JP4759739B2 - Ethylene decomposition catalyst - Google Patents

Ethylene decomposition catalyst Download PDF

Info

Publication number
JP4759739B2
JP4759739B2 JP2006051497A JP2006051497A JP4759739B2 JP 4759739 B2 JP4759739 B2 JP 4759739B2 JP 2006051497 A JP2006051497 A JP 2006051497A JP 2006051497 A JP2006051497 A JP 2006051497A JP 4759739 B2 JP4759739 B2 JP 4759739B2
Authority
JP
Japan
Prior art keywords
ethylene
catalyst
decomposition catalyst
zirconium
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006051497A
Other languages
Japanese (ja)
Other versions
JP2007229559A (en
Inventor
信人 今中
敏行 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2006051497A priority Critical patent/JP4759739B2/en
Publication of JP2007229559A publication Critical patent/JP2007229559A/en
Application granted granted Critical
Publication of JP4759739B2 publication Critical patent/JP4759739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、青果物の呼吸作用の進行に伴って発生するエチレンを、酸化分解するためのエチレン分解触媒に関する。   The present invention relates to an ethylene decomposition catalyst for oxidatively decomposing ethylene generated with the progress of respiratory action of fruits and vegetables.

青果物保存庫に野菜や果物が収納されると、これら青果物の呼吸作用の進行に伴ってエチレンガスが発生する。このエチレンガスの作用により青果物の完熟および腐敗が促進され、その結果として青果物の日持ちが悪くなる。したがって、収穫後青果物の移送中もしくは貯蔵中における鮮度を保持するためには、これらから発生するエチレンガスを効率よく除去することが好ましい。   When vegetables and fruits are stored in the fruit and vegetable storage, ethylene gas is generated with the progress of the respiratory action of these fruits and vegetables. The action of ethylene gas promotes the ripening and rot of the fruits and vegetables, resulting in poor shelf life of the fruits and vegetables. Therefore, in order to maintain the freshness of the harvested fruits and vegetables during transportation or storage, it is preferable to efficiently remove ethylene gas generated therefrom.

エチレンガスを除去する方法としては、これまで種々のものが提案されており、代表的なものとして、吸着法、オゾン法、触媒法、光触媒法等がある。吸着法は、活性炭、ゼオライト、シリカ等の吸着剤の多孔性を利用して吸着除去する方法である。オゾン法は、オゾンの強力な酸化力を利用してエチレンガスを酸化分解する方法であり、このオゾンはオゾン発生器により得られる。触媒法は、触媒として塩化パラジウムを用いてエチレンガスを燃焼除去する方法である。また、その他の触媒として、白金、コバルト、銅、ニッケル等を用いる場合もある。光触媒法は、酸化チタンなどの光触媒を用いてエチレンガスを分解する方法である。   Various methods for removing ethylene gas have been proposed so far, and representative methods include an adsorption method, an ozone method, a catalyst method, a photocatalyst method, and the like. The adsorption method is a method of adsorbing and removing using the porosity of an adsorbent such as activated carbon, zeolite, or silica. The ozone method is a method of oxidizing and decomposing ethylene gas using the strong oxidizing power of ozone, and this ozone is obtained by an ozone generator. The catalytic method is a method of burning and removing ethylene gas using palladium chloride as a catalyst. Moreover, platinum, cobalt, copper, nickel, etc. may be used as another catalyst. The photocatalytic method is a method for decomposing ethylene gas using a photocatalyst such as titanium oxide.

特開平9−23815号公報Japanese Patent Laid-Open No. 9-23815 特開平5−138039号公報Japanese Patent Laid-Open No. 5-138039 特開平6−304480号公報JP-A-6-304480 特開平7−16473号公報JP 7-16473 A 特開平7−88367号公報JP-A-7-88367

