JP3986586B2 - Hydrogen purification method for fuel cells - Google Patents

Hydrogen purification method for fuel cells Download PDF

Info

Publication number
JP3986586B2
JP3986586B2 JP20280496A JP20280496A JP3986586B2 JP 3986586 B2 JP3986586 B2 JP 3986586B2 JP 20280496 A JP20280496 A JP 20280496A JP 20280496 A JP20280496 A JP 20280496A JP 3986586 B2 JP3986586 B2 JP 3986586B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
hydrogen
ppm
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20280496A
Other languages
Japanese (ja)
Other versions
JPH1029803A (en
Inventor
陽平 福岡
敬三 友国
斉 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Inst
Original Assignee
Asahi Kasei Corp
Noguchi Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Inst filed Critical Asahi Kasei Corp
Priority to JP20280496A priority Critical patent/JP3986586B2/en
Priority to DE19781880A priority patent/DE19781880B4/en
Priority to DE1997181880 priority patent/DE19781880T8/en
Priority to US09/230,014 priority patent/US6190430B1/en
Priority to PCT/JP1997/002445 priority patent/WO1998002377A1/en
Priority to AU34606/97A priority patent/AU3460697A/en
Publication of JPH1029803A publication Critical patent/JPH1029803A/en
Application granted granted Critical
Publication of JP3986586B2 publication Critical patent/JP3986586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は低温で作動する低温燃料電池用水素の精製方法に関し、特に、高分子電解質型燃料電池(以下「PEFC」と称す。)用の水素の精製法に関する。特に、有機化合物の改質法により製造した水素中に含まれている一酸化炭素は低温作動の燃料電池の電極触媒である白金に対して顕著な触媒毒作用を呈する。本発明は該水素中の一酸化炭素を高活性酸化反応触媒を用い酸化除去し、燃料電池を低温においても効果的に作動させる技術に関するものである。
【0002】
【従来の技術】
現在、広範な地域において水素を商業的に得るためには、有機化合物、例えば、メタン、プロパンなどの炭化水素、メタノールなどのアルコール類等の改質、特に水蒸気改質により製造する方法が優れていて好ましくは用いられている。しかし、実用的な運転条件下で水蒸気改質により得られる水素中には一酸化炭素が数パーセント程度含まれている。一酸化炭素はさらに、水蒸気との変成反応、いわゆるシフト反応により水素と二酸化炭素に転換することが論理的には可能であるが、平衡ならびに触媒活性の両面からその低減には限界があり、条件を整えても、一酸化炭素1%程度が実用的限界である。
【0003】
他方、燃料電池の燃料として使用する場合、特にPEFCを効果的に運転する場合には一酸化炭素濃度を数ppm以下に低減することが要請されている。PEFCは一酸化炭素を含まない水素を燃料として使用すれば、室温から稼働することが可能であり、極めて有効な燃料電池である。しかし、一酸化炭素の触媒毒作用は低温になればなるほど毒作用が顕著となり、少量でも一酸化炭素を含む場合は、低温での作動が出来ない。電極触媒に白金−ルテニウム合金を用いて耐一酸化炭素性を付与する方法が報告されているが、充分な耐一酸化炭素性を発揮し、一酸化炭素の触媒毒作用が発現しない範囲は100℃以上の高温に限られる。
【0004】
燃料電池に供給する水素ガスに酸素を6〜13%加えることにより、燃料電池より発生する電力の電圧の低下を発現することなく運転ができることが示唆されている。しかし、このような大量の酸素を加えると、ガス爆発の危険があり、かつ、水素の電極での非電気化学的酸化も顕著となり、水素の大きな損失を招き、さらに、電極面での大きな温度分布が発生し、発生電圧の顕著な低下をもたらす。一酸化炭素の濃度が100ppm以下であれば、電極への供給水素中への酸素の添加量は0.4%程度で可との報告があるが、あらかじめ、一酸化炭素の濃度100ppmまでの低減する為の工程の併設が必要であり、装置全体が複雑に成るばかりでなく、この場合でも、電極での非電解酸化の共存は電極面の温度分布の拡大を招き、燃料電池電圧の低下をもたらす。
【0005】
燃料電池に供給する水素に酸素含有ガスを添加し、予め、酸化反応触媒に接触させ、水素中の一酸化炭素を酸化除去する方法が検討されている。この方法は複雑な操作をおこなう燃料電池への負荷がなく、有効な酸化反応触媒があれば優れた方法になる。トヨタ自動車(株)の報告(第2回燃料電池シンポジウム講演予稿集235頁、1995年)によれば、反応温度100℃でルテニウム触媒による酸化除去により、一酸化炭素濃度が0ppmまで低減されるとある。ただし、この値は一酸化炭素の検知限界濃度20ppmの分析装置による分析結果である。また、より低温である80℃での反応結果では一酸化炭素が150ppm残存することが報告されており、低温での酸化反応触媒の活性が不十分であることがわかる。
【0006】
白金やパラジウム等の貴金属触媒を調製するとき、ハロゲン化物もしくはハロゲンを含有する化合物を原料として用いることが多い。ハロゲン含有化合物は水に溶けやすく担持が容易である等の他、最も重要なことは、この原料を用いること微分散された担持触媒が容易に得られることである。この貴金属の分散状態が触媒の性能と関係することが多く、より貴金属の分散された触媒が望まれている。通常、触媒に含有するハロゲンを除きたい時は、触媒の高温還元処理、もしくは酸化処理が行われる。また、酸化反応にこれらの触媒が用いられる場合は、少量のハロゲンを包含したまま使用し、酸化反応の進行とともに、反応系中で酸化除去される。このように、酸化反応で含有ハロゲンが問題となる例は少ない。
【0007】
一方、ルテニウム触媒の場合、その工業化例は少なく、ベンゼンの部分水素化によるシクロヘキセンの合成、アンモニアの合成などがあるのみであり、酸化反応の実用化例はない。
【0008】
