in advance from the catalyst filling volume required for reduction, and the reduction operation can be automatically completed by setting the water level meter 20 at an arbitrary position. it can.

このように、本実施の形態の還元処理装置によれば、触媒反応器14からの処理ガスを冷却して気液分離を行って得られた生成水を計量し、生成水量にて還元終了の判定を行うので、還元終了の判定を低コストで且つ短時間に行うことができる。   As described above, according to the reduction treatment apparatus of the present embodiment, the produced gas obtained by performing the gas-liquid separation by cooling the treatment gas from the catalyst reactor 14 is measured, and the reduction is completed with the amount of produced water. Since the determination is performed, the end of the reduction can be determined at a low cost and in a short time.

なお、上記一実施の形態では生成水の排出量は天秤23で計量して制御装置24に取り込んでいるが、流量計等の他の計測手段で直接的に計測して制御装置24へリアルタイムで入力するようにしても良い。   In the above embodiment, the generated water discharge is measured by the balance 23 and taken into the control device 24. However, it is directly measured by other measuring means such as a flow meter and sent to the control device 24 in real time. You may make it input.

本発明の実施の形態に係る還元処理装置示す概略構成図である。It is a schematic structure figure showing a reduction processing device concerning an embodiment of the invention.

符号の説明Explanation of symbols

1…窒素調節弁、2…水素調節弁、4…窒素圧力計、5…水素圧力計、7…窒素遮断弁、8…水素遮断弁、10…窒素流量計、11…水素流量計、13…加熱器、14…反応器、15…CO変成触媒、16…温度検出器、16A〜16C…熱電対、17…冷却器、18…冷却水循環ポンプ、19…クーラ、20…水位レベル計、21…遮断弁、22…生成水貯留タンク、23…天秤、24…制御装置

DESCRIPTION OF SYMBOLS 1 ... Nitrogen control valve, 2 ... Hydrogen control valve, 4 ... Nitrogen pressure gauge, 5 ... Hydrogen pressure gauge, 7 ... Nitrogen shut-off valve, 8 ... Hydrogen shut-off valve, 10 ... Nitrogen flow meter, 11 ... Hydrogen flow meter, 13 ... Heater, 14 ... reactor, 15 ... CO shift catalyst, 16 ... temperature detector, 16A-16C ... thermocouple, 17 ... cooler, 18 ... cooling water circulation pump, 19 ... cooler, 20 ... water level meter, 21 ... Shut-off valve, 22 ... generated water storage tank, 23 ... balance, 24 ... control device

Claims (3)

既知量の触媒が充填された触媒反応器と、
前記触媒反応器の処理ガスを冷却して気液分離を行う冷却器と、
前記触媒の還元処理を開始してから前記冷却器での気液分離により生成された生成水量に基づいて前記触媒反応器における還元の終了を判定する制御部と、を具備したことを特徴とする還元処理装置。
A catalytic reactor filled with a known amount of catalyst;
A cooler for performing gas-liquid separation by cooling the processing gas of the catalytic reactor;
And a controller that determines the end of reduction in the catalytic reactor based on the amount of water produced by gas-liquid separation in the cooler after starting the reduction treatment of the catalyst. Reduction processing device.
前記制御部は、前記触媒反応器に充填された触媒量から求められる還元終了時点の生成水量に基づいて還元の終了を判定することを特徴とする請求項1記載の還元処理装置。   The reduction processing apparatus according to claim 1, wherein the control unit determines the end of the reduction based on the amount of generated water at the end of reduction determined from the amount of catalyst charged in the catalytic reactor. 前記制御部が、前記生成水量に基づいた還元終了判定の後、温度上限値を超えない範囲で還元性ガスの濃度を上げ、前記触媒反応器に設けた温度センサの検出結果から異常な発熱反応が発生していないことを確認してから、還元操作を完了することを特徴とする請求項1又は請求項2記載の還元処理装置。   After the reduction end determination based on the amount of generated water, the control unit increases the concentration of the reducing gas within a range not exceeding the upper temperature limit, and an abnormal exothermic reaction is detected from the detection result of the temperature sensor provided in the catalytic reactor. 3. The reduction processing apparatus according to claim 1, wherein the reduction operation is completed after confirming that no occurrence has occurred.
JP2008077614A 2008-03-25 2008-03-25 Reduction treatment device Pending JP2009226355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077614A JP2009226355A (en) 2008-03-25 2008-03-25 Reduction treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077614A JP2009226355A (en) 2008-03-25 2008-03-25 Reduction treatment device

Publications (1)

Publication Number Publication Date
JP2009226355A true JP2009226355A (en) 2009-10-08

Family

ID=41242411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077614A Pending JP2009226355A (en) 2008-03-25 2008-03-25 Reduction treatment device

Country Status (1)

Country Link
JP (1) JP2009226355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151062A (en) * 2011-01-21 2012-08-09 Honda Motor Co Ltd Fuel cell device
JP2013161662A (en) * 2012-02-06 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> Evaluation method of fuel electrode
WO2014064859A1 (en) * 2012-10-25 2014-05-01 パナソニック株式会社 Fuel cell system and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151062A (en) * 2011-01-21 2012-08-09 Honda Motor Co Ltd Fuel cell device
JP2013161662A (en) * 2012-02-06 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> Evaluation method of fuel electrode
WO2014064859A1 (en) * 2012-10-25 2014-05-01 パナソニック株式会社 Fuel cell system and method for manufacturing same
JPWO2014064859A1 (en) * 2012-10-25 2016-09-05 パナソニックIpマネジメント株式会社 Fuel cell system and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP1289878B1 (en) Fuel reforming system
CN102292862A (en) Fuel cell system and method of operating same
WO2020246197A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
EP2441730B1 (en) Method for operation of a hydrogen generation apparatus
JP4912742B2 (en) Hydrogen generator and fuel cell system
US20060046114A1 (en) Fuel cell system
EP2703340B1 (en) Hydrogen generation apparatus and fuel cell system
EP2769958B1 (en) Method for operating a hydrogen generation apparatus
JP2009226355A (en) Reduction treatment device
EP2703341B1 (en) Method of operating a hydrogen generator
WO2006065634A2 (en) Combinational control strategy for fuel processor reactor shift temperature control
EP2554979A1 (en) Gas hydrate percentage measuring device and the method of controlling the same
JP2005272598A (en) Fuel gas production system and method for starting-up the same
JP6601734B2 (en) Operation method of hydrogen generator, hydrogen generator and fuel cell system
EP2711337B1 (en) Removal of dissolved gases for boiler feed water preparation
CN110474073B (en) Method and device for detecting carbon deposition in solid oxide fuel cell system
JP4945878B2 (en) Hydrogen generator
CA2571916A1 (en) Precise oxygen to carbon ratio control in oxidation reformers
US20140127597A1 (en) Method of operating hydrogen generator and method of operating fuel cell system
EP1471033B1 (en) Hydrogen generator and fuel cell system
JP6590271B2 (en) Fuel cell system
JPH07483B2 (en) Heat medium heating reformer
JP2006066300A (en) Combustion temperature control device of fuel cell system and its design method
US20240116756A1 (en) Process and System for Water-Gas Shift Conversion of Synthesis Gas with High CO Concentration
JP2011225410A (en) Hydrogen generating apparatus, fuel cell system with the same and method of operating hydrogen generating apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914