JP4240787B2 - Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system - Google Patents

Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system Download PDF

Info

Publication number
JP4240787B2
JP4240787B2 JP2000281936A JP2000281936A JP4240787B2 JP 4240787 B2 JP4240787 B2 JP 4240787B2 JP 2000281936 A JP2000281936 A JP 2000281936A JP 2000281936 A JP2000281936 A JP 2000281936A JP 4240787 B2 JP4240787 B2 JP 4240787B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
gas
catalyst
fuel
removal catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000281936A
Other languages
Japanese (ja)
Other versions
JP2002085983A5 (en
JP2002085983A (en
Inventor
満秋 越後
健 田畑
博一 佐々木
修 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000281936A priority Critical patent/JP4240787B2/en
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to EP09015102A priority patent/EP2168679B1/en
Priority to CNB018158293A priority patent/CN1213804C/en
Priority to PCT/JP2001/008023 priority patent/WO2002022256A1/en
Priority to EP09015103.6A priority patent/EP2174709B1/en
Priority to CNA2005100670682A priority patent/CN1724152A/en
Priority to CA002422795A priority patent/CA2422795C/en
Priority to CNB2005100670697A priority patent/CN100338809C/en
Priority to KR1020077027987A priority patent/KR20070117007A/en
Priority to EP01965667.7A priority patent/EP1325778B1/en
Priority to KR1020077027986A priority patent/KR100942478B1/en
Priority to KR1020037001932A priority patent/KR100840629B1/en
Priority to US10/380,811 priority patent/US7247592B2/en
Publication of JP2002085983A publication Critical patent/JP2002085983A/en
Publication of JP2002085983A5 publication Critical patent/JP2002085983A5/ja
Priority to US11/509,259 priority patent/US7544341B2/en
Priority to US11/509,258 priority patent/US7544634B2/en
Priority to US11/509,257 priority patent/US7658908B2/en
Application granted granted Critical
Publication of JP4240787B2 publication Critical patent/JP4240787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス、ナフサ、灯油等の炭化水素類及びメタノール等のアルコール類を改質(水蒸気改質、部分燃焼改質等)して得られる改質ガスのように、水素(H2)ガスを主成分とし少量の一酸化炭素(CO)ガスを含むガスから、前記一酸化炭素ガスを酸化除去する一酸化炭素除去触媒の活性化方法、並びにこれを用いた一酸化炭素除去器の運転方法、燃料電池システムの運転方法に関するものである。
【0002】
【従来の技術】
従来、天然ガス等の化石燃料を原燃料として、水素を主成分とする燃料ガス(水素を50体積%以上含むガス(ドライベース))を製造する燃料改質装置にあっては、前記原燃料を、連設した脱硫器、水蒸気改質器で、脱硫、水蒸気改質して、水素を主成分とし一酸化炭素、二酸化炭素(CO2)、水分(H2O)等を含む燃料ガスを得ていた。また、前記アルコール類、例えばメタノールを原燃料とする燃料改質装置は、メタノール改質触媒を内装したメタノール改質器を備え、メタノールから、水素を主成分とし一酸化炭素、二酸化炭素、水分等を含む燃料ガスを得ていた。
【0003】
ここで、リン酸型燃料電池に供する燃料ガスを製造する燃料改質装置にあっては、一酸化炭素の存在によって、燃料電池の電極触媒が被毒することが知られており、前記水素を主成分とするガスを一酸化炭素変成器に導入し、一酸化炭素変成反応によって、前記一酸化炭素を二酸化炭素(CO2)に変換し、ガス中の一酸化炭素濃度を所定値以下(例えば、0.5%)とした燃料ガスを得ていた。
しかし、固体高分子型燃料電池に供する燃料ガスを製造する燃料改質装置にあっては、固体高分子型燃料電池が約80℃という低温で作動することから、微量の一酸化炭素によって電極触媒が被毒されてしまうために、更に前記一酸化炭素を低減する必要があり、前記一酸化炭素変成器の下流に、一酸化炭素を酸化除去する一酸化炭素除去触媒を収容した一酸化炭素除去器を設けて、前記一酸化炭素変成器で処理された前記燃料ガスに、空気等の酸化剤を添加してこれに導入し、この一酸化炭素除去触媒の存在下で、一酸化炭素を二酸化炭素に酸化し、一酸化炭素濃度を所定濃度以下(例えば、100ppm以下)にまで低減した燃料ガスを得ていた。
【0004】
この種の一酸化炭素除去触媒としては、ルテニウム(Ru)、ロジウム(Rh)、白金(Pt)、パラジウム(Pd)等をアルミナ等の担体に担持した貴金属触媒が用いられていて、従来は、活性化処理を施さないまま一酸化炭素酸化除去に用いたり、前記一酸化炭素除去触媒を水素を主成分(50モル%以上)とするガス雰囲気下において前処理し、その後空気に触れさせることなく使用する活性化方法が提案されていた(特開平10−29802号公報参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、前記一酸化炭素除去触媒は、一酸化炭素の酸化除去のみならず、水素を消費して、一酸化炭素、メタン、水を再生する副反応(夫々、一酸化炭素の逆シフト反応、一酸化炭素及び二酸化炭素のメタン化反応、水素の燃焼反応と呼ばれる。)をも起こすことがわかっていて、このような副反応は、可及的に抑制する必要があった。
これらの副反応は、前記一酸化炭素除去触媒の反応温度が高い(例えば200℃以上)と起こり易い傾向にあるため、前記一酸化炭素除去触媒は、理想的には100℃程度の低温で使用することが好ましい。
【0006】
ここで、前記一酸化炭素除去触媒を、活性化処理を施さないまま一酸化炭素酸化除去に用いるとすれば、100℃程度の低温では、運転初期に一酸化炭素酸化除去活性をほとんど示さず、一酸化炭素を所定濃度以下にまで除去することが困難であることが判明した(図2〜4に記載の比較例参照)。逆に、比較的反応温度が高い場合には初期活性を示すが、前述したように、一酸化炭素、メタン、水蒸気等の不必要なガスの分圧が上昇すると共に、製造物である水素を消費してしまうという問題があった。
また、前記一酸化炭素除去触媒を、水素を主成分とするガスを用いて活性化するとすれば、やはり、水素を消費することになり、また、前記一酸化炭素除去触媒の活性化のためだけに高濃度の水素ガスを多量に必要とするので手間がかかるという問題点があった。さらには、この活性化処理に用いられたガスを系外に排出するにあたり、水素の爆発限界範囲(4〜75体積%)の濃度になる虞れがあるので、後処理を必要とするという問題点があった。
【0007】
従って、本発明の目的は、上記欠点に鑑み、水素消費を抑制しつつ一酸化炭素濃度の低減を可能な、前記一酸化炭素除去器の低温運転を可能とするための、前記一酸化炭素除去触媒の活性化方法を提供することにある。
【0008】
【課題を解決するための手段】
この目的を達成するための本発明の一酸化炭素除去触媒の活性化方法の特徴手段は、請求項1に記載されているように、水素を主成分とする燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させて活性化することにある。
【0009】
【0010】
【0011】
尚、前記一酸化炭素除去触媒の活性化は、120〜250℃で行なうことが好ましく、また、有限値以上10体積%以下の水素ガスを含み残余ガスが不活性ガスにより活性化した場合は、前記一酸化炭素除去触媒の活性化を80〜250℃で行なうことが好ましく、更には120〜250℃で行なうことが好ましい。
【0012】
【0013】
又、この目的を達成するための本発明の一酸化炭素除去器の運転方法の特徴手段は、請求項に記載されているように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器の運転方法であって、
前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスと接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始する点にある。
また、請求項に記載されているように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器の運転方法であって、
前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始する点にある。
【0014】
尚、前記一酸化炭素除去触媒を前記混合ガスによって、80〜250℃で活性化させることが好ましく、更に好ましくは120〜250℃で活性化させる。
【0015】
また、この目的を達成するための本発明の燃料電池システムの運転方法の特徴手段は、請求項に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始する点にある。
尚、前記一酸化炭素除去触媒を前記混合ガスによって、80〜400℃で活性化させることが好ましい。より好ましくは、80〜250℃で活性化させ、更に好ましくは120〜250℃で活性化させる。
【0016】
また、この目的を達成するための本発明の燃料電池システムの運転方法の特徴手段は、請求項に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、メタノール改質及び一酸化炭素酸化除去を開始する点にある。
尚、前記一酸化炭素除去触媒を前記混合ガスによって、80〜400℃で活性化させることが好ましい。より好ましくは、80〜250℃で活性化させ、更に好ましくは120〜250℃で活性化させる。
そして、これらの作用効果は、以下の通りである。
【0017】
本願発明者らは、鋭意研究の結果、請求項1に記載されているように、水素を主成分とする燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させることによって活性化可能であるという新知見を得て、これに基づいて本発明を完成させた。このようにして活性化した前記一酸化炭素除去触媒を収容した前記一酸化炭素除去器を低温(例えば、70〜120℃)で運転したときにも、スタート時から良好な一酸化炭素酸化除去活性が得られる。なお、前記不活性ガスに水素を低比率で添加すると、前記一酸化炭素除去触媒の活性化温度を下げても、活性化後の前記一酸化炭素除去触媒は高い酸化除去性能を得ることができ、エネルギー消費を抑制可能であることを明らかとした。前記不活性ガスに添加する前記水素の比率は、実用的には50体積%未満で十分であるが、実施例から明らかに、10体積%以下でも前記一酸化炭素除去触媒の初期活性を高めるのに充分である。
これによって、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、前記一酸化炭素除去触媒の活性化のためだけに、高濃度の水素ガスを多量に用意する手間が省ける。
ここで、前記不活性ガスとは、それ単体では、前記一酸化炭素除去触媒と反応しないガスをいう。
【0018】
【0019】
【0020】
さらには、かかる組成のガスは、前記一酸化炭素除去器の上流側に設けられる前記一酸化炭素変成器、並びにアルコール改質器(例えば、前記メタノール改質器)の還元に供するガスと共用することができるという格別な効果を有する。すなわち、前記アルコール改質器、前記一酸化炭素変成器に内装される触媒は酸化され易いので、例えば、銅−亜鉛系触媒の場合は酸化銅−酸化亜鉛という酸化物の状態で供給されることが多い。この酸化物としての触媒は、夫々の容器に充填された後、還元ガス(水素ガス)雰囲気下で加熱して酸化銅を銅に還元して使用する。ここで、この種の触媒にあっては、前記還元時に前記水素ガスの濃度が高いと、前記触媒と激しく反応して発熱し、シンタリングが起こり易かった。前記シンタリングが起こると触媒を劣化させることになるので、従来、前記水素ガスを窒素等の不活性ガスで10体積%以下に希釈して供給して、260℃以下で還元処理を施し、発熱を抑制していた。これに対して、前記一酸化炭素除去触媒(例えば、アルミナを担体とし、これにルテニウムを担持した触媒)は、ルテニウムが酸化され難いので、ルテニウムをアルミナに担持する際に還元処理を行なえば、特に使用前に還元しなくても使用することができるとされていた。
従って、前記水素ガスを窒素等の不活性ガスで10体積%以下に希釈したガスで、前記一酸化炭素除去触媒を活性化することができることは従来知られておらず、同一組成のガスで、前記アルコールの改質触媒、一酸化炭素変成触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができることは、本願発明者らが見出した新知見である。
このようにすると、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記一酸化炭素変成触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
【0021】
さらには、前記特徴手段において、前記一酸化炭素除去触媒の活性化を80〜400℃で行なうことが好ましい(表1、2、図2〜4参照)。
この活性化を80℃以上で行なうと、図2〜4及び表1、2に示すように、例えば、改質ガス製造時において、前記燃料ガス中の一酸化炭素濃度を、大幅に減少させることができる。なお、400℃以上で行なうと加熱に要するエネルギーが過大となる上、触媒をシンタリングさせてしまうおそれがあるので、80〜400℃の範囲で行なうことが好ましい。
更に好ましくは、前記活性化の温度が120〜250℃であると、不活性ガスが水素を含んでいるか否かを問わず、前記燃料ガス中の一酸化炭素濃度を反応開始初期から100ppm以下にまで低減することができるので好ましい(図2〜4及び表1、2参照)。
また、水素ガスを10体積%以下含む不活性ガスにより活性化した場合は80〜250℃で活性化することによって、前記燃料ガス中の一酸化炭素濃度を、5000ppmから50或いは100ppm以下にまで削減することができる(図2〜4及び表2参照)。更には、120〜250℃で活性化することによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる
【0022】
【0023】
また、請求項に記載されているように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器を運転するにあたって、前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスと接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始すると、あるいは、請求項に記載されているように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器を運転するにあたって、前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始すると、前記一酸化炭素除去器は、低温で運転したときでも、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、前記一酸化炭素除去触媒の活性化のためだけに、高濃度の水素ガスを多量に用意する手間が省ける。
【0024】
また、上記特徴手段において、前記混合ガスが、10体積%以下の水素ガスを含み残余ガスが不活性ガスであると、前記一酸化炭素除去器の上流側に設けられる前記一酸化炭素変成器、もしくはアルコール改質器(例えば、前記メタノール改質器)の還元に供するガスと共用することができる。
ここで、前記混合ガスにより前記一酸化炭素除去触媒を、80〜250℃の温度で活性化させると、改質ガス中の一酸化炭素濃度を100ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記一酸化炭素除去器の運転開始時から、前記固体高分子型燃料電池に供給可能な前記燃料ガスを得ることができる。更には、120〜250℃の温度で活性化させることによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる。
【0025】
また、請求項に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムを運転するにあたって、前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始すると、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、実施例から明らかなように、前記一酸化炭素除去触媒の初期活性が充分に得られる活性化温度が、水素を含まない不活性ガスのみを供したときと比べて低下するので、エネルギー消費を抑制可能である。
さらには、かかる組成のガスは、前記一酸化炭素除去器の上流側に設けられる前記一酸化炭素変成器の還元に供するガスと共用することができるという格別な効果を有する。従って、前記一酸化炭素変成触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができ、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記一酸化炭素変成触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
【0026】
ここで、前記混合ガスにより前記一酸化炭素除去触媒を、80〜250℃の温度で活性化させると、改質ガス中の一酸化炭素濃度を100ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記一酸化炭素除去器の運転開始時から、前記固体高分子型燃料電池に供給可能な前記燃料ガスを得ることができる。更には、120〜250℃の温度で活性化させることによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる。
【0027】
また、請求項に記載してあるように、燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムを運転するにあたって、前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始すると、前記一酸化炭素除去器は、運転スタート時から、改質ガスの一酸化炭素濃度を所定値以下にまで低減することができるようになり、前記固体高分子型燃料電池にも供給可能な高品質な改質ガスを、副反応による水素の損失を極力抑制した状態で得ることができる。また、実施例から明らかなように、前記一酸化炭素除去触媒の初期活性が充分に得られる活性化温度が、水素を含まない不活性ガスのみを供したときと比べて低下するので、エネルギー消費を抑制可能である。
さらには、かかる組成のガスは、前記一酸化炭素除去器の上流側に設けられる前記メタノール改質器の還元に供するガスと共用することができるという格別な効果を有する。従って、前記メタノール改質触媒の還元と前記一酸化炭素除去触媒の活性化を同時に連続して行なうことができ、燃料改質装置の使用前処理に、活性化のために必要な設備を設けるに際し、例えば、前記メタノール改質触媒の還元設備と、前記一酸化炭素除去触媒の前処理設備及び資材を別々に備える必要がなくなる。
【0028】
ここで、前記混合ガスにより前記一酸化炭素除去触媒とを、80〜250℃の温度で活性化させると、改質ガスの一酸化炭素濃度を100ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記一酸化炭素除去器の運転開始時から、前記固体高分子型燃料電池に供給可能な前記燃料ガスを得ることができる。更には、120〜250℃の温度で活性化させることによって、一酸化炭素濃度を10ppm以下にまで削減することができる(図2〜4及び表2参照)。このレベルまで一酸化炭素濃度を低減させることができれば、前記燃料電池の電極触媒に対する被毒を抑制する効果が大きくなり、前記電極触媒の寿命を長く保つことができるようになる。
【0029】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る一酸化炭素除去触媒の活性化方法を実施可能な燃料改質装置を示す。この燃料改質装置は、天然ガスを原燃料として、固体高分子型燃料電池に供する水素を主成分とする燃料ガスを製造するものであって、前記原燃料を供給する原燃料供給系1(たとえば、ガスボンベやガス管から配管を通じて前記原燃料を供給する)、脱硫触媒や脱硫剤が内装された脱硫器2、改質触媒が内装された改質器4、一酸化炭素変成触媒が内装された一酸化炭素変成器5及び前記一酸化炭素除去触媒が内装された一酸化炭素除去器6が、夫々配管を通じて連接されていて、これらを通過して改質された改質ガスは、固体高分子型燃料電池7に供給される。尚、本願においては、前記燃料改質装置と固体高分子型燃料電池7とをあわせて燃料電池システムという。
前記原燃料供給系1から供給された天然ガスは、前記脱硫器2を通過する際に、前記脱硫触媒(例えば、Ni−Mo系触媒やCo−Mo系触媒)により硫黄化合物が水素化され、ZnOと接触して硫黄分が除去される。そして、水蒸気発生器3から供給される水蒸気と混合された後に、前記改質器4に搬送されて、ここで、前記改質触媒(例えば、Ni系触媒やRu系触媒)と接触して、前記天然ガス中のメタン等の炭化水素が水素に改質される。このようにして得られたガスは、水素に富むもの、副生成物としての一酸化炭素を十数体積%含むので、前記固体高分子型燃料電池7に直接供給することができない。そこで、前記一酸化炭素変成器5において、銅−亜鉛系触媒のような一酸化炭素変成触媒と接触させて、一酸化炭素を二酸化炭素に変成させて、所定値にまで一酸化炭素濃度を下げ、更に温度調整手段6aを備えた前記一酸化炭素除去器6において、前記酸化剤供給手段9から供給される酸化剤(たとえば、酸素を含む空気)とともに、前記一酸化炭素除去触媒(例えば、ルテニウム、白金、ロジウム、パラジウム等の貴金属をアルミナ等の担体に担持したもの)と接触させて、一酸化炭素を酸化除去して二酸化炭素として、最終的には、所定の濃度以下とする。
【0030】
さて、このような燃料電池システムに使用される触媒は、上述した燃料電池システムが構築される前に、夫々活性化される。具体的には、前記一酸化炭素変成器5及び前記一酸化炭素除去器6に内装される触媒は、個々に、その活性化に必要な処理を施した後に外気の流入を遮断し、この状態で前記配管と夫々接続して、前記燃料電池システムに組み込むことができる。
【0031】
例えば、前記一酸化炭素変成器5及び前記一酸化炭素除去器6に内装される触媒を、夫々異なるガスを用いて還元、活性化するとすれば、前記一酸化炭素変成器5に内装された一酸化炭素変成触媒は、定法に従って、10体積%以下の水素ガスを混合したガスを通気しながら、260℃以下に加熱することによって還元する。また、前記一酸化炭素除去器6に内装された一酸化炭素除去触媒は、本発明に係る活性化方法を用いて、即ち、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素ガスから選ばれる少なくとも1種の不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが前記不活性ガスである混合ガスを通気しながら活性化する。
前記活性化は80〜400℃の範囲で行なうことが好ましい。さらには、前記一酸化炭素除去触媒の活性化は、120〜250℃で行なうことが好ましく、また、有限値以上10体積%以下の水素ガスを含み残余ガスが不活性ガスにより活性化した場合は、前記一酸化炭素除去触媒の活性化を80〜250℃で行なうことが好ましく、更には120〜250℃で行なうことが好ましい。
【0032】
あるいは、本法によれば、前記一酸化炭素変成触媒の還元に用いるガスを、そのまま、前記一酸化炭素除去触媒の活性化に用いることも出来る。
つまり、前記一酸化炭素変成器5と前記一酸化炭素除去器6とを、前記配管で接続した状態で、前記不活性ガスに、10体積%以下の水素ガスを混合したガスを通気しながら、前記一酸化炭素変成器5と前記一酸化炭素除去器6とを、夫々の還元、活性化に適した温度に保持して、還元操作、活性化操作を行なうことができる。このようにすると、活性化(還元)ガスを1種類だけ用意すれば足りる。
【0033】
このようにして活性化された燃料電池システムに原燃料を導入し、前記一酸化炭素除去器を低温運転(例えば、70〜120℃)すれば、運転初期より、高度に一酸化炭素が除去された燃料ガスが得られる。このとき、前記一酸化炭素除去器に導入される入口ガスの酸素/一酸化炭素モル比は、例えば3以下でもよい。
【0034】
【実施例】
以下に本発明の実施例を説明する。
直径2〜4mmのアルミナ球を担体とし、この担体にルテニウム(Ru)を担持したRu/アルミナ触媒(一酸化炭素除去触媒)8ccを、ステンレス鋼製の反応管に充填して、一酸化炭素除去器を作成した。この一酸化炭素除去器は、前記反応管を外部から加熱可能なヒータ及び冷却可能な冷却器を備えた温度調節手段を備えていて、前記反応管の温度を制御可能に構成してある。
【0035】
(実施例1)
この一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は1.0重量%)に、前記一酸化炭素除去触媒を活性化するための混合ガス(水素6%、窒素94%)を、1000cc/分の流量で導入しながら、前記温度調節手段により、反応管温度が250℃になるまで昇温し、250℃で1.5時間保持した(前処理)。
この前処理の後、前記反応管の温度を100℃にまで降温させて、そのまま100℃に保ち、処理ガスを、空間速度(GHSV)7500/時間となるように、前記反応器に導入して、一酸化炭素の酸化除去反応を行なった。尚、前記処理ガスとしては、前記一酸化炭素変成器の出口ガスに、酸素/一酸化炭素のモル比が1.6となるように、空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.8%、窒素3.1%、水5%、水素でバランス)を用いた。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図2に示す。
【0036】
(実施例2)
前記一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は1.0重量%)に、前記一酸化炭素除去触媒を活性化するための混合ガス(水素10体積%、窒素90体積%)を、1000cc/分の流量で導入しながら、前記ヒータにより、反応管温度が200℃になるまで昇温し、200℃で2時間保持した(前処理)。
この前処理の後、前記反応管の温度を110℃にまで降温させて、そのまま110℃に保ち、前記処理ガスを、空間速度(GHSV)7500/時間となるように、前記反応管に導入して、一酸化炭素の酸化除去反応を行なった。尚、前記処理ガスとしては、前記一酸化炭素変成器の出口ガスに、酸素/一酸化炭素のモル比が1.6となるように、空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.8%、窒素3.1%、水20%、水素でバランス)を用いた(以下、特に記載のない限り、この組成のガスを「処理ガス」という。)。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図3に示す。
【0037】
(実施例3)
前記一酸化炭素除去器(前記一酸化炭素除去触媒のルテニウム担持量は0.5重量%)を用いて、一酸化炭素の酸化除去反応時の温度を120℃とした以外は、前記実施例2と同様に処理したものを、実施例3とした。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、図4に示す。
【0038】
(比較例1〜3)
前記一酸化炭素除去器に前処理を施していない以外は、前記実施例1〜3と同様に一酸化炭素の酸化除去反応を行なったものを、夫々比較例1〜3とした。
このようにして酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、それぞれ図2〜4に示す。
【0039】
図2に示すように、本法により活性化した一酸化炭素除去触媒を用いた一酸化炭素除去器の出口一酸化炭素濃度(実施例1)は、検出限界(5ppm)以下であり、運転開始直後から、前記固体高分子燃料電池の燃料ガスとして供給可能な改質ガスが得られ、前記一酸化炭素除去触媒の活性化の効果が現われていることがわかる。一方、前処理を施さなかった場合(比較例1)、運転開始から2時間後の出口一酸化炭素濃度は、4758ppmであり、100時間後でも4347ppmとなっていて、前記固体高分子燃料電池の燃料ガスとして供給可能な改質ガスが得られなかったどころか、ほとんど触媒反応が進行していなかった。
【0040】
また、図3、4に示すように、実施例2、3においても、同様に、運転開始直後から出口一酸化炭素濃度が検出限界(5ppm)以下となっていて、100〜120℃という低温条件で運転しても、前記固体高分子燃料電池の燃料ガスとして供給可能な改質ガスが得られた。一方、前処理を施さない従来法(比較例2、3)にあっては、やはり、運転初期の触媒活性がほとんど発揮されず、低温運転では4000ppm前後の一酸化炭素が出口ガスに含まれていた。
【0041】
(実施例4)
前処理に用いるガス種と、処理温度について検討した。
前記一酸化炭素除去器に充填された一酸化炭素除去触媒を、前記一酸化炭素除去触媒を活性化するための、前記一酸化炭素除去触媒とは反応しない不活性ガスである窒素ガス、又は水素ガスを10体積%含む窒素ガス(混合ガス)流下で、80〜250℃に保ち、2時間処理した。これらに、酸素/一酸化炭素のモル比が1.7となるように、前記一酸化炭素変成器の出口ガスに空気を混合したものに相当する組成のガス(一酸化炭素0.5%、メタン0.5%、二酸化炭素20.9%、酸素0.85%、窒素3.4%、水20%、水素でバランス)を、空間速度(GHSV)7500/時間となるように導入して、前記反応管温度を110℃に保って、一酸化炭素の酸化除去反応を行なったときの出口一酸化炭素濃度(ガスクロマトグラフ装置で測定)を、表1、2に示す。
【0042】
【表1】