一方、ルテニウム触媒とその触媒中に含まれるハロゲンの関係が検討されている。大平他の報告(日本化学会第50回春期年回、1X26、1X27(1985))によれば、塩化ルテニウムを原料とし、シリカ及びアルミナを担体として調整された触媒を用い、水素還元温度と残存塩素関係及びその触媒への水素もしくは一酸化炭素の吸着量の検討がなされている。その結果によれば、触媒の水素還元温度を上げても触媒中に塩素が残留していること、塩素の残留量が減少すると水素及び一酸化炭素の吸着量が増加することが報告されている。しかし、残留塩素が水素中の一酸化炭素の酸化除去反応にどのような影響を与えるかについての記載は全くない。
【0009】
【発明が解決しようとする課題】
水素中に含まれる一酸化炭素が燃料電池の出力電圧を下げてしまうので、PEFCの高効率運転のためには一酸化炭素の徹底的な削減が要請される。PEFCの大きな特徴である低温での運転においては、特に削減が要請される。この為、一酸化炭素の酸化反応触媒の低温での高活性、高選択性が要求される。特に100℃以下、さらには80℃以下での活性が要求される。また、いろいろな運転条件を考えた場合、室温での活性も重要な問題となる。
【0010】
【課題を解決するための手段】
本発明者らは、上記の目的達成のため、鋭意検討を重ねた結果、有機化合物の水蒸気改質反応によって製造した一酸化炭素を含む水素ガス中に、酸素を含むガスを添加して混合ガスとし、該混合ガスを一酸化炭素の酸化反応触媒に接触させるに際し、該触媒として実質的にハロゲンを含有しないルテニウム金属を主成分とする触媒を用いることにより一酸化炭素を効果的に除去し得ることを見い出し本発明を完成するに到った。
【0011】
即ち、本発明は、有機化合物の水蒸気改質反応によって製造した一酸化炭素を含む水素ガス中に、酸素を含むガスを添加して混合ガスとし、該混合ガスを一酸化炭素の酸化反応触媒に接触させるに際し、該触媒として実質的にハロゲンを含有しないルテニウム金属を主成分とする触媒を用いる燃料電池用水素の精製法である。本発明に使用される触媒はハロゲンの含有量が500ppm以下であり、好ましくは200ppm以下、さらに好ましくは100ppm以下である。また、該触媒を水素を主成分とするガス中で予め前処理し、その後も空気に接触させることなく該反応に用いることは極めて有効である。
【0012】
本発明の精製法を用いることにより、有機化合物の改質反応によって製造される一酸化炭素を含む水素ガス中の一酸化炭素を、室温から選択的に酸化除去することができ、本発明の目的であるPEFCの高効率運転、特にその特徴である低温での運転が可能となる。
【0013】
ルテニウム化合物としては種々の化合物が知られている。しかし、本発明の触媒の調製に使用する場合には、入手が容易で安価な化合物としてハロゲン化ルテニウムが挙げられる。特に塩化ルテニウムは好ましい。また、これらハロゲン化物より調製されたハロゲンを含有する錯体も使用される。
【0014】
本発明に用いられる触媒は担体に担持した担持触媒として用いられるのが好ましい。担体としては通常担体として用いられるものであればよく、例えば、アルミナ、シリカアルミナ、シリカゲル、モレキュラシーブ3A、ZSMー5、ゼオライトーX、ゼオライトーY、ゼオライトーベータに代表されるゼオライト、MCM−41に代表されるメソポーラスゼオライト、ジルコニア、チタニア、希土類の酸化物、カルシュウム、マグネシュウム、亜鉛の酸化物にに代表される塩基性酸化物、活性炭等が有効なものとして挙げられる。。形状は如何なるものでもよいが、球状、柱状等の粒状として用いられ、また、ハニカム等に代表される成型物として用いられるのも効果がある。
【0015】
これらの担体に担持する方法はいろいろな方法で調製される。例えば、共沈法等の沈殿法、ゾルーゲル法、イオン交換法、含浸法等が有効である。
上記の方法により、調製された触媒は還元剤により、ルテニウムが金属に還元される。還元剤としては水素が有効である。ホルマリン、ヒドラジン等の有機化合物による還元も有効である。還元操作が気相で行われることは有効である。また、水溶液中などの液相で行われるのも有効である。還元温度はルテニウム化合物が金属となればよく、しかし、あまり高温ではルテニウムのシンタリングが起こり好ましくない。その温度はその触媒の調製法によっても異なるが、通常室温から700℃ぐらいが用いられる。好ましくは室温から500℃で行われる。
【0016】
通常の酸化反応では酸化剤により、触媒表面のハロゲンは容易に脱離する。したがって、酸化反応の進行する反応系中、しかも初期段階で脱離し、特別な操作をすることなしに除去することが出来る。このため、酸化反応においてハロゲンが問題となることは少ない。しかし、本反応ではハロゲンを含有する触媒を使用した場合には、一酸化炭素の酸化除去が困難である他、反応系中でのハロゲンの脱離はみられず、触媒上のハロゲンは無くならない。本発明の特徴である実質的にハロゲンを含有しない触媒を用いるためには、予め、触媒を調製する段階でルテニウム原料に用いたハロゲンを取り除く必要がある。触媒上のハロゲンを取り除く方法としては、いくつかの方法がある。通常用いられる方法として、水素による還元除去がある。しかし、ハロゲンを完全に取り除くためには、高温の操作が必要であり、本反応で用いられるルテニウムのシンタリングを招き、この操作だけでハロゲンを除去することは好ましくない。また、酸素含有ガスでの酸化による方法も多く行われている。この方法も、ルテニウム触媒の場合はシンタリングが起こり易く、ルテニウムの粒径が増加する。本発明ではアルカリ剤によるハロゲンの除去方法が好ましい。このハロゲンの除去操作は触媒にルテニウムを担持後、もしくは水素等により還元した後に行うのが好ましい。また、調製法によっては、沈殿の操作中等の液相での取扱中に行われる。水中還元中に行われるのも好ましい。これらの除去操作が水溶液中でおこなわれるのは好ましい。使用されるアルカリ剤としてはハロゲンを除去できるものであればよく、例えば、リチュウム等のアルカリ金属、マグネシュウム等のアルカリ土類金属の酸化物もしくは水酸化物等が挙げられる。上記のハロゲン除去処理の操作を行った触媒が本発明に供される。
【0017】
一方、通常工業的に用いられる担体、例えば、アルミナ中には塩素が十から数十ppm含まれ、場合によってはもっと多く含まれている。上記の操作では、この担体中の塩素は除去されないが、本反応にはこれらの担体中のハロゲンは影響が無く、本発明の効果を損なうものではない。本発明に使用される触媒は実質的にハロゲンを含有しないものである。本発明に使用される触媒はハロゲンの含有量が500ppm以下であり、好ましくは200ppm以下、さらに好ましくは100ppm以下である。
【0018】
本発明の触媒を水素を主成分とするガス中で予め前処理し、その後も空気に触れることなしに使用するのが好ましい。水素を主成分とするガスとしては、水素以外に二酸化炭素、水蒸気、窒素、メタノール、メタン等の炭化水素を含んでいても、水素の含量が50モル%以上であればよい。少量の一酸化炭素を含んでいてもよい。また、この前処理される段階での水素を主成分とするガス中には実質的に酸素を含まないのが好ましい。前処理温度は通常、室温以上600℃以下、好ましくは50℃以上400℃以下、さらに好ましくは70℃以上300℃以下で行なわれる。
【0019】