しかしながら、上述のエチレンガスの除去方法には、各々一長一短があり、以下に述べるような多くの課題を有している。例えば、吸着法は、吸着剤が飽和してしまった場合に吸着能力が低下するため、一定期間毎の吸着剤の交換や、吸着剤を保存庫から取り出して再生するといった煩雑な作業が必要になる。オゾン法は、オゾン発生のための装置が必要であり、構造が複雑になるために保存庫全体としての大型化やコストの上昇を招いてしまうだけでなく、エチレンガスの酸化分解により悪臭成分である酢酸が生成する。触媒法においても、エチレンガスの燃焼により悪臭成分であるアセトアルデヒドが生成する。光触媒法では、エチレンガスの分解により可燃性を有するメタンが発生してしまう。   However, each of the above-described methods for removing ethylene gas has advantages and disadvantages, and has many problems as described below. For example, in the adsorption method, when the adsorbent is saturated, the adsorption capacity is lowered, so that it is necessary to perform complicated work such as replacement of the adsorbent at regular intervals and removal of the adsorbent from the storage. Become. The ozone method requires equipment for generating ozone, and the structure is complicated, leading not only to an increase in the size and cost of the entire storage, but also due to odor decomposition due to oxidative decomposition of ethylene gas. Some acetic acid is produced. Also in the catalytic method, acetaldehyde, which is a malodorous component, is generated by the combustion of ethylene gas. In the photocatalytic method, combustible methane is generated by the decomposition of ethylene gas.

本発明は、エチレンガスの分解において、活性が高く、悪臭成分や可燃成分を発生させることなしに、しかもメンテナンスを不要とする簡素な構成のエチレン分解触媒を提供することを目的とする。すなわち発明者らは、活性アルミナ、活性シリカ、ゼオライト、メソ多孔体などの高比表面積担体表面上に、セリウム−ジルコニウム−ビスマス複合酸化物、および白金、パラジウム、銀などの貴金属微粒子を担持した触媒が、高いエチレン分解活性を示すことを見出した。   An object of the present invention is to provide an ethylene decomposition catalyst having a simple configuration that has high activity in the decomposition of ethylene gas, does not generate malodorous components and combustible components, and does not require maintenance. That is, the inventors have a catalyst in which a cerium-zirconium-bismuth composite oxide and noble metal fine particles such as platinum, palladium, and silver are supported on the surface of a high specific surface area carrier such as activated alumina, activated silica, zeolite, or mesoporous material. Was found to exhibit high ethylene decomposition activity.

即ち本発明は、高比表面積担体表面上に、セリウム−ジルコニウム−ビスマス複合酸化物と貴金属微粒子とを担持したエチレン分解触媒であって、触媒中に含まれる貴金属微粒子の割合が2〜4重量%、セリウム−ジルコニウム−ビスマス複合酸化物の割合が10〜30重量%であることによって、高比表面積触媒担体による高い吸着能、セリウム−ジルコニウム−ビスマス複合酸化物による酸素の吸蔵放出特性、および貴金属微粒子の高い酸化触媒能の相乗効果により、高いエチレン分解活性を示すことを特徴とする、エチレン分解触媒の発明である。
That is, the present invention is an ethylene decomposition catalyst in which a cerium-zirconium-bismuth composite oxide and noble metal fine particles are supported on a high specific surface area carrier surface, and the ratio of the noble metal fine particles contained in the catalyst is 2 to 4% by weight. The ratio of the cerium-zirconium-bismuth composite oxide is 10 to 30% by weight, so that the high specific surface area catalyst support has a high adsorption capacity, the oxygen storage / release characteristics of the cerium-zirconium-bismuth composite oxide, and noble metal fine particles It is an invention of an ethylene decomposition catalyst characterized by exhibiting high ethylene decomposition activity due to the synergistic effect of high oxidation catalyst ability.

本発明の触媒を用いれば、悪臭成分や可燃成分を発生させることなしに、エチレンガスを炭酸ガスおよび水に酸化分解処理することが可能である。すなわち、従来の吸着法のように一定期間毎における吸着剤の交換や、吸着剤を保存庫から取り出して再生するといった作業が不要であるだけでなく、オゾン発生のための装置などを必要とせず、悪臭成分である酢酸やアセトアルデヒドが放出されることもない。さらに、メタンなどの可燃性ガスを発生させることもなしにエチレンガスを分解することができる。   By using the catalyst of the present invention, it is possible to oxidatively decompose ethylene gas into carbon dioxide gas and water without generating malodorous components and combustible components. That is, not only the work of exchanging the adsorbent at regular intervals as in the conventional adsorption method, and the work of taking out the adsorbent from the storage and regenerating it is not necessary, but also a device for generating ozone is not necessary. Also, acetic acid and acetaldehyde which are malodorous components are not released. Furthermore, ethylene gas can be decomposed without generating a flammable gas such as methane.

