JP2001325981A - Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method - Google Patents

Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method

Info

Publication number
JP2001325981A
JP2001325981A JP2000141111A JP2000141111A JP2001325981A JP 2001325981 A JP2001325981 A JP 2001325981A JP 2000141111 A JP2000141111 A JP 2000141111A JP 2000141111 A JP2000141111 A JP 2000141111A JP 2001325981 A JP2001325981 A JP 2001325981A
Authority
JP
Japan
Prior art keywords
gas
gas reforming
fuel cell
reforming
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141111A
Other languages
Japanese (ja)
Inventor
Yutaka Nakao
豊 中尾
Hiroki Fujihira
弘樹 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2000141111A priority Critical patent/JP2001325981A/en
Publication of JP2001325981A publication Critical patent/JP2001325981A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid high polymer molecule type fuel cell system and a processed gas reforming method using a processed gas reforming mechanism which reduces an S part in the processed gas supplied to the solid high polymer molecule type fuel cell at comparatively low cost and can reduce CO in the reforming gas, effectively. SOLUTION: The processed gas reforming mechanism is equipped with an electrolytic cell 1 equipped with a solid high polymer electrolyte film P, a means to supply water to the electrolytic cell 1, and piping 2a and 2b which can supply, while discharging separately, hydrogen and oxygen which is electrolyzed and generated by the electrolytic cell 1 to the processed gas reforming line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被処理ガス改質機構
と固体高分子型燃料電池システム並びに被処理ガス改質
方法に関し、詳しくは、都市ガス等の被処理ガスを改質
してこれを固体高分子型燃料電池などに供給可能な被処
理ガス改質機構と、これを備えた固体高分子型燃料電池
システム並びに被処理ガス改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process gas reforming mechanism, a polymer electrolyte fuel cell system, and a process gas reforming method. The present invention relates to a target gas reforming mechanism that can be supplied to a polymer electrolyte fuel cell and the like, a solid polymer fuel cell system including the same, and a target gas reforming method.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は、各種燃料電池
のなかでも、近時、その使用し易さから、注目を集めて
おり、実用化が期待されている。すなわち、固体高分子
型燃料電池は作動温度が(1)70〜80℃で取り扱い
易く、(2)起動・停止がリン酸型、溶融炭酸塩型、固
体電解質型の燃料電池に比べて容易であり、(3)出力
密度が高い、(4)軽量・コンパクトである、(5)電
解質が高分子膜でできているため、反応ガスの差圧に耐
え、作動中に電解質の流出がないのでメンテナンスが不
要、などの利点がある。そのため、小型発電装置、小型
コージェネレーション装置として、更には低公害の電気
自動車などの移動用電源として活用が期待されている。
2. Description of the Related Art Among various types of fuel cells, polymer electrolyte fuel cells have recently attracted attention due to their ease of use and are expected to be put to practical use. That is, the polymer electrolyte fuel cell has an operating temperature of (1) 70-80 ° C. and is easy to handle, and (2) start / stop is easier than the phosphoric acid type, molten carbonate type and solid electrolyte type fuel cells. Yes, (3) High power density, (4) Light weight and compact, (5) Since the electrolyte is made of a polymer membrane, it can withstand the differential pressure of the reaction gas and there is no outflow of the electrolyte during operation. There are advantages such as no need for maintenance. Therefore, it is expected to be used as a small power generation device, a small cogeneration device, and a mobile power source for low-pollution electric vehicles.

【0003】そして、固体高分子型燃料電池に供給する
燃料として、一般に都市ガスを利用し、都市ガスから、
その水蒸気改質反応などにより生成された水素を用いる
ようにしている。
[0003] In general, city gas is used as fuel to be supplied to the polymer electrolyte fuel cell.
Hydrogen generated by the steam reforming reaction or the like is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、水蒸気
改質反応などにより都市ガスから燃料の水素を生成する
場合、都市ガスには付臭剤(ジメチルスルファイド;3
mg−S/m3 (Normal)、t−ブチルメルカプ
タン;2mg−S/m3 (Normal))が含まれて
おり、付臭剤における微量有機S分が後述する水蒸気改
質触媒を劣化させるため、微量有機S分を除去する必要
がある。ところが、付臭剤は物理化学的に安定であり、
吸着剤にも吸着し難い性質を有しているため、付臭剤を
含む都市ガス中の有機S分は除去し難い。そこで、脱硫
法としては、Co−Mo系あるいはNi−Mo系触媒を
用いると共に、水素を導入して行う水添分解した後、更
に生成した硫化水素を酸化亜鉛で吸着して除去する水添
脱硫法が採られる。しかし、この水添脱硫法は、別に水
素源を設ける必要があり、装置全体が複雑で大掛かりと
なるのみならず、水添脱硫法によっても水蒸気改質触媒
の劣化を防止するには十分ではない場合が多く、例えば
NiやRu触媒はppm以下の低濃度のS分でもその表
面に硫化物を形成し、触媒表面をほとんど覆ってしまう
ので、劣化を確実に防止するには複雑で大掛かりな設備
を要しているのが現状である。
However, when hydrogen as fuel is produced from city gas by a steam reforming reaction or the like, an odorant (dimethyl sulfide; 3) is added to the city gas.
mg-S / m 3 (Normal), t-butyl mercaptan; 2 mg-S / m 3 (Normal)), because trace organic S in the odorant deteriorates the steam reforming catalyst described later. It is necessary to remove a trace amount of organic S. However, odorants are physically and chemically stable,
The organic S component in the city gas containing the odorant is difficult to remove because it has a property that it is not easily adsorbed by the adsorbent. Therefore, as the desulfurization method, a Co-Mo-based or Ni-Mo-based catalyst is used, and after hydrogenolysis is performed by introducing hydrogen, the generated hydrogen sulfide is further adsorbed and removed by zinc oxide. Law is adopted. However, in this hydrodesulfurization method, it is necessary to provide a hydrogen source separately, and not only is the entire apparatus complicated and large-scale, but also the hydrodesulfurization method is not enough to prevent the deterioration of the steam reforming catalyst. In many cases, for example, Ni and Ru catalysts form sulfides on the surface even at a low concentration of S of less than ppm and almost cover the catalyst surface. Therefore, complicated and large-scale equipment is required to reliably prevent deterioration. Is the current situation.

【0005】更に、固体高分子型燃料電池に使用されて
いる触媒の性能を維持するため、改質ガス中のCO濃度
を低く押さえる(10ppm以下)必要がある。つま
り、CO被毒による白金触媒活性の劣化は低温ほど著し
いので、固体高分子型燃料電池のような低温作動型の場
合には特にその影響が大きく、CO濃度は10ppm以
下に押さえる必要がある。そこで、改質ガス中のCO濃
度を低く押さえるため、脱硫された都市ガスに対して水
蒸気改質触媒の存在下で、約700〜850℃の水蒸気
と接触させてH2 とCOに改質し、これを400℃前後
に調整されたFe−CrやFe−Cr−Cu触媒を充填
した高温シフトコンバータ、更に200℃前後に調整さ
れたZn−Cu触媒を充填した低温シフトコンバータに
導入する。ここで、COをH2 O(水蒸気)によりH2
とCO2 に改質して、COの低減化を図るようにしてい
る。シフトコンバータを通って、更にCOを下げるため
にPt−Al23 ,Ru−Pt−Al23 触媒を充
填したCO除去器に導入され、供給される空気とCOが
選択酸化反応をし、更なるCOの低減化を図るようにし
ている。これらの構成のため、複雑で大掛かりな設備と
なる。
Furthermore, in order to maintain the performance of the catalyst used in the polymer electrolyte fuel cell, it is necessary to keep the CO concentration in the reformed gas low (10 ppm or less). That is, since the deterioration of the platinum catalyst activity due to CO poisoning is remarkable at lower temperatures, the effect is particularly large in a low-temperature operation type such as a polymer electrolyte fuel cell, and the CO concentration needs to be suppressed to 10 ppm or less. Then, in order to keep the CO concentration in the reformed gas low, the desulfurized city gas is brought into contact with steam at about 700 to 850 ° C. in the presence of a steam reforming catalyst to reform it into H 2 and CO. This is introduced into a high-temperature shift converter filled with an Fe-Cr or Fe-Cr-Cu catalyst adjusted to about 400 ° C and a low-temperature shift converter filled with a Zn-Cu catalyst adjusted to about 200 ° C. Here, H 2 by the CO H 2 O (steam)
And CO 2 to reduce CO. Through the shift converter, is introduced into the Pt-Al 2 O 3, Ru -Pt-Al 2 O 3 catalyst was loaded was CO remover to further reduce the CO, air and CO to be supplied to the selective oxidation reaction , To further reduce CO. These configurations result in complicated and large-scale equipment.

【0006】このように、従来の技術では複雑で大掛か
りな付帯設備を設置するのにかなりのコストを要し、固
体高分子型燃料電池を利用するシステムの製造コストの
高騰を招き、実用化の障害にもなっていた。
[0006] As described above, the conventional technology requires considerable cost to install complicated and large-scale auxiliary equipment, invites a rise in the manufacturing cost of a system using a polymer electrolyte fuel cell, and is not practical. It was also an obstacle.

【0007】そこで、本発明の目的は、比較的低コスト
で固体高分子型燃料電池などに供給する被処理ガス中の
S分を効果的に低減化すると共に、改質ガス中のCOを
効果的に低減化可能な被処理ガス改質機構と固体高分子
型燃料電池システム並びに被処理ガス改質方法を提供す
ることにある。
Accordingly, an object of the present invention is to effectively reduce the S content in the gas to be treated supplied to a polymer electrolyte fuel cell or the like at a relatively low cost and to reduce the CO in the reformed gas. It is an object of the present invention to provide a target gas reforming mechanism, a polymer electrolyte fuel cell system, and a target gas reforming method which can be reduced in number.

【0008】[0008]

【課題を解決するための手段】上記目的は各請求項記載
の発明により達成される。すなわち、本発明に係る被処
理ガス改質機構の特徴構成は、固体高分子電解質膜を備
えた電解セルと、この電解セルに水を供給する手段と、
前記電解セルにより電解されて生成した水素および酸素
を個別に排出して被処理ガス改質ラインに供給可能な排
出手段とを有することにある。
The above object is achieved by the invention described in each claim. That is, the characteristic configuration of the target gas reforming mechanism according to the present invention includes an electrolytic cell having a solid polymer electrolyte membrane, a unit for supplying water to the electrolytic cell,
Discharge means capable of separately discharging hydrogen and oxygen generated by electrolysis by the electrolysis cell and supplying the hydrogen and oxygen to the target gas reforming line.

【0009】この構成によれば、固体高分子電解質膜を
備えた電解セルの水分解によって生成した水素と酸素を
利用するため、装置全体を小さいものにできると共に、
装置そのものが比較的簡素な構成でよく、ことさら複雑
で大掛かりな設備を必要とすることなく、水素供給によ
り被処理ガス中のS分を効果的に低減化すると共に、酸
素供給により改質ガス中のCOを効果的に低減化するこ
とができる。しかも、水素と酸素の生成を電解で行うた
め、制御が容易で確実であり調整が行い易く、被処理ガ
ス中のCOの低減化に対する負荷変動への追随性が良好
であるという利点を有する。更に、固体高分子型燃料電
池を構成する固体電解質膜は、所定性能を発揮するため
には乾燥するのを確実に防止する必要性があり、そのた
め厳しい湿度管理を要するが、本発明の被処理ガス改質
機構を固体高分子型燃料電池システムに使用する場合
は、生成される酸素が水分を多量に含んだものであるた
め、その水分管理が極めて容易となる。
According to this configuration, since the hydrogen and oxygen generated by the water splitting of the electrolytic cell having the solid polymer electrolyte membrane are used, the whole apparatus can be made small,
The apparatus itself may have a relatively simple configuration, and the S content in the gas to be treated can be effectively reduced by supplying hydrogen, and the reformed gas can be effectively supplied by supplying oxygen without requiring any complicated and large-scale equipment. Can be effectively reduced. In addition, since the generation of hydrogen and oxygen is performed by electrolysis, there is an advantage that control is easy and reliable, adjustment is easy, and follow-up to load fluctuation with respect to reduction of CO in the gas to be processed is good. Further, the solid electrolyte membrane constituting the polymer electrolyte fuel cell needs to be surely prevented from drying in order to exhibit a predetermined performance, and therefore strict humidity control is required. When the gas reforming mechanism is used in a polymer electrolyte fuel cell system, the generated oxygen contains a large amount of moisture, so that the management of the moisture becomes extremely easy.

【0010】その結果、本発明によれば、比較的低コス
トで固体高分子型燃料電池などに供給する被処理ガス中
のS分を効果的に低減化すると共に、改質ガス中のCO
を効果的に低減化可能な被処理ガス改質機構を提供する
ことができた。
As a result, according to the present invention, the S content in the gas to be treated, which is supplied to a polymer electrolyte fuel cell or the like at a relatively low cost, can be effectively reduced, and the CO content in the reformed gas can be reduced.
Thus, it is possible to provide a target gas reforming mechanism capable of effectively reducing the gas.

【0011】前記水素を排出する排出手段が、前記被処
理ガス改質ラインを構成する脱硫機構に導入されるよう
になっていると共に、前記酸素が前記被処理ガス改質ラ
インを構成するCO除去器に導入されるようになってい
ることが好ましい。
[0011] The discharge means for discharging the hydrogen is introduced into a desulfurization mechanism constituting the gas-to-be-treated reforming line, and the oxygen is used for removing CO constituting the gas-to-be-treated reforming line. Preferably, it is adapted to be introduced into the vessel.

【0012】この構成によれば、比較的小規模の脱硫機
構とCO除去器を使用でき、一層確実に被処理ガス中の
S分を効果的に低減化すると共に、改質ガス中のCOを
一層効果的に低減化することができて都合がよい。
According to this configuration, a relatively small-scale desulfurization mechanism and a CO remover can be used, the S content in the gas to be treated can be reduced more effectively, and the CO in the reformed gas can be reduced. It is convenient that the reduction can be achieved more effectively.

【0013】又、本発明に係る固体高分子型燃料電池シ
ステムの特徴構成は、請求項1又は2の被処理ガス改質
機構を備えることにある。
Further, a characteristic configuration of the polymer electrolyte fuel cell system according to the present invention resides in that it comprises a gas reforming mechanism for processing gas according to claim 1 or 2.

【0014】この構成によれば、比較的低コストで固体
高分子型燃料電池などに供給する被処理ガス中のS分を
効果的に低減化すると共に、改質ガス中のCOを効果的
に低減化可能な固体高分子型燃料電池システムを提供す
ることができる。
According to this structure, the S content in the gas to be treated supplied to the polymer electrolyte fuel cell or the like at a relatively low cost can be effectively reduced, and the CO in the reformed gas can be effectively reduced. A polymer electrolyte fuel cell system that can be reduced can be provided.

【0015】更に又、本発明に係る被処理ガス改質方法
の特徴構成は、固体高分子電解質膜を備えた電解セルに
水を供給し、この電解セルに通電して水素および酸素を
生成し、これら生成された水素および酸素を個別に排出
して被処理ガス改質ラインに供給することにある。
Further, the characteristic structure of the process gas reforming method according to the present invention is characterized in that water is supplied to an electrolytic cell provided with a solid polymer electrolyte membrane, and electricity is supplied to the electrolytic cell to generate hydrogen and oxygen. It is another object of the present invention to separately discharge the generated hydrogen and oxygen and supply them to the gas reforming line to be treated.

【0016】この構成によれば、固体高分子電解質膜を
備えた電解セルの水分解によって生成した水素と酸素を
利用するため、小型かつ簡素な装置を用いることがで
き、ことさら複雑で大掛かりな設備を必要とすることが
ないので、比較的低コストで、水素供給により被処理ガ
ス中のS分を効果的に低減化すると共に、酸素供給によ
り改質ガス中のCOを効果的に低減化することができ
る。
According to this configuration, since hydrogen and oxygen generated by the water splitting of the electrolytic cell provided with the solid polymer electrolyte membrane are used, a small and simple apparatus can be used, and further complicated and large-scale equipment is used. Is not required, so that the S content in the gas to be treated is effectively reduced by supplying hydrogen and the CO in the reformed gas is effectively reduced by supplying oxygen at a relatively low cost. be able to.

【0017】生成した前記水素を、前記被処理ガス改質
ラインを構成する脱硫機構に導入すると共に、生成した
前記酸素を、前記被処理ガス改質ラインを構成するCO
除去器に導入するようになっていることが好ましい。
The generated hydrogen is introduced into a desulfurization mechanism that constitutes the processing gas reforming line, and the generated oxygen is converted into CO 2 that forms the processing gas reforming line.
Preferably, it is adapted to be introduced into a remover.

【0018】この構成によれば、比較的小規模の脱硫機
構とCO除去器を使用して被処理ガスを改質でき、一層
確実に被処理ガス中のS分を効果的に低減化すると共
に、改質ガス中のCOを一層効果的に低減化することが
できる。
According to this configuration, the gas to be treated can be reformed by using a relatively small-scale desulfurization mechanism and a CO remover, and the S content in the gas to be treated can be more effectively reduced more effectively. In addition, CO in the reformed gas can be more effectively reduced.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を、図面を参
照して詳細に説明する。図1は、本実施形態の固体高分
子型燃料電池システム(以下、単に「燃料電池システ
ム」ということがある)の概略構造を示す。この燃料電
池システムは、固体高分子型燃料電池Cに燃料ガスとし
ての都市ガスを燃料極に供給すると共に、空気極に空気
を供給することにより電力を出力するようになってい
る。都市ガス供給の途中には、被処理ガスである都市ガ
スに含まれるS分を低減化する共に、COを低減化する
ための脱硫器やCO変成器などからなる被処理ガス改質
ラインが設けられている。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic structure of a polymer electrolyte fuel cell system (hereinafter, may be simply referred to as “fuel cell system”) of the present embodiment. In this fuel cell system, city gas as a fuel gas is supplied to the polymer electrolyte fuel cell C to the fuel electrode, and power is output by supplying air to the air electrode. In the middle of the supply of city gas, a gas to be treated reforming line consisting of a desulfurizer and a CO converter is installed to reduce the S content in the city gas, which is the gas to be treated, and to reduce CO. Have been.

【0020】本実施形態では、更に、被処理ガス改質ラ
インの途中に、都市ガス中のS分とCOを効果的に低減
化する被処理ガス改質機構が接続されて構成されてい
る。この被処理ガス改質機構は、固体高分子電解質膜P
を備えた電解セル1を備えていて、この電解セル1に水
供給手段(図示略)から水を供給し、ここで水を酸素と
水素に電解するようになっている。つまり、固体高分子
型燃料電池の逆反応を生起させるのである。図番Eは、
電解セル1に電力を供給する直流電源であり、この直流
電源Eを制御することにより、生成する水素や酸素の量
を容易に調整することがてきる。又、固体高分子電解質
膜Pとしては、フッ素樹脂系スルホン酸膜などの高分子
膜を使用できる。
In this embodiment, a processing gas reforming mechanism for effectively reducing S content and CO in city gas is connected in the middle of the processing gas reforming line. The mechanism for reforming the gas to be treated is a solid polymer electrolyte membrane P
Is provided with water from a water supply means (not shown), and the water is electrolyzed into oxygen and hydrogen. That is, the reverse reaction of the polymer electrolyte fuel cell is caused. Figure E is
This is a DC power supply that supplies power to the electrolytic cell 1, and by controlling the DC power supply E, the amount of generated hydrogen and oxygen can be easily adjusted. Further, as the solid polymer electrolyte membrane P, a polymer membrane such as a fluororesin sulfonic acid membrane can be used.

【0021】電解セル1によって生成された水素は、水
素排出手段である配管2aを通して都市ガス供給路に導
入されるようになっている。都市ガスは水添脱硫器3に
導入され、ここで都市ガス中に含まれる有機S分をCo
−Mo系触媒やNi−Mo系触媒を用いて、電解セル1
から生成された水素を導入することにより、都市ガス中
に含まれる有機S分を水添分解し、生成する硫化水素を
酸化亜鉛に吸着させる機能を有して、都市ガス中の有機
S分を顕著に低減化できることになる。
The hydrogen generated by the electrolytic cell 1 is introduced into a city gas supply passage through a pipe 2a which is a hydrogen discharging means. The city gas is introduced into the hydrodesulfurizer 3, where the organic S content contained in the city gas is reduced to Co.
-Electrolysis cell 1 using Mo-based catalyst or Ni-Mo-based catalyst
By introducing the hydrogen generated from the above, the organic S component contained in the city gas is hydrolyzed and has a function of adsorbing the generated hydrogen sulfide to zinc oxide. It can be significantly reduced.

【0022】更に、水添脱硫器3で有機S分を低減化さ
れた都市ガスは、活性炭あるいはモレキュラーシーブス
等の吸着剤を備えて構成される吸着型脱硫器4に導入さ
れ、ここで有機S分は一層顕著に低減化される。もっと
も、高性能吸着型脱硫器を用いる場合には、水添脱硫器
3は必ずしも必要ではなく、吸着型脱硫器4に導入して
もよいが、吸着型脱硫器4の前段階に水添脱硫器3を設
けておくと、それだけ吸着型脱硫器4の負荷が軽減され
るため、吸着型脱硫器4中の吸着剤の再生あるいは更新
期間を長くすることができて好ましい。
Further, the city gas whose organic S content has been reduced by the hydrodesulfurizer 3 is introduced into an adsorptive desulfurizer 4 comprising an adsorbent such as activated carbon or molecular sieves. The minutes are significantly reduced. However, when a high-performance adsorptive desulfurizer is used, the hydrodesulfurizer 3 is not always necessary, and may be introduced into the adsorptive desulfurizer 4, but the hydrodesulfurizer is provided before the adsorptive desulfurizer 4. The provision of the reactor 3 is preferable because the load on the adsorptive desulfurizer 4 can be reduced correspondingly, and the regeneration or renewal period of the adsorbent in the adsorptive desulfurizer 4 can be lengthened.

【0023】これら脱硫機構3,4により有機S分を十
分に低減化された都市ガスは、水蒸気改質器5に導入さ
れ、ここでは、スチーム/カーボン比=2〜3.5に調
節されて、700〜850℃に加熱され、CO濃度は1
0数%である。
The city gas whose organic S content has been sufficiently reduced by the desulfurization mechanisms 3 and 4 is introduced into the steam reformer 5, where the steam / carbon ratio is adjusted to 2 to 3.5. Is heated to 700 to 850 ° C. and the CO concentration is 1
0%.

【0024】次に、改質された都市ガスはCO変成器6
に送給される。このCO変成器6は、高温シフト反応用
変成器6aと低温シフト反応用変成器6bに2段階構成
となっている。高温シフト反応用変成器6aには触媒と
して300〜500℃に加熱されたFe−Cr系あるい
はFe−Cr−Cu系のものが用いられていて、ここで
CO濃度を10数%から約2%程度にまで低減する。そ
して、低温シフト反応用変成器6bでは180〜250
℃に加熱したCu−Zn系触媒を用いており、ここでは
CO濃度を約2%から約1000〜5000ppm程度
にまで低減する。もっとも、CO変成器6は必ずしも2
段階構成である必要はない。
Next, the reformed city gas is supplied to the CO converter 6
Sent to The CO converter 6 has a two-stage configuration including a high-temperature shift reaction transformer 6a and a low-temperature shift reaction transformer 6b. For the high-temperature shift reaction transformer 6a, an Fe-Cr-based or Fe-Cr-Cu-based catalyst heated to 300 to 500 ° C is used as a catalyst, wherein the CO concentration is increased from 10% to about 2%. To a degree. In the transformer 6b for low-temperature shift reaction, 180 to 250
A Cu-Zn-based catalyst heated to ° C. is used, in which the CO concentration is reduced from about 2% to about 1000 to 5000 ppm. However, the CO transformer 6 is not necessarily 2
It need not be a staged configuration.

【0025】CO濃度を低減された都市ガスは、更にC
O除去器7に送給される。このCO除去器7に、上記し
た電解セル1より発生した湿度の高い酸素を、酸素排出
手段である配管2bを通して供給する。従来技術ではC
O除去器7に空気を供給するが、本実施形態の場合、酸
素そのものを供給するので、CO低減反応に寄与しない
窒素が含まれておらず効率的である。
The city gas whose CO concentration has been reduced further contains C
It is sent to the O remover 7. The high-humidity oxygen generated from the electrolytic cell 1 is supplied to the CO remover 7 through a pipe 2b serving as an oxygen discharging means. In the prior art, C
Although air is supplied to the O remover 7, in the case of this embodiment, since oxygen itself is supplied, nitrogen which does not contribute to the CO reduction reaction is not contained, so that it is efficient.

【0026】CO除去器7は、Pt−Al23 系ある
いはRu−Pt−Al23 系の触媒を用いて、選択酸
化反応を起こさせることにより、COの一層の低減化を
図るようになっているが、電解セル1より発生した酸素
の存在により、CO濃度を約1000〜5000ppm
から10ppm以下に確実に低減させる。
The CO remover 7 uses a Pt-Al 2 O 3 -based or Ru-Pt-Al 2 O 3 -based catalyst to cause a selective oxidation reaction, thereby further reducing CO. However, due to the presence of oxygen generated from the electrolytic cell 1, the CO concentration is reduced to about 1000 to 5000 ppm.
To 10 ppm or less.

【0027】以上のCO低減工程を経た都市ガスは、十
分に改質されており、水分に富み湿度の高い改質ガスが
固体高分子型燃料電池Cに供給される。そして、固体高
分子型燃料電池Cにより発電された電力はインバータ8
を介して外部電源として取り出される。
The city gas that has undergone the above-described CO reduction step is sufficiently reformed, and a reformed gas rich in moisture and high in humidity is supplied to the polymer electrolyte fuel cell C. The electric power generated by the polymer electrolyte fuel cell C is supplied to the inverter 8
And is taken out as an external power supply.

【0028】〔別実施の形態〕 (1) 上記実施形態では、都市ガスを燃料ガスとする
固体高分子型燃料電池システムの例を挙げて説明した
が、本発明に係る被処理ガス改質機構と被処理ガス改質
方法は、エタノール等のアルコール、ナフサ、灯油など
を燃料ガスとする固体高分子型燃料電池システムに対し
ても適用できる。
[Other Embodiments] (1) In the above embodiment, an example of a polymer electrolyte fuel cell system using city gas as a fuel gas has been described. However, the target gas reforming mechanism according to the present invention. The method for reforming the gas to be treated can also be applied to a polymer electrolyte fuel cell system using alcohol such as ethanol, naphtha, kerosene or the like as a fuel gas.

【0029】(2) 上記実施形態では、固体高分子型
燃料電池システムの例を挙げて説明したが、本発明に係
る被処理ガス改質機構と被処理ガス改質方法は、固体高
分子型燃料電池システムのみならず、都市ガス、その他
の炭化水素ガスの脱硫、低CO処理に広く適用できる。
(2) In the above embodiment, an example of the polymer electrolyte fuel cell system has been described. However, the processing target gas reforming mechanism and the processing target gas reforming method according to the present invention are not limited to the solid polymer fuel cell system. It can be widely applied not only to fuel cell systems but also to desulfurization of city gas and other hydrocarbon gases and low CO treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固体高分子型燃料電池システムの
一実施形態を示す概略構成図
FIG. 1 is a schematic configuration diagram showing one embodiment of a polymer electrolyte fuel cell system according to the present invention.

【符号の説明】[Explanation of symbols]

1 電解セル 2a,2b 排出手段 3,4 脱硫機構 7 CO除去器 P 固体高分子電解質膜 DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2a, 2b Discharge means 3, 4 Desulfurization mechanism 7 CO remover P Solid polymer electrolyte membrane

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を備えた電解セル
と、この電解セルに水を供給する手段と、前記電解セル
により電解されて生成した水素および酸素を個別に排出
して被処理ガス改質ラインに供給可能な排出手段とを有
する被処理ガス改質機構。
An electrolytic cell provided with a solid polymer electrolyte membrane, means for supplying water to the electrolytic cell, and hydrogen and oxygen generated by electrolysis by the electrolytic cell are individually discharged to improve the gas to be treated. A gas reforming mechanism having a discharge means capable of supplying the gas to the quality line.
【請求項2】 前記水素を排出する排出手段が、前記被
処理ガス改質ラインを構成する脱硫機構に導入されるよ
うになっていると共に、前記酸素が前記被処理ガス改質
ラインを構成するCO除去器に導入されるようになって
いる請求項1の被処理ガス改質機構。
2. A discharge means for discharging the hydrogen is introduced into a desulfurization mechanism constituting the gas to be treated line, and the oxygen constitutes the gas to be treated line. 2. The process gas reforming mechanism according to claim 1, wherein the mechanism is introduced into a CO remover.
【請求項3】 請求項1又は2の被処理ガス改質機構を
備える固体高分子型燃料電池システム。
3. A polymer electrolyte fuel cell system comprising the target gas reforming mechanism according to claim 1.
【請求項4】 固体高分子電解質膜を備えた電解セルに
水を供給し、この電解セルに通電して水素および酸素を
生成し、これら生成された水素および酸素を個別に排出
して被処理ガス改質ラインに供給する被処理ガス改質方
法。
4. Water is supplied to an electrolytic cell provided with a solid polymer electrolyte membrane, electricity is supplied to the electrolytic cell to generate hydrogen and oxygen, and the generated hydrogen and oxygen are individually discharged to be treated. A method for reforming a gas to be treated to be supplied to a gas reforming line.
【請求項5】 生成した前記水素を、前記被処理ガス改
質ラインを構成する脱硫機構に導入すると共に、生成し
た前記酸素を、前記被処理ガス改質ラインを構成するC
O除去器に導入するようになっている請求項4の被処理
ガス改質方法。
5. The generated hydrogen is introduced into a desulfurization mechanism that constitutes the processing gas reforming line, and the generated oxygen is converted into C that forms the processing gas reforming line.
5. The process gas reforming method according to claim 4, wherein the process gas is introduced into an O remover.
JP2000141111A 2000-05-15 2000-05-15 Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method Pending JP2001325981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141111A JP2001325981A (en) 2000-05-15 2000-05-15 Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141111A JP2001325981A (en) 2000-05-15 2000-05-15 Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method

Publications (1)

Publication Number Publication Date
JP2001325981A true JP2001325981A (en) 2001-11-22

Family

ID=18648275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141111A Pending JP2001325981A (en) 2000-05-15 2000-05-15 Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method

Country Status (1)

Country Link
JP (1) JP2001325981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2006517905A (en) * 2003-02-18 2006-08-03 ハイドロジェンソース エルエルシー Hydrogen generator for hydrodesulfurization of hydrocarbon feed
JP2010058995A (en) * 2008-09-01 2010-03-18 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
WO2010041471A1 (en) * 2008-10-09 2010-04-15 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP2012176897A (en) * 2012-06-21 2012-09-13 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP2014234322A (en) * 2013-05-31 2014-12-15 株式会社神戸製鋼所 Hydrogen production apparatus stopping method and hydrogen production apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517905A (en) * 2003-02-18 2006-08-03 ハイドロジェンソース エルエルシー Hydrogen generator for hydrodesulfurization of hydrocarbon feed
JP4800923B2 (en) * 2003-02-18 2011-10-26 ユーティーシー パワー コーポレイション Hydrogen generator for hydrodesulfurization of hydrocarbon feed
JP2006008418A (en) * 2004-06-22 2006-01-12 Idemitsu Kosan Co Ltd Apparatus for producing hydrogen and fuel cell system
JP2010058995A (en) * 2008-09-01 2010-03-18 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
WO2010041471A1 (en) * 2008-10-09 2010-04-15 パナソニック株式会社 Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP2012176897A (en) * 2012-06-21 2012-09-13 Tokyo Gas Co Ltd Hydrogenation desulfurizer-integrated cylindrical steam reformer
JP2014234322A (en) * 2013-05-31 2014-12-15 株式会社神戸製鋼所 Hydrogen production apparatus stopping method and hydrogen production apparatus

Similar Documents

Publication Publication Date Title
TWI424956B (en) Hydrogen generation apparatus, fuel cell system and operating method thereof
JP4096690B2 (en) Fuel cell system and hydrogen gas supply device
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP5406664B2 (en) Fuel cell power generation system
JP2016517613A (en) Manganese oxide containing materials for use in oxidative desulfurization in fuel cell systems
JP2004247290A (en) Hydrogen feeder
US20020192136A1 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP2003272691A (en) Fuel cell generating device and operating method of fuel cell generating device
JP2005093115A (en) Fuel cell power generating device and its operating method
JPH0333191A (en) Desulfurizer
EP2639869A1 (en) Method for operating solid polymer fuel cell system, and solid polymer fuel cell system
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2765950B2 (en) Fuel cell power generation system
JP4143028B2 (en) Fuel cell system and operation method thereof
JP2003132926A (en) Reformer for fuel cell generator
JP2002097001A (en) Fuel gas reformer and fuel-cell system
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP4613482B2 (en) Fuel cell power generator and its operation method
JP4455040B2 (en) Fuel cell system and operation method thereof
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
WO2005005313A1 (en) Fuel treatment device and fuel treatment method
JP5086144B2 (en) Hydrogen production apparatus and method for stopping fuel cell system
JP4986432B2 (en) Operation method of fuel cell system
JP2005179082A (en) Hydrogen producing apparatus, fuel cell system and method for driving the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050908