本発明においては有機化合物の改質反応によって製造する一酸化炭素を含む水素ガスが使用される。ここで、有機化合物としては、例えば、メタノール、エタノール,メタン、エタン等が挙げられる。有機化合物の改質反応とは水蒸気ならびにあるいは酸素ガスによる部分酸化改質である。本発明の方法における水素を主成分とするガスには実質的に酸素を含まないのが好ましい。
【0020】
【発明の実施の形態】
以下に実施例などを用いて本発明を更に詳細に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
(製造例1)
日揮化学社製アルミナ担体25gに塩化ルテニウム2.6gを含む水溶液80mlを加え、湯浴上で蒸発乾固した。このうち10gを0.05規定の重炭酸ナトリウム水溶液50mlに浸し、2時間かき混ぜながら放置後、濾別した。この操作をもう一度繰り返し行った後、洗浄液が中性を示すまで繰り返し水洗した。ついで、乾燥し、300℃で3時間水素気流中で処理した。窒素雰囲気下で室温まで冷却し、取り出した。この触媒を蛍光X線分析装置(リガク社製、RIXー3000)により元素分析をおこなった。その結果、クロルの含有量は25ppmであった。また、単体に用いたアルミナ中のクロルの含有量は14ppmであった。(この装置のクロルの検出限界は10ppmである)
【0021】
(製造例2)
東ソー社製ゼオライトーY担体25gに塩化ルテニウム2.6gを含む水溶液80mlを加え、湯浴上で蒸発乾固した。このうち10gを0.05規定の水酸化ナトリウム水溶液50mlに浸し、2時間かき混ぜながら放置した後、濾別した。この操作をもう一度繰り返し行った後、洗浄液が中性を示すまで繰り返し水洗した。ついで、乾燥し、400℃で1時間水素気流中で処理した。窒素雰囲気下で室温まで冷却し、取り出した。この触媒のクロル含有量は20ppmであった。
【0022】
(製造例3)
日揮化学社製シリカゲル担体25gに塩化ルテニウム2.6gを含む水溶液80mlを加え、湯浴上で蒸発乾固した。このうち10gを0.05規定の水酸化ナトリウム水溶液50mlに浸し、2時間かき混ぜながら放置後、濾別した。この操作をもう一度繰り返し行った後、100gの水中に入れ、オートクレーブ中、100kg/cm2 の水素加圧下120℃で2時間水中還元処理をおこなった。取り出した触媒は濾別し、洗浄液が中性を示すまで繰り返し水洗した。この触媒のクロルの含有量は20ppmであった。
【0023】
(製造例4)
日揮化学社製アルミナ担体25gに塩化ルテニウム2.6gを含む水溶液80mlを加え、湯浴上で蒸発乾固した。このうち10gを取り、400℃で3時間水素気流中で処理した。窒素雰囲気下で室温まで冷却し、取り出した。この触媒のクロル含有量は10、000ppmであった(この触媒の一部を比較例1に使用した)。このうち5gを0.05規定の重炭酸ナトリウム水溶液25mlに浸し、2時間かき混ぜながら放置後、濾別した。この操作をもう一度繰り返し行った後、洗浄液が中性を示すまで繰り返し水洗した。この操作の後、乾燥した。この触媒のクロル含有量は20ppmであった。
【0024】
(製造例5)
水素気流中の処理を740℃で3時間行った以外は製造例4と同じ操作を行った。得られた触媒のクロル含有量は1,000ppmであった(この触媒の一部を比較例2に使用した)。さらに、製造例4と同じ操作を行い、触媒を得た。この触媒のクロル含有量は18ppmであった。
【0025】
(製造例6)
日揮化学社製シリカゲルを担体として用いた他は製造例4と同じ操作をおこなった。得られた触媒のクロル含有量は6,000ppmであった。さらに、製造例4と同じ操作を行い、触媒を得た。この触媒のクロル含有量は25ppmであった。
【0026】
(実施例1)
製造例1で調製した触媒0.9mlを一酸化炭素除去試験反応器に充填し、水素気流中70℃で1時間予め前処理した。水素気流中室温まで冷却した後、水素に変えて、水素:二酸化炭素:一酸化炭素:空気=3:1:0.001:0.03の混合ガスを空間速度20、000ml/ml・触媒/hrで上記反応器に送った。反応器内で発熱がみられ、反応器の外壁の温度は23℃、触媒の温度は33℃まで上昇した。反応器出口ガス中の一酸化炭素を分析したところ検出できなかった。一酸化炭素の分析はPID(光イオン化検知器)ガスクロマトグラフ(日立製)を用いた。この分析装置の一酸化炭素の検出下限は0.5ppmであった。
【0027】
(実施例2)
製造例2で調整した触媒0.9mlを一酸化炭素除去試験反応器に充填し、水素気流中140℃で2時間予め前処理した。水素気流中70℃まで冷却した後、水素に変えて、水素:二酸化炭素:一酸化炭素:空気=3:1:0.001:0.03の混合ガスを空間速度20、000ml/g触媒/hrで、さらに水を、水蒸気換算空間速度1、500ml/g触媒/hr、で加え、上記反応器に送った。反応器内で発熱がみられ、触媒の温度は82℃まで上昇した。反応器出口ガス中の一酸化炭素を分析したところ検出できなかった。
【0028】
(実施例3)
製造例3で調整した触媒を用いた以外は実施例2と同じ操作を行った。その結果、反応器出口ガス中の一酸化炭素濃度は1ppmであった。
(実施例4)
製造例4で調整した触媒を用いた以外は実施例2と同じ操作を行った。その結果、反応器出口ガス中の一酸化炭素濃度は1ppmであった。
【0029】
(実施例5)
製造例5で調整した触媒を用いた以外は実施例2と同じ操作を行った。その結果、反応器出口ガス中の一酸化炭素濃度は1ppmであった。
(実施例6)
製造例6で調整した触媒を用いた以外は実施例1と同じ操作を行った。その結果、反応器出口ガス中の一酸化炭素濃度は1ppmであった。
【0030】
(実施例7)
製造例2で調整した触媒0.9mlを一酸化炭素除去試験反応器に充填し、水素:二酸化炭素:一酸化炭素:=3:1:0.001:の混合ガスを空間速度20、000ml/g触媒/hr流通中、140℃で2時間予め前処理した。そのまま、70℃まで冷却した後、一酸化炭素の3倍量の空気を上記混合ガスに加え、さらに水蒸気を空間速度1、500ml/g触媒/hr、で加え、上記反応器に送った。反応器内で発熱がみられ、触媒の温度は81℃まで上昇した。反応器出口ガス中の一酸化炭素を分析したところ、出口ガス中の一酸化炭素濃度は2ppmであった。
【0031】
(比較例1)
製造例4で調整したクロルの含有した触媒0.9mlを一酸化炭素除去試験反応器に充填した以外は実施例2と全く同様の操作をおこなった。反応器内の発熱は少なく、触媒の温度は74℃であった。反応器出口ガス中の一酸化炭素を分析したところ、800ppmであった。このため、反応器を加熱し、触媒の温度が82℃になるように設定し、実験を続けた。このときの反応器出口ガス中の一酸化炭素を分析したところ、760ppmであった。また、反応終了後、この触媒中のクロル含有量を測定したところ10,000ppmであった。
【0032】
(比較例2)
製造例5で調整したクロルの含有した触媒0.9mlを一酸化炭素除去試験反応器に充填した以外は実施例1と全く同様の操作をおこなった。反応器内の発熱はほとんどなく、触媒の温度は25℃であった。反応器出口ガス中の一酸化炭素を分析したところ、780ppmであった。また、反応終了後、この触媒中のクロル含有量を測定したところ1,000ppmであった。
【0033】
【発明の効果】
