JP4506429B2 - Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator - Google Patents

Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator Download PDF

Info

Publication number
JP4506429B2
JP4506429B2 JP2004337048A JP2004337048A JP4506429B2 JP 4506429 B2 JP4506429 B2 JP 4506429B2 JP 2004337048 A JP2004337048 A JP 2004337048A JP 2004337048 A JP2004337048 A JP 2004337048A JP 4506429 B2 JP4506429 B2 JP 4506429B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
reformer
removal catalyst
reformed gas
monoxide removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004337048A
Other languages
Japanese (ja)
Other versions
JP2006142224A (en
Inventor
拓人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004337048A priority Critical patent/JP4506429B2/en
Publication of JP2006142224A publication Critical patent/JP2006142224A/en
Application granted granted Critical
Publication of JP4506429B2 publication Critical patent/JP4506429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、炭化水素化合物を改質して得られる水素を主成分とした改質ガスから、一酸化炭素ガスを除去するために用いる一酸化炭素除去触媒の活性回復方法、該活性回復方法を用いた燃料電池発電装置及び水素発生装置の運転方法に関する。   The present invention relates to a method for recovering the activity of a carbon monoxide removal catalyst used for removing carbon monoxide gas from a reformed gas containing hydrogen as a main component obtained by reforming a hydrocarbon compound. The present invention relates to an operating method of the used fuel cell power generator and hydrogen generator.

水素はクリーンエネルギーとして期待されており、工業上様々な分野で利用が検討されている。例えば、燃料電池は、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化ガスを供給し、両極間で起きる電気化学反応を利用して起電力を得る発電システムであって、高いエネルギー効率が実現可能であり、また、窒素酸化物NOxや硫黄酸化物SOx等の大気汚染物質の排出量が少ないことから、クリーンエネルギーの供給法としてその利用が期待されている。   Hydrogen is expected as clean energy, and its use is being studied in various industrial fields. For example, in a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and an oxidizing gas containing oxygen is supplied to the other electrode (cathode side) Is a power generation system that obtains an electromotive force by utilizing an electrochemical reaction that occurs between both electrodes, and can achieve high energy efficiency, and air pollutants such as nitrogen oxides NOx and sulfur oxides SOx Is expected to be used as a clean energy supply method.

そして、燃料電池は、使用する電解質の種類により分類されるが、なかでも固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等は、その電解質の性質から、二酸化炭素を含んだ酸化ガスや炭酸ガスを使用することが可能であり、通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。   Fuel cells are classified according to the type of electrolyte used. Among them, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc. It is possible to use oxidant gas or carbon dioxide gas that is contained. Usually, in these fuel cells, air is used as the oxidant gas, and hydrogen produced by steam reforming a hydrocarbon-based raw fuel such as natural gas is used. Gas containing is used as fuel gas.

そのため、この様な燃料電池を備える燃料電池発電装置には、改質器等を有する水素発生装置等が設けられており、天然ガス等の原燃料を、連設した脱硫器、水蒸気改質器で、脱硫、水蒸気改質して、水素を主成分とし一酸化炭素、二酸化炭素、水分等を含む改質ガスを得ている。   Therefore, a fuel cell power generation apparatus including such a fuel cell is provided with a hydrogen generator having a reformer and the like, and a desulfurizer and a steam reformer in which raw fuel such as natural gas is continuously connected. Thus, desulfurization and steam reforming are performed to obtain a reformed gas containing hydrogen as a main component and containing carbon monoxide, carbon dioxide, moisture and the like.

以下の(1)式は、改質器における、原燃料がメタンである場合の改質反応である。   The following equation (1) is a reforming reaction in the reformer when the raw fuel is methane.

CH + HO → CO + 3H ΔH=+ 206.14KJ/mol……(1)
式(1)に示されるように、改質反応は吸熱反応であるため、改質器を外部から加熱するバーナなどの加熱器が通常改質器には設置されている。
CH 4 + H 2 O → CO + 3H 2 ΔH = + 206.14 KJ / mol (1)
As shown in the equation (1), since the reforming reaction is an endothermic reaction, a heater such as a burner for heating the reformer from the outside is usually installed in the reformer.

溶融炭酸塩形などの高温タイプの燃料電池であれば、改質ガス中に含まれる一酸化炭素も燃料として利用することができる。しかし、動作温度が比較的低いりん酸形燃料電池では、電極触媒が一酸化炭素により被毒され、性能が劣化し、発電効率が低下してしまう。そこで、動作温度の低いりん酸形燃料電池等には、改質ガスを一酸化炭素変成器に導入し、一酸化炭素の変成反応によって、一酸化炭素を二酸化炭素に変成し、改質ガス中の一酸化炭素を1.0%程度まで低減させ、一酸化炭素の低減された改質ガスを利用している。   In the case of a high-temperature type fuel cell such as a molten carbonate type, carbon monoxide contained in the reformed gas can also be used as a fuel. However, in a phosphoric acid fuel cell having a relatively low operating temperature, the electrode catalyst is poisoned by carbon monoxide, the performance is deteriorated, and the power generation efficiency is lowered. Therefore, for phosphoric acid fuel cells with low operating temperatures, reformed gas is introduced into a carbon monoxide converter, and carbon monoxide is converted to carbon dioxide by a carbon monoxide conversion reaction. Carbon monoxide is reduced to about 1.0%, and a reformed gas with reduced carbon monoxide is used.