Figure 0004240787
【0043】
【表2】
Figure 0004240787
【0044】
前記固体高分子型燃料電池に直接導入可能な前記燃料ガスの一酸化炭素濃度は、50〜100ppmであるので、この水準に達するか否かを基準に前記活性化処理の効果を判断すると、表1に示すように、窒素ガスのみで活性化した場合には、120〜250℃で前述した水準にまで一酸化炭素を削減することができた。また、10体積%水素を含む窒素ガスを用いて活性化を施した場合には、表2に示すように、80〜250℃で前述した水準にまで一酸化炭素を削減することができた。特に、120℃以上で活性化を施した場合には、一酸化炭素除去反応開始直後から5ppm以下にまで一酸化炭素濃度を削減することができ、このようにして精製された改質ガスを前記固体高分子型燃料電池に供給すれば、前記電極触媒の被毒を抑制するのに、特に効果的である。
かかる条件で活性化を施すと、前記一酸化炭素除去器の運転開始直後から、前記固体高分子型燃料電池に直接供給可能な改質ガスが得られるので改質ガスの製造効率を向上させることができ、その活性化温度も低くてすむので熱発生量を抑制することができる点で好ましいことがわかった。
【0045】
ここで、10体積%以下の水素を含む窒素ガスは、前記一酸化炭素除去器を設置すべき燃料改質装置に備えられる他の触媒、例えば、一酸化炭素変成触媒の活性化(還元)に使用する代表的な還元ガスとしても使用されるものでもある。従って、前述した一酸化炭素変成触媒等の還元ガスを、同時に、前記一酸化炭素除去触媒の活性化に使用するガスとして共用することができる。活性化ガスが他の触媒の活性化ガスと共用可能であり、熱発生量が少なくてもすむ。
【0046】
〔別実施形態〕
以下に別実施形態を説明する。
本発明に係る一酸化炭素除去器は、その上流に設けられる器材を、特に選ばない。従って、前記燃料ガス改質装置で用いる脱硫触媒、改質触媒、一酸化炭素変成触媒は、その種類を限定する必要はなく、公知のものを使用することができる。
また、本法は、前述したような、天然ガス(メタン)を改質する場合のみならず、メタノール改質により得られた改質ガスに含まれる一酸化炭素を除去する場合にも使用することができる。ここで、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを活性化に用いれば、前記一酸化炭素除去器を設置すべき燃料改質装置に備えられる他の触媒、例えば、一酸化炭素変成触媒や、アルコール(例えば、メタノール)を改質する場合に用いるアルコール(メタノール)改質触媒の活性化(還元)に使用する代表的な還元ガスとしても使用することができる。従って、前述した一酸化炭素変成触媒やアルコール改質触媒の還元ガスを、同時に、前記一酸化炭素除去触媒の活性化ガスとして共用することができ、また、前記一酸化炭素除去触媒の活性化温度を低下させることができるので熱発生量が少なくてすむ。
なお、前記不活性ガスとして窒素を用いたが、ヘリウムガス、アルゴンガス、二酸化炭素ガスを使用しても、比較的安価で入手・保管も容易であり、また、前記一酸化炭素除去触媒以外の部材を構成する材質とも反応し難いので、腐食等の弊害を招き難い等の効果が得られる。
【図面の簡単な説明】
【図1】 本発明を実施可能な燃料電池システムを表わす概念図
【図2】 本発明実施の効果を表わすグラフ
【図3】 本発明実施の効果を表わすグラフ
【図4】 本発明実施の効果を表わすグラフ
【符号の説明】
5 一酸化炭素変成器
6 一酸化炭素除去器
7 固体高分子型燃料電池[0001]
BACKGROUND OF THE INVENTION
  The present invention uses hydrogen (H) as a reformed gas obtained by reforming hydrocarbons such as natural gas, naphtha and kerosene, and alcohols such as methanol (steam reforming, partial combustion reforming, etc.).2) A method of activating a carbon monoxide removal catalyst for oxidizing and removing the carbon monoxide gas from a gas containing a gas as a main component and a small amount of carbon monoxide (CO) gas, and a carbon monoxide remover using the same. The present invention relates to an operation method and an operation method of a fuel cell system.
[0002]
[Prior art]
  Conventionally, in a fuel reformer for producing a fuel gas containing hydrogen as a main component (gas containing 50% by volume or more of hydrogen (dry base)) using a fossil fuel such as natural gas as a raw fuel, the raw fuel Is desulfurized and steam reformed in a continuous desulfurizer and steam reformer to form hydrogen as a main component, carbon monoxide, carbon dioxide (CO2), Moisture (H2The fuel gas containing O) etc. was obtained. Further, the fuel reformer using the alcohols, for example, methanol as a raw fuel, includes a methanol reformer having a methanol reforming catalyst built therein, and from methanol, hydrogen as a main component, carbon monoxide, carbon dioxide, moisture, etc. Was getting fuel gas containing.
[0003]
  Here, in a fuel reformer that produces fuel gas for use in a phosphoric acid fuel cell, it is known that the electrode catalyst of the fuel cell is poisoned by the presence of carbon monoxide. A gas having a main component is introduced into a carbon monoxide converter, and the carbon monoxide is converted into carbon dioxide (CO) by a carbon monoxide shift reaction.2) To obtain a fuel gas in which the concentration of carbon monoxide in the gas is not more than a predetermined value (for example, 0.5%).
  However, in a fuel reformer that produces fuel gas for use in a polymer electrolyte fuel cell, since the polymer electrolyte fuel cell operates at a low temperature of about 80 ° C., an electrode catalyst is produced by a small amount of carbon monoxide. It is necessary to further reduce the carbon monoxide in order to be poisoned, and carbon monoxide removal containing a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide downstream of the carbon monoxide converter. An oxidant such as air is added to the fuel gas treated by the carbon monoxide converter and introduced into the fuel gas, and carbon monoxide is removed in the presence of the carbon monoxide removal catalyst. The fuel gas was obtained by oxidizing to carbon and reducing the carbon monoxide concentration to a predetermined concentration or less (for example, 100 ppm or less).
[0004]
  As this type of carbon monoxide removal catalyst, a noble metal catalyst in which ruthenium (Ru), rhodium (Rh), platinum (Pt), palladium (Pd) or the like is supported on a support such as alumina is used. Without using activation treatment, it is used for carbon monoxide oxidation removal, or the carbon monoxide removal catalyst is pretreated in a gas atmosphere containing hydrogen as a main component (50 mol% or more), and then is not exposed to air. An activation method to be used has been proposed (see JP-A-10-29802).
[0005]
[Problems to be solved by the invention]
  However, the carbon monoxide removal catalyst not only oxidizes and removes carbon monoxide, but also side reactions that consume hydrogen and regenerate carbon monoxide, methane, and water (reverse shift reaction of carbon monoxide, one It was also known to cause a methanation reaction of carbon oxide and carbon dioxide and a combustion reaction of hydrogen.) Such a side reaction had to be suppressed as much as possible.
  Since these side reactions tend to occur when the reaction temperature of the carbon monoxide removal catalyst is high (for example, 200 ° C. or higher), the carbon monoxide removal catalyst is ideally used at a low temperature of about 100 ° C. It is preferable to do.
[0006]
  Here, if the carbon monoxide removal catalyst is used for carbon monoxide oxidation removal without being subjected to activation treatment, the carbon monoxide removal activity is hardly exhibited at the initial stage of operation at a low temperature of about 100 ° C. It was found that it was difficult to remove carbon monoxide to a predetermined concentration or less (see the comparative examples described in FIGS. 2 to 4). Conversely, when the reaction temperature is relatively high, the initial activity is exhibited. As described above, the partial pressure of unnecessary gases such as carbon monoxide, methane, and water vapor increases, and the product hydrogen is reduced. There was a problem of consumption.
  Further, if the carbon monoxide removal catalyst is activated using a gas containing hydrogen as a main component, hydrogen will still be consumed, and only for the activation of the carbon monoxide removal catalyst. In addition, a large amount of high-concentration hydrogen gas is required, which is troublesome. Furthermore, when the gas used for the activation treatment is discharged out of the system, there is a possibility that the concentration may be in the hydrogen explosion limit range (4 to 75% by volume). There was a point.
[0007]
  Accordingly, an object of the present invention is to remove the carbon monoxide in order to enable low-temperature operation of the carbon monoxide remover capable of reducing the carbon monoxide concentration while suppressing hydrogen consumption in view of the above drawbacks. It is to provide a method for activating a catalyst.
[0008]
[Means for Solving the Problems]
  The characterizing means of the method for activating the carbon monoxide removal catalyst of the present invention to achieve this object is as described in claim 1,waterAs a pretreatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas containing as a main component is an inert gas or a finite value or more and less than 50% by volume. It is to be activated by bringing it into contact with a mixed gas containing hydrogen in a residual gas which is an inert gas at 80 to 400 ° C.
[0009]
[0010]
[0011]
  still,The activation of the carbon monoxide removal catalyst is preferably performed at 120 to 250 ° C. In addition, when the residual gas containing hydrogen gas having a finite value and 10% by volume or less is activated by an inert gas, The activation of the carbon oxide removing catalyst is preferably performed at 80 to 250 ° C, more preferably 120 to 250 ° C.
[0012]
[0013]
  In order to achieve this object, the characteristic means of the operation method of the carbon monoxide remover according to the present invention is as follows.2Is provided in a fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, and contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas. A method for operating a carbon oxide remover, comprising:
  As a pretreatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst is brought into contact with an inert gas or a mixed gas containing hydrogen of not less than a finite value and not more than 10% by volume and the residual gas being an inert gas. Thus, after activating the carbon monoxide removal catalyst, carbon monoxide oxidation removal for the fuel gas is started.
  Claims3Is provided in a fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, and contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas. A method for operating a carbon oxide remover, comprising:
  As a pre-treatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst is mixed with an inert gas or a mixed gas containing hydrogen of not less than a finite value and less than 50% by volume and the remaining gas being an inert gas. After contacting the catalyst at ˜400 ° C. to activate the carbon monoxide removal catalyst, carbon monoxide oxidation removal for the fuel gas is started.
[0014]
  In addition, it is preferable to activate the said carbon monoxide removal catalyst by 80-250 degreeC with the said mixed gas, More preferably, it activates at 120-250 degreeC.
[0015]
  Moreover, the characteristic means of the operation method of the fuel cell system of the present invention for achieving this object is as follows.4As described in the above, a carbon monoxide conversion catalyst that converts carbon monoxide in the fuel gas into carbon dioxide from the upstream side in a fuel gas supply path mainly containing hydrogen supplied to the fuel cell And a carbon monoxide remover that contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas. And
  The carbon monoxide converter and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to reduce the carbon monoxide conversion catalyst. And performing a catalyst activation step for activating the carbon monoxide removal catalyst,
  The point is to start carbon monoxide transformation and carbon monoxide oxidation removal for the fuel gas.
  In addition, it is preferable to activate the said carbon monoxide removal catalyst at 80-400 degreeC with the said mixed gas. More preferably, activation is performed at 80 to 250 ° C, and further preferably activation is performed at 120 to 250 ° C.
[0016]
  Moreover, the characteristic means of the operation method of the fuel cell system of the present invention for achieving this object is as follows.5And a methanol reformer containing a methanol reforming catalyst that converts methanol into hydrogen from the upstream side in the fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, A carbon monoxide remover that contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas.
  The methanol reformer and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value to 10% by volume and the residual gas being an inert gas to reduce the methanol reforming catalyst and After performing the catalyst activation step of activating the carbon oxide removal catalyst,
  The point is to start methanol reforming and carbon monoxide oxidation removal for the fuel gas.
  In addition, it is preferable to activate the said carbon monoxide removal catalyst at 80-400 degreeC with the said mixed gas. More preferably, activation is performed at 80 to 250 ° C, and further preferably activation is performed at 120 to 250 ° C.
  These functions and effects are as follows.
[0017]
  As a result of earnest research, the inventors of the present application have as described in claim 1.,waterAs a pretreatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas containing as a main component is an inert gas or a finite value or more and less than 50% by volume. The present invention was completed based on the new knowledge that activation can be achieved by bringing the residual gas into contact with a mixed gas that is an inert gas at 80 to 400 ° C. Even when the carbon monoxide remover containing the activated carbon monoxide removal catalyst is operated at a low temperature (for example, 70 to 120 ° C.), good carbon monoxide oxidation removal activity from the start Is obtained. If hydrogen is added to the inert gas at a low ratio, the activated carbon monoxide removal catalyst can obtain high oxidation removal performance even if the activation temperature of the carbon monoxide removal catalyst is lowered. It was clarified that energy consumption can be suppressed. The ratio of the hydrogen to be added to the inert gas is practically less than 50% by volume, but it is apparent from the examples that the initial activity of the carbon monoxide removal catalyst is increased even at 10% by volume or less. Enough.
  As a result, the carbon monoxide remover can reduce the carbon monoxide concentration of the reformed gas to a predetermined value or less from the start of operation, and can be supplied to the polymer electrolyte fuel cell. High quality reformed gas can be obtained in a state in which loss of hydrogen due to side reaction is suppressed as much as possible. In addition, it is possible to save the trouble of preparing a large amount of high-concentration hydrogen gas only for activating the carbon monoxide removal catalyst.
  Here, the inert gas means a gas that does not react with the carbon monoxide removal catalyst by itself.
[0018]
[0019]
[0020]
  Furthermore, the gas having such a composition is shared with the carbon monoxide converter provided on the upstream side of the carbon monoxide remover and the gas used for the reduction of the alcohol reformer (for example, the methanol reformer). It has a special effect of being able to. That is, since the catalyst built in the alcohol reformer and the carbon monoxide converter is easily oxidized, for example, in the case of a copper-zinc catalyst, it is supplied in the form of an oxide of copper oxide-zinc oxide. There are many. The catalyst as the oxide is used after being filled in each container and then heated in a reducing gas (hydrogen gas) atmosphere to reduce the copper oxide to copper. Here, in this type of catalyst, when the concentration of the hydrogen gas was high during the reduction, the catalyst reacted vigorously with the catalyst and generated heat, and sintering was likely to occur. Since the catalyst deteriorates when the sintering occurs, conventionally, the hydrogen gas is diluted with an inert gas such as nitrogen and supplied to 10% by volume or less, subjected to a reduction treatment at 260 ° C. or less, and generates heat. Was suppressed. On the other hand, the carbon monoxide removal catalyst (for example, a catalyst having alumina as a carrier and supporting ruthenium thereon) is difficult to oxidize ruthenium. Therefore, when the reduction treatment is performed when ruthenium is supported on alumina, In particular, it can be used without reduction before use.
  Therefore, it has not been known that the carbon monoxide removal catalyst can be activated with a gas obtained by diluting the hydrogen gas to 10% by volume or less with an inert gas such as nitrogen. It is a new finding found by the present inventors that the alcohol reforming catalyst, the carbon monoxide shift catalyst and the carbon monoxide removal catalyst can be simultaneously and continuously reduced.
  In this case, when providing the equipment necessary for activation in the pre-use treatment of the fuel reformer, for example, the reduction equipment for the carbon monoxide shift catalyst and the pre-treatment equipment for the carbon monoxide removal catalyst And the need to prepare materials separately.
[0021]
  Further, in the feature means, it is preferable that the carbon monoxide removal catalyst is activated at 80 to 400 ° C. (see Tables 1 and 2 and FIGS. 2 to 4).
  If this activation is performed at 80 ° C. or higher, as shown in FIGS. 2 to 4 and Tables 1 and 2, for example, the carbon monoxide concentration in the fuel gas is greatly reduced during the production of reformed gas. Can do. In addition, since the energy required for a heating will become excessive when performing at 400 degreeC or more and there exists a possibility that a catalyst may be sintered, it is preferable to carry out in 80-400 degreeC.
  More preferably, when the activation temperature is 120 to 250 ° C., the concentration of carbon monoxide in the fuel gas is set to 100 ppm or less from the beginning of the reaction regardless of whether or not the inert gas contains hydrogen. Is preferable (see FIGS. 2 to 4 and Tables 1 and 2).
  In addition, when activated by an inert gas containing 10% by volume or less of hydrogen gas, the carbon monoxide concentration in the fuel gas is reduced from 5000 ppm to 50 or 100 ppm by activating at 80 to 250 ° C. (See FIGS. 2-4 and Table 2). Furthermore, by activating at 120 to 250 ° C., the carbon monoxide concentration can be reduced to 10 ppm or less (see FIGS. 2 to 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the effect of suppressing poisoning of the electrode catalyst of the fuel cell becomes large, and the life of the electrode catalyst can be kept long..
[0022]
[0023]
  Claims2Is provided in a fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, and contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas. When operating the carbon oxide remover, the carbon monoxide removal catalyst is treated as a pretreatment before using the carbon monoxide removal catalyst, and an inert gas or a residual gas containing hydrogen of 10% by volume or more is finite. The carbon monoxide removal catalyst is activated after being brought into contact with a mixed gas that is an inert gas, and then carbon monoxide oxidation removal for the fuel gas is started, or3Is provided in a fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, and contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas. In operating the carbon oxide remover, the carbon monoxide removal catalyst is treated as a pretreatment before using the carbon monoxide removal catalyst, and an inert gas or a residual gas containing hydrogen of not less than a finite value and less than 50% by volume is present. After the carbon monoxide removal catalyst is activated by contacting with a mixed gas which is an inert gas at 80 to 400 ° C., the carbon monoxide remover starts the carbon monoxide oxidation removal for the fuel gas. Even when operated at a low temperature, the carbon monoxide concentration of the reformed gas can be reduced to a predetermined value or less from the start of operation, and the high-quality fuel that can be supplied to the polymer electrolyte fuel cell. Break Gas, the loss of hydrogen due to side reactions can be obtained while minimizing. In addition, it is possible to save the trouble of preparing a large amount of high-concentration hydrogen gas only for activating the carbon monoxide removal catalyst.
[0024]
  Further, in the above characteristic means, when the mixed gas contains 10% by volume or less of hydrogen gas and the remaining gas is an inert gas, the carbon monoxide transformer provided on the upstream side of the carbon monoxide remover, Alternatively, it can be shared with a gas used for reduction of an alcohol reformer (for example, the methanol reformer).
  Here, when the carbon monoxide removal catalyst is activated at a temperature of 80 to 250 ° C. by the mixed gas, the carbon monoxide concentration in the reformed gas can be reduced to 100 ppm or less (FIG. 2). 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the fuel gas that can be supplied to the polymer electrolyte fuel cell can be obtained from the start of operation of the carbon monoxide remover. Furthermore, by activating at a temperature of 120 to 250 ° C., the carbon monoxide concentration can be reduced to 10 ppm or less (see FIGS. 2 to 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the effect of suppressing poisoning of the electrode catalyst of the fuel cell is increased, and the life of the electrode catalyst can be kept long.
[0025]
  Claims4As described in the above, a carbon monoxide conversion catalyst that converts carbon monoxide in the fuel gas into carbon dioxide from the upstream side in a fuel gas supply path mainly containing hydrogen supplied to the fuel cell When operating a fuel cell system comprising a carbon monoxide converter containing a carbon monoxide converter and a carbon monoxide remover containing a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas, The carbon monoxide converter and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to reduce the carbon monoxide conversion catalyst. In addition, after executing the catalyst activation step for activating the carbon monoxide removal catalyst, the carbon monoxide remover starts operation when carbon monoxide conversion and carbon monoxide oxidation removal are started for the fuel gas. Therefore, the carbon monoxide concentration of the reformed gas can be reduced to a predetermined value or less, and the high-quality reformed gas that can also be supplied to the polymer electrolyte fuel cell is converted into hydrogen by the side reaction. It can be obtained with the loss suppressed as much as possible. Further, as is clear from the examples, the activation temperature at which the initial activity of the carbon monoxide removal catalyst is sufficiently obtained is lowered as compared with the case where only an inert gas containing no hydrogen is provided. Can be suppressed.
