JP6381131B2 - Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst - Google Patents

Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst Download PDF

Info

Publication number
JP6381131B2
JP6381131B2 JP2015038592A JP2015038592A JP6381131B2 JP 6381131 B2 JP6381131 B2 JP 6381131B2 JP 2015038592 A JP2015038592 A JP 2015038592A JP 2015038592 A JP2015038592 A JP 2015038592A JP 6381131 B2 JP6381131 B2 JP 6381131B2
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
ammonia decomposition
compound
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038592A
Other languages
Japanese (ja)
Other versions
JP2016159209A (en
Inventor
忠博 藤谷
忠博 藤谷
高橋 厚
厚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015038592A priority Critical patent/JP6381131B2/en
Publication of JP2016159209A publication Critical patent/JP2016159209A/en
Application granted granted Critical
Publication of JP6381131B2 publication Critical patent/JP6381131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニアガスを効率よく分解し水素を製造するためのアンモニア分解触媒、及び該触媒の製造方法並びに該触媒を用いたアンモニアの分解方法に関するものである。   The present invention relates to an ammonia decomposition catalyst for efficiently decomposing ammonia gas to produce hydrogen, a method for producing the catalyst, and a method for decomposing ammonia using the catalyst.

近年、環境保護の観点から水素をクリーンエネルギー源として用いることが注目されており、例えば、水素を燃料とする燃料電池車の開発が活発に行われている。一方、水素は気体の状態では非常に軽いために、輸送することが困難であるという問題がある。解決策としては圧縮、または液化する方法があるが、エネルギー消費が大きく課題が残る。この課題を解決する方法として、液体アンモニアとして水素を貯蔵・輸送して、アンモニアの接触分解により水素を製造する試みがなされている。アンモニアから燃料電池の燃料として使用される水素を生成する場合には、アンモニアが電池を被毒することからほぼ完全に分解可能な高い性能をもつアンモニア分解触媒が必要となる。   In recent years, the use of hydrogen as a clean energy source has attracted attention from the viewpoint of environmental protection. For example, fuel cell vehicles using hydrogen as a fuel have been actively developed. On the other hand, since hydrogen is very light in a gaseous state, there is a problem that it is difficult to transport. As a solution, there is a method of compressing or liquefying, but energy consumption is a big problem. As a method for solving this problem, attempts have been made to produce hydrogen by catalytic decomposition of ammonia by storing and transporting hydrogen as liquid ammonia. In the case of producing hydrogen used as fuel for fuel cells from ammonia, ammonia poisons the cells, so an ammonia decomposing catalyst having high performance that can be almost completely decomposed is required.

従来、アンモニアを水素と窒素に分解する方法や触媒としては、以下の技術が知られている。
(1)シリカや酸化ランタンなどの無機質担体にニッケルやコバルトを含浸担持法等により担持した触媒を使用し、加熱下でアンモニアを接触させ、水素と窒素に分解する方法(特許文献1、非特許文献1、非特許文献2参照)。
(2)アルミナ、シリカ、酸化マグネシウムなどの無機質担体に、含浸担持法等により白金族(ルテニウム)を担持した触媒を使用し、加熱下でアンモニアを接触させ、水素と窒素に分解する方法(特許文献2〜5参照)。
Conventionally, the following techniques are known as methods and catalysts for decomposing ammonia into hydrogen and nitrogen.
(1) A method of using a catalyst in which nickel or cobalt is supported on an inorganic carrier such as silica or lanthanum oxide by an impregnation supporting method, etc., contacting ammonia under heating, and decomposing it into hydrogen and nitrogen (Patent Document 1, Non-patent) Reference 1 and Non-Patent Document 2).
(2) A method in which a catalyst in which a platinum group (ruthenium) is supported on an inorganic carrier such as alumina, silica, magnesium oxide or the like by an impregnation supporting method or the like is used, ammonia is brought into contact with heating and decomposed into hydrogen and nitrogen (patent) References 2-5).

中でもルテニウムを担持した触媒はアンモニアの分解に際して最も高い活性を示すが、実用化に際し、さらなる高活性化が望まれている。
しかし、従来の触媒では、ルテニウムを担体に均一に分散し、担持させることは難しく、触媒としての充分な機能が発揮し難いものであった。
Among them, a catalyst supporting ruthenium exhibits the highest activity when decomposing ammonia, but further high activation is desired for practical use.
However, with conventional catalysts, it is difficult to uniformly disperse and carry ruthenium on a carrier, and it is difficult to exhibit a sufficient function as a catalyst.

化学工学会 第75年会要旨集, P303Abstracts of the 75th Annual Meeting of the Chemical Society of Japan, P303 Applied Catalysis A,443-444 (2012) 119-124Applied Catalysis A, 443-444 (2012) 119-124

特開平08−84910号公報JP-A-08-84910 国際公開第2011/125653号International Publication No. 2011-125653 特公平06−015041号公報Japanese Patent Publication No. 06-015041 特許第03760257号公報Japanese Patent No. 0376257 特開2009−254981号公報JP 2009-254981 A

本発明は、活性種であるルテニウムを担体に均一に分散し、担持させることで極めて高い触媒活性を有するアンモニア分解触媒、および該触媒を用いたアンモニア分解方法を提供することを目的とするものである。   An object of the present invention is to provide an ammonia decomposition catalyst having extremely high catalytic activity by uniformly dispersing and supporting ruthenium, which is an active species, on a carrier, and an ammonia decomposition method using the catalyst. is there.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、マグネシウム化合物とルテニウム化合物を、水溶液中でアルカリ金属炭酸塩により沈殿させ、乾燥、焼成、還元を経て作製されたルテニウム担持触媒が上記目的を達成できることを見出した。これは、アルカリ金属炭酸塩により沈殿したマグネシウム炭酸塩とルテニウム水酸化物が高度に分散した状態で緩く結びつき、さらに焼成条件を制御することで、高い比表面積を有し、30Å付近に細孔径分布のピークを持つ塩基性炭酸マグネシウムを含む担体に、ルテニウム種を均一に高分散した状態とすることができるためである。また、該触媒に、活性助剤としてアルカリ金属もしくはアルカリ土類金属を添加することでさらに活性が向上することも合わせて見出した。   As a result of earnest research to achieve the above object, the present inventor obtained a ruthenium-supported catalyst prepared by precipitating a magnesium compound and a ruthenium compound with an alkali metal carbonate in an aqueous solution, drying, firing, and reduction. It has been found that the above object can be achieved. This is because the magnesium carbonate precipitated by the alkali metal carbonate and the ruthenium hydroxide are loosely tied in a highly dispersed state, and furthermore, by controlling the firing conditions, it has a high specific surface area and the pore size distribution in the vicinity of 30 mm. This is because the ruthenium species can be uniformly and highly dispersed in a carrier containing basic magnesium carbonate having a peak of. It has also been found that the activity is further improved by adding an alkali metal or an alkaline earth metal as an activity assistant to the catalyst.