一酸化炭素による電極触媒の被毒は低温であるほど生じやすいため、りん酸形燃料電池よりもさらに動作温度の低い固体高分子形燃料電池は、微量の一酸化炭素で電極触媒が被毒してしまう。そのため、固体高分子形燃料電池では、更に改質ガス中の一酸化炭素濃度を低減させる必要があり、一酸化炭素を酸化除去する一酸化炭素除去触媒を収容した一酸化炭素除去器を設けて、一酸化炭素濃度を10ppm程度にまで低減する必要がある。   Since the poisoning of the electrocatalyst by carbon monoxide tends to occur at lower temperatures, the polymer electrolyte fuel cell, which has a lower operating temperature than the phosphoric acid fuel cell, is poisoned by a small amount of carbon monoxide. End up. Therefore, in the polymer electrolyte fuel cell, it is necessary to further reduce the carbon monoxide concentration in the reformed gas, and a carbon monoxide remover containing a carbon monoxide removal catalyst for oxidizing and removing carbon monoxide is provided. It is necessary to reduce the carbon monoxide concentration to about 10 ppm.

一酸化炭素除去器では、一酸化炭素除去触媒の存在下、一酸化炭素を含む改質ガスに、酸化剤ガス(通常は空気)を加えて一酸化炭素を選択的に酸化させ、一酸化炭素濃度を低減させている。そして、この一酸化炭素除去器における一酸化炭素の酸化は、比較的高温(100℃以上)で実施しているため、一酸化炭素除去触媒が酸化されやすく、触媒活性が経時で低下してしまう。そのため、一酸化炭素除去触媒の活性を回復させるため、定期的に還元性ガスと接触させ、一酸化炭素除去触媒を還元することが必要である。   A carbon monoxide remover selectively oxidizes carbon monoxide by adding an oxidant gas (usually air) to a reformed gas containing carbon monoxide in the presence of a carbon monoxide removal catalyst. The concentration is reduced. And since the oxidation of carbon monoxide in this carbon monoxide remover is carried out at a relatively high temperature (100 ° C. or higher), the carbon monoxide removal catalyst is easily oxidized, and the catalytic activity decreases with time. . Therefore, in order to recover the activity of the carbon monoxide removal catalyst, it is necessary to periodically contact the reducing gas to reduce the carbon monoxide removal catalyst.

例えば、下記特許文献1では、一酸化炭素除去触媒を水素を主成分(50mol%以上)とするガス雰囲気下において前処理し、その後空気に触れさせることなく使用する活性化方法が提案されている。   For example, Patent Document 1 below proposes an activation method in which a carbon monoxide removal catalyst is pretreated in a gas atmosphere containing hydrogen as a main component (50 mol% or more) and then used without being exposed to air. .

また、下記特許文献2では、一酸化除去触媒に不活性ガス又は有限値以上50vol%未満の水素を含み残余ガスが不活性ガスである混合ガスを接触させ、一酸化炭素除去触媒を活性化させるという手段が採られている。
特開平10−29802公報 特開2002−085983公報
Further, in Patent Document 2 below, a carbon monoxide removal catalyst is activated by contacting an inert gas or a mixed gas containing hydrogen of a finite value or more and less than 50 vol% and the remaining gas being an inert gas. The measures are taken.
JP-A-10-29802 JP 2002-059883 A

上記引例1、2のように一酸化炭素除去触媒の活性回復に用いる還元ガスとして、水素を主成分として含む還元ガスを用いた場合、処理に用いた還元ガスを系外に排出するにあたり、水素の爆発限界範囲(4〜75vol%)以下となるように水素濃度を希釈して低減する等の後処理工程が必要であった。   When a reducing gas containing hydrogen as a main component is used as the reducing gas used for recovering the activity of the carbon monoxide removal catalyst as in References 1 and 2 above, when the reducing gas used for the treatment is discharged out of the system, A post-treatment step such as diluting and reducing the hydrogen concentration so as to be below the explosion limit range (4 to 75 vol%) of was required.

また、上記引例2のように、窒素などの不活性ガスと混合した混合ガスを還元ガスとして用いる場合、混合ガスを作り出すために窒素に代表される不活性ガスを用意し、かつ当該混合ガスの供給装置を設けなければならないため、装置が大型となり、また、設置費用・運転コストがかかるといった問題点があった。   Further, as in Reference 2 above, when a mixed gas mixed with an inert gas such as nitrogen is used as a reducing gas, an inert gas typified by nitrogen is prepared to produce the mixed gas, and the mixed gas Since the supply device has to be provided, the device becomes large, and there are problems that installation cost and operation cost are high.

従って、本発明の目的は、上記欠点に鑑み、簡易な方法で一酸化炭素除去触媒の活性を回復させる方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for recovering the activity of a carbon monoxide removal catalyst by a simple method in view of the above drawbacks.

上記目的を達成するにあたって、本発明の一酸化炭素除去触媒の活性回復方法は、炭化水素化合物を燃焼部を有する改質器にて改質し、生成された水素を主成分とする改質ガスから一酸化炭素を除去する一酸化炭素除去触媒の活性回復方法であって、前記改質器で生成された前記改質ガスを、空気に接触させることなく前記一酸化炭素除去触媒に接触させ、前記一酸化炭素除去触媒に接触させた前記改質ガスを前記改質器の燃焼部で燃焼することを特徴とする。   In achieving the above object, the method for recovering the activity of the carbon monoxide removal catalyst according to the present invention comprises reforming a hydrocarbon compound in a reformer having a combustion section, and a reformed gas mainly comprising the produced hydrogen. A method for recovering the activity of a carbon monoxide removal catalyst for removing carbon monoxide from the carbon monoxide removal catalyst, wherein the reformed gas generated in the reformer is brought into contact with the carbon monoxide removal catalyst without being brought into contact with air, The reformed gas brought into contact with the carbon monoxide removal catalyst is combusted in a combustion section of the reformer.