本発明のエチレン分解触媒は、担体材料(高比表面積担体)表面上に、セリウム−ジルコニウム−ビスマス複合酸化物と貴金属微粒子とを担持したことを特徴とするエチレン分解触媒である。本発明のエチレン分解触媒の担体材料としては、特に制限はないが、通常、高比表面積担体が用いられ、なかでも、高比表面積の多孔質担体を使用し、反応ガスが流通可能であることが好ましい。前記高比表面積の多孔質担体としては、例えば、アルミナ(活性アルミナ等)、シリカ(活性シリカ等)、シリカアルミナ、チタニア、ゼオライト、メソ多孔体、ジルコニア、およびこれらの混合物が適している。なかでも、活性アルミナを担体として用いたときにエチレンの酸化分解活性が高くなるので好ましい。担体の形状は、粉体状、粒状、ハニカム状、スポンジ状、マット状、織布状、板状、円筒状等の形状をとることができるが、特に反応ガスとの接触面積が大きくなる粉体状もしくはメソ多孔体等の三次元網状構造体が好ましい。   The ethylene decomposition catalyst of the present invention is an ethylene decomposition catalyst characterized by supporting a cerium-zirconium-bismuth composite oxide and noble metal fine particles on the surface of a support material (high specific surface area support). The carrier material for the ethylene decomposition catalyst of the present invention is not particularly limited, but usually a high specific surface area carrier is used, and among them, a porous carrier having a high specific surface area is used, and the reaction gas can be circulated. Is preferred. As the high specific surface area porous carrier, for example, alumina (active alumina and the like), silica (active silica and the like), silica alumina, titania, zeolite, mesoporous material, zirconia, and a mixture thereof are suitable. Among these, when activated alumina is used as a carrier, ethylene oxidative decomposition activity is high, which is preferable. The shape of the carrier can be powder, granule, honeycomb, sponge, mat, woven, plate, cylindrical, etc., but especially the powder that increases the contact area with the reaction gas. A three-dimensional network structure such as a body or a mesoporous body is preferred.

本発明のエチレン分解触媒の貴金属微粒子としては、特に制限はないが、通常、白金、パラジウム、銀などの貴金属ナノ粒子であることが好ましい。なかでもその粒径が2〜20nmのときにエチレンの酸化分解活性が高くなるので好ましく、さらに白金微粒子を用いたときに最も活性が高くなるのでより好ましい。   The noble metal fine particles of the ethylene decomposition catalyst of the present invention are not particularly limited, but usually noble metal nanoparticles such as platinum, palladium and silver are preferred. Among these, when the particle size is 2 to 20 nm, the oxidative degradation activity of ethylene is preferably increased, and when platinum fine particles are used, it is more preferable because the activity is highest.

また、触媒中に貴金属微粒子の割合は高価な貴金属の使用量を最適にし、余分なコストをかけずに効率よくエチレンを分解するために2〜4重量%とする The ratio of the noble metal microparticles in the catalyst, to optimize the amount of expensive precious metal, in order to decompose efficiently ethylene at no extra cost, and 2-4% by weight.

本発明のエチレン分解触媒には、セリウム−ジルコニウム−ビスマス複合酸化物が反応を促進する助触媒として加えられる。この助触媒がないと、十分なエチレンの酸化分解活性が得られない。   A cerium-zirconium-bismuth composite oxide is added to the ethylene decomposition catalyst of the present invention as a promoter for promoting the reaction. Without this cocatalyst, sufficient oxidative decomposition activity of ethylene cannot be obtained.

前項のセリウム−ジルコニウム−ビスマス複合酸化物助触媒は、一般式Ce1-x-yZrxBiy2-δで表される固溶体である。この助触媒の組成において、x、y、δの値がそれぞれ、0.1≦x≦0.3、0.1≦y≦0.3、0.05≦δ≦0.15の範囲にあるときに、エチレンの酸化分解活性が高くなるので好ましい。 The cerium-zirconium-bismuth composite oxide promoter described in the previous section is a solid solution represented by the general formula Ce 1-xy Zr x Bi y O 2 -δ. In this promoter composition, the values of x, y, and δ are in the ranges of 0.1 ≦ x ≦ 0.3, 0.1 ≦ y ≦ 0.3, and 0.05 ≦ δ ≦ 0.15, respectively. Sometimes, the oxidative degradation activity of ethylene is high, which is preferable.

次に、本発明のエチレン分解触媒を製造する方法について説明する。本発明のエチレン分解触媒は、最終的に得られる触媒が、高比表面積担体表面上に、セリウム−ジルコニウム−ビスマス複合酸化物と貴金属微粒子とが担持されている構成であれば、限定されるものではないが、すでに触媒化学の教科書等で公知となっている含浸法等により調製することができる。   Next, a method for producing the ethylene decomposition catalyst of the present invention will be described. The ethylene decomposition catalyst of the present invention is limited as long as the finally obtained catalyst has a structure in which cerium-zirconium-bismuth composite oxide and noble metal fine particles are supported on the surface of a high specific surface area carrier. However, it can be prepared by an impregnation method or the like that is already known in a textbook of catalyst chemistry.

すなわち、以下の方法に限定されるものではないが、次のような合成法により、本発明のエチレン分解触媒が得られる。例えば、高比表面積の多孔質担体粉末を、セリウム、ジルコニウム、及びビスマスイオンを含む溶液に分散して撹拌した後、溶媒を留去して乾燥し、次いで、これを大気中、300〜600℃にて焼成して得た粉末を、貴金属微粒子のコロイド溶液に再び分散し、溶媒を留去して乾燥する。得られた粉末を、大気中、300〜600℃にて再度焼成することにより、本発明のエチレン分解触媒が得られる。   That is, although not limited to the following method, the ethylene decomposition catalyst of the present invention can be obtained by the following synthesis method. For example, a porous carrier powder having a high specific surface area is dispersed in a solution containing cerium, zirconium and bismuth ions and stirred, and then the solvent is distilled off to dryness. The powder obtained by firing in is dispersed again in a colloidal solution of noble metal fine particles, and the solvent is distilled off and dried. The obtained powder is fired again in the atmosphere at 300 to 600 ° C. to obtain the ethylene decomposition catalyst of the present invention.

本発明のエチレン分解触媒の製造法において使用される、高比表面積の多孔質担体粉末は、特に限定されないが、市販されている安価な各種触媒担体が好ましく用いられる。反応ガスとの接触面積をできるだけ大きくするために、比表面積が100m2-1以上であることが望ましい。また、エチレン分解活性を高くする点で、活性アルミナが好ましく用いられ、なかでも比表面積が大きいγ型の活性アルミナがさらに好ましく用いられる。 The high specific surface area porous carrier powder used in the method for producing an ethylene decomposition catalyst of the present invention is not particularly limited, but various commercially available inexpensive catalyst carriers are preferably used. In order to make the contact area with the reaction gas as large as possible, the specific surface area is desirably 100 m 2 g −1 or more. Also, activated alumina is preferably used from the viewpoint of increasing ethylene decomposition activity, and among them, γ-type activated alumina having a large specific surface area is more preferably used.

本発明のエチレン分解触媒の製造法において使用される、セリウム、ジルコニウム、及びビスマスイオンを含む溶液の原料としては、たとえば高純度(99.9%以上)の硝酸塩、オキシ硝酸塩、塩化物、オキシ塩化物、硫酸塩、オキシ硫酸塩、酢酸塩、クエン酸塩など、酸あるいは水に可溶な化合物があげられる。   Examples of the raw material for the solution containing cerium, zirconium, and bismuth ions used in the method for producing an ethylene decomposition catalyst of the present invention include high purity (99.9% or more) nitrate, oxynitrate, chloride, oxychloride. Compounds soluble in acid or water, such as acid, sulfate, oxysulfate, acetate, and citrate.

本発明のエチレン分解触媒において使用される貴金属微粒子の原料としては、市販の貴金属コロイド溶液が用いられる。コロイド溶液の代わりに、塩化白金酸、塩化パラジウム、硝酸銀等の水溶液等を用いることもできるが、貴金属粒子を高分散状態で担持し、エチレン分解活性を高くする点で、コロイド溶液が好ましく用いられる。   A commercially available noble metal colloid solution is used as a raw material for the noble metal fine particles used in the ethylene decomposition catalyst of the present invention. Instead of the colloidal solution, an aqueous solution of chloroplatinic acid, palladium chloride, silver nitrate or the like can be used. However, the colloidal solution is preferably used in that the noble metal particles are supported in a highly dispersed state and the ethylene decomposition activity is increased. .

上述の製造法において適用される焼成温度は、触媒が安定に生成する300〜600℃が好ましい。300℃より低いと、貴金属コロイド分散液中に含まれる高分子保護剤が不純物として残り、また、600℃以上で焼成すると、貴金属微粒子が粒成長し、エチレン分解活性を低下させる。また、焼成雰囲気としては、空気、酸素、酸素含有アルゴン、酸素含有窒素などの酸化性雰囲気であることが望ましい。また、反応を促進させるために、焼成雰囲気中に水蒸気を共存させてもよい。   The calcination temperature applied in the above production method is preferably 300 to 600 ° C. at which the catalyst is stably generated. When the temperature is lower than 300 ° C., the polymer protective agent contained in the noble metal colloidal dispersion remains as an impurity, and when calcined at 600 ° C. or higher, the noble metal fine particles grow and reduce the ethylene decomposition activity. The firing atmosphere is preferably an oxidizing atmosphere such as air, oxygen, oxygen-containing argon, oxygen-containing nitrogen. In order to promote the reaction, water vapor may coexist in the firing atmosphere.

さらに上記方法にて得られるエチレン分解触媒を、例えばボールミル、ジェットミル等を用いて粉砕し、比表面積を大きくすることができる。また、必要に応じて洗浄、分級することができる。得られるエチレン分解触媒の結晶性を高めるために、再焼成を行うこともできる。   Furthermore, the ethylene decomposition catalyst obtained by the above method can be pulverized using, for example, a ball mill, a jet mill or the like to increase the specific surface area. Moreover, it can wash | clean and classify as needed. In order to increase the crystallinity of the resulting ethylene decomposition catalyst, recalcination can be performed.

エチレン分解触媒とエチレンガスとの接触は、固定床流通型反応器、または流動床型反応器により行うことができる。また、利用規模に応じて種々の実用的形態を採ることができ、本発明は接触の実施態様である反応器の形式等には限定されない。   Contact between the ethylene decomposition catalyst and ethylene gas can be carried out by a fixed bed flow type reactor or a fluidized bed type reactor. Moreover, various practical forms can be taken according to a use scale, and this invention is not limited to the form etc. of the reactor which is an embodiment of a contact.

以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

実施例
市販の高活性アルミナ(岩谷化学工業株式会社製RK-30、比表面積130 m2・g-1)を、大気中500℃で4時間焼成した。得られたγ-アルミナ4.41 gを、0.1 mol・dm-3濃度のCe(NO3)3 水溶液32 cm3、0.1 mol・dm-3濃度のZrO(NO3)2水溶液8 cm3、及び0.1 mol・dm-3濃度のBi(NO3)3水溶液10 cm3の混合水溶液に分散し、室温で6時間攪拌した。溶媒を減圧留去し、大気中80℃で一晩乾燥後、得られた粉末を大気中、500℃にて1時間焼成した。この試料をCZBAとする。CZBAと、市販のポリビニルピロリドン保護白金コロイド溶液(田中貴金属工業株式会社製、PtPVPコロイドエタノール溶液、Pt 4.0 wt%)および超純水20 gを表1の割合で混合し、室温で6時間撹拌した。溶媒を減圧留去し、大気中80℃で一晩乾燥後、得られた粉末を大気中、500℃にて4時間焼成した。
Example Commercially available highly active alumina (RK-30 manufactured by Iwatani Chemical Industry Co., Ltd., specific surface area 130 m 2 · g −1 ) was calcined in the atmosphere at 500 ° C. for 4 hours. The resulting γ- alumina 4.41 g, 0.1 mol · dm -3 concentration of Ce (NO 3) 3 aqueous solution 32 cm 3, 0.1 mol · dm -3 concentration of ZrO (NO 3) 2 aqueous solution 8 cm 3, and 0.1 The mixture was dispersed in a mixed aqueous solution of 10 cm 3 of a Bi (NO 3 ) 3 aqueous solution having a mol · dm -3 concentration and stirred at room temperature for 6 hours. The solvent was distilled off under reduced pressure, and after drying overnight at 80 ° C. in the air, the obtained powder was calcined at 500 ° C. for 1 hour in the air. This sample is designated as CZBA. CZBA, a commercially available polyvinylpyrrolidone-protected platinum colloid solution (Tanaka Kikinzoku Kogyo Co., Ltd., PtPVP colloid ethanol solution, Pt 4.0 wt%) and 20 g of ultrapure water were mixed in the proportions shown in Table 1 and stirred at room temperature for 6 hours. . The solvent was distilled off under reduced pressure, and after drying overnight at 80 ° C. in the air, the obtained powder was calcined at 500 ° C. for 4 hours in the air.

Figure 0004759739
Figure 0004759739

得られた試料の粉末X線回折および透過型電子顕微鏡観察により、γ-Al2O3担体上に白金微粒子とセリウム−ジルコニウム−ビスマス複合酸化物が担持されていることを確認した。また、得られた各触媒の組成を蛍光X線分析により、比表面積を液体窒素温度でのN2吸着量から、BET法により求めたところ、表2のようになった。 It was confirmed by powder X-ray diffraction and transmission electron microscope observation of the obtained sample that platinum fine particles and cerium-zirconium-bismuth composite oxide were supported on the γ-Al 2 O 3 support. The composition of each catalyst obtained was determined by X-ray fluorescence analysis, and the specific surface area was determined from the amount of N 2 adsorbed at the liquid nitrogen temperature by the BET method.

Figure 0004759739
Figure 0004759739

比較例
市販の高活性アルミナ(岩谷化学工業株式会社製RK-30、比表面積130 m2・g-1)を、大気中500℃で4時間焼成した。得られたγ-アルミナ1.47 gと、市販のポリビニルピロリドン保護白金コロイド溶液(田中貴金属工業株式会社製、PtPVPコロイドエタノール溶液、Pt 4.0 wt%)0.75 g、および超純水20 gを混合し、室温で6時間撹拌した。溶媒を減圧留去し、大気中80℃で一晩乾燥後、得られた粉末を大気中、500℃にて4時間焼成した。
Comparative Example Commercially available highly active alumina (RK-30 manufactured by Iwatani Chemical Industry Co., Ltd., specific surface area 130 m 2 · g −1 ) was calcined at 500 ° C. for 4 hours in the atmosphere. 1.47 g of the obtained γ-alumina was mixed with 0.75 g of a commercially available polyvinylpyrrolidone-protected platinum colloid solution (Tanaka Kikinzoku Kogyo Co., Ltd., PtPVP colloid ethanol solution, Pt 4.0 wt%), and 20 g of ultrapure water. For 6 hours. The solvent was distilled off under reduced pressure, and after drying overnight at 80 ° C. in the air, the obtained powder was calcined at 500 ° C. for 4 hours in the air.

得られた試料の粉末X線回折および透過型電子顕微鏡観察により、γ-Al2O3担体上に白金微粒子が担持されていることを確認した。また、得られた各触媒の組成を蛍光X線分析により、比表面積を液体窒素温度でのN2吸着量から、BET法により求めたところ、それぞれ3.7wt%Pt/γ-Al2O3、143 m2・g-1であった。 It was confirmed by the powder X-ray diffraction and transmission electron microscope observation of the obtained sample that platinum fine particles were supported on the γ-Al 2 O 3 support. Further, the resulting composition X-ray fluorescence analysis of the catalyst, the specific surface area from N 2 adsorption amount at a liquid nitrogen temperature were determined by the BET method, respectively 3.7wt% Pt / γ-Al 2 O 3, It was 143 m 2 · g -1 .

エチレン分解活性の評価
内径10 mmのU字型石英製反応器に、実施例あるいは比較例で合成した触媒0.5 gを充填し、前処理として200℃にてアルゴンガスを接触時間W/F=1.5 g・s・cm-3となる流量で流した。前処理後、ガス組成としてエチレンが1%、酸素が5%、残りがヘリウムからなる混合ガスを、接触時間W/F=0.3 g・s・cm-3となる流量で流した。出口ガスのエチレン濃度をガスクロマトグラフ分析により測定し、式1によりエチレンの分解率として計算した。なお、ここでガスの組成を示す%は全て容量%であり、W/Fは触媒単位重量当たりの触媒活性を表示する接触時間の次元を持ち、式2により計算される。
Evaluation of ethylene decomposition activity 0.5 g of the catalyst synthesized in Examples or Comparative Examples was charged in a U-shaped quartz reactor having an inner diameter of 10 mm, and argon gas was contacted at 200 ° C. as a pretreatment at a contact time of W / F = 1.5. The flow rate was g · s · cm -3 . After the pretreatment, a mixed gas composed of 1% ethylene, 5% oxygen, and the remaining helium as a gas composition was flowed at a flow rate such that the contact time W / F = 0.3 g · s · cm −3 . The ethylene concentration of the outlet gas was measured by gas chromatographic analysis and calculated as the ethylene decomposition rate according to Equation 1. Here, all the% indicating the gas composition is volume%, and W / F has a dimension of contact time indicating the catalyst activity per unit weight of the catalyst, and is calculated by the equation 2.

Figure 0004759739
Figure 0004759739

ここで、[C24]outは反応器出口ガスのエチレン濃度、[C24]inは反応器入口ガスのエチレン濃度である。 Here, [C 2 H 4 ] out is the ethylene concentration of the reactor outlet gas, and [C 2 H 4 ] in is the ethylene concentration of the reactor inlet gas.

Figure 0004759739
Figure 0004759739

図1は、実施例の触媒1から6および比較例の触媒に、分解活性の評価で記した評価を行ったときのエチレン分解率曲線である。この結果から、本発明の触媒は、触媒2〜6、とりわけ触媒3、4、5の組成、すなわち白金の含有率が2〜4重量%の触媒が、80℃以下の低温度域において格段に高いエチレン分解率を示すことがわかる。さらに比較例の触媒の結果から、本発明のエチレン分解触媒には、セリウム−ジルコニウム−ビスマス複合酸化物助触媒が必須であることがわかる。また、触媒によってエチレンは酸化分解し、水と二酸化炭素のみを生成することが、ガスクロマトグラフ分析によって確認された。   FIG. 1 is an ethylene decomposition rate curve when the evaluations described in the evaluation of decomposition activity were performed on the catalysts 1 to 6 of the examples and the catalyst of the comparative example. From this result, the catalyst according to the present invention has a composition of catalysts 2 to 6, especially catalysts 3, 4 and 5, that is, a catalyst having a platinum content of 2 to 4% by weight, in a low temperature range of 80 ° C. or less. It can be seen that the ethylene decomposition rate is high. Furthermore, from the results of the comparative catalyst, it can be seen that a cerium-zirconium-bismuth composite oxide promoter is essential for the ethylene decomposition catalyst of the present invention. Further, it was confirmed by gas chromatographic analysis that ethylene was oxidized and decomposed by the catalyst to produce only water and carbon dioxide.

以上のように、活性アルミナ、活性シリカ、ゼオライト、メソ多孔体などの高比表面積担体表面上に、セリウム−ジルコニウム−ビスマス複合酸化物、および白金、パラジウム、銀などの貴金属微粒子を担持した触媒とすることにより、エチレンガスの分解において、活性が高く、悪臭成分や可燃成分を発生させることなしに、しかもメンテナンスを不要とする簡素な構成のエチレン分解触媒を提供することができる。   As described above, a catalyst having cerium-zirconium-bismuth composite oxide and noble metal fine particles such as platinum, palladium, silver supported on the surface of a high specific surface area carrier such as activated alumina, activated silica, zeolite, and mesoporous material. By doing so, it is possible to provide an ethylene decomposition catalyst having a simple configuration that has high activity in the decomposition of ethylene gas, does not generate malodorous components and combustible components, and does not require maintenance.

実施例および比較例で合成した本発明のエチレン分解触媒について、分解活性の評価の条件下で測定したエチレン分解率の温度依存性を表すグラフである。It is a graph showing the temperature dependence of the ethylene decomposition rate measured on the conditions of evaluation of decomposition activity about the ethylene decomposition catalyst of this invention synthesize | combined in the Example and the comparative example.

Claims (3)

高比表面積担体表面上に、セリウム−ジルコニウム−ビスマス複合酸化物と貴金属微粒子とを担持したチレン分解触媒であって、
触媒中に含まれる貴金属微粒子の割合が2〜4重量%、セリウム−ジルコニウム−ビスマス複合酸化物の割合が10〜30重量%であることを特徴とするエチレン分解触媒。
A high specific surface area support surface, cerium - zirconium - a noble metal microparticles bismuth complex oxide A loaded with Et styrene decomposition catalyst,
An ethylene decomposition catalyst characterized in that the proportion of noble metal fine particles contained in the catalyst is 2 to 4% by weight and the proportion of the cerium-zirconium-bismuth composite oxide is 10 to 30% by weight.
一般式:Ce1-x-yZrxBiy2-δで表されるセリウム−ジルコニウム−ビスマス複合酸化物において、x、y、δの値がそれぞれ、0.1≦x≦0.3、0.1≦y≦0.3、0.05≦δ≦0.15の範囲にある、請求項1記載のエチレン分解触媒。 In the cerium-zirconium-bismuth composite oxide represented by the general formula: Ce 1-xy Zr x Bi y O 2− δ, the values of x, y, and δ are 0.1 ≦ x ≦ 0.3, 0, respectively. The ethylene decomposition catalyst according to claim 1 , which is in a range of 0.1 ≦ y ≦ 0.3 and 0.05 ≦ δ ≦ 0.15. 担体が活性アルミナである請求項1又は2に記載のエチレン分解触媒。 The ethylene decomposition catalyst according to claim 1 or 2 , wherein the support is activated alumina.
JP2006051497A 2006-02-28 2006-02-28 Ethylene decomposition catalyst Active JP4759739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051497A JP4759739B2 (en) 2006-02-28 2006-02-28 Ethylene decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051497A JP4759739B2 (en) 2006-02-28 2006-02-28 Ethylene decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2007229559A JP2007229559A (en) 2007-09-13
JP4759739B2 true JP4759739B2 (en) 2011-08-31

Family

ID=38550691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051497A Active JP4759739B2 (en) 2006-02-28 2006-02-28 Ethylene decomposition catalyst

Country Status (1)

Country Link
JP (1) JP4759739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749853A (en) * 2016-03-21 2016-07-13 合肥工业大学 Basic bismuth nitrate/TiO2 micro/nano structure having efficient adsorption effect and preparation method of structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028012B2 (en) * 2006-01-17 2012-09-19 大日本塗料株式会社 Environment-friendly yellow pigment
JP2009072669A (en) * 2007-09-19 2009-04-09 Clion Co Ltd Ethylene gas-adsorptive inorganic composition and its manufacturing method
JP5031642B2 (en) * 2008-04-03 2012-09-19 国立大学法人東北大学 Catalyst production method
JP5503155B2 (en) * 2009-01-30 2014-05-28 新コスモス電機株式会社 Carbon monoxide removal filter
JP5229096B2 (en) * 2009-05-11 2013-07-03 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5169987B2 (en) * 2009-05-13 2013-03-27 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5706476B2 (en) * 2013-07-01 2015-04-22 新コスモス電機株式会社 Carbon monoxide oxidation catalyst and production method thereof
JP6315569B2 (en) * 2014-05-15 2018-04-25 国立研究開発法人産業技術総合研究所 Combustion catalyst system
JP6617384B2 (en) * 2015-07-15 2019-12-11 太陽化学株式会社 Ethylene decomposing agent
CN112642468B (en) * 2020-12-04 2022-10-21 广东省科学院化工研究所 Catalyst for catalyzing and oxidizing ethylene and preparation method thereof
CN114433075A (en) * 2021-12-29 2022-05-06 广东省科学院化工研究所 Platinum catalyst and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261341A (en) * 1989-04-01 1990-10-24 Nippon Shokubai Kagaku Kogyo Co Ltd Method for eliminating ethylene in vegetable storing chamber
JP3001170B2 (en) * 1993-01-23 2000-01-24 財団法人石油産業活性化センター Catalyst for the removal of pachychelate in diesel vehicle exhaust
JP3622211B2 (en) * 1993-08-20 2005-02-23 東ソー株式会社 Methane oxidation method
JPH07174455A (en) * 1993-12-20 1995-07-14 Hitachi Ltd Refrigerator with deep freezer
JP4345909B2 (en) * 2001-12-11 2009-10-14 吟也 足立 Composite oxide having low-temperature redox ability and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749853A (en) * 2016-03-21 2016-07-13 合肥工业大学 Basic bismuth nitrate/TiO2 micro/nano structure having efficient adsorption effect and preparation method of structure

Also Published As

Publication number Publication date
JP2007229559A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4759739B2 (en) Ethylene decomposition catalyst
Peng et al. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures
JP4142733B2 (en) Uniform type highly dispersed metal catalyst and method for producing the same
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
Fei et al. Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1, 2-dichloroethane catalytic combustion
CN105473221A (en) Catalysts for oxidation of carbon monoxide and/or volatile organic compounds
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
Wang et al. Low-temperature catalytic oxidation of vinyl chloride over Ru modified Co 3 O 4 catalysts
JP6617384B2 (en) Ethylene decomposing agent
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
Sun et al. Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M= Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4656353B2 (en) Room temperature catalyst
JP2017113721A (en) Ethylene decomposer
JP5503155B2 (en) Carbon monoxide removal filter
JP4656352B2 (en) Room temperature catalyst
CN115722220B (en) Catalytic oxidation catalyst and preparation method and application thereof
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
EP3560590A1 (en) Method for manufacturing low-temperature oxidation catalyst
JP3348407B2 (en) Adsorbent for carbon monoxide in inert gas
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP5216001B2 (en) Catalyst for treating exhaust gas containing organic acid and method for treating exhaust gas containing organic acid
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150