本発明は、かかる知見に基づいて完成したものであり、以下の構成を要旨とするものである。
[1]塩基性炭酸マグネシウムを含む酸化マグネシウム担体と該記担体に担持されたルテニウムを含有することを特徴とするアンモニア分解触媒。
[2]30Å付近に細孔径分布のピークを有することを特徴とする[1]に記載のアンモニア分解触媒。
[3]活性助剤として、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも1つの金属を含有することを特徴とする[1]〜[2]のいずれかに記載のアンモニア分解触媒。
[4]マグネシウム化合物及びルテニウム化合物を含む水溶液中でアルカリ金属炭酸塩により沈殿させる工程、得られた沈殿を乾燥する工程、焼成する工程、及び還元する工程を含むことを特徴とするアンモニア分解触媒の製造方法。
[5]前記焼成を、400℃を超え600℃未満で行うことを特徴とする[4]に記載のアンモニア分解触媒の製造方法。
[6]前記還元を、還元性ガスを含む雰囲気中で行うことを特徴とする[4]又は[5]に記載のアンモニア分解触媒の製造方法。
[7]前記乾燥後の沈殿に、アルカリ金属化合物又はアルカリ土類金属化合物の水溶液を含浸させた後、乾燥させる工程を含むことを特徴とする[4]〜[6]のいずれかに記載のアンモニア分解触媒の製造方法。
[8]前記マグネシウム化合物及びルテニウム化合物を含む水溶液に、更にアルカリ金属化合物又はアルカリ土類金属化合物を含有させることを特徴とする[4]〜[6]のいずれかに記載のアンモニア分解触媒の製造方法。
[9][4]〜[8]のいずれかに記載された方法で製造されたアンモニア分解触媒。
[10][1]〜[3]及び[9]のいずれかに記載のアンモニア分解触媒の存在下でアンモニアを分解することを特徴とするアンモニアの分解方法。
The present invention has been completed based on such findings, and has the following structure.
[1] An ammonia decomposition catalyst comprising a magnesium oxide carrier containing basic magnesium carbonate and ruthenium supported on the carrier.
[2] The ammonia decomposition catalyst according to [1], which has a pore size distribution peak in the vicinity of 30 mm.
[3] The ammonia decomposition catalyst according to any one of [1] to [2], which contains at least one metal selected from alkali metals and alkaline earth metals as an active auxiliary agent.
[4] An ammonia decomposition catalyst comprising a step of precipitation with an alkali metal carbonate in an aqueous solution containing a magnesium compound and a ruthenium compound, a step of drying the obtained precipitate, a step of firing, and a step of reducing. Production method.
[5] The method for producing an ammonia decomposition catalyst according to [4], wherein the calcination is performed at a temperature higher than 400 ° C. and lower than 600 ° C.
[6] The method for producing an ammonia decomposition catalyst according to [4] or [5], wherein the reduction is performed in an atmosphere containing a reducing gas.
[7] The method according to any one of [4] to [6], including a step of impregnating the precipitate after drying with an aqueous solution of an alkali metal compound or an alkaline earth metal compound and then drying the precipitate. A method for producing an ammonia decomposition catalyst.
[8] The ammonia decomposition catalyst according to any one of [4] to [6], wherein the aqueous solution containing the magnesium compound and the ruthenium compound further contains an alkali metal compound or an alkaline earth metal compound. Method.
[9] An ammonia decomposition catalyst produced by the method according to any one of [4] to [8].
[10] A method for decomposing ammonia, comprising decomposing ammonia in the presence of the ammonia decomposing catalyst according to any one of [1] to [3] and [9].

本発明によれば、活性種であるルテニウムを無機質担体に均一に分散し、担持させることで極めて高い触媒活性を有するアンモニア分解能を示す触媒が提供される。
また、本発明によれば、かかる触媒を使用することにより、低温でも非常に高い活性を示すアンモニアを水素と窒素に効率良く分解する方法、或いは、アンモニアから燃料電池用の水素と窒素とを効率的に製造する方法が提供される。
ADVANTAGE OF THE INVENTION According to this invention, the catalyst which shows the ammonia decomposition | disassembly which has very high catalyst activity is provided by disperse | distributing and carrying | supporting ruthenium which is an active species uniformly on an inorganic support | carrier.
In addition, according to the present invention, by using such a catalyst, ammonia that exhibits very high activity even at low temperatures can be efficiently decomposed into hydrogen and nitrogen, or hydrogen and nitrogen for fuel cells can be efficiently converted from ammonia. A method of manufacturing the same is provided.

実施例6〜8で調製した触媒について、微分細孔容積分布を測定した結果を示す図。The figure which shows the result of having measured the differential pore volume distribution about the catalyst prepared in Examples 6-8. 実施例6〜8で調製した触媒について、アンモニア分解反応前の触媒の粉末X線結晶構造解析を行った結果を示す図。The figure which shows the result of having performed the powder X-ray crystal structure analysis of the catalyst before ammonia decomposition reaction about the catalyst prepared in Examples 6-8.

本発明における担体を構成する成分である塩基性炭酸マグネシウムそのものは、アンモニア分解活性を全く示さない。また、市販の塩基性炭酸マグネシウムにルテニウムを含浸担持法により担持した触媒では、アンモニア分解活性を示すものの、その活性は低い。一方、マグネシウム化合物とルテニウム化合物を、水溶液中、アルカリ水酸化物、アンモニア、アンモニウム塩等による塩基性化合物で沈殿させ、これを乾燥、焼成、還元により調製したルテニウム担持触媒においてもアンモニア分解活性はさほど高くない。   Basic magnesium carbonate itself, which is a component constituting the carrier in the present invention, does not show any ammonia decomposing activity. Further, a catalyst in which ruthenium is supported on a commercially available basic magnesium carbonate by an impregnation supporting method shows ammonia decomposition activity, but its activity is low. Meanwhile, a ruthenium-supported catalyst prepared by precipitating a magnesium compound and a ruthenium compound with a basic compound such as an alkali hydroxide, ammonia, or an ammonium salt in an aqueous solution, and drying, calcining, or reducing the ammonia decomposition activity is not so much. not high.

これに対し、本発明の、マグネシウム化合物とルテニウム化合物を、水溶液中でアルカリ金属炭酸塩により沈殿させ、乾燥、焼成、還元を経て作製されたルテニウム担持触媒は、著しく高いアンモニア分解性能を有する。このような特異的な活性は、マグネシウム化合物とルテニウム化合物をアルカリ金属炭酸塩により沈殿させ調製することによって始めて発現するものである。   In contrast, a ruthenium-supported catalyst prepared by precipitating a magnesium compound and a ruthenium compound with an alkali metal carbonate in an aqueous solution and drying, calcining, and reducing the present invention has extremely high ammonia decomposition performance. Such specific activity is manifested only by preparing a magnesium compound and a ruthenium compound by precipitation with an alkali metal carbonate.

本発明における、触媒の調製における沈殿物作製の過程においては、マグネシウム化合物ならびにルテニウム化合物の混合溶液にアルカリ金属炭酸塩を後から添加する方法、もしくはアルカリ金属炭酸塩水溶液にマグネシウム化合物ならびにルテニウム化合物の混合溶液を添加する方法、もしくはアルカリ金属炭酸塩水溶液にマグネシウム化合物の溶液とルテニウム化合物の溶液を別々に同時あるいは逐次的に添加する方法等で行うことができる。この際、マグネシウム化合物の形態は水溶性の塩化物、硝酸塩、酢酸塩、アンミン錯体等が好ましく用いられる。特に好ましくは、残存陰イオンを空気中の焼成処理により比較的低温で分解できる硝酸マグネシウムが用いられる。また、ルテニウム化合物の形態は、水溶性の塩化物、硝酸塩、酢酸塩、アンミン錯体等が好ましく用いられる。特に好ましくは、安価な塩化ルテニウムが用いられる。   In the present invention, in the process of preparing the precipitate in the preparation of the catalyst, a method of adding an alkali metal carbonate to a mixed solution of a magnesium compound and a ruthenium compound later, or a mixing of a magnesium compound and a ruthenium compound in an aqueous alkali metal carbonate solution It can be carried out by a method of adding a solution, a method of adding a magnesium compound solution and a ruthenium compound solution separately or simultaneously to an alkali metal carbonate aqueous solution. In this case, water-soluble chlorides, nitrates, acetates, ammine complexes and the like are preferably used as the magnesium compound. Particularly preferably, magnesium nitrate that can decompose residual anions at a relatively low temperature by a calcination treatment in air is used. As the form of the ruthenium compound, water-soluble chlorides, nitrates, acetates, ammine complexes and the like are preferably used. Particularly preferably, inexpensive ruthenium chloride is used.

沈殿剤であるアルカリ金属炭酸塩の形態は炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等が好ましく用いられる。また、アルカリ金属の炭酸水素塩も好ましく用いられる。特に好ましくは、炭酸カリウムが用いられる。例えば、炭酸カリウム水溶液中に硝酸マグネシウム水溶液、塩化ルテニウム水溶液を添加することにより、塩基性炭酸マグネシウムとルテニウム水酸化物からなる沈殿が得られる。この沈殿では、塩基性炭酸マグネシウムとルテニウム水酸化物が高度に分散した状態で緩く結びついた状態で存在している。   Lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and the like are preferably used as the form of the alkali metal carbonate that is the precipitant. Alkali metal hydrogen carbonates are also preferably used. Particularly preferably, potassium carbonate is used. For example, by adding a magnesium nitrate aqueous solution and a ruthenium chloride aqueous solution to a potassium carbonate aqueous solution, a precipitate composed of basic magnesium carbonate and ruthenium hydroxide can be obtained. In this precipitation, basic magnesium carbonate and ruthenium hydroxide are present in a highly dispersed state and loosely bound.

得られた沈殿は、大気中静置して熟成させるのが好ましいが、熟成させなくてもよい。熟成は、常温〜80℃で、1〜144時間で行うのが好ましい。その後、濾過、必要に応じて水洗を行い、乾燥し、空気中で焼成を行うことによって製造することができる。   The obtained precipitate is preferably allowed to stand in the atmosphere for aging, but may not be ripened. Aging is preferably performed at room temperature to 80 ° C. for 1 to 144 hours. Then, it can manufacture by performing filtration, washing with water as needed, drying, and baking in air.

活性助剤であるアルカリ金属、もしくはアルカリ土類金属の担持方法は、前記の手順に従って得られた沈殿物を乾燥したものに、アルカリ金属化合物もしくはアルカリ土類金属化合物からなる水溶液を含浸させた後、乾燥、焼成する。あるいは、沈殿作製時に、沈殿剤の水溶液中にアルカリ金属、もしくはアルカリ土類金属水溶液を混合した水溶液を供給し、沈殿を乾燥、焼成する方法を用いてもよい。   The method for supporting an alkali metal or alkaline earth metal as an active aid is obtained by impregnating an aqueous solution comprising an alkali metal compound or an alkaline earth metal compound into a dried precipitate obtained according to the above procedure. Dry and fire. Alternatively, a method may be used in which an aqueous solution obtained by mixing an aqueous alkali metal or alkaline earth metal solution in an aqueous solution of a precipitant is supplied at the time of preparing the precipitate, and the precipitate is dried and fired.

活性助剤であるアルカリ金属化合物の形態は水溶性の水酸化物、硝酸塩、塩化物等が好ましく用いられる。特に、水酸化物である水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等が好ましく用いられる。特に好ましくは、水酸化セシウムが用いられる。また、アルカリ土類金属化合物の形態は水溶性の水酸化物、硝酸塩、塩化物等が好ましく用いられる。特に、水酸化物である水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等が好ましく用いられる。特に好ましくは、水酸化バリウムが用いられる。アルカリ金属化合物の含有量として、Ru含有量に対して原子比で1/10〜10、好ましくは1/2〜2の範囲で効果を示す。   As the form of the alkali metal compound which is the active auxiliary, water-soluble hydroxide, nitrate, chloride and the like are preferably used. In particular, hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like are preferably used. Particularly preferably, cesium hydroxide is used. The alkaline earth metal compound is preferably water-soluble hydroxide, nitrate, chloride or the like. In particular, hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide are preferably used. Particularly preferably, barium hydroxide is used. As the content of the alkali metal compound, the effect is exhibited in the range of 1/10 to 10, preferably 1/2 to 2 in terms of atomic ratio with respect to the Ru content.

焼成は、酸素含有雰囲気、好ましくは大気中で、300〜900℃、好ましくは400〜700℃で、1〜12時間で行い、低温、短時間であると、化合物の分解が十分に進行せず、高温、長時間であると、含有成分の凝集やシンタリングが起きて、触媒の活性が低下してしまう。焼成後には、塩基性炭酸マグネシウムは、焼成温度に従い塩基性炭酸マグネシウムのまま、もしくは一部あるいは全てが酸化マグネシウムとして存在すると考えられる。ルテニウムは、酸化物として存在すると考えられる。   Firing is performed in an oxygen-containing atmosphere, preferably in the air, at 300 to 900 ° C., preferably 400 to 700 ° C. for 1 to 12 hours. If the temperature is low and short, decomposition of the compound does not proceed sufficiently. If the temperature is high and the time is long, aggregation of components and sintering occur, and the activity of the catalyst decreases. After calcination, the basic magnesium carbonate is considered to remain as the basic magnesium carbonate or partially or entirely as magnesium oxide according to the calcination temperature. Ruthenium is considered to exist as an oxide.

本発明の触媒の形状は、特に制約はなく、粉状、粒状、球状、円柱状、リング状などのほか、特に、本発明の触媒は高い空間速度においても高い活性を示すことから、ハニカム状でも使用が可能である。   The shape of the catalyst of the present invention is not particularly limited, and is in the form of powder, granules, spheres, cylinders, rings, etc. In particular, the catalyst of the present invention exhibits high activity even at high space velocities. But it can be used.

上記触媒は還元処理を行うことにより、アンモニアガスから水素と窒素との生成をより高転化率で行うことができる。これは、主に、前記ルテニウムが、還元処理によって、還元処理前の酸化物の状態から活性状態である金属の状態に分散された状態で形成され、アンモニア分解触媒として機能するためである。   By performing a reduction treatment, the catalyst can generate hydrogen and nitrogen from ammonia gas at a higher conversion rate. This is mainly because the ruthenium is formed in a state of being dispersed from the oxide state before the reduction treatment to the active metal state by the reduction treatment, and functions as an ammonia decomposition catalyst.

この際、還元処理は、使用前に還元性ガスにより行ってもよく、また、使用中アンモニアガスによって行っても良い。還元処理は、還元性のガスの雰囲気に暴露することにより行うのが好ましい。還元性のガスとしては、特に制約はなく、水素ガス、アンモニアガス、ヒドラジンガス、一酸化炭素等が挙げられ、それだけで使用しても、また不活性ガスと混合して用いても良い。   In this case, the reduction treatment may be performed with a reducing gas before use or may be performed with ammonia gas during use. The reduction treatment is preferably performed by exposure to a reducing gas atmosphere. The reducing gas is not particularly limited, and examples thereof include hydrogen gas, ammonia gas, hydrazine gas, carbon monoxide, and the like. They may be used alone or in combination with an inert gas.

還元性ガスの還元処理時間は特に制限しないが、1〜2時間が好ましい。また、還元処理の温度は、300〜900℃が好ましい。   The reduction treatment time of the reducing gas is not particularly limited, but is preferably 1 to 2 hours. The reduction treatment temperature is preferably 300 to 900 ° C.

本発明のアンモニア分解触媒を用いることによりアンモニアを分解することができる。アンモニアの分解は、エネルギー源としての水素製造の観点からアンモニアを分解して水素と窒素を製造する場合や、公害防止などの観点から有害物としてのアンモニアを水素と窒素に分解する場合のいずれにも使用される。   Ammonia can be decomposed by using the ammonia decomposition catalyst of the present invention. Ammonia can be decomposed either in the case of decomposing ammonia from the viewpoint of hydrogen production as an energy source to produce hydrogen and nitrogen, or in the case of decomposing ammonia as a harmful substance into hydrogen and nitrogen from the viewpoint of pollution prevention. Also used.

本発明におけるアンモニア分解触媒を用いるアンモニアの分解反応は、温度が300〜900℃であるのが好ましく、400〜600℃がより好ましい。アンモニアの体積空間速度は1000〜50000h-1であるのが好ましく、2000〜20000h-1であるのがより好ましい。 In the ammonia decomposition reaction using the ammonia decomposition catalyst in the present invention, the temperature is preferably 300 to 900 ° C, more preferably 400 to 600 ° C. Is preferably a volume space velocity of ammonia is 1000~50000h -1, and more preferably 2000~20000h -1.

アンモニアの分解時の圧力は、適宜調整することができ、常圧であるのが特に好ましい。   The pressure at the time of decomposition of ammonia can be appropriately adjusted, and it is particularly preferable that the pressure be normal pressure.

アンモニア分解反応の反応装置の形式に特に制限はなく、バッチ式、流通式のいずれの装置も使用し得るが、流通式が効率も良いので好ましい。また、固定床方式、又は流動床方式のいずれも採用できるが、固定床方式が好ましい。   There is no particular limitation on the type of the ammonia decomposition reaction apparatus, and either a batch type or a flow type apparatus can be used, but the flow type is preferable because of its high efficiency. Moreover, although a fixed bed system or a fluidized bed system can be employed, a fixed bed system is preferable.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈されるべきではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention should not be limited and limited to these Examples.

(実施例1)
本実施例では、Ru出発原料は塩化ルテニウム(RuCl3・nH2O)とし、担体原料は硝酸マグネシウム(Mg(NO3)2・6H2O)(和光純薬工業、特級)とした。
焼成後のRu担持触媒中のRuの量が3質量%となるように、塩化ルテニウム0.296g及び硝酸マグネシウム25.340gを計り取り、400mLの純水に溶解した。得られた混合溶液を激しく撹拌しながら、0.3mol/Lの炭酸カリウム溶液400mLを徐々に加え、沈殿物を作製した。沈殿物は常温で24時間静置し、熟成させた。その後、濾過、洗浄し、110℃で24時間乾燥した。これを空気中において550℃で2時間焼成しRu担持触媒を得た。
Example 1
In this example, the Ru starting material was ruthenium chloride (RuCl 3 .nH 2 O), and the carrier material was magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O) (Wako Pure Chemical Industries, special grade).
Ruthenium chloride (0.296 g) and magnesium nitrate (25.340 g) were weighed out and dissolved in 400 mL of pure water so that the amount of Ru in the Ru-supported catalyst after calcination was 3% by mass. While vigorously stirring the obtained mixed solution, 400 mL of a 0.3 mol / L potassium carbonate solution was gradually added to prepare a precipitate. The precipitate was left to stand at room temperature for 24 hours and aged. Then, it filtered, wash | cleaned, and dried at 110 degreeC for 24 hours. This was calcined in air at 550 ° C. for 2 hours to obtain a Ru-supported catalyst.

上記のようにして得られた本発明の触媒0.2gを常圧流通式反応装置に充填した。触媒床温度を測定するための熱電対を触媒床中心付近に配置した。
触媒は反応前に20%H2/窒素気流中、550℃、1時間還元を施した。100%アンモニアガスを反応ガスとし、反応温度400℃、流量100ml/min(W/F 0.002g・min/cc、SVでは15000h-1に相当)で触媒床に流通し、その生成ガスを、ガスクロマトグラフ(N2、H2、NH3分析)で分析した。
活性評価は、次式に示すH2収率により行い、その結果を表1に示した。
2収率=[3×H2濃度/2×NH3入口濃度]×100(%)
The atmospheric pressure flow reactor was charged with 0.2 g of the catalyst of the present invention obtained as described above. A thermocouple for measuring the catalyst bed temperature was placed near the center of the catalyst bed.
The catalyst was subjected to reduction in a 20% H 2 / nitrogen stream at 550 ° C. for 1 hour before the reaction. 100% ammonia gas was used as the reaction gas, the reaction temperature was 400 ° C., the flow rate was 100 ml / min (W / F 0.002 g · min / cc, equivalent to 15000 h −1 for SV), and the product gas was circulated. Analysis was performed by gas chromatography (N 2 , H 2 , NH 3 analysis).
The activity was evaluated based on the H 2 yield represented by the following formula, and the results are shown in Table 1.
H 2 yield = [3 × H 2 concentration / 2 × NH 3 inlet concentration] × 100 (%)

(実施例2)
実施例1において、反応温度を450℃とした以外は、実施例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
(Example 2)
In Example 1, the ammonia decomposition reaction was performed in the same manner as in Example 1 except that the reaction temperature was 450 ° C. The results are shown in Table 1.

(実施例3)
実施例1において、反応温度を500℃とした以外は、実施例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
(Example 3)
In Example 1, the ammonia decomposition reaction was performed in the same manner as in Example 1 except that the reaction temperature was 500 ° C. The results are shown in Table 1.

(実施例4)
実施例1において、反応温度を600℃とした以外は、実施例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
Example 4
In Example 1, the ammonia decomposition reaction was performed in the same manner as in Example 1 except that the reaction temperature was 600 ° C. The results are shown in Table 1.

(比較例1)
本比較例では、担体を酸化マグネシウム(和光純薬工業)としてRuを含浸法にて担持した以外は、実施例1と同様にしてRu担持触媒を得た。すなわち、所定量の酸化マグネシウムに、焼成後のRu担持触媒中のRuの量が3質量%となるように塩化ルテニウム(RuCl3・nH2O)を溶解した水溶液を加えて含浸させた後、110℃で24時間乾燥し、これを空気中において550℃で2時間焼成した。
こうして得られたRu担持触媒を用いて、実施例1と同様にアンモニア分解反応を行い、その結果を表1に示した。
(Comparative Example 1)
In this comparative example, a Ru-supported catalyst was obtained in the same manner as in Example 1, except that the support was magnesium oxide (Wako Pure Chemical Industries) and Ru was supported by the impregnation method. That is, after impregnating a predetermined amount of magnesium oxide with an aqueous solution in which ruthenium chloride (RuCl 3 · nH 2 O) is dissolved so that the amount of Ru in the Ru-supported catalyst after firing is 3% by mass, This was dried at 110 ° C. for 24 hours, and calcined in air at 550 ° C. for 2 hours.
Using the Ru-supported catalyst thus obtained, an ammonia decomposition reaction was carried out in the same manner as in Example 1, and the results are shown in Table 1.

(比較例2)
比較例1において、反応温度を450℃とした以外は、比較例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
(Comparative Example 2)
In Comparative Example 1, the ammonia decomposition reaction was performed in the same manner as in Comparative Example 1 except that the reaction temperature was 450 ° C. The results are shown in Table 1.

(比較例3)
比較例1において、反応温度を500℃とした以外は、比較例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
(Comparative Example 3)
In Comparative Example 1, the ammonia decomposition reaction was performed in the same manner as in Comparative Example 1 except that the reaction temperature was 500 ° C. The results are shown in Table 1.

(比較例4)
比較例1において、反応温度を600℃とした以外は、比較例1と同様にしてアンモニア分解反応を行い、その結果を表1に示した。
(Comparative Example 4)
In Comparative Example 1, an ammonia decomposition reaction was carried out in the same manner as in Comparative Example 1 except that the reaction temperature was 600 ° C. The results are shown in Table 1.

Figure 0006381131
Figure 0006381131

表1に示すように、実施例1〜4の本発明の触媒活性は、比較例1〜4に示す従来技術の含浸法で調製した触媒の活性に比べて著しく高く、反応温度が450℃以上では、ほぼ平衡値まで到達している。このことは、マグネシウム化合物とルテニウム化合物とをアルカリ金属炭酸塩にて沈殿させることで、これまでにないRuの触媒性能が現れることを示している。   As shown in Table 1, the catalytic activity of the present invention in Examples 1 to 4 is significantly higher than the activity of the catalyst prepared by the impregnation method of the prior art shown in Comparative Examples 1 to 4, and the reaction temperature is 450 ° C. or higher. Then, it has almost reached the equilibrium value. This indicates that an unprecedented Ru catalytic performance appears by precipitating a magnesium compound and a ruthenium compound with an alkali metal carbonate.

(比較例5)
硝酸マグネシウムを硝酸イットリアに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表2に示した。
(Comparative Example 5)
An ammonia decomposition reaction was carried out in the same manner as in Example 2 except that magnesium nitrate was replaced with yttria nitrate. The results are shown in Table 2.

(比較例6)
硝酸マグネシウムを硝酸ランタンに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表2に示した。
(Comparative Example 6)
The ammonia decomposition reaction was performed in the same manner as in Example 2 except that magnesium nitrate was replaced with lanthanum nitrate. The results are shown in Table 2.

(比較例7)
硝酸マグネシウムを硝酸セリウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表2に示した。
(Comparative Example 7)
The ammonia decomposition reaction was performed in the same manner as in Example 2 except that magnesium nitrate was replaced with cerium nitrate. The results are shown in Table 2.

(比較例8)
硝酸マグネシウムを硝酸アルミニウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表2に示した。
(Comparative Example 8)
The ammonia decomposition reaction was carried out in the same manner as in Example 2 except that magnesium nitrate was replaced with aluminum nitrate. The results are shown in Table 2.

(比較例9)
硝酸マグネシウムを硝酸カルシウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表2に示した。
(Comparative Example 9)
The ammonia decomposition reaction was carried out in the same manner as in Example 2 except that magnesium nitrate was replaced with calcium nitrate. The results are shown in Table 2.

Figure 0006381131
Figure 0006381131

表2から、担体原料としてマグネシウム化合物を用いた本発明の触媒は、他の担体原料化合物を用いた場合よりも活性が著しく高いことがわかる。
このことから、マグネシウムを含む担体を用いることにより高い触媒性能が発揮されることがわかる。
From Table 2, it can be seen that the catalyst of the present invention using a magnesium compound as a carrier raw material has significantly higher activity than the case of using another carrier raw material compound.
From this, it can be seen that high catalyst performance is exhibited by using a carrier containing magnesium.

(実施例5)
炭酸カリウムを炭酸ナトリウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表3に示した。
(Example 5)
The ammonia decomposition reaction was performed in the same manner as in Example 2 except that potassium carbonate was replaced with sodium carbonate. The results are shown in Table 3.

(比較例10)
炭酸カリウムを水酸化ナトリウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表3に示した。
(Comparative Example 10)
The ammonia decomposition reaction was performed in the same manner as in Example 2 except that potassium carbonate was replaced with sodium hydroxide. The results are shown in Table 3.

(比較例11)
炭酸カリウムを水酸化カリウムに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表3に示した。
(Comparative Example 11)
An ammonia decomposition reaction was carried out in the same manner as in Example 2 except that potassium carbonate was replaced with potassium hydroxide. The results are shown in Table 3.

(比較例12)
炭酸カリウムをアンモニアに代えた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表3に示した。
(Comparative Example 12)
Ammonia decomposition reaction was carried out in the same manner as in Example 2 except that potassium carbonate was replaced with ammonia. The results are shown in Table 3.

Figure 0006381131
Figure 0006381131

表3から、沈殿剤としてアルカリ金属炭酸塩を用いた本発明の触媒は、水酸化物等の沈殿剤を用いた場合よりも活性が高くなっており、炭酸塩が高活性化に寄与していることが示される。特に沈殿剤に炭酸カリウムを用いることにより顕著に高い触媒性能が発揮されることがわかる。これは、沈殿生成時に炭酸カリウムにより塩基性炭酸マグネシウムとルテニウム水酸化物が生成するが、これらが高度に分散した状態で緩く結びついており、その結果、焼成後に塩基性炭酸マグネシウム上にルテニウム種が高分散した状態で担持されているためである。   From Table 3, the catalyst of the present invention using an alkali metal carbonate as a precipitating agent has higher activity than the case of using a precipitating agent such as a hydroxide, and the carbonate contributes to high activation. Is shown. In particular, it can be seen that remarkably high catalyst performance is exhibited by using potassium carbonate as the precipitant. This is because basic magnesium carbonate and ruthenium hydroxide are produced by potassium carbonate during precipitation, but they are loosely bound in a highly dispersed state, and as a result, the ruthenium species are formed on the basic magnesium carbonate after firing. This is because it is supported in a highly dispersed state.

(実施例6)
実施例2において、触媒の焼成温度を400℃とした以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表4に示した。
(Example 6)
In Example 2, the ammonia decomposition reaction was performed in the same manner as in Example 2 except that the calcination temperature of the catalyst was 400 ° C. The results are shown in Table 4.

(実施例7)
実施例2において、触媒の焼成温度を500℃とした以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表4に示した。
(Example 7)
In Example 2, the ammonia decomposition reaction was performed in the same manner as in Example 2 except that the calcination temperature of the catalyst was 500 ° C. The results are shown in Table 4.

(実施例8)
実施例2において、触媒の焼成温度を600℃とした以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表4に示した。
(Example 8)
In Example 2, the ammonia decomposition reaction was performed in the same manner as in Example 2 except that the calcination temperature of the catalyst was 600 ° C. The results are shown in Table 4.

(実施例9)
実施例2において、触媒の焼成温度を700℃とした以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表4に示した。
Example 9
In Example 2, the ammonia decomposition reaction was carried out in the same manner as in Example 2 except that the calcination temperature of the catalyst was 700 ° C. The results are shown in Table 4.

Figure 0006381131
Figure 0006381131

表4に示すように、400℃から550℃までは活性はほとんどかわらず、焼成温度にはほとんど影響されないことがわかる。一方、焼成温度を600℃、700℃と高くした場合では温度が増加するにつれて活性が著しく低下する。硝酸マグネシウムと炭酸カリウムにより生成した沈殿物である塩基性炭酸マグネシウムは、600℃付近で分解が終了し、酸化マグネシウムに変化することから、開発した触媒では、担体成分として塩基性炭酸マグネシウムが存在することによって高活性化されていると見なせる。   As shown in Table 4, it can be seen that there is almost no activity from 400 ° C. to 550 ° C., and it is hardly influenced by the firing temperature. On the other hand, when the firing temperature is increased to 600 ° C. and 700 ° C., the activity decreases remarkably as the temperature increases. Since the basic magnesium carbonate, which is a precipitate formed from magnesium nitrate and potassium carbonate, is decomposed at about 600 ° C. and changes to magnesium oxide, the developed catalyst has basic magnesium carbonate as a carrier component. It can be considered that it is highly activated.

実施例6、7及び8で調製した触媒について、比表面積、細孔容積、及び細孔容積を測定した。その結果を表5に示す。また、同触媒について、微分細孔容積分布の測定及びアンモニア分解反応前の触媒の粉末X線結晶構造解析を行った。その結果を、それぞれ図1及び図2に示す。   For the catalysts prepared in Examples 6, 7, and 8, the specific surface area, pore volume, and pore volume were measured. The results are shown in Table 5. Moreover, about the same catalyst, the measurement of differential pore volume distribution and the powder X-ray crystal structure analysis of the catalyst before ammonia decomposition reaction were performed. The results are shown in FIGS. 1 and 2, respectively.

Figure 0006381131
Figure 0006381131

表5より、焼成温度の増加に従い、比表面積、細孔容積とも低下することがわかる。
また、図1より、細孔径分布を比較すると、焼成温度が400℃の場合では30Å付近の細孔が多く見られるのに対し、焼成温度の増加に伴いこの30Å付近の細孔は減少し、代わりに200Å付近の細孔が増加するようになる。すなわち、塩基性炭酸マグネシウムが存在する状況では、マグネシウム担体は、細孔径が小さく表面積も高い状態であるが、塩基性炭酸マグネシウムの分解が進み酸化マグネシウムが増えてくるにつれ細孔径も大きくなり、比表面積も低下すると考えられる。さらに焼成温度と結晶構造の関係(図2)を比較すると、焼成温度が400℃の場合では15、31°付近に塩基性炭酸マグネシウム由来のピークが存在し、酸化マグネシウム由来のピークは存在しない。焼成温度が500℃においても、ピークは不明瞭であるが上記塩基性炭酸マグネシウム由来のピークが存在する。一方、焼成温度600℃では、上記塩基性炭酸マグネシウム由来のピークは消失し、42、62°付近に酸化マグネシウム由来のピークが観察される。すなわち、表4の活性の結果と合わせて考えると、マグネシウム化合物とルテニウム化合物とをアルカリ金属炭酸塩にて沈殿する方法で調製された触媒では、塩基性炭酸マグネシウムが存在することにより、触媒の比表面積は高く、また、多くの小さな細孔が存在し、その結果、Ruが従来にはない均一に高分散した状態で担持されており、これが高い活性を示した要因となっている。
Table 5 shows that both the specific surface area and the pore volume decrease as the firing temperature increases.
In addition, comparing the pore size distribution from FIG. 1, when the firing temperature is 400 ° C., many pores near 30% are seen, whereas as the firing temperature increases, the pores near 30% decrease, Instead, the number of pores around 200 mm increases. That is, in the situation where basic magnesium carbonate is present, the magnesium carrier is in a state where the pore diameter is small and the surface area is high, but as the decomposition of basic magnesium carbonate proceeds and magnesium oxide increases, the pore diameter increases and It is thought that the surface area also decreases. Further, comparing the relationship between the firing temperature and the crystal structure (FIG. 2), when the firing temperature is 400 ° C., there is a peak derived from basic magnesium carbonate at around 15 and 31 °, and no peak derived from magnesium oxide. Even at a calcination temperature of 500 ° C., the peak is unclear, but there is a peak derived from the basic magnesium carbonate. On the other hand, at a baking temperature of 600 ° C., the peak derived from the basic magnesium carbonate disappears, and a peak derived from magnesium oxide is observed in the vicinity of 42 and 62 °. That is, when considered together with the activity results in Table 4, the catalyst prepared by the method of precipitating the magnesium compound and the ruthenium compound with an alkali metal carbonate has a ratio of the catalyst due to the presence of basic magnesium carbonate. The surface area is high, and there are many small pores. As a result, Ru is supported in a uniformly and highly dispersed state, which is unprecedented, and this is a factor that shows high activity.

(比較例13)
担体を塩基性炭酸マグネシウム(和光純薬工業)としてRuを含浸法にて担持した以外は、比較例1と同様にしてアンモニア分解反応を行い、その結果を表6に示した。
(Comparative Example 13)
The ammonia decomposition reaction was carried out in the same manner as in Comparative Example 1 except that the support was basic magnesium carbonate (Wako Pure Chemical Industries) and Ru was supported by the impregnation method. The results are shown in Table 6.

Figure 0006381131
Figure 0006381131

表6に示すように、実施例2の本発明の触媒活性は、比較例13に示す塩基性炭酸マグネシウムに含浸担持した触媒の活性に比べて著しく高いことがわかる。このことは、担体が塩基性炭酸マグネシウムであっても、従来の含浸法では機能せず、本発明の触媒で用いているマグネシウム化合物とルテニウム化合物とをアルカリ金属炭酸塩にて沈殿させる方法により生成した塩基性炭酸マグネシウム担体によってのみ、ルテニウムの高い活性が現れることを示している。   As shown in Table 6, it can be seen that the catalytic activity of the present invention in Example 2 is significantly higher than that of the catalyst impregnated and supported on basic magnesium carbonate shown in Comparative Example 13. This means that even if the support is basic magnesium carbonate, it does not function in the conventional impregnation method, and is produced by a method of precipitating the magnesium compound and ruthenium compound used in the catalyst of the present invention with an alkali metal carbonate. It is shown that the high activity of ruthenium appears only by the basic magnesium carbonate support.

(実施例10)
実施例2において調製したRu担持触媒に、助触媒成分として水酸化セシウムをCsとRuの原子比が0.5となるように添加し含浸担持した触媒を用いた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表7に示した。なお、助触媒成分であるCsの担持方法は、実施例1に従って得られた沈殿物を乾燥したものに、水酸化セシウム水溶液を含浸させた後、実施例1と同様に乾燥、焼成を行った。
(Example 10)
Same as Example 2 except that the catalyst supported by impregnation with the addition of cesium hydroxide as a promoter component so that the atomic ratio of Cs and Ru is 0.5 is used for the Ru supported catalyst prepared in Example 2. The ammonia decomposition reaction was carried out and the results are shown in Table 7. The method for supporting Cs, which is a promoter component, was carried out in the same manner as in Example 1, after impregnating the precipitate obtained in accordance with Example 1 with a dried cesium hydroxide solution. .

(実施例11)
水酸化セシウムをCsとRuの原子比が1.0となるように添加した以外は、実施例10と同様にしてアンモニア分解反応を行い、その結果を表7に示した。
(Example 11)
The ammonia decomposition reaction was carried out in the same manner as in Example 10 except that cesium hydroxide was added so that the atomic ratio of Cs and Ru was 1.0. The results are shown in Table 7.

(実施例12)
水酸化セシウムをCsとRuの原子比が2.0となるように添加した以外は、実施例10と同様にしてアンモニア分解反応を行い、その結果を表7に示した。
(Example 12)
The ammonia decomposition reaction was performed in the same manner as in Example 10 except that cesium hydroxide was added so that the atomic ratio of Cs to Ru was 2.0. The results are shown in Table 7.

(実施例13)
実施例2において調製したRu担持触媒に、助触媒成分として水酸化バリウムをBaとRuの原子比が0.5となるように添加し含浸担持した触媒を用いた以外は、実施例2と同様にしてアンモニア分解反応を行い、その結果を表7に示した。なお、実施例10と同様に、助触媒成分であるCsの担持方法は、実施例1に従って得られた沈殿物を乾燥したものに、水酸化バリウム水溶液を含浸させた後、実施例1と同様に乾燥、焼成を行った。
(Example 13)
The same as Example 2 except that the Ru-supported catalyst prepared in Example 2 was added with a catalyst impregnated by adding barium hydroxide as a promoter component so that the atomic ratio of Ba and Ru was 0.5. The ammonia decomposition reaction was carried out and the results are shown in Table 7. As in Example 10, the method for supporting Cs as the promoter component is the same as in Example 1 after impregnating the precipitate obtained in Example 1 with a barium hydroxide aqueous solution. Then, drying and baking were performed.

(実施例14)
水酸化バリウムをBaとRuの原子比が1.0となるように添加した以外は、実施例13と同様にしてアンモニア分解反応を行い、その結果を表7に示した。
(Example 14)
The ammonia decomposition reaction was performed in the same manner as in Example 13 except that barium hydroxide was added so that the atomic ratio of Ba and Ru was 1.0. The results are shown in Table 7.

(実施例15)
水酸化バリウムをBaとRuの原子比が2.0となるように添加した以外は、実施例13と同様にしてアンモニア分解反応を行い、その結果を表7に示した。
(Example 15)
The ammonia decomposition reaction was performed in the same manner as in Example 13 except that barium hydroxide was added so that the atomic ratio of Ba and Ru was 2.0. The results are shown in Table 7.

Figure 0006381131
Figure 0006381131

表7に示すように、助触媒成分としてアルカリ金属であるCsはCs/Ru原子比が0.5〜2.0に至るまで高い活性が得られ、特に原子比1.0においては収率が99.6%に達し、ほぼ完全な分解が達成されている。また、アルカリ土類金属であるBaの添加も有効であり、どの添加量においても収率が向上している。すなわち、アルカリ金属もしくはアルカリ土類金属の助触媒成分としての添加が、アンモニア分解活性の向上に有効であることが示されている。   As shown in Table 7, Cs, which is an alkali metal as a promoter component, has a high activity until the Cs / Ru atomic ratio reaches 0.5 to 2.0, and the yield is particularly high at an atomic ratio of 1.0. 99.6% is reached and almost complete degradation is achieved. In addition, addition of Ba, which is an alkaline earth metal, is also effective, and the yield is improved at any addition amount. That is, it has been shown that the addition of alkali metal or alkaline earth metal as a promoter component is effective for improving ammonia decomposition activity.

本発明のアンモニア分解触媒は、アンモニアから燃料電池用の水素と窒素とを効率的に製造する場合や、有害なアンモニアを水素と窒素に効率良く分解する場合などのアンモニアの分解に広く利用できる。   The ammonia decomposing catalyst of the present invention can be widely used for decomposing ammonia when efficiently producing hydrogen and nitrogen for fuel cells from ammonia or decomposing harmful ammonia efficiently into hydrogen and nitrogen.

Claims (9)

塩基性炭酸マグネシウムを含む酸化マグネシウム担体と該記担体に均一に担持されたルテニウムを含有することを特徴とするアンモニア分解触媒。 A catalyst for decomposing ammonia, comprising a magnesium oxide carrier containing basic magnesium carbonate and ruthenium uniformly supported on the carrier. 30Å付近に細孔径分布のピークを有することを特徴とする請求項1に記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to claim 1, which has a peak of pore size distribution in the vicinity of 30%. 活性助剤として、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも1つの金属を含有することを特徴とする請求項1又は2に記載のアンモニア分解触媒。   3. The ammonia decomposition catalyst according to claim 1, comprising at least one metal selected from an alkali metal and an alkaline earth metal as an active auxiliary agent. マグネシウム化合物及びルテニウム化合物を含む水溶液中でアルカリ金属炭酸塩により沈殿させる工程、得られた沈殿を乾燥する工程、焼成する工程、及び還元する工程を含むことを特徴とするアンモニア分解触媒の製造方法。   A method for producing an ammonia decomposition catalyst, comprising a step of precipitation with an alkali metal carbonate in an aqueous solution containing a magnesium compound and a ruthenium compound, a step of drying the obtained precipitate, a step of firing, and a step of reducing. 前記焼成を、400℃を超え600℃未満で行うことを特徴とする請求項4に記載のアンモニア分解触媒の製造方法。   The method for producing an ammonia decomposition catalyst according to claim 4, wherein the calcination is performed at a temperature higher than 400 ° C and lower than 600 ° C. 前記還元を、還元性ガスを含む雰囲気中で行うことを特徴とする請求項4又は5に記載のアンモニア分解触媒の製造方法。   6. The method for producing an ammonia decomposition catalyst according to claim 4, wherein the reduction is performed in an atmosphere containing a reducing gas. 前記乾燥後の沈殿に、アルカリ金属化合物又はアルカリ土類金属化合物の水溶液を含浸させた後、乾燥させる工程を含むことを特徴とする請求項4〜6のいずれか1項に記載のアンモニア分解触媒の製造方法。   The ammonia decomposition catalyst according to any one of claims 4 to 6, comprising a step of impregnating the dried precipitate with an aqueous solution of an alkali metal compound or an alkaline earth metal compound and then drying the precipitate. Manufacturing method. 前記マグネシウム化合物及びルテニウム化合物を含む水溶液に、更にアルカリ金属化合物又はアルカリ土類金属化合物を含有させることを特徴とする請求項4〜6のいずれか1項に記載のアンモニア分解触媒の製造方法。   The method for producing an ammonia decomposition catalyst according to any one of claims 4 to 6, wherein the aqueous solution containing the magnesium compound and the ruthenium compound further contains an alkali metal compound or an alkaline earth metal compound. 請求項1〜3のいずれか1項に記載のアンモニア分解触媒の存在下でアンモニアを分解することを特徴とするアンモニアの分解方法。 A method for decomposing ammonia, comprising decomposing ammonia in the presence of the ammonia decomposing catalyst according to any one of claims 1 to 3 .
JP2015038592A 2015-02-27 2015-02-27 Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst Active JP6381131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038592A JP6381131B2 (en) 2015-02-27 2015-02-27 Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038592A JP6381131B2 (en) 2015-02-27 2015-02-27 Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst

Publications (2)

Publication Number Publication Date
JP2016159209A JP2016159209A (en) 2016-09-05
JP6381131B2 true JP6381131B2 (en) 2018-08-29

Family

ID=56845867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038592A Active JP6381131B2 (en) 2015-02-27 2015-02-27 Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst

Country Status (1)

Country Link
JP (1) JP6381131B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197013A1 (en) 2021-03-15 2022-09-22 한국화학연구원 Catalyst for decomposition of ammonia, manufacturing method therefor, and method for producing hydrogen using same
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108160072A (en) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 A kind of magnesia for preparing hydrogen by ammonia decomposition carries ruthenium catalyst and its preparation and application
EP3632543A4 (en) * 2017-05-31 2020-12-16 Furukawa Electric Co., Ltd. Ammonia decomposition catalyst structure and fuel cell
CN109908934B (en) * 2017-12-13 2021-11-09 中国石油化工股份有限公司 Catalyst for catalytic oxidation reaction of ozone and preparation method thereof
CN111215063A (en) * 2018-11-25 2020-06-02 中国科学院大连化学物理研究所 Application of metal-loaded catalyst taking rare earth carbonate as carrier precursor in ammonia decomposition reaction
CN112167706B (en) * 2020-09-28 2022-09-02 江苏中烟工业有限责任公司 Additive for cigarette filter stick for reducing ammonia in cigarette smoke and preparation method and application thereof
US11845051B2 (en) 2021-04-19 2023-12-19 Toyota Jidosha Kabushiki Kaisha Ammonia synthesis catalyst, method of producing the same, and method of synthesizing ammonia using the same
CN113694922B (en) * 2021-09-29 2023-08-18 石河子大学 Supported catalyst for ammonia decomposition and preparation method thereof
KR20230071360A (en) * 2021-11-16 2023-05-23 아주대학교산학협력단 Ruthenium catalyst for decomposition reaction of ammonia, method of manufacturing the ruthenium catalyst, and method of producing hydrogen from ammonia using the ruthenium catalyst
CN114192144B (en) * 2021-11-30 2024-04-19 常州大学 Preparation method of efficient ammonia decomposition catalyst
CN115301279B (en) * 2022-08-17 2023-10-27 西南石油大学 Low-temperature ammonia decomposition catalyst and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314970A (en) * 2005-05-16 2006-11-24 Tokyo Institute Of Technology Catalyst, production method of catalyst, production method of ammonia, and reaction apparatus
JP4902969B2 (en) * 2005-06-08 2012-03-21 研一 秋鹿 Method for decomposing chlorofluorocarbon and decomposing agent therefor
JP5553484B2 (en) * 2008-04-17 2014-07-16 株式会社日本触媒 Ammonia decomposition catalyst and ammonia decomposition method
CN102188977B (en) * 2011-04-07 2012-07-25 萍乡市汇华填料有限公司 Method for preparing high-efficiency ammonia decomposition catalyst
JP5761710B2 (en) * 2011-06-09 2015-08-12 国立大学法人京都大学 Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220128865A (en) 2021-03-15 2022-09-22 한국화학연구원 Catalyst for Decomposing Ammonia, Method of Preparing the Same and Method for Generating Hydrogen Using the Same
WO2022197013A1 (en) 2021-03-15 2022-09-22 한국화학연구원 Catalyst for decomposition of ammonia, manufacturing method therefor, and method for producing hydrogen using same
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2016159209A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP4142733B2 (en) Uniform type highly dispersed metal catalyst and method for producing the same
JP7462768B2 (en) Catalytic composition for ammonia decomposition
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
JP2021130100A (en) Ammonia decomposition catalyst
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2011056488A (en) Ammonia reforming catalyst and method of manufacturing hydrogen using the same
RU2684908C2 (en) Nitrous oxide decomposition catalyst
JP6301387B2 (en) Catalyst and method for chlorine production by gas phase oxidation
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP5624343B2 (en) Hydrogen production method
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
CN109952270B (en) Method for producing chlorine by hydrogen chloride oxidation
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP2014033992A (en) Catalyst for purifying exhaust gas and method for producing the same
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP5888150B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
JP2012223769A (en) Method for producing ammonia decomposition catalyst
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP2000317307A (en) Catalyst for decomposing nitrous oxide and its using method
JP2003245554A (en) Hydrogen generating catalyst
JP2003275588A (en) Co shift reaction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6381131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250