また、本発明の一酸化炭素除去触媒の活性回復方法のもう一つは、炭化水素化合物を燃焼部を有する改質器にて改質し、生成された水素を主成分とする改質ガスから一酸化炭素を除去する一酸化炭素除去触媒の活性回復方法であって、前記改質器と、前記一酸化炭素除去触媒の充填された一酸化炭素除去器とで構成された炭化水素改質装置から、燃料電池又は水素精製装置へ前記改質ガスを供給する流路上に前記燃焼部へ前記改質ガスを供給するバイパス流路を設け、前記改質器で生成された前記改質ガスを、空気に接触させることなく前記一酸化炭素除去触媒に接触させ、前記一酸化炭素除去触媒に接触させた前記改質ガスを前記バイパス経路を通じて前記改質器の燃焼部に供給することを特徴とする。   Another method of recovering the activity of the carbon monoxide removal catalyst of the present invention is to reform a hydrocarbon compound in a reformer having a combustion section, and from a reformed gas mainly composed of generated hydrogen. A method for recovering the activity of a carbon monoxide removal catalyst for removing carbon monoxide, the hydrocarbon reformer comprising the reformer and the carbon monoxide remover filled with the carbon monoxide removal catalyst From the flow path for supplying the reformed gas to a fuel cell or a hydrogen purifier, a bypass flow path for supplying the reformed gas to the combustion unit is provided, and the reformed gas generated by the reformer is Contacting with the carbon monoxide removal catalyst without contacting with air, and supplying the reformed gas brought into contact with the carbon monoxide removal catalyst to the combustion section of the reformer through the bypass path. .

本発明の一酸化炭素除去触媒の活性回復方法によれば、一酸化炭素除去触媒の活性回復に用いるためのガスを改質装置によって生成するのみならず、活性回復に使用した改質ガスを改質装置内で後処理しているため、一酸化炭素除去触媒の活性回復に用いるガスの製造・供給装置を設ける必要がなく、また、処理に用いたガスの後処理装置を設置する必要のないので、装置の小型化、設置・運転費用の低減がはかれる。   According to the method for recovering the activity of the carbon monoxide removal catalyst of the present invention, not only the gas for use in recovering the activity of the carbon monoxide removal catalyst is generated by the reformer, but also the reformed gas used for the activity recovery is modified. Since it is post-treated in the gas purification device, there is no need to install a gas production / supply device used to recover the activity of the carbon monoxide removal catalyst, and there is no need to install a gas post-treatment device used for the treatment. Therefore, downsizing of the apparatus and reduction of installation / operation costs can be achieved.

また、本発明の燃料電池発電装置の運転方法は、燃焼部を有する改質器及び一酸化炭素除去触媒の充填された一酸化炭素除去器を備えた炭化水素改質装置と、燃料電池とを有する燃料電池発電装置の運転方法であって、前記改質装置から前記燃料電池へ改質ガスを供給する流路上に前記燃焼燃焼部へ前記改質ガスを供給するバイパス流路を設け、前記燃料電池発電装置の運転起動または待機運転時に、前記改質器で生成された改質ガスを、空気と接触させずに前記一酸化炭素除去器に流通させて前記一酸化炭素除去触媒の活性を回復させ、前記一酸化炭素除去器を流通した前記生成ガスを前記改質器の燃焼部で燃焼することを特徴とする。   The fuel cell power generator operating method according to the present invention includes a reformer having a combustion section, a hydrocarbon reformer including a carbon monoxide remover filled with a carbon monoxide removal catalyst, and a fuel cell. An operating method of a fuel cell power generation apparatus comprising: a bypass flow path for supplying the reformed gas to the combustion combustion section on a flow path for supplying a reformed gas from the reformer to the fuel cell; During the start-up or standby operation of the battery power generation device, the reformed gas generated in the reformer is allowed to flow through the carbon monoxide remover without coming into contact with air to restore the activity of the carbon monoxide removal catalyst. And the product gas that has passed through the carbon monoxide remover is burned in a combustion section of the reformer.

また、本発明の水素発生装置の運転方法は、燃焼部を有する改質器及び一酸化炭素除去触媒の充填された一酸化炭素除去器を備えた炭化水素改質装置と、水素精製装置とを有する水素発生装置の運転方法であって、前記改質装置から前記水素精製装置へ改質ガスを供給する流路上に前記燃焼燃焼部へ前記改質ガスを供給するバイパス流路を設け、前記水素発生装置の運転起動または待機運転時に、前記改質器で生成された改質ガスを、空気と接触させずに前記一酸化炭素除去器に流通させて前記一酸化炭素除去触媒の活性を回復させ、前記一酸化炭素除去器を流通した前記生成ガスを前記改質器の燃焼部で燃焼することを特徴とする。   The operation method of the hydrogen generator of the present invention includes a reformer having a combustion section, a hydrocarbon reformer having a carbon monoxide remover filled with a carbon monoxide removal catalyst, and a hydrogen purifier. An operation method of the hydrogen generator comprising: a bypass flow path for supplying the reformed gas to the combustion combustion section on a flow path for supplying the reformed gas from the reformer to the hydrogen purifier; During the start-up or standby operation of the generator, the reformed gas generated in the reformer is allowed to flow through the carbon monoxide remover without being brought into contact with air to restore the activity of the carbon monoxide removal catalyst. The produced gas that has flowed through the carbon monoxide remover is burned in a combustion section of the reformer.

そして、本発明においては、前記一酸化炭素除去触媒の温度を150〜300℃として前記改質ガスを流通させることが好ましい。   And in this invention, it is preferable to distribute | circulate the said reformed gas by making the temperature of the said carbon monoxide removal catalyst into 150-300 degreeC.

本発明によれば、改質器にて生成された改質ガスを用いて一酸化炭素除去触媒の活性を回復させているため、触媒活性回復用のガス供給装置が不要である。また、一酸化炭素除去触媒の活性回復に使用した改質ガスを改質器内で処理するため、活性回復に使用した改質ガスの処理が特に不要となり、燃料電池発電装置や水素発生装置の保守・管理・運転コストを低減できる。   According to the present invention, since the activity of the carbon monoxide removal catalyst is recovered using the reformed gas generated in the reformer, a gas supply device for recovering the catalyst activity is unnecessary. In addition, since the reformed gas used for recovering the activity of the carbon monoxide removal catalyst is processed in the reformer, the processing of the reformed gas used for recovering the activity becomes unnecessary, and the fuel cell power generator and the hydrogen generator Maintenance, management and operation costs can be reduced.