一酸化炭素を含む水素ガス中の一酸化炭素濃度を低減することにより燃料電池の高効率運転を可能にする。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying hydrogen for a low temperature fuel cell operating at a low temperature, and more particularly to a method for purifying hydrogen for a polymer electrolyte fuel cell (hereinafter referred to as “PEFC”). In particular, carbon monoxide contained in hydrogen produced by an organic compound reforming method exhibits a remarkable catalytic poisoning effect on platinum which is an electrode catalyst of a fuel cell operating at a low temperature. The present invention relates to a technique for effectively oxidizing a fuel cell even at a low temperature by oxidizing and removing carbon monoxide in the hydrogen using a highly active oxidation reaction catalyst.
[0002]
[Prior art]
Currently, in order to obtain hydrogen commercially in a wide area, a method of producing by reforming organic compounds, for example, hydrocarbons such as methane and propane, alcohols such as methanol, etc., particularly steam reforming is excellent. Are preferably used. However, hydrogen obtained by steam reforming under practical operating conditions contains about several percent of carbon monoxide. Carbon monoxide can be logically converted into hydrogen and carbon dioxide by a shift reaction with water vapor, so-called shift reaction, but there are limits to the reduction in terms of both equilibrium and catalytic activity. Even if it arranges, about 1% of carbon monoxide is a practical limit.
[0003]
On the other hand, when used as a fuel for a fuel cell, particularly when the PEFC is operated effectively, it is required to reduce the carbon monoxide concentration to several ppm or less. PEFC is an extremely effective fuel cell that can be operated from room temperature if hydrogen containing no carbon monoxide is used as a fuel. However, the catalytic poisoning effect of carbon monoxide becomes more prominent as the temperature becomes lower. When even a small amount contains carbon monoxide, the operation at a low temperature cannot be performed. Although a method for imparting carbon monoxide resistance using a platinum-ruthenium alloy as an electrode catalyst has been reported, the range in which sufficient carbon monoxide resistance is exhibited and the catalytic poisoning action of carbon monoxide is not exhibited is 100. Limited to high temperature above ℃.
[0004]
It has been suggested that by adding 6 to 13% of oxygen to the hydrogen gas supplied to the fuel cell, operation can be performed without causing a decrease in the voltage of the electric power generated from the fuel cell. However, when such a large amount of oxygen is added, there is a risk of gas explosion and non-electrochemical oxidation of hydrogen at the electrode becomes significant, resulting in a large loss of hydrogen, and a large temperature at the electrode surface. Distribution occurs, resulting in a significant drop in the generated voltage. If the concentration of carbon monoxide is 100 ppm or less, it has been reported that the amount of oxygen added to the hydrogen supplied to the electrode can be about 0.4%. However, the concentration of carbon monoxide is reduced to 100 ppm in advance. In this case, the coexistence of non-electrolytic oxidation at the electrode leads to an increase in the temperature distribution on the electrode surface, which reduces the fuel cell voltage. Bring.
[0005]
A method has been studied in which an oxygen-containing gas is added to hydrogen supplied to a fuel cell, and is brought into contact with an oxidation reaction catalyst in advance to oxidize and remove carbon monoxide in hydrogen. This method is excellent if there is no load on the fuel cell that performs complicated operations and there is an effective oxidation reaction catalyst. According to a report from Toyota Motor Corporation (2nd Fuel Cell Symposium Lecture Proceedings, page 235, 1995), the removal of oxidation with ruthenium catalyst at a reaction temperature of 100 ° C reduced the carbon monoxide concentration to 0 ppm. is there. However, this value is an analysis result by an analyzer having a carbon monoxide detection limit concentration of 20 ppm. In addition, it is reported that 150 ppm of carbon monoxide remains in the reaction result at 80 ° C., which is a lower temperature, indicating that the activity of the oxidation reaction catalyst at a low temperature is insufficient.
[0006]
When preparing a noble metal catalyst such as platinum or palladium, a halide or a halogen-containing compound is often used as a raw material. The most important thing is that the halogen-containing compound is soluble in water and easily supported, and most importantly, a finely dispersed supported catalyst can be easily obtained by using this raw material. The dispersion state of the noble metal is often related to the performance of the catalyst, and a catalyst in which the noble metal is dispersed is desired. Usually, when it is desired to remove halogen contained in the catalyst, the catalyst is subjected to high-temperature reduction treatment or oxidation treatment. When these catalysts are used for the oxidation reaction, they are used while containing a small amount of halogen, and are oxidized and removed in the reaction system as the oxidation reaction proceeds. As described above, there are few examples where the contained halogen causes a problem in the oxidation reaction.
[0007]
On the other hand, in the case of a ruthenium catalyst, there are few examples of industrialization, there are only synthesis of cyclohexene by partial hydrogenation of benzene, synthesis of ammonia, etc., and there is no practical example of oxidation reaction.
[0008]
On the other hand, the relationship between the ruthenium catalyst and the halogen contained in the catalyst has been studied. According to a report by Ohira et al. (The Chemical Society of Japan 50th Spring Annual, 1X26, 1X27 (1985)), using a catalyst prepared with ruthenium chloride as a raw material and silica and alumina as a support, hydrogen reduction temperature and residual Studies have been made on chlorine and the amount of hydrogen or carbon monoxide adsorbed on the catalyst. According to the results, it has been reported that chlorine remains in the catalyst even when the hydrogen reduction temperature of the catalyst is raised, and that the adsorption amount of hydrogen and carbon monoxide increases when the residual amount of chlorine decreases. . However, there is no description of how residual chlorine affects the oxidation removal reaction of carbon monoxide in hydrogen.
[0009]
[Problems to be solved by the invention]
Since carbon monoxide contained in hydrogen lowers the output voltage of the fuel cell, thorough reduction of carbon monoxide is required for highly efficient operation of PEFC. In the operation at low temperature, which is a major feature of PEFC, reduction is particularly required. For this reason, high activity and high selectivity at low temperature of the oxidation reaction catalyst of carbon monoxide are required. In particular, activity at 100 ° C. or lower, further 80 ° C. or lower is required. When considering various operating conditions, activity at room temperature is also an important issue.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors of the present invention added a gas containing oxygen to a hydrogen gas containing carbon monoxide produced by a steam reforming reaction of an organic compound and mixed gas. When the mixed gas is brought into contact with an oxidation reaction catalyst for carbon monoxide, carbon monoxide can be effectively removed by using a catalyst mainly composed of ruthenium metal containing substantially no halogen as the catalyst. As a result, the present invention has been completed.
[0011]
That is, the present invention adds a gas containing oxygen to hydrogen gas containing carbon monoxide produced by a steam reforming reaction of an organic compound to form a mixed gas, and the mixed gas is used as an oxidation reaction catalyst for carbon monoxide. This is a method for purifying hydrogen for a fuel cell using a catalyst mainly composed of a ruthenium metal containing substantially no halogen as the catalyst. The catalyst used in the present invention has a halogen content of 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less. Further, it is extremely effective to pretreat the catalyst in a gas containing hydrogen as a main component and use it in the reaction without contacting with the air after that.
[0012]
By using the purification method of the present invention, it is possible to selectively oxidize and remove carbon monoxide in hydrogen gas containing carbon monoxide produced by a reforming reaction of an organic compound from room temperature. This enables high-efficiency operation of PEFC, particularly at low temperatures, which is a feature of PEFC.
[0013]
Various compounds are known as ruthenium compounds. However, when used for the preparation of the catalyst of the present invention, ruthenium halide is mentioned as an easily available and inexpensive compound. Ruthenium chloride is particularly preferable. Moreover, the complex containing the halogen prepared from these halides is also used.
[0014]
The catalyst used in the present invention is preferably used as a supported catalyst supported on a carrier. Any carrier can be used as long as it is usually used as a carrier. For example, alumina, silica alumina, silica gel, molecular sieve 3A, ZSM-5, zeolite X, zeolite Y, zeolite represented by zeolite beta, and representative by MCM-41. Examples of effective materials include mesoporous zeolite, zirconia, titania, rare earth oxides, calcium oxide, magnesium oxide, basic oxides represented by zinc oxide, and activated carbon. . Any shape can be used, but it is also effective to be used as a granular shape such as a spherical shape or a columnar shape, or as a molded product typified by a honeycomb or the like.
[0015]
The method of supporting these carriers can be prepared by various methods. For example, a precipitation method such as a coprecipitation method, a sol-gel method, an ion exchange method, an impregnation method and the like are effective.
By the above method, the prepared catalyst reduces ruthenium to a metal by a reducing agent. Hydrogen is effective as the reducing agent. Reduction with organic compounds such as formalin and hydrazine is also effective. It is effective that the reduction operation is performed in the gas phase. It is also effective to be performed in a liquid phase such as in an aqueous solution. The reduction temperature may be that the ruthenium compound becomes a metal, but ruthenium sintering occurs at an excessively high temperature. The temperature varies depending on the preparation method of the catalyst, but usually room temperature to about 700 ° C. is used. Preferably, it is carried out at room temperature to 500 ° C.
[0016]
In a normal oxidation reaction, the halogen on the catalyst surface is easily desorbed by the oxidizing agent. Therefore, it can be removed from the reaction system in which the oxidation reaction proceeds and at an initial stage without any special operation. For this reason, halogen is not a problem in the oxidation reaction. However, when a halogen-containing catalyst is used in this reaction, it is difficult to oxidize and remove carbon monoxide, and there is no elimination of halogen in the reaction system, and the halogen on the catalyst is not lost. . In order to use a catalyst containing substantially no halogen, which is a feature of the present invention, it is necessary to remove the halogen used in the ruthenium raw material in the stage of preparing the catalyst in advance. There are several methods for removing the halogen on the catalyst. A commonly used method is reduction removal with hydrogen. However, in order to completely remove the halogen, a high temperature operation is required, which causes sintering of ruthenium used in this reaction, and it is not preferable to remove the halogen only by this operation. Many methods using oxidation with an oxygen-containing gas are also performed. Also in this method, sintering is likely to occur in the case of a ruthenium catalyst, and the particle diameter of ruthenium increases. In the present invention, a method for removing halogen with an alkaline agent is preferred. This halogen removal operation is preferably performed after ruthenium is supported on the catalyst or after reduction with hydrogen or the like. Further, depending on the preparation method, it is carried out during handling in a liquid phase such as during the precipitation operation. It is also preferably performed during the reduction in water. These removal operations are preferably performed in an aqueous solution. As long as it can remove the halogen as an alkali agent used, for example, an alkali metal such as Lithium, oxide or hydroxide of alkaline earth metals such as magnesium and the like. A catalyst subjected to the above-described halogen removal treatment is provided for the present invention.
[0017]
On the other hand, a carrier that is usually used industrially, for example, alumina contains 10 to several tens of ppm of chlorine, and in some cases, contains more. In the above operation, chlorine in this carrier is not removed, but halogen in these carriers is not affected in this reaction, and the effect of the present invention is not impaired. The catalyst used in the present invention is substantially free of halogen. The catalyst used in the present invention has a halogen content of 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less.
[0018]
The catalyst of the present invention is preferably pretreated in a gas containing hydrogen as a main component and then used without being exposed to air. The gas containing hydrogen as a main component may contain hydrocarbons such as carbon dioxide, water vapor, nitrogen, methanol and methane in addition to hydrogen as long as the hydrogen content is 50 mol% or more. A small amount of carbon monoxide may be included. In addition, it is preferable that the gas containing hydrogen as a main component in the pretreatment stage does not substantially contain oxygen. The pretreatment temperature is usually from room temperature to 600 ° C, preferably from 50 ° C to 400 ° C, more preferably from 70 ° C to 300 ° C.
[0019]
In the present invention, hydrogen gas containing carbon monoxide produced by a reforming reaction of an organic compound is used. Here, examples of the organic compound include methanol, ethanol, methane, ethane, and the like. The organic compound reforming reaction is partial oxidation reforming with water vapor and / or oxygen gas. The gas containing hydrogen as a main component in the method of the present invention preferably contains substantially no oxygen.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(Production Example 1)
80 ml of an aqueous solution containing 2.6 g of ruthenium chloride was added to 25 g of an alumina carrier manufactured by JGC Chemical Co., Ltd., and evaporated to dryness on a hot water bath. 10 g of this was immersed in 50 ml of 0.05 N aqueous sodium bicarbonate solution, left standing for 2 hours with stirring, and then filtered off. After repeating this operation once more, it was repeatedly washed with water until the cleaning solution showed neutrality. Then, it was dried and treated in a hydrogen stream at 300 ° C. for 3 hours. The mixture was cooled to room temperature under a nitrogen atmosphere and taken out. The catalyst was subjected to elemental analysis using a fluorescent X-ray analyzer (RIX-3000, manufactured by Rigaku Corporation). As a result, the chloro content was 25 ppm. Further, the content of chloro in the alumina used as a simple substance was 14 ppm. (The detection limit of chlor in this device is 10 ppm)
[0021]
(Production Example 2)
80 ml of an aqueous solution containing 2.6 g of ruthenium chloride was added to 25 g of zeolite Y carrier manufactured by Tosoh Corporation, and evaporated to dryness on a hot water bath. 10 g of this was immersed in 50 ml of 0.05N aqueous sodium hydroxide solution, left standing for 2 hours with stirring, and then filtered off. After repeating this operation once more, it was repeatedly washed with water until the cleaning solution showed neutrality. Then, it was dried and treated in a hydrogen stream at 400 ° C. for 1 hour. The mixture was cooled to room temperature under a nitrogen atmosphere and taken out. The chloro content of this catalyst was 20 ppm.
[0022]
(Production Example 3)
80 ml of an aqueous solution containing 2.6 g of ruthenium chloride was added to 25 g of a silica gel carrier manufactured by JGC Chemical Co., Ltd., and evaporated to dryness on a hot water bath. 10 g of this was immersed in 50 ml of 0.05N aqueous sodium hydroxide solution, left standing for 2 hours with stirring, and then filtered off. After repeating this operation once more, it was put into 100 g of water, and reduced in water at 120 ° C. for 2 hours in an autoclave under a hydrogen pressure of 100 kg / cm 2 . The catalyst thus taken out was filtered off and washed repeatedly with water until the washing solution became neutral. The chloro content of this catalyst was 20 ppm.
[0023]
(Production Example 4)
80 ml of an aqueous solution containing 2.6 g of ruthenium chloride was added to 25 g of an alumina carrier manufactured by JGC Chemical Co., Ltd., and evaporated to dryness on a hot water bath. 10 g of this was taken and treated in a hydrogen stream at 400 ° C. for 3 hours. The mixture was cooled to room temperature under a nitrogen atmosphere and taken out. The catalyst had a chloro content of 10,000 ppm (a portion of this catalyst was used in Comparative Example 1). Of this, 5 g was immersed in 25 ml of 0.05N aqueous sodium bicarbonate solution, allowed to stand for 2 hours with stirring, and then filtered off. After repeating this operation once more, it was repeatedly washed with water until the cleaning solution showed neutrality. After this operation, it was dried. The chloro content of this catalyst was 20 ppm.
[0024]
(Production Example 5)
The same operation as in Production Example 4 was performed except that the treatment in a hydrogen stream was carried out at 740 ° C. for 3 hours. The resulting catalyst had a chloro content of 1,000 ppm (a portion of this catalyst was used in Comparative Example 2). Further, the same operation as in Production Example 4 was performed to obtain a catalyst. The catalyst had a chloro content of 18 ppm.
[0025]
(Production Example 6)
The same operation as in Production Example 4 was performed, except that silica gel manufactured by JGC Chemical was used as the carrier. The resulting catalyst had a chloro content of 6,000 ppm. Further, the same operation as in Production Example 4 was performed to obtain a catalyst. The chloro content of this catalyst was 25 ppm.
[0026]
Example 1
0.9 ml of the catalyst prepared in Production Example 1 was charged into a carbon monoxide removal test reactor, and pretreated for 1 hour at 70 ° C. in a hydrogen stream. After cooling to room temperature in a hydrogen stream, hydrogen is changed to hydrogen, and a mixed gas of hydrogen: carbon dioxide: carbon monoxide: air = 3: 1: 0.001: 0.03 is used at a space velocity of 20,000 ml / ml / catalyst / sent to the reactor in hr. An exotherm was observed in the reactor, and the temperature of the outer wall of the reactor rose to 23 ° C and the temperature of the catalyst rose to 33 ° C. When carbon monoxide in the reactor outlet gas was analyzed, it could not be detected. Carbon monoxide was analyzed using a PID (photoionization detector) gas chromatograph (manufactured by Hitachi). The lower limit of detection of carbon monoxide in this analyzer was 0.5 ppm.
[0027]
(Example 2)
0.9 ml of the catalyst prepared in Production Example 2 was charged into a carbon monoxide removal test reactor, and pretreated at 140 ° C. for 2 hours in a hydrogen stream. After cooling to 70 ° C. in a hydrogen stream, hydrogen is changed to hydrogen, and a mixed gas of hydrogen: carbon dioxide: carbon monoxide: air = 3: 1: 0.001: 0.03 is used at a space velocity of 20,000 ml / g catalyst / In hr, water was further added at a water vapor conversion space velocity of 1,500 ml / g catalyst / hr and sent to the reactor. An exotherm was observed in the reactor and the catalyst temperature rose to 82 ° C. When carbon monoxide in the reactor outlet gas was analyzed, it could not be detected.
[0028]
(Example 3)
The same operation as in Example 2 was performed except that the catalyst prepared in Production Example 3 was used. As a result, the carbon monoxide concentration in the reactor outlet gas was 1 ppm.
(Example 4)
The same operation as in Example 2 was performed except that the catalyst prepared in Production Example 4 was used. As a result, the carbon monoxide concentration in the reactor outlet gas was 1 ppm.
[0029]
(Example 5)
The same operation as in Example 2 was performed except that the catalyst prepared in Production Example 5 was used. As a result, the carbon monoxide concentration in the reactor outlet gas was 1 ppm.
(Example 6)
The same operation as in Example 1 was performed except that the catalyst prepared in Production Example 6 was used. As a result, the carbon monoxide concentration in the reactor outlet gas was 1 ppm.
[0030]
(Example 7)
0.9 ml of the catalyst prepared in Production Example 2 was charged into a carbon monoxide removal test reactor, and a mixed gas of hydrogen: carbon dioxide: carbon monoxide: = 3: 1: 0.001: space velocity of 20,000 ml / g Pre-treatment for 2 hours at 140 ° C. during catalyst / hr flow. After cooling to 70 ° C. as it was, 3 times the amount of carbon monoxide air was added to the mixed gas, and water vapor was further added at a space velocity of 1,500 ml / g catalyst / hr, and sent to the reactor. An exotherm was observed in the reactor and the temperature of the catalyst rose to 81 ° C. When carbon monoxide in the reactor outlet gas was analyzed, the carbon monoxide concentration in the outlet gas was 2 ppm.
[0031]
(Comparative Example 1)
Exactly the same operation as in Example 2 was performed, except that 0.9 ml of the chloro-containing catalyst prepared in Production Example 4 was charged into the carbon monoxide removal test reactor. There was little heat generation in the reactor, and the temperature of the catalyst was 74 ° C. When carbon monoxide in the reactor outlet gas was analyzed, it was 800 ppm. Therefore, the experiment was continued by heating the reactor and setting the temperature of the catalyst to 82 ° C. When carbon monoxide in the reactor outlet gas at this time was analyzed, it was 760 ppm. Further, after the reaction, the chloro content in the catalyst was measured and found to be 10,000 ppm.
[0032]
(Comparative Example 2)
Exactly the same operation as in Example 1 was performed, except that 0.9 ml of the chloro-containing catalyst prepared in Production Example 5 was charged into the carbon monoxide removal test reactor. There was little heat generation in the reactor, and the temperature of the catalyst was 25 ° C. When carbon monoxide in the reactor outlet gas was analyzed, it was 780 ppm. Further, after the reaction, the chloro content in this catalyst was measured and found to be 1,000 ppm.
[0033]
【The invention's effect】
By reducing the concentration of carbon monoxide in hydrogen gas containing carbon monoxide, the fuel cell can be operated efficiently.

Claims (1)

有機化合物の改質反応によって製造した一酸化炭素を含む水素ガス中に、酸素を含むガスを添加して得られる混合ガスを、一酸化炭素の酸化反応触媒に接触させる燃料電池用水素の精製方法であって、該精製方法が、
(1)ハロゲン化ルテニウムをアルカリ金属、アルカリ土類金属の水酸化物、重炭酸塩、から選ばれた少なくとも1種のアルカリ剤で処理して得られるルテニウム触媒を、
(2)反応器内に充填し、引き続き、室温以上600℃以下の温度範囲において水素を主成分とするガス中で予め前処理した後、
(3)該ルテニウム触媒を空気に接触させることなく該混合ガスと接触させる
ことを特徴とする燃料電池用水素の精製方法。
A method for purifying hydrogen for a fuel cell, wherein a mixed gas obtained by adding a gas containing oxygen to hydrogen gas containing carbon monoxide produced by a reforming reaction of an organic compound is brought into contact with a carbon monoxide oxidation reaction catalyst. And the purification method comprises:
(1) A ruthenium catalyst obtained by treating ruthenium halide with at least one alkaline agent selected from alkali metal, alkaline earth metal hydroxide, and bicarbonate,
(2) After filling in the reactor, and subsequently pre-treating in a gas mainly containing hydrogen in a temperature range of room temperature to 600 ° C.,
(3) A method for purifying hydrogen for a fuel cell, wherein the ruthenium catalyst is brought into contact with the mixed gas without being brought into contact with air.
JP20280496A 1996-07-15 1996-07-15 Hydrogen purification method for fuel cells Expired - Fee Related JP3986586B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20280496A JP3986586B2 (en) 1996-07-15 1996-07-15 Hydrogen purification method for fuel cells
DE19781880A DE19781880B4 (en) 1996-07-15 1997-07-15 A method for removing carbon monoxide from a hydrogen-containing gas for a fuel cell
DE1997181880 DE19781880T8 (en) 1996-07-15 1997-07-15 Method for producing a hydrogen-containing gas for a fuel cell
US09/230,014 US6190430B1 (en) 1996-07-15 1997-07-15 Method for producing hydrogen-containing gas for fuel cell
PCT/JP1997/002445 WO1998002377A1 (en) 1996-07-15 1997-07-15 Process for preparing hydrogen-containing gas for fuel cell
AU34606/97A AU3460697A (en) 1996-07-15 1997-07-15 Process for preparing hydrogen-containing gas for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20280496A JP3986586B2 (en) 1996-07-15 1996-07-15 Hydrogen purification method for fuel cells

Publications (2)

Publication Number Publication Date
JPH1029803A JPH1029803A (en) 1998-02-03
JP3986586B2 true JP3986586B2 (en) 2007-10-03

Family

ID=16463479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20280496A Expired - Fee Related JP3986586B2 (en) 1996-07-15 1996-07-15 Hydrogen purification method for fuel cells

Country Status (1)

Country Link
JP (1) JP3986586B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102719A (en) 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
CA2362470A1 (en) 1999-03-05 2000-09-14 Osaka Gas Co., Ltd. System for removing carbon monoxide and method for removing carbon monoxide
JP4240787B2 (en) * 2000-09-18 2009-03-18 大阪瓦斯株式会社 Method for activating carbon monoxide removal catalyst, method for operating carbon monoxide remover, and method for operating fuel cell system
EP1325778B1 (en) * 2000-09-18 2016-05-18 Osaka Gas Co., Ltd. Method of activating catalyst for carbon monoxide removal
JP2002126535A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Catalyst for selective oxidation of carbon monoxide and production method of the same
JP4551745B2 (en) * 2004-11-22 2010-09-29 出光興産株式会社 CO removal catalyst and method for producing the same
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
JP2007167828A (en) * 2005-12-26 2007-07-05 Nippon Oil Corp Catalyst for selectively oxidizing carbon monoxide, method for decreasing concentration of carbon monoxide and fuel cell system

Also Published As

Publication number Publication date
JPH1029803A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3593358B2 (en) Reformed gas oxidation catalyst and method for oxidizing carbon monoxide in reformed gas using the catalyst
JP4759739B2 (en) Ethylene decomposition catalyst
US4818745A (en) Catalyst for oxidation of carbon monoxide and process for preparing the catalyst
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
WO1998002377A1 (en) Process for preparing hydrogen-containing gas for fuel cell
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP3986586B2 (en) Hydrogen purification method for fuel cells
JP2001149779A (en) Selective oxidation catalyst for carbon monoxide in hydrogen-containing gas, carbon monoxide selectively removing method using the catalyst and solid polyelectrolyte type fuel cell system
CA2466322A1 (en) Method for preparing catalyst for carbon monoxide shift reaction
JP4014243B2 (en) Method for purifying hydrogen for fuel cells
JPH1029802A (en) Purifying method of hydrogen for fuel cell
JP2001054734A (en) Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen
JP2006202687A (en) Electrode catalyst for fuel cell of metal cluster
EP1257502A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
CN101181680A (en) Anti-steam catalyst for selective oxidation of carbon monoxide and preparation method thereof
JP4912706B2 (en) Carbon monoxide methanation method
JP2000345175A (en) Selective removal of carbon monoxide
FI115905B (en) Hydrocarbon dehydration process
JPH09320624A (en) Catalyst for carbon monoxide removal, fuel cell apparatus provided therewith, and carbon monoxide removing method from reformed gas to be supplied to the fuel cell
JPH1083825A (en) Method for refining hydrogen for fuel cell
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
KR100505032B1 (en) Catalyst for selectively removing carbon monoxide contained in reformate gas and process for removing carbon monoxide using the same
JP3703001B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP2002273223A (en) Method for manufacturing co removing catalyst
JP5958791B2 (en) Oxygen storage room temperature oxidation catalyst and method for removing CO contained in hydrogen, etc.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061222

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees