JP2002020103A - Method for starting and method for stopping hydrogen producing device - Google Patents

Method for starting and method for stopping hydrogen producing device

Info

Publication number
JP2002020103A
JP2002020103A JP2000198528A JP2000198528A JP2002020103A JP 2002020103 A JP2002020103 A JP 2002020103A JP 2000198528 A JP2000198528 A JP 2000198528A JP 2000198528 A JP2000198528 A JP 2000198528A JP 2002020103 A JP2002020103 A JP 2002020103A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
unit
containing gas
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000198528A
Other languages
Japanese (ja)
Inventor
Hiroyuki Taniguchi
浩之 谷口
Mare Sato
希 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000198528A priority Critical patent/JP2002020103A/en
Publication of JP2002020103A publication Critical patent/JP2002020103A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for starting and a method for stopping a hydrogen producing device by which the operation cost or the installation area is reduced and dangerous works such as the exchange of nitrogen cylinder or hydrogen cylinder become unnecessary. SOLUTION: When starting, a combustion reaction occurs with hydrogen and air in a catalytic combustion part 14 and when the temperature of a steam reforming part 13 is raised and reaches the starting temperature, steam and a raw material hydrocarbon are supplied and a hydrogen-containing gas and air are supplied to a CO selective oxidation part 17. When stopping, the hydrogen-containing gas freed of CO from the CO selective oxidation part 17 is supplied to the catalytic combustion part 14 to be combusted, the supply of air to the CO selective oxidation part 17 is stopped to reduce the concentration of oxygen in the waste gas from the catalytic combustion part 14 and the waste gas is circulated in a reaction system to reduce the concentration of the inflammable gas and finally replaced with nitrogen, carbon dioxide or steam and the operation is stopped. As a result, the operation cost or the installation area is reduced and the works such as the exchange of nitrogen or hydrogen cylinder become unnecessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水蒸気改質部を含
む水素製造装置、または燃料電池システムやそれ以外の
用途に用いられる水素製造装置の起動および停止方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting and stopping a hydrogen production apparatus including a steam reforming section, or a hydrogen production apparatus used for a fuel cell system or other uses.

【0002】[0002]

【従来の技術】一般的な水素製造装置の起動・停止は、
ボンベに充填された窒素などの不活性ガスを使用する。
起動時は、ボンベより窒素を系内に流しながら、バーナ
などで昇温、脱硫用の水添ガスとして水素ボンベより水
素を供給する。停止時は、窒素で可燃性ガスを置換して
から降温操作を行う。この方式により、触媒の酸化を防
止できるとともに、安全に操作を行うことができる。し
かしながら、この方式の欠点としては、窒素ボンベや水
素ボンベなどが必要であり、コスト高、設置スペースが
大きくなるという問題点がある。また、不活性ガスを切
らしている場合には、起動・停止操作が行えず、ボンベ
の取り替えが面倒でかつ高圧であるため、危険である。
そのほか、小型装置(例えば、家庭用や車載用燃料電池
の水素製造装置)や諸事情などで、窒素ボンベや水素ボ
ンベなどを設置できない場合も考えられ、さらに水素お
よび窒素のインフラが整備されていないなどの問題点も
ある。
2. Description of the Related Art A general hydrogen production apparatus is started and stopped by:
Use an inert gas such as nitrogen filled in a cylinder.
During startup, hydrogen is supplied from a hydrogen cylinder as a hydrogenation gas for heating and desulfurization using a burner while flowing nitrogen into the system from the cylinder. During shutdown, the temperature is reduced after replacing the combustible gas with nitrogen. With this method, oxidation of the catalyst can be prevented, and the operation can be performed safely. However, disadvantages of this method are that a nitrogen cylinder, a hydrogen cylinder, and the like are required, resulting in high costs and a large installation space. In addition, when the inert gas is exhausted, starting and stopping operations cannot be performed, and replacement of the cylinder is troublesome and high pressure, which is dangerous.
In addition, it is conceivable that a nitrogen cylinder or hydrogen cylinder cannot be installed due to a small device (for example, a hydrogen production device for home or on-vehicle fuel cells) and other circumstances, and furthermore, the infrastructure for hydrogen and nitrogen is not provided. There are also problems such as.

【0003】なお、原料炭化水素の供給を停止したの
ち、触媒が酸化しない程度まで徐々に降温してから、空
気で置換する方法も考えられる。しかしながら、この方
法によれば、可燃性ガス中に空気を供給するため、危険
をともなうといった問題が懸念される。さらに、水蒸気
改質部の加熱はバーナの使用が一般的であるが、可燃性
ガス濃度が低下すると燃焼が停止してしまうという問題
点がある。
[0003] It is also conceivable that after the supply of the raw material hydrocarbons is stopped, the temperature is gradually lowered to such an extent that the catalyst is not oxidized, and then the air is replaced with air. However, according to this method, since air is supplied into the combustible gas, there is a concern that there is a danger. Further, although the use of a burner is generally used for heating the steam reforming section, there is a problem that the combustion stops when the combustible gas concentration decreases.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来技術を背景になされたもので、水素製造装置におい
て、窒素ボンベや水素ボンベなどのボンベを必要としな
いので、コストの低減を図ることができ、またボンベの
設置スペースが不必要となるため装置のコンパクト化が
図れるとともに、面倒で危険をともなうボンベの取り替
え作業に要する時間も削減することができる水素製造装
置の起動方法およびその停止方法を提供するものであ
る。また、本発明は、ボンベを設置することができない
家庭用燃料電池や車載用燃料電池、およびその他の燃料
電池、オンサイト水素製造装置などで、水素ボンベや窒
素ボンベ、またバーナや、特別な電力などを使用せず、
安全な水素製造装置の起動方法およびその停止方法を提
供することを、その目的としている。
SUMMARY OF THE INVENTION The present invention has been made on the background of the prior art, and does not require a cylinder such as a nitrogen cylinder or a hydrogen cylinder in a hydrogen production apparatus. A method for starting and stopping a hydrogen production apparatus, which can reduce the size of the apparatus because the installation space for the cylinder is not required, and can reduce the time required for replacing the cylinder which is troublesome and dangerous. It provides a method. In addition, the present invention relates to a home fuel cell and a vehicle fuel cell in which a cylinder cannot be installed, other fuel cells, an on-site hydrogen production device, and the like. Without using
It is an object of the present invention to provide a method of starting a safe hydrogen production apparatus and a method of stopping the same.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、原料炭化水素の硫黄分を除去する脱硫部と、上記脱
硫部で脱硫された原料炭化水素に水蒸気を加えて水蒸気
改質することで水素含有ガスを生成する水蒸気改質部
と、上記水素含有ガス中の一酸化炭素を二酸化炭素およ
び水素に転換するガス変成部と、該ガス変成部でガス変
成された水素含有ガスに空気を混合して、上記水素含有
ガス中に残存する一酸化炭素を選択的に二酸化炭素に変
換して酸化除去し、CO除去水素含有ガスを製造するC
O選択酸化部と、水素含有の可燃性ガスと空気中の酸素
とを燃焼反応させて、上記水蒸気改質部を加熱する触媒
燃焼部とを備えた水素製造装置の起動方法において、上
記触媒燃焼部にCO除去水素含有ガスと空気とを供給し
て触媒燃焼反応を起こさせることで上記水蒸気改質部を
昇温させ、該水蒸気改質部の温度が水蒸気改質の開始温
度に達したとき、水蒸気および原料炭化水素の供給を開
始する水素製造装置の起動方法である。
According to a first aspect of the present invention, there is provided a desulfurizing section for removing a sulfur content of a raw hydrocarbon, and steam reforming by adding steam to the raw hydrocarbon desulfurized in the desulfurizing section. A steam reforming section that generates a hydrogen-containing gas by the above, a gas conversion section that converts carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen, and an air-converted hydrogen-containing gas in the gas conversion section. Is mixed to selectively convert carbon monoxide remaining in the hydrogen-containing gas into carbon dioxide and oxidize and remove the same, thereby producing a CO-removed hydrogen-containing gas.
The method for starting a hydrogen production apparatus, comprising: a catalytic oxidation unit for heating the steam reforming unit by causing a combustion reaction between an O selective oxidation unit and a combustible gas containing hydrogen and oxygen in air to heat the steam reforming unit. When the temperature of the steam reforming section is increased by supplying a CO-containing hydrogen-containing gas and air to the section to cause a catalytic combustion reaction, and the temperature of the steam reforming section reaches the steam reforming start temperature. , A method for starting a hydrogen production apparatus for starting supply of steam, raw material hydrocarbons.