以下本発明について、図面を用いて説明する。   The present invention will be described below with reference to the drawings.

図1は、本発明による、一酸化炭素除去触媒の活性回復方法が適用できるようにした水素発生装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of a hydrogen generation apparatus to which a carbon monoxide removal catalyst activity recovery method according to the present invention can be applied.

炭化水素改質装置10は、炭化水素化合物などの原燃料を改質して、燃料電池に供する水素を主成分とする改質ガスを製造するものであって、前記原燃料を供給する原燃料供給系1と、前記原燃料に含有される硫黄成分を除去する脱硫器2と、前記脱硫された原燃料に水蒸気を混合させる水蒸気供給系3と、この水蒸気と混合した原燃料を改質反応させる燃焼部4aを有する改質器4と、改質器4で生成された改質ガスから一酸化炭素を二酸化炭素に変成させる一酸化炭素変成器5と、この一酸化炭素が変成された改質ガスに酸化剤ガスを供給する酸化剤供給系6と、この酸化剤ガスと混和した改質ガスから一酸化炭素を更に低減させる一酸化炭素除去器7とで構成され、それぞれの構成機器は、配管を通じて連接されている。   The hydrocarbon reformer 10 reforms a raw fuel such as a hydrocarbon compound to produce a reformed gas containing hydrogen as a main component for use in a fuel cell, and supplies the raw fuel. A supply system 1, a desulfurizer 2 for removing sulfur components contained in the raw fuel, a steam supply system 3 for mixing water vapor with the desulfurized raw fuel, and a reforming reaction of the raw fuel mixed with the water vapor A reformer 4 having a combustion section 4a to be converted, a carbon monoxide converter 5 for converting carbon monoxide into carbon dioxide from the reformed gas generated in the reformer 4, and a reformer in which the carbon monoxide is converted An oxidant supply system 6 that supplies an oxidant gas to the gas and a carbon monoxide remover 7 that further reduces carbon monoxide from the reformed gas mixed with the oxidant gas. Are connected through pipes.

また、この炭化水素改質装置10を通過して改質された改質ガスを、水素精製装置8に供給する供給管20と、改質器4の燃焼部へ供給する供給管21とが電磁弁30を介して連接されており、電磁弁30により改質ガスの流路を切替えることができる。水素精製装置8としては、圧力スイング吸着装置や、水素分離膜装置を用いることができる。   Further, a supply pipe 20 that supplies the reformed gas that has passed through the hydrocarbon reforming apparatus 10 to the hydrogen purification apparatus 8 and a supply pipe 21 that supplies the combustion section of the reformer 4 are electromagnetic. It is connected via the valve 30, and the flow path of the reformed gas can be switched by the electromagnetic valve 30. As the hydrogen purification device 8, a pressure swing adsorption device or a hydrogen separation membrane device can be used.

次に、この炭化水素改質装置10による炭化水素化合物の改質方法について説明する。   Next, a method for reforming a hydrocarbon compound by the hydrocarbon reformer 10 will be described.

本発明において原燃料として用いる炭化水素化合物としては、天然ガス、ナフサ等の炭化水素類、メタノール、エタノール等のアルコール類などが挙げられ、特に制限はないが、一般家庭に供給される都市ガスやLPガス等を好ましく利用することができる。   Examples of the hydrocarbon compound used as the raw fuel in the present invention include hydrocarbons such as natural gas and naphtha, alcohols such as methanol and ethanol, and the like. LP gas or the like can be preferably used.

原燃料供給系1から供給された原燃料は、前記脱硫器2を通過する際に、前記脱硫器2に充填された脱硫触媒(例えば、Ni−Mo系触媒やCo−Mo系触媒)により硫黄化合物が水素化され、更にZnO等の接触して硫黄分が除去される。そして、水蒸気供給系3から、供給される水蒸気と混合された後に、改質器4に搬送されて、ここで、前記改質触媒(例えば、Ni系触媒やRu系触媒)と接触して、前記原燃料中のメタン等の炭化水素が水素に改質される。炭化水素の水素への改質反応は吸熱反応であるため、燃焼部4aで原燃料ガス等を燃焼して、改質器4を加熱している。このようにして得られた改質ガスは、水素に富むものの、副生成物として一酸化炭素、二酸化炭素、水分等を含んでいる。そして、一酸化炭素変成器5において、Cu−Zn系触媒等のような一酸化炭素変成触媒と接触させて、一酸化炭素を二酸化炭素に変成させて、所定値にまで一酸化炭素濃度を下げている。一酸化炭素変成器5による一酸化炭素の変成反応では、改質ガス中の一酸化炭素濃度を1.0%程度までしか低減することができないため、更に温度調整手段を備えた前記一酸化炭素除去器7において、酸化剤供給系6から供給される酸化剤ガス(たとえば、酸素を含む空気)とともに、前記一酸化炭素除去触媒(例えば、ルテニウム、白金、ロジウム、パラジウム等の貴金属をアルミナ等の担体に担持したもの)と接触させて、一酸化炭素を酸化除去して二酸化炭素として、改質ガス中の一酸化炭素濃度を10ppm以下としている。   When the raw fuel supplied from the raw fuel supply system 1 passes through the desulfurizer 2, the raw fuel is sulfurated by a desulfurization catalyst (for example, a Ni—Mo catalyst or a Co—Mo catalyst) filled in the desulfurizer 2. The compound is hydrogenated and further sulfur content is removed by contact with ZnO or the like. Then, after being mixed with the steam supplied from the steam supply system 3, it is transported to the reformer 4, where it contacts the reforming catalyst (for example, Ni-based catalyst or Ru-based catalyst), Hydrocarbons such as methane in the raw fuel are reformed to hydrogen. Since the reforming reaction of hydrocarbons to hydrogen is an endothermic reaction, the reformer 4 is heated by burning raw fuel gas or the like in the combustion section 4a. The reformed gas thus obtained is rich in hydrogen but contains carbon monoxide, carbon dioxide, moisture and the like as by-products. Then, in the carbon monoxide converter 5, the carbon monoxide is converted into carbon dioxide by contacting with a carbon monoxide conversion catalyst such as a Cu—Zn-based catalyst, and the carbon monoxide concentration is lowered to a predetermined value. ing. In the carbon monoxide conversion reaction by the carbon monoxide converter 5, the carbon monoxide concentration in the reformed gas can be reduced only to about 1.0%. Therefore, the carbon monoxide further provided with temperature adjusting means. In the remover 7, together with the oxidant gas (for example, air containing oxygen) supplied from the oxidant supply system 6, the carbon monoxide removal catalyst (for example, ruthenium, platinum, rhodium, palladium or the like noble metal such as alumina). Carbon monoxide is oxidized and removed to form carbon dioxide, and the carbon monoxide concentration in the reformed gas is 10 ppm or less.