  Furthermore, the gas having such a composition has a special effect that it can be used in common with the gas used for the reduction of the carbon monoxide converter provided on the upstream side of the carbon monoxide remover. Therefore, the reduction of the carbon monoxide conversion catalyst and the activation of the carbon monoxide removal catalyst can be carried out continuously at the same time, and the necessary equipment for activation is provided in the pretreatment for use of the fuel reformer. In this case, for example, it is not necessary to separately provide a reduction facility for the carbon monoxide shift catalyst, a pretreatment facility for the carbon monoxide removal catalyst, and materials.
[0026]
  Here, when the carbon monoxide removal catalyst is activated at a temperature of 80 to 250 ° C. by the mixed gas, the carbon monoxide concentration in the reformed gas can be reduced to 100 ppm or less (FIG. 2). 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the fuel gas that can be supplied to the polymer electrolyte fuel cell can be obtained from the start of operation of the carbon monoxide remover. Furthermore, by activating at a temperature of 120 to 250 ° C., the carbon monoxide concentration can be reduced to 10 ppm or less (see FIGS. 2 to 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the effect of suppressing poisoning of the electrode catalyst of the fuel cell is increased, and the life of the electrode catalyst can be kept long.
[0027]
  Claims5And a methanol reformer containing a methanol reforming catalyst that converts methanol into hydrogen from the upstream side in the fuel gas supply path mainly composed of hydrogen supplied to the fuel cell, In operating a fuel cell system comprising a carbon monoxide remover containing a carbon monoxide removal catalyst for oxidizing and removing carbon monoxide in the fuel gas in the order described, the methanol reformer and the carbon monoxide Catalytic activity for supplying a gas mixture containing hydrogen of a finite value to 10% by volume to the remover, wherein the residual gas is an inert gas, reducing the methanol reforming catalyst and activating the carbon monoxide removal catalyst When the carbon monoxide conversion and carbon monoxide oxidation removal are started for the fuel gas after performing the conversion step, the carbon monoxide remover starts from the start of operation with the monoacid of the reformed gas. The carbon concentration can be reduced to a predetermined value or less, and a high-quality reformed gas that can be supplied to the polymer electrolyte fuel cell is obtained in a state in which hydrogen loss due to side reactions is suppressed as much as possible. be able to. Further, as is clear from the examples, the activation temperature at which the initial activity of the carbon monoxide removal catalyst is sufficiently obtained is lowered as compared with the case where only an inert gas containing no hydrogen is provided. Can be suppressed.
  Furthermore, the gas having such a composition has a special effect that it can be shared with the gas used for the reduction of the methanol reformer provided on the upstream side of the carbon monoxide remover. Therefore, the reduction of the methanol reforming catalyst and the activation of the carbon monoxide removal catalyst can be carried out continuously at the same time, and when the necessary equipment for activation is provided in the pretreatment for use of the fuel reformer. For example, it is not necessary to separately provide a reduction facility for the methanol reforming catalyst and a pretreatment facility and materials for the carbon monoxide removal catalyst.
[0028]
  Here, when the carbon monoxide removal catalyst is activated by the mixed gas at a temperature of 80 to 250 ° C., the carbon monoxide concentration of the reformed gas can be reduced to 100 ppm or less (FIG. 2). 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the fuel gas that can be supplied to the polymer electrolyte fuel cell can be obtained from the start of operation of the carbon monoxide remover. Furthermore, by activating at a temperature of 120 to 250 ° C., the carbon monoxide concentration can be reduced to 10 ppm or less (see FIGS. 2 to 4 and Table 2). If the carbon monoxide concentration can be reduced to this level, the effect of suppressing poisoning of the electrode catalyst of the fuel cell is increased, and the life of the electrode catalyst can be kept long.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below with reference to the drawings.
  FIG. 1 shows a fuel reformer that can implement the method for activating a carbon monoxide removal catalyst according to the present invention. This fuel reformer uses natural gas as a raw fuel to produce a fuel gas containing hydrogen as a main component for use in a polymer electrolyte fuel cell, and supplies the raw fuel with a raw fuel supply system 1 ( For example, the raw fuel is supplied from a gas cylinder or a gas pipe through a pipe), a desulfurizer 2 equipped with a desulfurization catalyst or a desulfurizing agent, a reformer 4 equipped with a reforming catalyst, and a carbon monoxide conversion catalyst. Further, the carbon monoxide converter 5 and the carbon monoxide remover 6 in which the carbon monoxide removing catalyst is housed are connected through respective pipes, and the reformed gas that has been reformed through these pipes has a high solid content. It is supplied to the molecular fuel cell 7. In the present application, the fuel reformer and the polymer electrolyte fuel cell 7 are collectively referred to as a fuel cell system.
  When the natural gas supplied from the raw fuel supply system 1 passes through the desulfurizer 2, a sulfur compound is hydrogenated by the desulfurization catalyst (for example, a Ni—Mo catalyst or a Co—Mo catalyst), Contact with ZnO removes sulfur. And after being mixed with the steam supplied from the steam generator 3, it is transported to the reformer 4, where it comes into contact with the reforming catalyst (for example, Ni-based catalyst or Ru-based catalyst), Hydrocarbons such as methane in the natural gas are reformed to hydrogen. The gas obtained in this manner is rich in hydrogen and contains more than 10% by volume of carbon monoxide as a by-product, and therefore cannot be supplied directly to the polymer electrolyte fuel cell 7. Therefore, the carbon monoxide converter 5 is brought into contact with a carbon monoxide conversion catalyst such as a copper-zinc catalyst to convert carbon monoxide into carbon dioxide, and the carbon monoxide concentration is lowered to a predetermined value. Further, in the carbon monoxide remover 6 further provided with a temperature adjusting means 6a, the carbon monoxide removing catalyst (for example, ruthenium) together with the oxidant (for example, oxygen-containing air) supplied from the oxidant supplying means 9 is provided. And a precious metal such as platinum, rhodium, and palladium supported on a carrier such as alumina), and carbon monoxide is oxidized and removed to form carbon dioxide, which is finally reduced to a predetermined concentration or less.
[0030]
  Now, the catalyst used in such a fuel cell system is activated before the above-described fuel cell system is constructed. Specifically, the catalyst incorporated in the carbon monoxide converter 5 and the carbon monoxide remover 6 individually blocks the inflow of outside air after performing the treatment necessary for its activation. And can be connected to the pipes and incorporated into the fuel cell system.
[0031]
  For example, if the catalyst contained in the carbon monoxide converter 5 and the carbon monoxide remover 6 is reduced and activated using different gases, the catalyst contained in the carbon monoxide converter 5 is used. The carbon oxide shift catalyst is reduced by heating to 260 ° C. or less while ventilating a gas mixed with 10% by volume or less of hydrogen gas according to a conventional method. Further, the carbon monoxide removal catalyst incorporated in the carbon monoxide remover 6 is at least one selected from the nitrogen gas, helium gas, argon gas, and carbon dioxide gas using the activation method according to the present invention. It is activated while ventilating a seed inert gas or a mixed gas containing hydrogen of a finite value or more and less than 50% by volume and the remaining gas being the inert gas.
  The activation is preferably performed in the range of 80 to 400 ° C. Furthermore, the activation of the carbon monoxide removal catalyst is preferably performed at 120 to 250 ° C., and when the residual gas is activated by an inert gas containing hydrogen gas having a finite value and not more than 10% by volume. The activation of the carbon monoxide removal catalyst is preferably performed at 80 to 250 ° C, more preferably 120 to 250 ° C.
[0032]
  Or according to this method, the gas used for the reduction | restoration of the said carbon monoxide conversion catalyst can also be used for activation of the said carbon monoxide removal catalyst as it is.
  That is, while the carbon monoxide transformer 5 and the carbon monoxide remover 6 are connected by the pipe, while passing a gas in which 10% by volume or less of hydrogen gas is mixed with the inert gas, The carbon monoxide converter 5 and the carbon monoxide remover 6 can be held at temperatures suitable for their respective reductions and activations to perform reduction operations and activation operations. In this way, it is sufficient to prepare only one type of activation (reduction) gas.
[0033]
  When raw fuel is introduced into the fuel cell system thus activated and the carbon monoxide remover is operated at a low temperature (for example, 70 to 120 ° C.), carbon monoxide is highly removed from the initial stage of operation. Fuel gas is obtained. At this time, the oxygen / carbon monoxide molar ratio of the inlet gas introduced into the carbon monoxide remover may be, for example, 3 or less.
[0034]
【Example】
  Examples of the present invention will be described below.
  An alumina sphere having a diameter of 2 to 4 mm is used as a carrier, and Ru / alumina catalyst (carbon monoxide removal catalyst) supporting ruthenium (Ru) on this carrier is filled in a stainless steel reaction tube to remove carbon monoxide. A vessel was created. The carbon monoxide remover includes temperature adjusting means including a heater that can heat the reaction tube from the outside and a cooler that can cool the reaction tube, and the temperature of the reaction tube can be controlled.
[0035]
Example 1
  In this carbon monoxide remover (the ruthenium loading of the carbon monoxide removal catalyst is 1.0 wt%), a mixed gas (6% hydrogen, 94% nitrogen) for activating the carbon monoxide removal catalyst is provided. While introducing at a flow rate of 1000 cc / min, the temperature adjusting means was used to raise the temperature of the reaction tube until it reached 250 ° C. and held at 250 ° C. for 1.5 hours (pretreatment).
  After this pretreatment, the temperature of the reaction tube is lowered to 100 ° C. and kept at 100 ° C., and a treatment gas is introduced into the reactor so that the space velocity (GHSV) is 7500 / hour. Then, oxidation removal reaction of carbon monoxide was performed. The treatment gas is a gas having a composition corresponding to a mixture of air and an outlet gas of the carbon monoxide converter so that an oxygen / carbon monoxide molar ratio is 1.6. Carbon 0.5%, methane 0.5%, carbon dioxide 20.9%, oxygen 0.8%, nitrogen 3.1%, water 5%, and hydrogen).
  FIG. 2 shows the outlet carbon monoxide concentration (measured with a gas chromatograph) when the oxidation removal reaction was performed in this manner.
[0036]
(Example 2)
  In the carbon monoxide remover (the ruthenium loading of the carbon monoxide removal catalyst is 1.0% by weight), a mixed gas for activating the carbon monoxide removal catalyst (hydrogen 10 volume%, nitrogen 90 volume%) ) At a flow rate of 1000 cc / min, the temperature of the reaction tube was raised to 200 ° C. by the heater and held at 200 ° C. for 2 hours (pretreatment).
  After this pretreatment, the temperature of the reaction tube is lowered to 110 ° C. and maintained at 110 ° C., and the treatment gas is introduced into the reaction tube so that the space velocity (GHSV) is 7500 / hour. Then, oxidation removal reaction of carbon monoxide was performed. The treatment gas is a gas having a composition corresponding to a mixture of air and an outlet gas of the carbon monoxide converter so that an oxygen / carbon monoxide molar ratio is 1.6. Carbon 0.5%, methane 0.5%, carbon dioxide 20.9%, oxygen 0.8%, nitrogen 3.1%, water 20%, hydrogen balance) (hereinafter, unless otherwise specified) The gas having this composition is referred to as “processing gas”).
  FIG. 3 shows the outlet carbon monoxide concentration (measured with a gas chromatograph) when the oxidation removal reaction was performed in this manner.
[0037]
(Example 3)
  Example 2 except that the carbon monoxide removal device (the ruthenium loading of the carbon monoxide removal catalyst is 0.5% by weight) and the temperature during the oxidation removal reaction of carbon monoxide was 120 ° C. The product treated in the same manner as in Example 3 was designated as Example 3.
  FIG. 4 shows the outlet carbon monoxide concentration (measured with a gas chromatograph) when the oxidation removal reaction was performed in this manner.
[0038]
(Comparative Examples 1-3)
  Except that the carbon monoxide remover was not subjected to pretreatment, the carbon monoxide removal reaction was performed in the same manner as in Examples 1 to 3, which were referred to as Comparative Examples 1 to 3, respectively.
  The outlet carbon monoxide concentration (measured with a gas chromatograph) when the oxidation removal reaction is performed in this manner is shown in FIGS.
[0039]
  As shown in FIG. 2, the outlet carbon monoxide concentration (Example 1) of the carbon monoxide remover using the carbon monoxide removal catalyst activated by this method is below the detection limit (5 ppm), and the operation is started. Immediately after that, it can be seen that a reformed gas that can be supplied as the fuel gas of the solid polymer fuel cell is obtained, and the effect of activating the carbon monoxide removal catalyst appears. On the other hand, when pretreatment was not performed (Comparative Example 1), the outlet carbon monoxide concentration after 2 hours from the start of operation was 4758 ppm, and even after 100 hours, it was 4347 ppm. Rather than a reformed gas that could be supplied as a fuel gas could not be obtained, almost no catalytic reaction had progressed.
[0040]
  Also, as shown in FIGS. 3 and 4, in Examples 2 and 3, similarly, the outlet carbon monoxide concentration is not more than the detection limit (5 ppm) immediately after the start of operation, and the low temperature condition of 100 to 120 ° C. Even when operated at 1, the reformed gas that can be supplied as the fuel gas of the solid polymer fuel cell was obtained. On the other hand, in the conventional methods (Comparative Examples 2 and 3) in which pretreatment is not performed, catalytic activity at the initial stage of operation is hardly exhibited, and carbon monoxide around 4000 ppm is included in the outlet gas in low temperature operation. It was.
[0041]
  (Example 4)
  The gas type used for pretreatment and the treatment temperature were examined.
  Nitrogen gas or hydrogen, which is an inert gas that does not react with the carbon monoxide removal catalyst, for activating the carbon monoxide removal catalyst in the carbon monoxide removal catalyst charged in the carbon monoxide remover Under the flow of nitrogen gas (mixed gas) containing 10% by volume of gas, the temperature was kept at 80 to 250 ° C. and treated for 2 hours. A gas having a composition corresponding to a mixture of air and the outlet gas of the carbon monoxide converter so that the oxygen / carbon monoxide molar ratio is 1.7 (0.5% carbon monoxide, Methane 0.5%, carbon dioxide 20.9%, oxygen 0.85%, nitrogen 3.4%, water 20%, balance with hydrogen) were introduced so that the space velocity (GHSV) was 7500 / hour. Tables 1 and 2 show the outlet carbon monoxide concentration (measured with a gas chromatograph) when the reaction temperature of the reaction tube was kept at 110 ° C. to carry out the oxidation removal reaction of carbon monoxide.
[0042]
[Table 1]
Figure 0004240787
[0043]
[Table 2]
Figure 0004240787
[0044]
  Since the carbon monoxide concentration of the fuel gas that can be directly introduced into the polymer electrolyte fuel cell is 50 to 100 ppm, the effect of the activation treatment is determined based on whether or not this level is reached. As shown in FIG. 1, when activated only with nitrogen gas, carbon monoxide could be reduced to the level described above at 120 to 250 ° C. Moreover, when it activated using nitrogen gas containing 10 volume% hydrogen, as shown in Table 2, carbon monoxide was able to be reduced to the level mentioned above at 80-250 degreeC. In particular, when activated at 120 ° C. or higher, the concentration of carbon monoxide can be reduced to 5 ppm or less immediately after the start of the carbon monoxide removal reaction. Supplying it to a polymer electrolyte fuel cell is particularly effective in suppressing poisoning of the electrode catalyst.
  When activated under such conditions, immediately after the start of operation of the carbon monoxide remover, a reformed gas that can be supplied directly to the polymer electrolyte fuel cell can be obtained, so that the production efficiency of the reformed gas can be improved. It was found that the activation temperature is low and the amount of heat generation can be suppressed, which is preferable.
[0045]
  Here, the nitrogen gas containing 10% by volume or less of hydrogen is used for activation (reduction) of another catalyst provided in the fuel reformer to which the carbon monoxide remover should be installed, for example, a carbon monoxide shift catalyst. It is also used as a typical reducing gas used. Therefore, the reducing gas such as the carbon monoxide conversion catalyst described above can be used as a gas used for activating the carbon monoxide removal catalyst at the same time. The activation gas can be shared with the activation gas of other catalysts, and the amount of heat generation can be reduced.
[0046]
    [Another embodiment]
  Another embodiment will be described below.
  The carbon monoxide remover according to the present invention is not particularly selected from equipment provided upstream thereof. Therefore, the desulfurization catalyst, reforming catalyst, and carbon monoxide conversion catalyst used in the fuel gas reforming apparatus do not need to be limited in kind, and known ones can be used.
  This method should be used not only when reforming natural gas (methane) as described above, but also when removing carbon monoxide contained in reformed gas obtained by methanol reforming. Can do. Here, if a mixed gas containing hydrogen of not less than a finite value and not more than 10% by volume and the residual gas is an inert gas is used for activation, the fuel reformer to which the carbon monoxide remover should be installed is provided. It is also used as a typical reducing gas used for activation (reduction) of a catalyst, for example, a carbon monoxide conversion catalyst or an alcohol (methanol) reforming catalyst used when reforming an alcohol (for example, methanol). Can do. Therefore, the reducing gas of the carbon monoxide conversion catalyst or alcohol reforming catalyst described above can be used simultaneously as the activation gas of the carbon monoxide removal catalyst, and the activation temperature of the carbon monoxide removal catalyst. The amount of heat generation can be reduced.
  In addition, although nitrogen was used as the inert gas, even if helium gas, argon gas, carbon dioxide gas is used, it is relatively inexpensive and easy to obtain and store, and other than the carbon monoxide removal catalyst. Since it does not easily react with the material constituting the member, it is possible to obtain effects such as hardly causing adverse effects such as corrosion.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a fuel cell system capable of implementing the present invention.
FIG. 2 is a graph showing the effect of the present invention.
FIG. 3 is a graph showing the effect of the present invention.
FIG. 4 is a graph showing the effect of the present invention.
[Explanation of symbols]
5 Carbon monoxide transformer
6 Carbon monoxide remover
7 Polymer electrolyte fuel cell

Claims (5)

水素を主成分とする燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させて活性化する一酸化炭素除去触媒の活性化方法。  As a pretreatment before using the carbon monoxide removing catalyst, the carbon monoxide removing catalyst for oxidizing and removing carbon monoxide in the fuel gas containing hydrogen as a main component is an inert gas or a finite value or more and less than 50% by volume. For activating a carbon monoxide removal catalyst, which is activated by contacting with a mixed gas containing hydrogen in a residual gas which is an inert gas at 80 to 400 ° C. 燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器の運転方法であって、
前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスと接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始する一酸化炭素除去器の運転方法。
An operation method of a carbon monoxide remover which is provided in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell and contains a carbon monoxide removal catalyst for oxidizing and removing carbon monoxide in the fuel gas. There,
As a pretreatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst is brought into contact with an inert gas or a mixed gas containing hydrogen of not less than a finite value and not more than 10% by volume and the residual gas being an inert gas. Then, after activating the carbon monoxide removal catalyst, the operation method of the carbon monoxide remover for starting carbon monoxide oxidation removal for the fuel gas.
燃料電池に供給される水素を主成分とする燃料ガスの供給路に備えられ、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器の運転方法であって、
前記一酸化炭素除去触媒を、当該一酸化炭素除去触媒を使用する前の前処理として、不活性ガス又は有限値以上50体積%未満の水素を含み残余ガスが不活性ガスである混合ガスと80〜400℃で接触させて、前記一酸化炭素除去触媒を活性化した後、前記燃料ガスに対する一酸化炭素酸化除去を開始する一酸化炭素除去器の運転方法。
An operation method of a carbon monoxide remover which is provided in a fuel gas supply path mainly composed of hydrogen supplied to a fuel cell and contains a carbon monoxide removal catalyst for oxidizing and removing carbon monoxide in the fuel gas. There,
As a pre-treatment before using the carbon monoxide removal catalyst, the carbon monoxide removal catalyst is mixed with an inert gas or a mixed gas containing hydrogen of not less than a finite value and less than 50% by volume and the remaining gas being an inert gas. A method for operating a carbon monoxide remover that starts contact with the fuel gas and activates the carbon monoxide removal catalyst after contacting the catalyst at ˜400 ° C.
燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、前記燃料ガス中の一酸化炭素を二酸化炭素に変成する一酸化炭素変成触媒を収納した一酸化炭素変成器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記一酸化炭素変成器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記一酸化炭素変成触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、一酸化炭素変成及び一酸化炭素酸化除去を開始する燃料電池システムの運転方法。
A carbon monoxide converter having a carbon monoxide conversion catalyst for converting carbon monoxide in the fuel gas into carbon dioxide from the upstream side in a fuel gas supply path mainly containing hydrogen supplied to the fuel cell And a carbon monoxide remover that contains a carbon monoxide removal catalyst that oxidizes and removes carbon monoxide in the fuel gas.
The carbon monoxide converter and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value or more and 10% by volume or less and the remaining gas being an inert gas to reduce the carbon monoxide conversion catalyst. And performing a catalyst activation step for activating the carbon monoxide removal catalyst,
A method of operating a fuel cell system for starting carbon monoxide transformation and carbon monoxide oxidation removal for the fuel gas.
燃料電池に供給される水素を主成分とする燃料ガスの供給路に、上流側から、メタノールを水素に変成するメタノール改質触媒を収納したメタノール改質器と、前記燃料ガス中の一酸化炭素を酸化除去する一酸化炭素除去触媒を収納した一酸化炭素除去器とを、記載順に備えた燃料電池システムの運転方法であって、
前記メタノール改質器及び前記一酸化炭素除去器に、有限値以上10体積%以下の水素を含み残余ガスが不活性ガスである混合ガスを供給して、前記メタノール改質触媒を還元すると共に一酸化炭素除去触媒を活性化させる触媒活性化工程を実行した後、
前記燃料ガスに対する、メタノール改質及び一酸化炭素酸化除去を開始する燃料電池システムの運転方法。
A methanol reformer containing a methanol reforming catalyst for converting methanol into hydrogen from the upstream side in a fuel gas supply path mainly containing hydrogen supplied to the fuel cell, and carbon monoxide in the fuel gas A carbon monoxide remover containing a carbon monoxide removal catalyst for oxidizing and removing the fuel, and a fuel cell system operation method comprising the order of description,
The methanol reformer and the carbon monoxide remover are supplied with a mixed gas containing hydrogen of a finite value to 10% by volume and the residual gas being an inert gas to reduce the methanol reforming catalyst and After performing the catalyst activation step of activating the carbon oxide removal catalyst,
An operation method of a fuel cell system for starting methanol reforming and carbon monoxide oxidation removal for the fuel gas.
JP2000281936A 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system Expired - Lifetime JP4240787B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2000281936A JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
US10/380,811 US7247592B2 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal
PCT/JP2001/008023 WO2002022256A1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
EP09015103.6A EP2174709B1 (en) 2000-09-18 2001-09-14 Method of operating fuel cell system
CNA2005100670682A CN1724152A (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
CA002422795A CA2422795C (en) 2000-09-18 2001-09-14 Carbon monoxide removal
CNB2005100670697A CN100338809C (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal, catalyst for removing carbon monoxide, method of removing carbon monoxide, and method of operating fuel cell system
KR1020077027987A KR20070117007A (en) 2000-09-18 2001-09-14 Method of operating fuel cell system
EP09015102A EP2168679B1 (en) 2000-09-18 2001-09-14 Method of removing carbon monoxide
KR1020077027986A KR100942478B1 (en) 2000-09-18 2001-09-14 Catalyst for removing carbon monoxide and method of removing carbon monoxide
KR1020037001932A KR100840629B1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal and method of removing carbon monoxide
CNB018158293A CN1213804C (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal method for removing carbon monoxide, method of operating fuel cell system
EP01965667.7A EP1325778B1 (en) 2000-09-18 2001-09-14 Method of activating catalyst for carbon monoxide removal
US11/509,259 US7544341B2 (en) 2000-09-18 2006-08-24 Method of removing carbon monoxide
US11/509,258 US7544634B2 (en) 2000-09-18 2006-08-24 Carbon monoxide removing catalyst
US11/509,257 US7658908B2 (en) 2000-09-18 2006-08-24 Method of removing carbon monoxide and operating a fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281936A JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008144686A Division JP4714243B2 (en) 2008-06-02 2008-06-02 Method for activating carbon monoxide removal catalyst

Publications (3)

Publication Number Publication Date
JP2002085983A JP2002085983A (en) 2002-03-26
JP2002085983A5 JP2002085983A5 (en) 2005-02-17
JP4240787B2 true JP4240787B2 (en) 2009-03-18

Family

ID=18766520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281936A Expired - Lifetime JP4240787B2 (en) 2000-09-18 2000-09-18 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system

Country Status (2)

Country Link
JP (1) JP4240787B2 (en)
CN (2) CN100338809C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050629A (en) * 2003-07-28 2005-02-24 Ebara Ballard Corp Method and device for treating reformed gas and fuel cell power generation system
JP4551745B2 (en) * 2004-11-22 2010-09-29 出光興産株式会社 CO removal catalyst and method for producing the same
JP4506429B2 (en) * 2004-11-22 2010-07-21 富士電機ホールディングス株式会社 Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
KR101320387B1 (en) * 2005-01-25 2013-10-22 삼성에스디아이 주식회사 Catalytic system for the removal of carbon monoxide and fuel processor using the same
US8197785B2 (en) * 2008-02-27 2012-06-12 Kellogg Brown & Root Llc Split flow contactor
TWI763812B (en) * 2017-03-31 2022-05-11 日商大阪瓦斯股份有限公司 Electrochemical device, energy system and solid oxide fuel cell
CN113324896B (en) * 2021-05-27 2023-05-09 国网陕西省电力公司西安供电公司 Experimental device for be used for high tension cable buffer layer electrochemical corrosion research that blocks water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256612A (en) * 1990-07-12 1993-10-26 Exxon Research And Engineering Company Method for treating a catalyst
JP3986586B2 (en) * 1996-07-15 2007-10-03 旭化成株式会社 Hydrogen purification method for fuel cells
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst

Also Published As

Publication number Publication date
CN1724152A (en) 2006-01-25
JP2002085983A (en) 2002-03-26
CN100338809C (en) 2007-09-19
CN1725539A (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US7658908B2 (en) Method of removing carbon monoxide and operating a fuel cell system
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
JP4240787B2 (en) Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
JP2008501607A (en) Hybrid water gas shift reactor
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
EP1174486A1 (en) System for removing carbon monoxide and method for removing carbon monoxide
JP2001180912A (en) Hydrogen refining equipment
JP2000256003A (en) Method for removing co in hydrogen enriched gas
JP4714243B2 (en) Method for activating carbon monoxide removal catalyst
JP2006190586A (en) Method of using co selective oxidation reactor
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2003277013A (en) Carbon monoxide removing method and polymer electrolyte fuel cell system
JP2002085983A5 (en)
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP2000327305A (en) Co removal apparatus and fuel cell power generation system
JP2001068136A (en) Solid high-polymer fuel cell system and operating method therefor
JP4663095B2 (en) Hydrogen purification equipment
JP5086599B2 (en) Method for producing hydrogen-containing gas
KR20090016156A (en) Ruthenium catalyst for carbon monoxide removing, activation method thereof, fuel processor and fuel cell comprising the same
JP2006257351A (en) Catalyst reactor for post-treating gasification gas and system and method for post-treating gasification gas using the same catalyst reactor
JPWO2004000457A1 (en) Selective oxidation catalyst for carbon monoxide in reformed gas
RU2211081C1 (en) Method of treating hydrogen-containing gas mixture to remove carbon monoxide
JP4705375B2 (en) Method for stabilizing and activating CO removal catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4240787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

EXPY Cancellation because of completion of term