【0006】請求項2に記載の発明は、上記CO除去水
素含有ガス中の一酸化炭素の濃度を10ppm以下とし
た請求項1記載の水素製造装置の起動方法である。
According to a second aspect of the present invention, there is provided the method for starting a hydrogen production apparatus according to the first aspect, wherein the concentration of carbon monoxide in the CO-removed hydrogen-containing gas is set to 10 ppm or less.

【0007】請求項3に記載の発明は、上記CO除去水
素含有ガスは、燃料電池に供給される請求項1または請
求項2記載の水素製造装置の起動方法である。
According to a third aspect of the present invention, there is provided a method for starting a hydrogen production apparatus according to the first or second aspect, wherein the CO-removed hydrogen-containing gas is supplied to a fuel cell.

【0008】請求項4に記載の発明は、上記脱硫部が、
原料炭化水素に水添脱硫用水素を添加したのち、上記原
料炭化水素中の硫黄分を脱硫して除去する水添脱硫部で
ある請求項1〜請求項3のうち、何れか1項に記載の水
素製造装置の起動方法である。
According to a fourth aspect of the present invention, the desulfurizing section comprises:
The hydrodesulfurization unit according to any one of claims 1 to 3, wherein the hydrodesulfurization unit is configured to desulfurize and remove sulfur in the raw material hydrocarbon after adding hydrogen for hydrodesulfurization to the raw material hydrocarbon. This is a method for starting the hydrogen production apparatus.

【0009】請求項5に記載の発明は、上記CO選択酸
化部から得られたCO除去水素含有ガスを貯蔵する水素
貯蔵部を有する請求項1〜請求項4のうち、何れか1項
に記載の水素製造装置の起動方法である。
According to a fifth aspect of the present invention, there is provided any one of the first to fourth aspects of the present invention, further comprising a hydrogen storage unit for storing the CO-removed hydrogen-containing gas obtained from the CO selective oxidation unit. This is a method for starting the hydrogen production apparatus.

【0010】請求項6に記載の発明は、原料炭化水素の
硫黄分を除去する脱硫部と、上記脱硫部で脱硫された原
料炭化水素に水蒸気を加えて水蒸気改質することで水素
含有ガスを生成する水蒸気改質部と、上記水素含有ガス
中の一酸化炭素を二酸化炭素および水素に転換するガス
変成部と、該ガス変成部でガス変成された水素含有ガス
に空気を混合して、水素含有ガス中に残存する一酸化炭
素を選択的に二酸化炭素に変換して酸化除去し、CO除
去水素含有ガスを製造するCO選択酸化部と、水素含有
の可燃性ガスと空気中の酸素とを燃焼反応させて、上記
水蒸気改質部を加熱する触媒燃焼部とを備えた水素製造
装置の停止方法において、上記CO選択酸化部からのC
O除去水素含有ガスは直接触媒燃焼部に供給し、上記C
O選択酸化部への空気の供給を停止し、上記触媒燃焼部
への空気の供給量を徐々に下げて、該触媒燃焼部から排
出された燃焼ガス中の酸素濃度を低下させ、該触媒燃焼
部からの燃焼ガスを水素製造装置の反応系内に供給し、
上記原料炭化水素と水蒸気の供給量を徐々に減らしなが
ら、この反応系内の可燃性ガスの濃度を低下させ、その
後、上記触媒燃焼部への空気の供給を停止し、上記反応
系内の温度が低下したのち上記水素製造装置を停止する
水素製造装置の停止方法である。
[0010] According to a sixth aspect of the present invention, there is provided a desulfurizing section for removing the sulfur content of the raw material hydrocarbon, and adding a steam to the raw material hydrocarbon desulfurized in the desulfurizing section to reform the hydrogen-containing gas by steam reforming. A steam reforming unit to be generated, a gas conversion unit that converts carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen, and air mixed with the gas-converted hydrogen-containing gas in the gas conversion unit A CO selective oxidizing unit for selectively converting carbon monoxide remaining in the contained gas to carbon dioxide and removing it by oxidation to produce a CO-removed hydrogen-containing gas, a hydrogen-containing combustible gas and oxygen in the air. A method for shutting down the hydrogen production apparatus comprising a catalytic combustion section for heating the steam reforming section by causing a combustion reaction,
O-removed hydrogen-containing gas is supplied directly to the catalytic combustion section,
The supply of air to the O selective oxidizing section is stopped, and the amount of air supplied to the catalytic combustion section is gradually reduced to reduce the oxygen concentration in the combustion gas discharged from the catalytic combustion section, thereby reducing the catalytic combustion. The combustion gas from the section is supplied into the reaction system of the hydrogen production device,
While gradually reducing the supply amounts of the raw material hydrocarbons and steam, the concentration of the combustible gas in the reaction system is reduced, and then the supply of air to the catalytic combustion section is stopped, and the temperature in the reaction system is reduced. This is a method for stopping the hydrogen production apparatus in which the above-mentioned hydrogen production apparatus is stopped after the temperature decreases.

【0011】請求項7に記載の発明は、上記CO除去水
素含有ガスは、燃料電池に供給される請求項6に記載の
水素製造装置の停止方法である。
The invention according to claim 7 is the method according to claim 6, wherein the hydrogen gas containing CO is supplied to a fuel cell.

【0012】請求項8に記載の発明は、上記脱硫部が、
原料炭化水素に水添脱硫用水素を添加したのち、上記原
料炭化水素中の硫黄分を脱硫して除去する水添脱硫部で
ある請求項6または請求項7に記載の水素製造装置の停
止方法である。
[0012] In the invention described in claim 8, the desulfurization unit is configured to:
The method for stopping a hydrogen production apparatus according to claim 6 or 7, wherein the hydrogen desulfurization unit is configured to desulfurize and remove sulfur in the raw material hydrocarbon after adding hydrogen for the hydrodesulfurization to the raw material hydrocarbon. It is.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、図面に基
づいて説明する。図1は、本発明の一実施の形態に係る
水素製造装置の起動方法を示す系統図である。図2は、
本発明の一実施の形態に係る水素製造装置の停止方法を
示す系統図である。図1において、符号10は、都市ガ
ス,LPG,灯油,メタノールなどを原料とする水素製
造装置である。なお、ここでは都市ガスを採用してい
る。以下、この水素製造装置10の各構成部を説明す
る。符号11は、都市ガス(原料炭化水素)を水添脱硫
部(脱硫部)12へ供給するブロアである。なお、ブロ
アの代わりに、圧縮機を用いてもよい。この水添脱硫部
12は、上流側の水素化触媒層と、下流側の脱硫剤層と
に分かれている。水添脱硫部12では、ブロア11によ
り供給された都市ガスに、後述するガス変成部15で製
造された水素含有ガスの一部を水添脱硫用水素として添
加することにより、都市ガス中の硫黄分が脱硫される。
なお、CO選択酸化部17で製造されたCO除去水素含
有ガスを水添脱硫用水素として用いてもよい。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a starting method of a hydrogen production apparatus according to one embodiment of the present invention. FIG.
FIG. 3 is a system diagram showing a method for stopping the hydrogen production apparatus according to one embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a hydrogen production apparatus using city gas, LPG, kerosene, methanol, or the like as a raw material. Here, city gas is used. Hereinafter, each component of the hydrogen production apparatus 10 will be described. Reference numeral 11 denotes a blower that supplies city gas (raw material hydrocarbon) to a hydrodesulfurization unit (desulfurization unit) 12. Note that a compressor may be used instead of the blower. The hydrodesulfurization unit 12 is divided into an upstream hydrogenation catalyst layer and a downstream desulfurization agent layer. In the hydrodesulfurization unit 12, by adding a part of the hydrogen-containing gas produced in the gas conversion unit 15 described later as hydrogen for hydrodesulfurization to the city gas supplied by the blower 11, the sulfur in the city gas is reduced. Minutes are desulfurized.
The CO-removed hydrogen-containing gas produced in the CO selective oxidizing section 17 may be used as hydrogen for hydrodesulfurization.

【0014】水素化触媒としては、ニッケル−モリブデ
ンまたはコバルト−モリブデンなどの酸化物、または硫
化物をシリカやアルミナなどの担体に担持させたNiM
ox触媒またはCoMox触媒などが挙げられる。低圧
下では、ニッケル−モリブデン触媒が好ましい。また、
脱硫剤としては、酸化亜鉛やニッケル系収着剤などが単
独または適宜担体に担持して用いられる。水素化触媒層
では、原料炭化水素中の硫黄分が水素化されて硫化水素
が生成される。その反応温度は、300〜400℃であ
る。脱硫剤層では、例えば、H2 S+ZnO=ZnS+
2 Oの反応が起きる。なお、脱硫後の原料炭化水素
は、水蒸気改質部13に供給される。ここでは、原料炭
化水素中の硫黄化合物を水添脱硫方法を採用したが、そ
のほか例えば硫黄化合物を、直接、触媒に吸着させる方
法でもよい。この場合の触媒としては、例えばニッケ
ル,亜鉛,銅などの金属やその酸化物、または硫化物、
さらにはゼオライトや活性炭などが挙げられる。活性炭
としては、ナトリウムなどのアルカリ金属を添着したも
の、臭素を吸着した活性炭などを使用することができ
る。
As the hydrogenation catalyst, NiM in which an oxide or sulfide such as nickel-molybdenum or cobalt-molybdenum is supported on a carrier such as silica or alumina is used.
ox catalyst or CoMox catalyst. Under low pressure, nickel-molybdenum catalysts are preferred. Also,
As the desulfurizing agent, zinc oxide, a nickel-based sorbent, or the like may be used alone or appropriately supported on a carrier. In the hydrogenation catalyst layer, sulfur in the raw hydrocarbon is hydrogenated to generate hydrogen sulfide. The reaction temperature is 300-400 ° C. In the desulfurizing agent layer, for example, H 2 S + ZnO = ZnS +
The reaction of H 2 O takes place. The raw hydrocarbon after desulfurization is supplied to the steam reforming section 13. Here, a method of hydrodesulfurizing a sulfur compound in a raw material hydrocarbon is employed, but a method of directly adsorbing a sulfur compound to a catalyst, for example, may also be used. Examples of the catalyst in this case include metals such as nickel, zinc, and copper, and oxides or sulfides thereof.
Furthermore, zeolite, activated carbon, etc. are mentioned. As the activated carbon, those impregnated with an alkali metal such as sodium, activated carbon adsorbing bromine, and the like can be used.

【0015】この水蒸気改質部13は、脱硫された都市
ガスに水または水蒸気を添加し、さらに改質触媒を接触
させて水蒸気改質することで、高濃度水素含有ガスを製
造する。この水蒸気改質部13には、ルテニウムまたは
ニッケルなどの元素をアルミナ,シリカなどの担体に担
持した改質触媒が充填されている。このうち、ルテニウ
ム系触媒の方が、炭素数の多い灯油などの原料を使用す
る場合は、炭素析出を抑制できるので好ましい。水蒸気
改質部13では、脱硫された炭化水素の水蒸気改質が行
なわれる。ここでの反応を、次に示す。
The steam reforming section 13 produces a high-concentration hydrogen-containing gas by adding water or steam to the desulfurized city gas and bringing the reformed catalyst into contact with the steam to reform the steam. The steam reforming section 13 is filled with a reforming catalyst in which an element such as ruthenium or nickel is supported on a carrier such as alumina or silica. Among these, a ruthenium-based catalyst is preferable when a raw material such as kerosene having a large number of carbon atoms is used, because carbon deposition can be suppressed. In the steam reforming section 13, steam reforming of the desulfurized hydrocarbon is performed. The reaction here is shown below.

【0016】符号14は、水蒸気改質部13の周囲に外
装されて、水素と空気中の酸素とを触媒燃焼させる触媒
燃焼部である。なお、触媒燃焼部14は水蒸気改質部1
3に内装されていてもよく、さらには、伝熱性の高い熱
交換型の反応器などでもよい。触媒燃焼部14の触媒と
しては、アルミナなどに白金,パラジウムなどを担持し
た触媒が用いられる。水素製造装置10の起動時の水蒸
気改質部13の温度は、380℃以上、例えば380〜
500℃である。380℃未満では反応転化率が低く、
また水素,メタン,一酸化炭素などを含む可燃性ガスを
触媒燃焼部で再利用する際に、この可燃性ガスの酸化反
応が進まないという不都合が生じる。そして、最終的に
は800℃位が好ましい。
Reference numeral 14 denotes a catalytic combustion section which is provided around the steam reforming section 13 and catalytically combusts hydrogen and oxygen in the air. Note that the catalytic combustion unit 14 is a steam reforming unit 1
3, and may be a heat exchange type reactor having high heat conductivity. As the catalyst of the catalytic combustion unit 14, a catalyst in which platinum, palladium, or the like is supported on alumina or the like is used. The temperature of the steam reforming unit 13 at the time of starting the hydrogen production device 10 is 380 ° C. or more, for example, 380 to 380 ° C.
500 ° C. If it is lower than 380 ° C., the reaction conversion rate is low,
Further, when a combustible gas containing hydrogen, methane, carbon monoxide and the like is reused in the catalytic combustion section, there is a disadvantage that the oxidation reaction of the combustible gas does not proceed. And finally, about 800 ° C. is preferable.

【0017】符号15は、水蒸気改質部13で製造され
た高濃度水素含有ガス中の一酸化炭素を、二酸化炭素お
よび水素に転換する変成触媒が充填されたガス変成部で
ある。変成触媒としては、鉄−クロム(例えば、Fe2
3 −Cr2 3 系触媒)や、銅−亜鉛などの酸化物で
ある銅系触媒が用いられる。反応温度は、Fe2 3
Cr2 3 系触媒の場合では、300〜450℃、銅系
触媒については200〜250℃までが好ましい。ここ
での反応は、CO+H2 O=CO2 +H2 となる。
Reference numeral 15 denotes a gas conversion unit filled with a conversion catalyst for converting carbon monoxide in the high-concentration hydrogen-containing gas produced in the steam reforming unit 13 into carbon dioxide and hydrogen. As the shift catalyst, iron-chromium (for example, Fe 2
O 3 -Cr 2 O 3 catalyst) and, copper - copper-based catalyst is an oxide such as zinc is used. The reaction temperature was Fe 2 O 3
In the case of a Cr 2 O 3 catalyst, the temperature is preferably 300 to 450 ° C., and for the copper catalyst, the temperature is preferably 200 to 250 ° C. The reaction here is CO + H 2 O = CO 2 + H 2 .

【0018】符号17は、ガス変成部15でガス変成さ
れ、KOドラム16で水蒸気が除去された水素含有ガス
に空気を混合して、高濃度水素含有ガス中に残存する一
酸化炭素を選択的に二酸化炭素に変換して酸化除去し、
高濃度水素(CO除去水素含有ガス)を製造するCO選
択酸化部である。ここでいうCO選択酸化法とは、CO
を含み水素を主成分とする改質ガスに、空気などの酸化
剤を添加して金属触媒上でCOを選択的に酸化除去する
方法である。反応器はシンプルで、球状やペレット状な
どの触媒を反応管に詰めるか、ハニカムに触媒を担持し
たものを用いる。なお、供給する酸素量については、C
Oの量の0.5〜4倍、好ましくは1〜2倍(モル比)
の酸素を供給するのが一般的である。水蒸気改質部13
を出た直後の改質ガスには、10%程度の一酸化炭素が
含まれるので、ガス変成後、CO選択酸化部17でCO
濃度を10ppmレベルにまで低減する。この理由は、
後述する固体高分子型燃料電池(PEFC)19に供給
する高濃度水素に含まれるCOが電極触媒に吸着して水
素の反応サイトを塞いでしまい、電池性能を低下させて
しまうからである。
Reference numeral 17 denotes a hydrogen-containing gas from which gas has been converted in the gas conversion section 15 and water vapor has been removed by the KO drum 16, and air is mixed therewith to selectively remove carbon monoxide remaining in the high-concentration hydrogen-containing gas. Is converted to carbon dioxide and oxidized and removed.
This is a CO selective oxidizing unit for producing high-concentration hydrogen (CO-containing hydrogen-containing gas). Here, the CO selective oxidation method refers to CO
This is a method for selectively oxidizing and removing CO on a metal catalyst by adding an oxidizing agent such as air to a reformed gas containing hydrogen as a main component. The reactor is simple, and a catalyst in the form of a sphere or a pellet is packed in a reaction tube, or a catalyst carrying a honeycomb is used. The amount of oxygen to be supplied is C
0.5 to 4 times, preferably 1 to 2 times (molar ratio) the amount of O
Is generally supplied. Steam reformer 13
The reformed gas immediately after leaving the gas contains about 10% of carbon monoxide.
Reduce the concentration to the 10 ppm level. The reason for this is
This is because CO contained in high-concentration hydrogen supplied to a polymer electrolyte fuel cell (PEFC) 19 described later adsorbs on the electrode catalyst and blocks a hydrogen reaction site, thereby deteriorating cell performance.

【0019】CO選択酸化部17の触媒としては、例え
ば、アルミナなどに、白金,ルテニウム,パラジウム,
ロジウムなどを担持した触媒が用いられる。CO選択酸
化部17では、これらの触媒に一酸化炭素を選択的に吸
着させて、少量の空気を添加して一酸化炭素を二酸化炭
素に変換するもので、反応温度は100〜200℃であ
る。
As a catalyst of the CO selective oxidizing section 17, for example, platinum, ruthenium, palladium,
A catalyst supporting rhodium or the like is used. In the CO selective oxidation section 17, carbon monoxide is selectively adsorbed on these catalysts, and a small amount of air is added to convert carbon monoxide into carbon dioxide. The reaction temperature is 100 to 200 ° C. .

【0020】なお、上記符号16は、CO選択酸化部1
7でCOを酸化除去したCO除去水素含有ガスを冷却し
て、このガス中に含まれる水分を凝縮させて除去するK
O(ノックアウト)ドラムである。
The reference numeral 16 denotes the CO selective oxidizing unit 1
The CO-removed hydrogen-containing gas obtained by oxidizing and removing CO in step 7 is cooled, and the water contained in the gas is condensed and removed.
O (knockout) drum.

【0021】符号18は、CO選択酸化部17で精製さ
れた高濃度水素(CO除去水素含有ガス)を貯蔵する水
素貯蔵タンク(水素貯蔵部)である。この高濃度水素
(CO除去水素含有ガス)には、水素のほか、メタン,
二酸化炭素などが含まれており、水素濃度は65%〜7
5%くらいである。水素貯蔵タンク18は、起動時に触
媒燃焼用および水添ガス用に必要な量の水素を貯蔵でき
るものとし、コンパクト化を図るため、水素吸蔵合金が
充填されたタンクが好ましい。
Reference numeral 18 denotes a hydrogen storage tank (hydrogen storage unit) for storing high-concentration hydrogen (gas containing CO-removed hydrogen) purified in the CO selective oxidation unit 17. This high-concentration hydrogen (CO-removed hydrogen-containing gas) includes hydrogen, methane,
It contains carbon dioxide, etc., and the hydrogen concentration is 65% ~ 7
About 5%. The hydrogen storage tank 18 is capable of storing a necessary amount of hydrogen for catalytic combustion and hydrogenation gas at the time of startup, and is preferably a tank filled with a hydrogen storage alloy in order to achieve compactness.

【0022】符号19は、水素貯蔵タンク18に一時貯
蔵されたCO除去水素含有ガスが供給される固体高分子
型燃料電池(以下、燃料電池19という)である。その
用途としては、例えば家庭用燃料電池,車載用燃料電池
などが挙げられる。この燃料電池19は、電解質材料を
有している。この電解質材料は、一般にイオン交換基と
してスルフォン酸基をもつ高分子イオン交換膜を有す
る。セルに水素(燃料)、酸素(酸化剤)を供給する
と、次式の反応によって電気エネルギーを外部へ取り出
すことができる。
Reference numeral 19 denotes a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell 19) to which the CO-containing hydrogen-containing gas temporarily stored in the hydrogen storage tank 18 is supplied. As the use, for example, a home fuel cell, an in-vehicle fuel cell and the like can be mentioned. This fuel cell 19 has an electrolyte material. This electrolyte material generally has a polymer ion exchange membrane having a sulfonic acid group as an ion exchange group. When hydrogen (fuel) and oxygen (oxidant) are supplied to the cell, electric energy can be extracted to the outside by the following reaction.

【0023】 H2 →2H+ +2e- (1) 1/2O2 +2H+ +2e- →H2 O (2) (全反応)H2 +1/2O2 →H2 O (3) 式(1)によって生成された水素イオンは、高分子イオ
ン交換膜中のイオン交換基を介して水(xH2 O)とと
もに移動し、式(2)のように酸素と反応して水(H2
O)を生成する。なお、燃料電池19の酸素側から排出
された空気(酸素)は触媒燃焼部14に供給して支燃ガ
スとして用いてもよい。CO選択酸化部17でCO濃度
を10ppm以下に低減されたCO除去水素含有ガス
は、水分調整されたのちに燃料電池19に供給され、こ
こで水を生成しながら電気エネルギーが得られる。この
CO選択酸化部17で製造されたCO除去水素含有ガス
中のCO濃度は10ppm以下である。そのため、固体
高分子型燃料電池19の電極が一酸化炭素によって被毒
され、電池性能が低下する恐れが解消される。なお、燃
料電池19からの余剰分のCO除去水素含有ガスは、触
媒燃焼部14に供給し燃焼される。
H 2 → 2H + + 2e (1) 1 / 2O 2 + 2H + + 2e → H 2 O (2) (All reactions) H 2 + 1 / 2O 2 → H 2 O (3) According to the equation (1) The generated hydrogen ions move together with water (xH 2 O) via ion exchange groups in the polymer ion exchange membrane, and react with oxygen as shown in formula (2) to form water (H 2 O).
O). The air (oxygen) discharged from the oxygen side of the fuel cell 19 may be supplied to the catalytic combustion unit 14 and used as a supporting gas. The CO-removed hydrogen-containing gas whose CO concentration has been reduced to 10 ppm or less in the CO selective oxidizing section 17 is supplied to the fuel cell 19 after water content adjustment, where electric energy is obtained while generating water. The CO concentration in the CO-removed hydrogen-containing gas produced in the CO selective oxidizing section 17 is 10 ppm or less. Therefore, the possibility that the electrodes of the polymer electrolyte fuel cell 19 are poisoned by carbon monoxide and the cell performance is reduced is eliminated. The surplus CO-removed hydrogen-containing gas from the fuel cell 19 is supplied to the catalytic combustion unit 14 and burned.

【0024】記号E1は、ブロア11から水添脱硫部1
2に供給される都市ガスと、触媒燃焼部14からの燃焼
ガスとを熱交換して、都市ガスを300〜400℃の水
添脱硫温度まで高める熱交換器である。記号E2は、水
蒸気改質部13に供給ポンプPにより供給される水と、
触媒燃焼部14からの燃焼ガスとを熱交換して、水蒸気
改質用の水蒸気を発生させる熱交換器である。記号E3
は、CO選択酸化部17でCOを酸化除去されたガス
(100〜200℃)と、CO選択酸化部17でCO選
択酸化され水素貯蔵タンク18,燃料電池19を迂回し
触媒燃焼部14へ供給されるCO除去水素含有ガスおよ
び燃料電池19から触媒燃焼部14に供給される余剰分
のCO除去水素含有ガスとを熱交換する熱交換器であ
る。熱交換器E3により、触媒燃焼部14に再利用され
る水素,メタン,一酸化炭素などを含む可燃性ガスは、
380℃以上に加熱・昇温される。380℃未満では、
メタンなどの可燃性ガスの酸化反応が円滑に行われない
からである。
The symbol E1 indicates that the blower 11 is
This is a heat exchanger that heat-exchanges the city gas supplied to 2 and the combustion gas from the catalytic combustion unit 14 to increase the city gas to a hydrodesulfurization temperature of 300 to 400 ° C. The symbol E2 represents water supplied to the steam reforming section 13 by the supply pump P,
The heat exchanger exchanges heat with the combustion gas from the catalytic combustion unit 14 to generate steam for steam reforming. Symbol E3
Is a gas (100 to 200 ° C.) from which CO is oxidized and removed by the CO selective oxidizing unit 17 and is supplied to the catalytic burning unit 14 by being selectively oxidized by the CO in the CO selective oxidizing unit 17 and bypassing the hydrogen storage tank 18 and the fuel cell 19 This is a heat exchanger for exchanging heat between the CO-removed hydrogen-containing gas and the surplus CO-removed hydrogen-containing gas supplied from the fuel cell 19 to the catalytic combustion unit 14. The combustible gas containing hydrogen, methane, carbon monoxide, etc., which is reused in the catalytic combustion unit 14 by the heat exchanger E3,
Heated to 380 ° C or higher and heated. Below 380 ° C,
This is because the oxidation reaction of a combustible gas such as methane is not performed smoothly.

【0025】なお、ここでの水素製造装置10は、ブロ
ア11,水添脱硫部12,水蒸気改質部13,触媒燃焼
部14,ガス変成部15,CO選択酸化部17,水素貯
蔵タンク18より構成されている。しかしながら、水素
製造装置10をメタノール燃料型PEFCシステムとし
た場合には、水蒸気改質部13の後段にガス変成部15
を設けなくてもよい。図中、符号20は、4方弁形式の
流路切り換え装置(以下、4方弁という)である。
The hydrogen production apparatus 10 includes a blower 11, a hydrodesulfurization unit 12, a steam reforming unit 13, a catalytic combustion unit 14, a gas conversion unit 15, a CO selective oxidizing unit 17, and a hydrogen storage tank 18. It is configured. However, when the hydrogen production apparatus 10 is a methanol fuel type PEFC system, the gas conversion section 15 is provided after the steam reforming section 13.
May not be provided. In the figure, reference numeral 20 denotes a four-way valve type flow path switching device (hereinafter, referred to as a four-way valve).

【0026】上記構成の水素製造装置10の起動方法お
よびその停止方法について、以下詳述する。まず、図1
に基づき、起動時の操作を説明する。図1に示すよう
に、バルブV10を開き、系外の空気を4方弁20を経
て触媒燃焼部14に供給する。次いで、バルブV8を開
いて、水素吸蔵合金が充填された水素貯蔵タンク18か
ら高濃度水素(CO除去水素含有ガス)を、4方弁20
を介して触媒燃焼部14に供給する。このようにして、
空気と水素が供給されることで、この触媒燃焼部14内
で触媒燃焼反応が行われる。触媒燃焼部14の燃焼ガス
(排ガス)は、熱交換器E1,E2により熱交換され、
その後、バルブV14を通って系外へ排出される。触媒
燃焼部14内での燃焼反応が進み水蒸気改質部13の温
度(380〜800℃)が安定したなら、バルブV3を
開いて、供給ポンプPから圧送された水が熱交換器E2
によって水蒸気となり、水蒸気改質部13に供給され
る。それから、バルブV2を開き、水素貯蔵タンク18
より水添脱硫用水素を水添脱硫部12に供給し、同様
に、V1を開いて都市ガス(原料炭化水素)を水添脱硫
部12に供給し、ブロア11を起動する。これにより、
水素貯蔵タンク18からの水添脱硫用水素が、ブロア1
1によって水添脱硫部12に供給される都市ガスに添加
される。その後、都市ガスおよび水添脱硫用水素は、熱
交換器E1によって熱交換され、300〜400℃まで
加熱・昇温される。
The method of starting and stopping the hydrogen production apparatus 10 having the above configuration will be described in detail below. First, FIG.
The operation at the time of startup will be described based on FIG. As shown in FIG. 1, the valve V10 is opened, and air outside the system is supplied to the catalytic combustion unit 14 via the four-way valve 20. Next, the valve V8 is opened and high-concentration hydrogen (CO-removed hydrogen-containing gas) is supplied from the hydrogen storage tank 18 filled with the hydrogen storage alloy to the four-way valve 20.
To the catalytic combustion unit 14 via In this way,
The supply of air and hydrogen causes a catalytic combustion reaction to take place in the catalytic combustion section 14. The combustion gas (exhaust gas) of the catalytic combustion unit 14 is heat-exchanged by the heat exchangers E1 and E2,
After that, it is discharged out of the system through the valve V14. When the combustion reaction in the catalytic combustion section 14 proceeds and the temperature (380 to 800 ° C.) of the steam reforming section 13 is stabilized, the valve V3 is opened, and the water pumped from the supply pump P is supplied to the heat exchanger E2.
Is converted into steam and supplied to the steam reforming section 13. Then, the valve V2 is opened and the hydrogen storage tank 18 is opened.
Further, hydrogen for hydrodesulfurization is supplied to the hydrodesulfurization unit 12, and similarly, V1 is opened to supply city gas (raw material hydrocarbon) to the hydrodesulfurization unit 12, and the blower 11 is started. This allows
Hydrogen desulfurization hydrogen from the hydrogen storage tank 18 is supplied to the blower 1
1 is added to the city gas supplied to the hydrodesulfurization unit 12. Thereafter, the city gas and the hydrogen for hydrodesulfurization are heat-exchanged by the heat exchanger E1, and heated and heated to 300 to 400 ° C.

【0027】次いで、都市ガスを水添脱硫部12に徐々
に供給しながら、水蒸気改質部13における改質反応を
開始して高濃度水素含有ガスを製造する。この高濃度水
素含有ガスはガス変成部15に供給されてガス中の一酸
化炭素が変成触媒により、二酸化炭素および水素に転換
される。さらに、バルブV9を開弁してCO選択酸化部
17へ水分除去後の高濃度水素含有ガスおよび空気を供
給し、CO選択酸化反応を開始させる。CO除去水素含
有ガスは、熱交換器E3で冷却され、このガス中に含ま
れる水分がKO(ノックアウト)ドラム16によって凝
縮除去される。その後、バルブV12を開いて、CO選
択酸化部17で得られたCO除去水素含有ガスの水素含
有量が安定するまで、熱交換器E3、4方弁20を通し
て触媒燃焼器14に供給し燃焼させる。
Next, while gradually supplying the city gas to the hydrodesulfurization unit 12, the reforming reaction in the steam reforming unit 13 is started to produce a high-concentration hydrogen-containing gas. The high-concentration hydrogen-containing gas is supplied to the gas shift section 15, and carbon monoxide in the gas is converted into carbon dioxide and hydrogen by the shift catalyst. Further, the valve V9 is opened to supply the high-concentration hydrogen-containing gas and the air from which water has been removed to the CO selective oxidizing section 17, thereby starting the CO selective oxidizing reaction. The CO-removed hydrogen-containing gas is cooled by the heat exchanger E3, and the water contained in the gas is condensed and removed by the KO (knockout) drum 16. Thereafter, the valve V12 is opened, and the hydrogen is supplied to the catalytic combustor 14 through the heat exchanger E3 and the four-way valve 20 and burned until the hydrogen content of the CO-removed hydrogen-containing gas obtained in the CO selective oxidizing section 17 is stabilized. .

【0028】反応系内の反応を安定させながら、バルブ
V4,V5を開け、バルブV2,バルブV8を閉弁す
る。バルブV5を開き、バルブV8を閉めることによっ
て、CO選択酸化部17からCO濃度が10ppm以下
に低減された高濃度水素(CO除去水素含有ガス)が水
素貯蔵タンク18に供給されるとともに、バルブV8を
閉弁することで、水素貯蔵タンク18から触媒燃焼部1
4へ向かう高濃度水素(CO除去水素含有ガス)の供給
が停止される。また、バルブV4を開弁し、バルブV2
を閉弁することにより、水素貯蔵タンク18から水添脱
硫部12へ向かう水添脱硫用水素の供給が停止されると
ともに、ガス変成し水分除去された高濃度水素含有ガス
が水添脱硫用水素として水添脱硫部12に供給される。
そして、水添脱硫部12内および水蒸気改質部13内で
の反応が安定し、CO選択酸化部17での高濃度水素
(CO除去水素含有ガス)の精製が安定してから、バル
ブV6,V7,V11を開き、バルブV12を閉じる。
このようにして、バルブV6を介して水素貯蔵タンク1
8から燃料電池19に高濃度水素(CO除去水素含有ガ
ス)が供給される。一方、バルブV11を介して、系外
の空気が燃料電池19に供給される。これにより、燃料
電池19内でイオン反応が発生して、外部へ電気エネル
ギーを取り出すことができる。さらに、バルブV7を介
して、燃料電池19から余剰分の高濃度水素(CO除去
水素含有ガス)が、熱交換器E3、4方弁20を通って
触媒燃焼部14へ供給される。
While stabilizing the reaction in the reaction system, the valves V4 and V5 are opened, and the valves V2 and V8 are closed. By opening the valve V5 and closing the valve V8, high-concentration hydrogen (CO-removed hydrogen-containing gas) with the CO concentration reduced to 10 ppm or less is supplied from the CO selective oxidizing section 17 to the hydrogen storage tank 18, and the valve V8 is opened. By closing the valve, the catalytic combustion unit 1 is removed from the hydrogen storage tank 18.
The supply of high-concentration hydrogen (CO-containing hydrogen-containing gas) toward 4 is stopped. Further, the valve V4 is opened, and the valve V2 is opened.
By closing the valve, the supply of hydrogen for desulfurization from the hydrogen storage tank 18 to the hydrodesulfurization unit 12 is stopped, and the high-concentration hydrogen-containing gas from which gas has been transformed and water has been removed is converted to hydrogen-desulfurized hydrogen. Is supplied to the hydrodesulfurization unit 12.
Then, the reaction in the hydrodesulfurization unit 12 and the steam reforming unit 13 is stabilized, and the purification of high-concentration hydrogen (CO-removed hydrogen-containing gas) in the CO selective oxidation unit 17 is stabilized. V7 and V11 are opened, and the valve V12 is closed.
Thus, the hydrogen storage tank 1 via the valve V6
From 8, high-concentration hydrogen (CO-removed hydrogen-containing gas) is supplied to the fuel cell 19. On the other hand, air outside the system is supplied to the fuel cell 19 via the valve V11. As a result, an ionic reaction occurs in the fuel cell 19, and electric energy can be extracted to the outside. Further, excess high-concentration hydrogen (CO-removed hydrogen-containing gas) is supplied from the fuel cell 19 to the catalytic combustion unit 14 through the heat exchanger E3 and the four-way valve 20 via the valve V7.

【0029】この水素製造装置10の起動時には、この
ように触媒燃焼方式を採用することで、あらかじめ水素
貯蔵タンク18に貯蔵された高濃度水素(CO除去水素
含有ガス)を触媒燃焼部14に供給するだけで、容易に
系内の水素製造の各反応を開始させることができる。同
様に水添脱硫用水素も水素貯蔵タンク18より供給する
ことができる。これによりに、従来必要とされていた脱
硫用の水素ボンベおよび起動時の窒素ボンベが不要とな
る。その結果、ボンベの設置面積の低減や運転コストの
低減など、さらにはボンベ交換作業が不要になるなどの
効果が得られる。また、CO選択酸化部17で製造され
た高濃度水素(CO除去水素含有ガス)のCO濃度が1
0ppm以下であるので、燃料電池19の電極触媒の一
酸化炭素による被毒の影響も少なくなり、電池性能の低
下も防ぐことができる。なお、図中のバルブV15は、
この起動時および運転時において常時閉じている。
When the hydrogen production apparatus 10 is started, by adopting the catalytic combustion method as described above, high-concentration hydrogen (CO-containing hydrogen-containing gas) previously stored in the hydrogen storage tank 18 is supplied to the catalytic combustion section 14. By simply doing so, each reaction of hydrogen production in the system can be easily started. Similarly, hydrogen for hydrodesulfurization can be supplied from the hydrogen storage tank 18. This eliminates the need for a conventional hydrogen cylinder for desulfurization and a nitrogen cylinder for start-up. As a result, it is possible to obtain effects such as a reduction in the installation area of the cylinder and a reduction in the operation cost, and further, the need to replace the cylinder. Further, the CO concentration of the high-concentration hydrogen (CO-removed hydrogen-containing gas) produced in the CO selective oxidation section 17 is 1
Since it is 0 ppm or less, the influence of poisoning by the carbon monoxide of the electrode catalyst of the fuel cell 19 is reduced, and a decrease in cell performance can be prevented. The valve V15 in the figure is
It is always closed during this start-up and operation.

【0030】次に、図2に基づいて、停止時の操作を説
明する。図2に示すように、まずバルブV6,V7,V
11を閉じ、水素貯蔵タンク18から燃料電池19への
高濃度水素(CO除去水素含有ガス)の供給および系外
からの空気の供給を停止し、燃料電池19内でのイオン
反応を停止させるとともに、バルブV5を閉じて、バル
ブV12を開き、CO選択酸化部17からの高濃度水素
(CO除去水素含有ガス)を熱交換器E3で昇温し、4
方弁20を介して触媒燃焼部14に供給し燃焼する。次
に、バルブV9を閉じて、CO選択酸化部17への空気
の供給を停止し、CO選択酸化反応を停止する。それか
ら、バルブV10を調整して、系外からの空気の供給量
を徐々に絞り、触媒燃焼部14からの燃焼ガス中の酸素
濃度をゼロにする。なお、このとき、燃焼ガスの酸素濃
度の調整や急激な温度低下を防止するため、バルブV8
および必要ならばバルブV13を調整することで、水素
貯蔵タンク18内の高濃度水素(CO除去水素含有ガ
ス)や都市ガスを補助燃料としてこの触媒燃焼部14へ
供給してもよい。このような酸素濃度の調整は、触媒燃
焼部14に供給される空気の量を徐々に減らしていく
際、例えばそれが不十分な場合には、触媒燃焼部14の
燃焼ガス中に誤って酸素が混入されてしまい、水蒸気改
質部13などの系内へ酸素が含まれたり、急激な温度低
下を防止するためである。続いて、バルブV1を調整す
ることで、都市ガスの供給量を徐々に落としながらバル
ブV15を開き、触媒燃焼部14からの燃焼ガスをブロ
ア11で反応系内へ徐々に供給して循環させる。このと
き、燃焼ガスの排気バルブであるバルブV14を閉めて
燃焼ガスの排気を停止する。
Next, the operation at the time of stop will be described with reference to FIG. As shown in FIG. 2, first, valves V6, V7, V
11 is closed, the supply of high-concentration hydrogen (CO-containing hydrogen-containing gas) from the hydrogen storage tank 18 to the fuel cell 19 and the supply of air from outside the system are stopped, and the ion reaction in the fuel cell 19 is stopped. Then, the valve V5 is closed, the valve V12 is opened, and the high-concentration hydrogen (CO-removed hydrogen-containing gas) from the CO selective oxidizing unit 17 is heated in the heat exchanger E3,
The fuel is supplied to the catalytic combustion section 14 through the way valve 20 and burned. Next, the valve V9 is closed, the supply of air to the CO selective oxidizing unit 17 is stopped, and the CO selective oxidizing reaction is stopped. Then, by adjusting the valve V10, the supply amount of air from outside the system is gradually reduced, and the oxygen concentration in the combustion gas from the catalytic combustion unit 14 is reduced to zero. At this time, in order to adjust the oxygen concentration of the combustion gas and to prevent a rapid temperature drop, the valve V8
If necessary, the valve V13 may be adjusted to supply high-concentration hydrogen (CO-containing hydrogen-containing gas) or city gas in the hydrogen storage tank 18 to the catalytic combustion unit 14 as auxiliary fuel. Such an adjustment of the oxygen concentration is necessary when the amount of air supplied to the catalytic combustion unit 14 is gradually reduced. For example, when the amount of air is insufficient, the oxygen This is to prevent oxygen from being mixed into the system such as the steam reforming unit 13 and a sharp drop in temperature. Subsequently, by adjusting the valve V1, the valve V15 is opened while gradually reducing the supply amount of the city gas, and the combustion gas from the catalytic combustion unit 14 is gradually supplied to the reaction system by the blower 11 and circulated. At this time, the exhaust of the combustion gas is stopped by closing the valve V14 which is the exhaust valve of the combustion gas.

【0031】そして、バルブV2,V4およびバルブV
3を調整することで、水素貯蔵タンク18から系内への
水添脱硫用水素の供給、および、供給ポンプPによる系
内への水蒸気の供給を徐々に減らしながら、反応系内
(水添脱硫部12、水蒸気改質部13、触媒燃焼部1
4、ガス変成部15、CO選択酸化部17)の可燃性ガ
ス濃度を低下させる。最終的に、バルブV1を完全に閉
めて都市ガスの供給を停止する。さらに、バルブV2,
V3,V4、さらに必要であれば、バルブV8,V13
を閉弁して、水蒸気の供給、水添脱硫用水素の供給、補
助燃料の触媒燃焼部への供給を停止する。
The valves V2 and V4 and the valve V
3, the supply of hydrogen for desulfurization from the hydrogen storage tank 18 into the system and the supply of steam to the system by the supply pump P are gradually reduced while the hydrogen in the reaction system (hydrodesulfurization Unit 12, steam reforming unit 13, catalytic combustion unit 1
4. Reduce the flammable gas concentration in the gas conversion section 15 and the CO selective oxidation section 17). Finally, the supply of the city gas is stopped by completely closing the valve V1. Further, the valve V2
V3, V4 and, if necessary, valves V8, V13
To shut off the supply of steam, the supply of hydrogen for hydrodesulfurization, and the supply of auxiliary fuel to the catalytic combustion section.

【0032】続いて、系内の可燃性ガスを、完全に窒
素、二酸化炭素および水蒸気に置換し、バルブV10を
閉弁して触媒燃焼部14への空気の供給を停止する。さ
らに、系内(水蒸気改質部13)の温度が100℃以下
まで低下したなら、ブロア11を停止し、全ての運転を
停止する。なお、停止時の温度は、系内の水分が除去で
きるので、常温まで下げるのが好ましい。なお、系内の
ガスをパージする必要がある場合には、バルブV14を
開放し、パージが終了したなら全てのバルブV1〜V1
5を閉弁する。このとき、系内の圧力を保ったまま全て
のバルブV1〜V15を閉弁すれば、停止中に外部から
空気が系内に流れ込むことがない。その結果、次回の起
動操作時に触媒の酸化を防止することができる。
Subsequently, the combustible gas in the system is completely replaced with nitrogen, carbon dioxide and water vapor, and the valve V10 is closed to stop the supply of air to the catalytic combustion unit 14. Further, when the temperature in the system (steam reforming section 13) drops to 100 ° C. or less, the blower 11 is stopped, and all operations are stopped. In addition, the temperature at the time of the stop is preferably lowered to room temperature because water in the system can be removed. When it is necessary to purge the gas in the system, the valve V14 is opened, and when the purge is completed, all the valves V1 to V1 are opened.
5 is closed. At this time, if all the valves V1 to V15 are closed while maintaining the pressure in the system, air does not flow into the system from outside during stoppage. As a result, oxidation of the catalyst can be prevented at the next start operation.

【0033】以上のように、この水素製造装置10のシ
ステム停止時においては、徐々に可燃性ガスの濃度を下
げながら、酸素を含まない燃焼ガス(排ガス)を反応系
内へリサイクルさせる。これにより、最終的に窒素と二
酸化炭素と水蒸気に変換され停止する。その結果、各触
媒の活性が低下したり、特にルテニウム系の触媒などの
場合には高温で猛毒を発生するなどの不具合がある触媒
の酸化を防止したり、さらに置換用のボンベなどが不要
となる。また、この触媒燃焼方式では低濃度でも酸化反
応を行えるため、停止操作時に可燃性ガスの濃度を徐々
に減らしていく際に、不完全燃焼を防止し、燃焼反応を
継続することができる。
As described above, when the system of the hydrogen production apparatus 10 is stopped, the combustion gas (exhaust gas) containing no oxygen is recycled into the reaction system while gradually lowering the concentration of the flammable gas. Thereby, it is finally converted into nitrogen, carbon dioxide, and water vapor and stopped. As a result, the activity of each catalyst is reduced, especially in the case of ruthenium-based catalysts, etc., which prevents oxidation of catalysts that have problems such as high toxicity at high temperatures, and eliminates the need for replacement cylinders. Become. In addition, in this catalytic combustion method, the oxidation reaction can be performed even at a low concentration. Therefore, when the concentration of the flammable gas is gradually reduced during the stop operation, incomplete combustion can be prevented and the combustion reaction can be continued.

【0034】[0034]

【発明の効果】本発明にあっては、窒素ボンベ、水素ボ
ンベを使用せずに水素製造装置の起動・停止が行えるの
で、運転コストや設置面積の低減、危険な窒素および水
素ボンベ交換などの作業が不要となるといった効果を得
ることができる。また、起動・停止の操作は、シーケン
スを組むことで自動化も行うことができる。水蒸気改質
部の昇温が触媒燃焼方式によるため、装置のコンパクト
化、低NOx 化などの効果も得ることができる。
According to the present invention, the hydrogen production apparatus can be started / stopped without using a nitrogen cylinder and a hydrogen cylinder, so that the operation cost and installation area can be reduced, and dangerous nitrogen and hydrogen cylinder replacement can be performed. The effect that work becomes unnecessary can be obtained. In addition, the start / stop operation can be automated by forming a sequence. Since the temperature of the steam reforming section is raised by the catalytic combustion method, it is possible to obtain effects such as downsizing of the apparatus and reduction of NOx.

【0035】また、水素精製部として、CO選択酸化法
を採用したので、比較的低温で常圧でも使用できる。さ
らに、固体高分子型燃料電池にCO濃度が10ppm以
下の高濃度水素(CO除去水素含有ガス)を供給できる
ので、一酸化炭素による電極触媒の被毒も少なく、電池
の性能低下を防止することができる。さらには、車載用
や家庭用の燃料電池向けなどの水素製造装置でボンベを
置けない場合にも対応できる。
Also, since the CO selective oxidation method is employed as the hydrogen purification section, it can be used at a relatively low temperature and at a normal pressure. Further, since high-concentration hydrogen (CO-removed hydrogen-containing gas) having a CO concentration of 10 ppm or less can be supplied to the polymer electrolyte fuel cell, the poisoning of the electrode catalyst by carbon monoxide is reduced, and the performance of the cell is prevented from being deteriorated. Can be. Further, it is possible to cope with a case where a cylinder cannot be placed in a hydrogen production apparatus for a vehicle-mounted or household fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る水素製造装置の起
動方法を示す系統図である。
FIG. 1 is a system diagram showing a starting method of a hydrogen production apparatus according to one embodiment of the present invention.

【図2】本発明の一実施の形態に係る水素製造装置の停
止方法を示す系統図である。
FIG. 2 is a system diagram showing a method for stopping the hydrogen production apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 水素製造装置 11 ブロア 12 水添脱硫部 (脱硫部) 13 水蒸気改質部 14 触媒燃焼部 15 ガス変成部 17 CO選択酸化部 18 水素貯蔵タンク(水素貯蔵部) 19 固体高分子型燃料電池(燃料電池) Reference Signs List 10 hydrogen production apparatus 11 blower 12 hydrodesulfurization section (desulfurization section) 13 steam reforming section 14 catalytic combustion section 15 gas conversion section 17 CO selective oxidation section 18 hydrogen storage tank (hydrogen storage section) 19 polymer electrolyte fuel cell ( Fuel cell)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/04 H01M 8/04 J 8/06 8/06 G // H01M 8/10 8/10 Fターム(参考) 4G040 EA03 EA06 EB03 EB31 EB43 4H060 AA01 BB08 BB11 BB12 CC13 FF02 GG02 5H026 AA06 5H027 AA06 BA01 BA13 BA14 BA16 BA17 KK42 MM12 MM13 MM14──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/04 H01M 8/04 J 8/06 8/06 G // H01M 8/10 8/10 F term (Reference) 4G040 EA03 EA06 EB03 EB31 EB43 4H060 AA01 BB08 BB11 BB12 CC13 FF02 GG02 5H026 AA06 5H027 AA06 BA01 BA13 BA14 BA16 BA17 KK42 MM12 MM13 MM14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原料炭化水素の硫黄分を除去する脱硫部
と、 上記脱硫部で脱硫された原料炭化水素に水蒸気を加えて
水蒸気改質することで水素含有ガスを生成する水蒸気改
質部と、 上記水素含有ガス中の一酸化炭素を二酸化炭素および水
素に転換するガス変成部と、 該ガス変成部でガス変成された水素含有ガスに空気を混
合して、上記水素含有ガス中に残存する一酸化炭素を選
択的に二酸化炭素に変換して酸化除去し、CO除去水素
含有ガスを製造するCO選択酸化部と、 水素含有の可燃性ガスと空気中の酸素とを燃焼反応させ
て、上記水蒸気改質部を加熱する触媒燃焼部とを備えた
水素製造装置の起動方法において、 上記触媒燃焼部にCO除去水素含有ガスと空気とを供給
して触媒燃焼反応を起こさせることで上記水蒸気改質部
を昇温させ、 該水蒸気改質部の温度が水蒸気改質の開始温度に達した
とき、水蒸気および原料炭化水素の供給を開始する水素
製造装置の起動方法。
1. A desulfurization unit for removing a sulfur content of a raw hydrocarbon, a steam reforming unit for generating a hydrogen-containing gas by adding steam to the raw hydrocarbon desulfurized in the desulfurization unit and performing steam reforming. A gas conversion unit for converting carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen; and mixing air with the gas-converted hydrogen-containing gas in the gas conversion unit to remain in the hydrogen-containing gas. Selectively converting carbon monoxide to carbon dioxide for oxidative removal to produce a CO-removed hydrogen-containing gas, and combusting the hydrogen-containing flammable gas with oxygen in the air, In a method for starting a hydrogen production apparatus having a catalytic combustion section for heating a steam reforming section, the method comprises supplying a CO-containing hydrogen-containing gas and air to the catalytic combustion section to cause a catalytic combustion reaction, thereby causing the catalytic reforming reaction to occur. Temperature rise , When the temperature of the water vapor reforming unit has reached the starting temperature of the steam reforming, starting the hydrogen production apparatus starts supplying steam and hydrocarbon feedstock.
【請求項2】 上記CO除去水素含有ガス中の一酸化炭
素の濃度を10ppm以下とした請求項1記載の水素製
造装置の起動方法。
2. The method according to claim 1, wherein the concentration of carbon monoxide in said CO-removed hydrogen-containing gas is 10 ppm or less.
【請求項3】 上記CO除去水素含有ガスは、燃料電池
に供給される請求項1または請求項2記載の水素製造装
置の起動方法。
3. The method according to claim 1, wherein the CO-removed hydrogen-containing gas is supplied to a fuel cell.
【請求項4】 上記脱硫部が、原料炭化水素に水添脱硫
用水素を添加したのち、上記原料炭化水素中の硫黄分を
脱硫して除去する水添脱硫部である請求項1〜請求項3
のうち、何れか1項に記載の水素製造装置の起動方法。
4. The hydrodesulfurization unit according to claim 1, wherein the desulfurization unit is configured to add hydrogen for hydrodesulfurization to the raw material hydrocarbons, and then desulfurize and remove sulfur in the raw material hydrocarbons. 3
The method for starting a hydrogen production apparatus according to any one of the preceding claims.
【請求項5】 上記CO選択酸化部から得られたCO除
去水素含有ガスを貯蔵する水素貯蔵部を有する請求項1
〜請求項4のうち、何れか1項に記載の水素製造装置の
起動方法。
5. A hydrogen storage unit for storing a CO-removed hydrogen-containing gas obtained from the CO selective oxidation unit.
The method for starting a hydrogen production apparatus according to claim 1.
【請求項6】 原料炭化水素の硫黄分を除去する脱硫部
と、 上記脱硫部で脱硫された原料炭化水素に水蒸気を加えて
水蒸気改質することで水素含有ガスを生成する水蒸気改
質部と、 上記水素含有ガス中の一酸化炭素を二酸化炭素および水
素に転換するガス変成部と、 該ガス変成部でガス変成された水素含有ガスに空気を混
合して、水素含有ガス中に残存する一酸化炭素を選択的
に二酸化炭素に変換し、CO除去水素含有ガスを製造す
るCO選択酸化部と、 水素含有の可燃性ガスと空気中の酸素とを燃焼反応させ
て、上記水蒸気改質部を加熱する触媒燃焼部とを備えた
水素製造装置の停止方法において、 上記CO選択酸化部からのCO除去水素含有ガスは直接
触媒燃焼部に供給し、 上記CO選択酸化部への空気の供給を停止し、 上記触媒燃焼部への空気の供給量を徐々に下げて、該触
媒燃焼部から排出された燃焼ガス中の酸素濃度を低下さ
せ、 該触媒燃焼部からの燃焼ガスを水素製造装置の反応系内
に供給し、 上記原料炭化水素と水蒸気の供給量を徐々に減らしなが
ら、この反応系内の可燃性ガスの濃度を低下させ、 その後、上記触媒燃焼部への空気の供給を停止し、上記
反応系内の温度が低下したのち上記水素製造装置を停止
する水素製造装置の停止方法。
6. A desulfurization unit for removing a sulfur content of a raw hydrocarbon, a steam reforming unit for generating a hydrogen-containing gas by adding steam to the raw hydrocarbon desulfurized in the desulfurization unit and performing steam reforming. A gas conversion unit that converts carbon monoxide in the hydrogen-containing gas into carbon dioxide and hydrogen; and mixing air with the hydrogen-containing gas that has been gas-converted in the gas conversion unit to form a gas remaining in the hydrogen-containing gas. A CO selective oxidizing unit for selectively converting carbon oxide to carbon dioxide to produce a CO-removed hydrogen-containing gas, and a combustion reaction between a hydrogen-containing flammable gas and oxygen in the air to form the steam reforming unit In the method for stopping a hydrogen production apparatus having a catalytic combustion unit to be heated, the CO-containing hydrogen-containing gas from the CO selective oxidation unit is supplied directly to the catalytic combustion unit, and the supply of air to the CO selective oxidation unit is stopped. And the above catalyst fuel The amount of air supplied to the catalytic combustion section is gradually reduced to reduce the oxygen concentration in the combustion gas discharged from the catalytic combustion section, and the combustion gas from the catalytic combustion section is supplied into the reaction system of the hydrogen production device. The concentration of combustible gas in the reaction system is reduced while gradually reducing the supply amounts of the raw material hydrocarbon and steam, and thereafter, the supply of air to the catalytic combustion section is stopped, and the A method for stopping the hydrogen production device, wherein the hydrogen production device is stopped after the temperature has dropped.
【請求項7】 上記CO除去水素含有ガスは、燃料電池
に供給される請求項6に記載の水素製造装置の停止方
法。
7. The method according to claim 6, wherein the CO-containing hydrogen-containing gas is supplied to a fuel cell.
【請求項8】 上記脱硫部が、原料炭化水素に水添脱硫
用水素を添加したのち、上記原料炭化水素中の硫黄分を
脱硫して除去する水添脱硫部である請求項6または請求
項7に記載の水素製造装置の停止方法。
8. The hydrodesulfurization unit according to claim 6, wherein the desulfurization unit is configured to add hydrogen for hydrodesulfurization to the raw material hydrocarbon, and then desulfurize and remove sulfur in the raw material hydrocarbon. 8. The method for stopping the hydrogen production apparatus according to 7.
JP2000198528A 2000-06-30 2000-06-30 Method for starting and method for stopping hydrogen producing device Withdrawn JP2002020103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198528A JP2002020103A (en) 2000-06-30 2000-06-30 Method for starting and method for stopping hydrogen producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198528A JP2002020103A (en) 2000-06-30 2000-06-30 Method for starting and method for stopping hydrogen producing device

Publications (1)

Publication Number Publication Date
JP2002020103A true JP2002020103A (en) 2002-01-23

Family

ID=18696680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198528A Withdrawn JP2002020103A (en) 2000-06-30 2000-06-30 Method for starting and method for stopping hydrogen producing device

Country Status (1)

Country Link
JP (1) JP2002020103A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347209A (en) * 2004-06-07 2005-12-15 Osaka Gas Co Ltd Water utilization system, stationary fuel cell equipment, and fuel cell-mounted vehicle
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2011195391A (en) * 2010-03-19 2011-10-06 Osaka Gas Co Ltd On-start up operation method for hydrogen-containing gas producing apparatus
JP2012025642A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Apparatus for separating and recovering co2 of coal gasification gas
US8147571B2 (en) 2005-03-08 2012-04-03 Rolls-Royce Fuel Cell Systems Limited Fuel processor for a fuel cell arrangement and a method of operating a fuel processor for a fuel cell arrangement
JP2012201514A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Fuel reforming apparatus and method for diagnosing the same
US9334164B2 (en) 2009-12-25 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078969A (en) * 2002-02-18 2009-04-16 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2005347209A (en) * 2004-06-07 2005-12-15 Osaka Gas Co Ltd Water utilization system, stationary fuel cell equipment, and fuel cell-mounted vehicle
US8147571B2 (en) 2005-03-08 2012-04-03 Rolls-Royce Fuel Cell Systems Limited Fuel processor for a fuel cell arrangement and a method of operating a fuel processor for a fuel cell arrangement
US8470482B2 (en) 2005-03-08 2013-06-25 Lg Fuel Cell Systems Inc. Fuel processor for a fuel cell arrangement and a method of operating a fuel processor for a fuel cell arrangement
US8568494B2 (en) 2005-03-08 2013-10-29 Lg Fuel Cell Systems Inc. Fuel processor for a fuel cell arrangement
JP2009035480A (en) * 2008-09-22 2009-02-19 Toyota Motor Corp Shutdown method of hydrogen producing system operation
US9334164B2 (en) 2009-12-25 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator and fuel cell system
JP2011195391A (en) * 2010-03-19 2011-10-06 Osaka Gas Co Ltd On-start up operation method for hydrogen-containing gas producing apparatus
JP2012025642A (en) * 2010-07-27 2012-02-09 Hitachi Ltd Apparatus for separating and recovering co2 of coal gasification gas
JP2012201514A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Fuel reforming apparatus and method for diagnosing the same

Similar Documents

Publication Publication Date Title
KR101357431B1 (en) Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
JP2002020102A (en) Method for starting and method for stopping hydrogen producing device
JP4741231B2 (en) Operation method of fuel cell
US7198862B2 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP2004338975A (en) Starting method of hydrogen production apparatus
JP2003002605A (en) Method for operating and stopping steam reformer
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
JP2013101822A (en) Fuel cell system
JPH02302302A (en) Power generation system of fuel cell
WO2005055356A1 (en) Fuel cell system
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JP2006076802A (en) Hydrogen production apparatus and fuel cell system equipped with the same, and method for producing hydrogen
JP2006265480A (en) Method for desulfurizing hydrocarbon-containing gas and fuel battery system
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP2005179081A (en) Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2002012407A (en) Hydrogen manufacturing equipment startup method and its shutdown method
JP3050850B2 (en) Fuel cell power generation system
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP4490717B2 (en) Reformer
JP5086144B2 (en) Hydrogen production apparatus and method for stopping fuel cell system
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP2009143744A (en) Energy station
JP2005190995A (en) Fuel cell system
WO2005005313A1 (en) Fuel treatment device and fuel treatment method
JP2005089255A (en) Hydrogen generator and its method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904