上記工程によって、炭化水素化合物からなる原燃料ガスを、一酸化炭素が10ppm以下にまで低減された水素ガスへと改質することができ、水素精製装置8に供給し、該改質ガスを精製して高純度の水素ガスを製造することができるが、一酸化炭素除去器7に充填されている一酸化炭素除去触媒は、酸化剤ガスにより酸化され、経時で触媒活性が低下してしまう。   Through the above-described steps, the raw fuel gas composed of a hydrocarbon compound can be reformed into a hydrogen gas whose carbon monoxide is reduced to 10 ppm or less, which is supplied to the hydrogen purifier 8 to purify the reformed gas. Thus, although high purity hydrogen gas can be produced, the carbon monoxide removal catalyst charged in the carbon monoxide remover 7 is oxidized by the oxidant gas, and the catalytic activity decreases with time.

活性の低下した一酸化炭素除去触媒の活性を回復させるため、還元ガスを一酸化炭素除去触媒に接触させて活性回復をおこなうが、本発明では還元ガスとして改質器4にて炭化水素化合物が改質された水素を主成分とする改質ガスを使用する。   In order to recover the activity of the carbon monoxide removal catalyst having decreased activity, the reducing gas is brought into contact with the carbon monoxide removal catalyst to recover the activity. In the present invention, the hydrocarbon compound is used as the reducing gas in the reformer 4. A reformed gas mainly composed of reformed hydrogen is used.

以下、本発明の一酸化炭素除去触媒の活性回復方法について説明する。   Hereinafter, the method for recovering the activity of the carbon monoxide removal catalyst of the present invention will be described.

本発明の一酸化炭素除去触媒の活性回復においては、酸化剤供給系6の作動を停止させ、改質器4で製造された改質ガスへの酸化剤ガスの供給を停止する。そして、この改質ガスを一酸化炭素除去器7に導入し、一酸化炭素除去触媒と接触させて、一酸化炭素除去反応によって酸化された該一酸化炭素除去触媒を還元し、活性を回復させる。そして、一酸化炭素除去器7を通過した、一酸化炭素除去触媒の活性回復に使用された改質ガスは、電磁弁30を作動させて供給管21を開口させ、供給管21を経て改質器4の燃焼部4aに供給し、燃焼部4aで該改質ガスを燃焼して、窒素及び二酸化炭素を主成分とした燃焼排ガスとした後、燃焼部4aに設置された排気管などと通じて系外に排出する。   In the activity recovery of the carbon monoxide removal catalyst of the present invention, the operation of the oxidant supply system 6 is stopped and the supply of the oxidant gas to the reformed gas produced by the reformer 4 is stopped. Then, the reformed gas is introduced into the carbon monoxide remover 7 and brought into contact with the carbon monoxide removal catalyst, and the carbon monoxide removal catalyst oxidized by the carbon monoxide removal reaction is reduced to restore the activity. . The reformed gas that has been passed through the carbon monoxide remover 7 and used to recover the activity of the carbon monoxide removal catalyst operates the electromagnetic valve 30 to open the supply pipe 21 and reforms through the supply pipe 21. The combustion gas is supplied to the combustion section 4a of the vessel 4 and burned with the reformed gas in the combustion section 4a to form combustion exhaust gas mainly containing nitrogen and carbon dioxide, and then communicated with an exhaust pipe installed in the combustion section 4a. To discharge outside the system.

本発明において、一酸化炭素除去触媒の活性回復処理の際に流通させる改質ガスの流量は、特に限定はないが、例えば1kW級向の改質装置の場合、1リットル/分〜5リットル/分であることが好ましく、より好ましくは3リットル/分〜4リットル/分である。1kW級向の場合、改質ガスの流量が5リットル/分以上となると、改質器4が過剰に加熱されてしまい改質器4等の装置機器が故障しかねなく、また、1リットル/分未満であると、酸化された一酸化炭素除去触媒を還元し、活性を完全には回復させることができないことがある。   In the present invention, the flow rate of the reformed gas to be circulated during the activity recovery treatment of the carbon monoxide removal catalyst is not particularly limited. For example, in the case of a reformer for 1 kW class, 1 liter / min to 5 liter / It is preferably a minute, more preferably 3 liters / minute to 4 liters / minute. In the case of the 1 kW class, if the flow rate of the reformed gas is 5 liters / minute or more, the reformer 4 is excessively heated and the equipment such as the reformer 4 may break down. If it is less than 5 minutes, the oxidized carbon monoxide removal catalyst may be reduced and the activity may not be completely recovered.

また、一酸化炭素除去器7への改質ガスの供給時間は、一酸化炭素除去器7に充填された触媒量により異なるが、30分〜3時間であることが好ましく、より好ましくは1〜2時間である。30分未満であると、酸化された一酸化炭素除去触媒を還元し、活性を完全には回復させることができないことがある。   Further, the supply time of the reformed gas to the carbon monoxide remover 7 varies depending on the amount of catalyst charged in the carbon monoxide remover 7, but is preferably 30 minutes to 3 hours, more preferably 1 to 1 hour. 2 hours. If it is less than 30 minutes, the oxidized carbon monoxide removing catalyst may be reduced and the activity may not be completely recovered.

また、一酸化炭素除去触媒と接触させる改質ガスは100〜400℃が好ましく、より好ましくは200〜300℃である。   Further, the reformed gas brought into contact with the carbon monoxide removal catalyst is preferably 100 to 400 ° C, more preferably 200 to 300 ° C.

また、一酸化炭素除去触媒の温度は、150〜300℃であることが好ましく、200〜300℃がより好ましい。一酸化炭素除去触媒を上記温度に加熱することで、より一層の活性回復効果を得ることが可能となる。   Moreover, it is preferable that the temperature of a carbon monoxide removal catalyst is 150-300 degreeC, and 200-300 degreeC is more preferable. By heating the carbon monoxide removal catalyst to the above temperature, it becomes possible to obtain a further activity recovery effect.

そして、上記操作による一酸化炭素除去触媒の活性回復は、水素発生装置の起動時又は夜間などの水素需要が低減した際におこなう待機運転時に実施することが好ましい。   The activity recovery of the carbon monoxide removal catalyst by the above operation is preferably carried out during standby operation that is performed when the hydrogen generator is started or when the demand for hydrogen is reduced, such as at night.

また、図2は、一酸化炭素除去触媒の活性回復方法に用いることのできる燃料電池発電装置の概略構成図である。なお、以下の実施形態の説明においては、前記実施形態と同一部分においては同符号を付して、その説明を省略することにする。   FIG. 2 is a schematic configuration diagram of a fuel cell power generator that can be used in the activity recovery method of the carbon monoxide removal catalyst. In the following description of the embodiment, the same parts as those in the above-described embodiment will be denoted by the same reference numerals, and the description thereof will be omitted.

前記図1に示した実施形態との変更点は、炭化水素改質装置10を通過して改質された改質ガスを、燃料電池9に供給する供給管22と、改質器4の燃焼部4aへ供給する供給管23とが電磁弁31を介して連接されており、電磁弁31により改質ガスの流路を切替えることができるように構成されている点である。   1 differs from the embodiment shown in FIG. 1 in that the reformed gas that has been reformed through the hydrocarbon reformer 10 is supplied to the fuel cell 9, and the reformer 4 is combusted. The supply pipe 23 supplied to the section 4a is connected via an electromagnetic valve 31, and the flow path of the reformed gas can be switched by the electromagnetic valve 31.

この実施形態における一酸化炭素除去触媒の活性回復方法は、前述した実施形態と同様である。すなわち、一酸化炭素除去触媒の活性回復処理中は、酸化剤供給系6の作動を停止させ、改質器4で製造された改質ガスへの酸化剤ガスの供給を停止させる。そして、この、酸化剤ガスを含有しない改質ガスを一酸化炭素除去器7に導入し、一酸化炭素除去触媒と接触させて、一酸化炭素除去反応によって酸化された該一酸化炭素除去触媒を還元し、活性を回復させる。一酸化炭素除去器7を通過した、一酸化炭素除去触媒の活性回復に使用された改質ガスは、電磁弁31を作動させて供給管23を開口させて、供給管23を経て改質器4の燃焼部4aに供給して、窒素及び二酸化炭素を主成分とした燃焼排ガスとした後、燃焼部4aに設置された排気管などと通じて系外に排出する。   The method for recovering the activity of the carbon monoxide removal catalyst in this embodiment is the same as in the above-described embodiment. That is, during the activity recovery process of the carbon monoxide removal catalyst, the operation of the oxidant supply system 6 is stopped, and the supply of the oxidant gas to the reformed gas produced by the reformer 4 is stopped. Then, this reformed gas containing no oxidant gas is introduced into the carbon monoxide remover 7 and brought into contact with the carbon monoxide removal catalyst, so that the carbon monoxide removal catalyst oxidized by the carbon monoxide removal reaction is obtained. Reduce and restore activity. The reformed gas that has been passed through the carbon monoxide remover 7 and used to recover the activity of the carbon monoxide removal catalyst operates the electromagnetic valve 31 to open the supply pipe 23, passes through the supply pipe 23, and is reformed. 4 is supplied to the combustion unit 4a to form a combustion exhaust gas mainly composed of nitrogen and carbon dioxide, and then discharged out of the system through an exhaust pipe installed in the combustion unit 4a.

なお、この実施形態において、炭化水素改質装置10から供給された改質ガスを用いる燃料電池9としては、特に制限はないが、作動温度が低く、電極触媒が一酸化炭素によって被毒しやすい固体高分子型燃料電池が特に好ましい。   In this embodiment, the fuel cell 9 using the reformed gas supplied from the hydrocarbon reformer 10 is not particularly limited, but the operating temperature is low and the electrode catalyst is easily poisoned by carbon monoxide. A polymer electrolyte fuel cell is particularly preferred.

そして、上記操作による一酸化炭素除去触媒の活性回復は、燃料電池発電装置の起動時、又は夜間などの電力需要が低減した際におこなう待機運転時に実施することが好ましい。   And it is preferable to carry out the activity recovery of the carbon monoxide removal catalyst by the above operation at the time of start-up of the fuel cell power generation device or at the time of standby operation when the power demand is reduced at night.

本発明は、一酸化炭素除去触媒の活性を簡易な方法で回復することができる。また、本発明の活性回復方法を採用した燃料電池及び水素発生装置は、保守・管理・運転コストの低減が期待できる。   The present invention can recover the activity of the carbon monoxide removal catalyst by a simple method. Further, the fuel cell and the hydrogen generator employing the activity recovery method of the present invention can be expected to reduce maintenance, management, and operation costs.

本発明における、一酸化炭素除去触媒の活性回復方法に用いることのできる水素発生装置の概略構成図。The schematic block diagram of the hydrogen generator which can be used for the activity recovery method of the carbon monoxide removal catalyst in this invention. 本発明における、一酸化炭素除去触媒の活性回復方法に用いることのできる燃料電池発電装置の概略構成図。The schematic block diagram of the fuel cell power generator which can be used for the activity recovery method of the carbon monoxide removal catalyst in this invention.

符号の説明Explanation of symbols

1:原燃料供給系
2:脱硫器
3:水蒸気供給系
4:改質器
4a:燃焼部
5:一酸化炭素変成器
6:酸化剤供給系
7:一酸化炭素除去器
8:水素精製装置
9:燃料電池
10:炭化水素改質装置
20、21、22、23:供給管
30、31:電磁弁
1: Raw fuel supply system 2: Desulfurizer 3: Steam supply system 4: Reformer 4a: Combustion unit 5: Carbon monoxide converter 6: Oxidant supply system 7: Carbon monoxide remover 8: Hydrogen purifier 9 : Fuel cell 10: Hydrocarbon reformer 20, 21, 22, 23: Supply pipe 30, 31: Solenoid valve

Claims (7)

炭化水素化合物を、燃焼部を有する改質器にて改質し、生成された水素を主成分とする改質ガスから一酸化炭素を除去する一酸化炭素除去触媒の活性回復方法であって、
前記改質器で生成された前記改質ガスを、空気に接触させることなく前記一酸化炭素除去触媒に接触させ、
前記一酸化炭素除去触媒に接触させた前記改質ガスを前記改質器の燃焼部で燃焼することを特徴とする一酸化炭素除去触媒の活性回復方法。
A method for recovering the activity of a carbon monoxide removal catalyst that reforms a hydrocarbon compound in a reformer having a combustion section and removes carbon monoxide from a reformed gas containing hydrogen as a main component,
Contacting the reformed gas generated in the reformer with the carbon monoxide removal catalyst without contacting with air;
A method for recovering the activity of a carbon monoxide removal catalyst, wherein the reformed gas brought into contact with the carbon monoxide removal catalyst is combusted in a combustion section of the reformer.
炭化水素化合物を、燃焼部を有する改質器にて改質し、生成された水素を主成分とする改質ガスから一酸化炭素を除去する一酸化炭素除去触媒の活性回復方法であって、
前記改質器と、前記一酸化炭素除去触媒の充填された一酸化炭素除去器とで構成された炭化水素改質装置から、燃料電池又は水素精製装置へ前記改質ガスを供給する流路上に前記燃焼部へ前記改質ガスを供給するバイパス流路を設け、
前記改質器で生成された前記改質ガスを、空気に接触させることなく前記一酸化炭素除去触媒に接触させ、
前記一酸化炭素除去触媒に接触させた前記改質ガスを前記バイパス経路を通じて前記改質器の燃焼部に供給することを特徴とする一酸化炭素除去触媒の活性回復方法。
A method for recovering the activity of a carbon monoxide removal catalyst that reforms a hydrocarbon compound in a reformer having a combustion section and removes carbon monoxide from a reformed gas containing hydrogen as a main component,
On a flow path for supplying the reformed gas to a fuel cell or a hydrogen purifier from a hydrocarbon reformer composed of the reformer and the carbon monoxide remover filled with the carbon monoxide removal catalyst Providing a bypass flow path for supplying the reformed gas to the combustion section;
Contacting the reformed gas generated in the reformer with the carbon monoxide removal catalyst without contacting with air;
A method for recovering the activity of a carbon monoxide removal catalyst, comprising supplying the reformed gas brought into contact with the carbon monoxide removal catalyst to a combustion section of the reformer through the bypass path.
前記一酸化炭素除去触媒の温度を150〜300℃として前記改質ガスを流通させる請求項1又は2に記載の一酸化炭素除去触媒の活性回復方法。   The method for recovering the activity of a carbon monoxide removal catalyst according to claim 1 or 2, wherein the reformed gas is circulated at a temperature of the carbon monoxide removal catalyst of 150 to 300 ° C. 燃焼部を有する改質器及び一酸化炭素除去触媒の充填された一酸化炭素除去器を備えた炭化水素改質装置と、燃料電池とを有する燃料電池発電装置の運転方法であって、
前記改質装置から前記燃料電池へ改質ガスを供給する流路上に前記燃焼部へ前記改質ガスを供給するバイパス流路を設け、
前記燃料電池発電装置の運転起動または待機運転時に、前記改質器で生成された改質ガスを、空気と接触させずに前記一酸化炭素除去器に流通させて前記一酸化炭素除去触媒の活性を回復させ、
前記一酸化炭素除去器を流通した前記生成ガスを前記改質器の燃焼部で燃焼することを特徴とする燃料電池発電装置の運転方法。
A method for operating a fuel cell power generation apparatus having a reformer having a combustion section and a hydrocarbon reformer having a carbon monoxide remover filled with a carbon monoxide removal catalyst, and a fuel cell,
Providing a bypass flow path for supplying the reformed gas to the combustion section on a flow path for supplying the reformed gas from the reformer to the fuel cell;
During the start-up or standby operation of the fuel cell power generation device, the reformed gas generated in the reformer is circulated through the carbon monoxide remover without contacting the air, and the carbon monoxide removal catalyst is activated. Recover
A method of operating a fuel cell power generator, wherein the product gas that has passed through the carbon monoxide remover is combusted in a combustion section of the reformer.
前記一酸化炭素除去触媒の温度を150〜300℃として前記改質ガスを流通させる請求項4に記載の燃料電池発電装置の運転方法。   The method for operating a fuel cell power generator according to claim 4, wherein the reformed gas is circulated at a temperature of the carbon monoxide removal catalyst of 150 to 300 ° C. 燃焼部を有する改質器及び一酸化炭素除去触媒の充填された一酸化炭素除去器を備えた炭化水素改質装置と、水素精製装置とを有する水素発生装置の運転方法であって、
前記改質装置から前記水素精製装置へ改質ガスを供給する流路上に前記燃焼燃焼部へ前記改質ガスを供給するバイパス流路を設け、
前記水素発生装置の運転起動または待機運転時に、前記改質器で生成された改質ガスを、空気と接触させずに前記一酸化炭素除去器に流通させて前記一酸化炭素除去触媒の活性を回復させ、
前記一酸化炭素除去器を流通した前記生成ガスを前記改質器の燃焼部で燃焼することを特徴とする水素発生装置の運転方法。
A method for operating a hydrogen generator having a reformer having a combustion section and a hydrocarbon reformer having a carbon monoxide remover filled with a carbon monoxide removal catalyst, and a hydrogen purifier.
A bypass flow path for supplying the reformed gas to the combustion combustion section is provided on a flow path for supplying the reformed gas from the reformer to the hydrogen purifier;
During the start-up or standby operation of the hydrogen generator, the reformed gas generated in the reformer is circulated through the carbon monoxide remover without contacting the air, and the activity of the carbon monoxide removal catalyst is increased. Recover,
A method of operating a hydrogen generator, characterized in that the product gas flowing through the carbon monoxide remover is combusted in a combustion section of the reformer.
前記一酸化炭素除去触媒の温度を150〜300℃として前記改質ガスを流通させる請求項6に記載の水素発生装置の運転方法。   The operation method of the hydrogen generator according to claim 6, wherein the reformed gas is circulated at a temperature of the carbon monoxide removal catalyst of 150 to 300 ° C.
JP2004337048A 2004-11-22 2004-11-22 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator Expired - Fee Related JP4506429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337048A JP4506429B2 (en) 2004-11-22 2004-11-22 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337048A JP4506429B2 (en) 2004-11-22 2004-11-22 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator

Publications (2)

Publication Number Publication Date
JP2006142224A JP2006142224A (en) 2006-06-08
JP4506429B2 true JP4506429B2 (en) 2010-07-21

Family

ID=36622504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337048A Expired - Fee Related JP4506429B2 (en) 2004-11-22 2004-11-22 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator

Country Status (1)

Country Link
JP (1) JP4506429B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786870B1 (en) 2006-08-23 2007-12-20 삼성에스디아이 주식회사 Catalyst for oxidizing carbon monoxide for reformer used in for fuel cell, and fuel cell system comprising same
JP2008081331A (en) * 2006-09-26 2008-04-10 Aisin Seiki Co Ltd Reformer
JP2008201650A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Hydrogen generating apparatus, fuel cell system and method for operating hydrogen generating apparatus
JP5515641B2 (en) * 2009-11-04 2014-06-11 パナソニック株式会社 Hydrogen generator, fuel cell system, and operation method of hydrogen generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029802A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JP2002085983A (en) * 2000-09-18 2002-03-26 Osaka Gas Co Ltd Method of activating carbon monoxide removing catalyst, method of operating carbon monoxide removing apparatus and method of operating fuel cell system
JP2002124286A (en) * 2000-10-12 2002-04-26 Nissan Motor Co Ltd Reform device for fuel cell
JP2002356311A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Pretreatment method for generation apparatus for gas containing hydrogen
JP2004002162A (en) * 2002-03-26 2004-01-08 Osaka Gas Co Ltd Elimination method of carbon monoxide, carbon monoxide elimination system using the same, and fuel cell system
JP2004244275A (en) * 2003-02-14 2004-09-02 Corona Corp Method and apparatus for producing high-purity hydrogen from hydrocarbon fuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029802A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JP2002085983A (en) * 2000-09-18 2002-03-26 Osaka Gas Co Ltd Method of activating carbon monoxide removing catalyst, method of operating carbon monoxide removing apparatus and method of operating fuel cell system
JP2002124286A (en) * 2000-10-12 2002-04-26 Nissan Motor Co Ltd Reform device for fuel cell
JP2002356311A (en) * 2001-03-26 2002-12-13 Osaka Gas Co Ltd Pretreatment method for generation apparatus for gas containing hydrogen
JP2004002162A (en) * 2002-03-26 2004-01-08 Osaka Gas Co Ltd Elimination method of carbon monoxide, carbon monoxide elimination system using the same, and fuel cell system
JP2004244275A (en) * 2003-02-14 2004-09-02 Corona Corp Method and apparatus for producing high-purity hydrogen from hydrocarbon fuel

Also Published As

Publication number Publication date
JP2006142224A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP2002020102A (en) Method for starting and method for stopping hydrogen producing device
JP2007292010A (en) Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides
JP2004527367A (en) Gas purification
JP2004284875A (en) Hydrogen production system, and fuel cell system
US20020192136A1 (en) Process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP2008501607A (en) Hybrid water gas shift reactor
WO2000053696A1 (en) System for removing carbon monoxide and method for removing carbon monoxide
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP2002060204A (en) Fuel reformer, its operating method and fuel cell power generation unit using the same
JP4882215B2 (en) Fuel cell power generator equipped with a system for supplying reformed recycle gas for desulfurization
JP2008254942A (en) Hydrogen production method and hydrogen production system
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
JP2002020103A (en) Method for starting and method for stopping hydrogen producing device
CN100519407C (en) Fuel treatment device and fuel treatment method
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
JP3050850B2 (en) Fuel cell power generation system
JP2000327305A (en) Co removal apparatus and fuel cell power generation system
JP2016184550A (en) Gas manufacturing apparatus
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2008105892A (en) Stopping method for fuel reformer
JP2008108621A (en) Fuel cell power generation system and its carbon dioxide recovery method
JP2001068136A (en) Solid high-polymer fuel cell system and operating method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees