JP2013237045A - Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst - Google Patents

Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst Download PDF

Info

Publication number
JP2013237045A
JP2013237045A JP2013143097A JP2013143097A JP2013237045A JP 2013237045 A JP2013237045 A JP 2013237045A JP 2013143097 A JP2013143097 A JP 2013143097A JP 2013143097 A JP2013143097 A JP 2013143097A JP 2013237045 A JP2013237045 A JP 2013237045A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
hydrogen
nitrogen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143097A
Other languages
Japanese (ja)
Inventor
Hisakazu Shindo
久和 進藤
Masaru Kirishiki
賢 桐敷
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013143097A priority Critical patent/JP2013237045A/en
Publication of JP2013237045A publication Critical patent/JP2013237045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of converting ammonia gas, especially ammonia contained in the gas widely from low concentration to high concentration.SOLUTION: A catalyst converts ammonia containing ruthenium and a rare earth oxide into nitrogen and hydrogen. The catalyst reduces a catalyst precursor. In addition, a method for converting ammonia into nitrogen and hydrogen by using the catalyst is provided. Preferably, the catalyst could have a fireproof inorganic oxide, and more preferably, acid strength (H0 constant) of the fireproof inorganic oxide is -5.6 or higher.

Description

本発明は、アンモニアを窒素と水素に転化する触媒、当該触媒の製造方法及び当該触媒を用いたアンモニアの転化方法に関するものである。   The present invention relates to a catalyst for converting ammonia into nitrogen and hydrogen, a method for producing the catalyst, and a method for converting ammonia using the catalyst.

アンモニアは臭気性を有するのでガス中含まれるとき処理することが必要となるものであり、従来から処理方法は提示され、例えば酸素とアンモニアを接触させて酸化分解する方法、アンモニアを水素へ転化する方法などが提案されている。例えば、コークス炉から生じるアンモニアを空気の存在下に白金アルミナ触媒、マンガンアルミナ触媒、鉄アルミナ触媒を用いてアンモニアを分解し水素を得る方法(特許文献1)であるが、当該方法ではNOxが副生することが多く新たにNOx処理の設備が必要となり好ましくは無く、また有機性廃棄物処理工程から生じるアンモニアガスをニッケル、アルカリ土類、ランタノイドを担持したアルミナ、シリカ等を用いて分解し水素を得る方法(特許文献2)であるが、当該方法では転化率が低く実用的ではないものである。更にコークス炉から生じるアンモニアの処理に際して従来の触媒が鉄アルミナ、白金アルミナ、ルテニウムアルミナであるに対してルテニウムとアルカリ金属、アルカリ土類金属とをアルミナに担持した触媒を用いてアンモニアを分解し水素を得る方法(特許文献3)では当該方法では転化率が低く実用的ではなく好ましくはないものである。   Ammonia is odorous and needs to be treated when it is contained in a gas. Conventionally, a treatment method has been proposed, for example, a method in which oxygen and ammonia are brought into contact with each other to oxidize and decompose, and ammonia is converted to hydrogen. Methods have been proposed. For example, there is a method of decomposing ammonia generated from a coke oven using a platinum alumina catalyst, a manganese alumina catalyst, and an iron alumina catalyst in the presence of air to obtain hydrogen (Patent Document 1). It is often undesirable that new NOx treatment facilities are required, and the ammonia gas generated from the organic waste treatment process is decomposed using nickel, alkaline earth, alumina carrying lanthanoids, silica, etc. to generate hydrogen. However, this method has a low conversion rate and is not practical. Furthermore, in the treatment of ammonia generated from a coke oven, conventional catalysts are iron alumina, platinum alumina, and ruthenium alumina, whereas ammonia is decomposed and hydrogen is decomposed using a catalyst in which ruthenium, alkali metal, and alkaline earth metal are supported on alumina. In this method (Patent Document 3), the conversion rate is low and not practical and not preferable.

特開昭64−56301号公報JP-A 64-56301 特開2004−195454号公報JP 2004-195454 A 特開平01−119341号公報JP-A-01-119341

本発明は、アンモニア濃度が低濃度から高濃度まで広範囲において、効率良く分解することができる触媒である。   The present invention is a catalyst that can be efficiently decomposed over a wide range of ammonia concentrations from low to high.

本発明者らは鋭意検討の結果、上記課題を解決する方法として、ルテニウムと希土類酸化物を含むことを特徴とするアンモニアを窒素、水素に転化する触媒、ルテニウムと希土類酸化物を含む触媒前駆体を窒素で希釈し水素濃度は1から30体積%としたものを用いて還元することを特徴とする当該触媒の製造方法、当該触媒を用いた触媒を用いて、アンモニアを窒素、水素に転化することを特徴とするアンモニアの転化方法を見出し発明を完成するに至ったものである。   As a result of intensive studies, the present inventors, as a method for solving the above problems, include a catalyst for converting ammonia into nitrogen and hydrogen, characterized by containing ruthenium and a rare earth oxide, and a catalyst precursor containing ruthenium and a rare earth oxide. The catalyst is produced by diluting with nitrogen and the hydrogen concentration is reduced to 1 to 30% by volume, and ammonia is converted to nitrogen and hydrogen by using the catalyst production method and the catalyst using the catalyst. The inventors have found a method for converting ammonia characterized by the above and have completed the invention.

本発明を用いることでアンモニア、特にガス中に含まれるアンモニアを低濃度から高濃度まで広範囲に分解することができるものである。   By using the present invention, ammonia, particularly ammonia contained in a gas, can be decomposed over a wide range from a low concentration to a high concentration.

本発明は、ルテニウムと希土類酸化物を含むことを特徴とするアンモニアを窒素、水素に転化する触媒であり、ルテニウムと希土類酸化物を含む触媒前駆体を窒素で希釈し水素濃度は1から30体積%としたものを用いて還元することを特徴とする当該触媒の製造方法であり、好ましくは当該還元条件が200℃から900℃であるものである。更に、当該触媒を用いた触媒を用いて、アンモニアを窒素、水素に転化することを特徴とするアンモニアの転化方法である。また、当該触媒には更に耐火性無機酸化物を有することが好ましい。   The present invention is a catalyst for converting ammonia into nitrogen and hydrogen, characterized in that it contains ruthenium and a rare earth oxide. A catalyst precursor containing ruthenium and a rare earth oxide is diluted with nitrogen, and the hydrogen concentration is 1 to 30 volumes. %, And the reduction conditions are 200 ° C. to 900 ° C. Preferably, the reduction conditions are 200 ° C. to 900 ° C. Further, the present invention is an ammonia conversion method characterized in that ammonia is converted into nitrogen and hydrogen using a catalyst using the catalyst. The catalyst preferably further has a refractory inorganic oxide.

ルテニウムの原料としては、金属、水酸化物、酸化物、炭酸塩、硝酸塩、塩化物、ニトロシル硝酸塩、硫酸塩、カルボニル錯体を使用することができ、好ましくは硝酸塩、塩化物、ニトロシル硝酸塩、カルボニル錯体である。   As the raw material for ruthenium, metals, hydroxides, oxides, carbonates, nitrates, chlorides, nitrosyl nitrates, sulfates, carbonyl complexes can be used, preferably nitrates, chlorides, nitrosyl nitrates, carbonyl complexes. It is.

当該希土類元素は、セリウム、ランタン、イットリウム、ネオジム、サマリウム、テルビウム、イッテルビウム、スカンジウムであり、好ましくはセリウム、ランタン、ネオジムであり、最も好ましくはセリウムである。当該希土類の原料は、酸化物の他、熱分解で酸化物となるものを使用することもでき、好ましくは硝酸塩である。   The rare earth elements are cerium, lanthanum, yttrium, neodymium, samarium, terbium, ytterbium, and scandium, preferably cerium, lanthanum, and neodymium, and most preferably cerium. As the rare earth material, an oxide or a material that is converted into an oxide by thermal decomposition can be used, and nitrate is preferable.

更に電気陰性度がポーリングの電気陰性度で1.3以下である元素の化合物(添加成分A)を加えることもできる。当該添加成分Aは、電気陰性度がポーリングの電気陰性度で1.3以下、好ましくは0.7〜1.12であり、例えばアルカリ性を示す化合物であり、好ましくはアルカリ金属、アルカリ土類金属、更に好ましくはアルカリ金属の化合物である。当該添加成分の原料は、酸化物、水酸化物、硫化物、炭酸塩、塩化物、フッ化物、臭化物、リン酸塩、硝酸塩であっても良いが、好ましくは水酸化物、硝酸塩である。添加成分の量は元素換算で、当該希土類酸化物100質量部に対して1〜40質量部、好ましくは3〜20質量部である。   Furthermore, an elemental compound (additive component A) having an electronegativity of 1.3 or less in terms of Pauling's electronegativity can be added. The additive component A has an electronegativity of 1.3 or less, preferably 0.7 to 1.12 as Pauling's electronegativity, and is, for example, a compound exhibiting alkalinity, preferably an alkali metal or alkaline earth metal. More preferably, it is an alkali metal compound. The raw material of the additive component may be an oxide, hydroxide, sulfide, carbonate, chloride, fluoride, bromide, phosphate or nitrate, but is preferably a hydroxide or nitrate. The amount of the additive component is 1 to 40 parts by mass, preferably 3 to 20 parts by mass with respect to 100 parts by mass of the rare earth oxide in terms of element.

当該耐火性無機酸化物は酸化物であれば何れのものであっても良いが、好ましくは酸化アルミニウム、酸化マグネシウム、酸化ニオブ、酸化チタン、酸化バナジウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ランタンおよび酸化ネオジムからなる群から選ばれる少なくとも一種であり、更に好ましくは酸化アルミニウム、酸化マグネシウムおよび酸化チタンからなる群から選ばれる少なくとも一種である。また、当該金属酸化物の比表面積は1〜300m/gが好ましく、更に好ましくは酸強度(H0定数)が−5.6以上である。これらの酸化物は単独酸化物でも複合酸化物でも用いることができる。
当該白金族元素は、当該希土類酸化物100質量部に対して0.1〜30質量部、好ましくは1〜6質量部である。
The refractory inorganic oxide may be any oxide, but preferably aluminum oxide, magnesium oxide, niobium oxide, titanium oxide, vanadium oxide, tantalum oxide, hafnium oxide, yttrium oxide, lanthanum oxide And at least one selected from the group consisting of neodymium oxide, and more preferably at least one selected from the group consisting of aluminum oxide, magnesium oxide and titanium oxide. Further, the specific surface area of the metal oxide is preferably 1 to 300 m 2 / g, and more preferably the acid strength (H0 constant) is −5.6 or more. These oxides can be used as single oxides or complex oxides.
The platinum group element is 0.1 to 30 parts by mass, preferably 1 to 6 parts by mass with respect to 100 parts by mass of the rare earth oxide.

また当該耐火性無機酸化物を用いるときは、当該希土類酸化物100質量部に対して1〜50質量部、好ましくは10〜30質量部である。   Moreover, when using the said refractory inorganic oxide, it is 1-50 mass parts with respect to 100 mass parts of the said rare earth oxides, Preferably it is 10-30 mass parts.

触媒前駆体の調製方法としては、一般的に方法を用いることができ、白金族元素、添加成分A及び金属酸化物を混合し適宜乾燥、焼成する方法(混合法)、白金族元素、添加成分Aを水性液とし金属酸化物に含浸する方法(含浸法)、添加成分と金属酸化物を混合したものに水性液に含まれる白金族元素を化学的に吸着させる方法(化学吸着法)などの方法を用いることができ、好ましくは含浸する方法である。   As a method for preparing the catalyst precursor, a general method can be used. A method in which a platinum group element, additive component A and a metal oxide are mixed, dried and fired appropriately (mixing method), platinum group element, additive component A method of impregnating metal oxide with A as an aqueous liquid (impregnation method), a method of chemically adsorbing platinum group elements contained in aqueous liquid to a mixture of additive components and metal oxide (chemical adsorption method), etc. A method can be used, and an impregnation method is preferable.

更に具体的に調製方法を示すと、乾燥させた低酸強度酸化物の吸水量(体積)を測定しておき、含浸させたい白金族元素の量がちょうどその体積になるように濃度調整した溶液を、乾燥させた低酸強度酸化物に撹拌しながら徐々にしみ込ませる方法である。   More specifically, the preparation method shows a water absorption amount (volume) of the dried low acid strength oxide, and a solution whose concentration is adjusted so that the amount of the platinum group element to be impregnated is just the volume. Is gradually soaked into the dried low acid strength oxide while stirring.

当該還元は、当該触媒前駆体を還元方法することができるものであれば何れ方法であってもよく、例えばヒドラジン、水素などの還元剤を用いることができる。特に水素を用いるときは水素のみであっても良いが、窒素で希釈して用いることもでき希釈したときの水素濃度は1から30体積%である。還元温度は、200〜900℃であり、時間は30分から5時間、好ましくは1時間から4時間である。   The reduction may be any method as long as it can reduce the catalyst precursor. For example, a reducing agent such as hydrazine or hydrogen can be used. In particular, when hydrogen is used, only hydrogen may be used, but it may be diluted with nitrogen and used, and the hydrogen concentration when diluted is 1 to 30% by volume. The reduction temperature is 200 to 900 ° C., and the time is 30 minutes to 5 hours, preferably 1 hour to 4 hours.

アンモニアガスとしては、アンモニアを一般的に使用することができる他、尿素のように熱分解等によりアンモニアを生じさせるものであっても良い。またアンモニアガスには触媒毒にならない程度であれば他の成分が含まれていても良い。対触媒当たりの量は、SV(空間速度)で、1000〜20000hr−1、好ましくは2000〜15000hr−1、最も好ましくは3000〜10000hr−1である。 As the ammonia gas, ammonia can be generally used, and ammonia may be generated by thermal decomposition or the like like urea. The ammonia gas may contain other components as long as they do not cause catalyst poisoning. It amounts per pair catalyst, at SV (space velocity), 1000~20000hr -1, preferably 2000~15000Hr -1, and most preferably 3000~10000hr -1.

反応温度は、180〜950℃、好ましくは300〜900℃、更に好ましくは400〜800℃である。反応圧力は0.002MPa〜2MPa、好ましくは0.004MPa〜1MPaである。   The reaction temperature is 180 to 950 ° C, preferably 300 to 900 ° C, more preferably 400 to 800 ° C. The reaction pressure is 0.002 MPa to 2 MPa, preferably 0.004 MPa to 1 MPa.

以下に実施例と比較例により本発明を詳細に説明するが、本発明の趣旨に反しない限り以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it is contrary to the gist of the present invention.

(実施例1)
(触媒A)
Ce(NO)3・6HOを水に溶解し0.2N溶液とし、5%アンモニア水でpH10にして沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO担体を得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、350℃まで窒素中で昇温、315℃で1時間水素気流(窒素で希釈、水素10体積%)で還元処理を行った。2.45質量%Ru/CeOを得た。BET表面積を測定した結果、29m/gであった。
Example 1
(Catalyst A)
Ce (NO 3 ) 3.6H 2 O was dissolved in water to form a 0.2N solution, pH was adjusted to 10 with 5% aqueous ammonia, a precipitate was formed, stirred, allowed to stand, filtered with suction, and washed with pure water. After drying at 100 ° C., calcination was performed in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle. After stirring overnight, the THF was removed with an evaporator, and the temperature was raised to 350 ° C. in nitrogen. Reduction treatment was performed in a hydrogen stream (diluted with nitrogen, 10% by volume of hydrogen) at 315 ° C. for 1 hour. 2.45 mass% Ru / CeO 2 was obtained. It was 29 m < 2 > / g as a result of measuring a BET surface area.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。上記の還元処理後、触媒を反応器に詰め替えて実験を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は7.8%であった。SV=15000hr−1に変えた時の結果は、分解率4.4%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. After the above reduction treatment, the experiment was conducted by refilling the catalyst into the reactor. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 7.8%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.4%.

次に、触媒を充填した状態で窒素で希釈した水素10体積%のガスを流通させ、300℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は9.7%であった。SV=15000hr−1に変えた時の結果は、分解率5.6%であった。 Next, a 10% by volume of hydrogen gas diluted with nitrogen was circulated in a state where the catalyst was filled, and hydrogen treatment was performed at 300 ° C. for 2 hours. As a result of the ammonia decomposition reaction carried out after the treatment, the decomposition rate was 9.7% at 300 ° C., SV = 6000 hr −1 , normal pressure. The result when changing to SV = 15000 hr −1 was a decomposition rate of 5.6%.

さらに、触媒を充填した状態で、窒素で希釈した水素10体積%のガスを流通させ、400℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は12.1%であった。 Furthermore, in a state where the catalyst was filled, a gas of 10% by volume of hydrogen diluted with nitrogen was circulated, and hydrogen treatment was performed at 400 ° C. for 2 hours. The results of the ammonia decomposition reaction carried out after the treatment were 300 ° C., SV = 6000 hr −1 , normal pressure, and the decomposition rate was 12.1%.

(実施例2)
(触媒B)
Ce(NO)3・6HOを水に溶解して0.2N溶液を得た後、5%アンモニア水を加えpH10で沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO2担体を得た。Ni(NO)2・6HOをメタノールに溶解し、得られたCeOに含浸を行った。500℃空気中1時間焼成を行い、真空排気後、水素中で12時間還元を行った。Ni/CeOを得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、400℃まで真空乾燥、315℃、1時間水素気流(窒素で希釈、水素10体積%)で還元処理を行った。0.48質量%Ni−2.45質量%Ru/CeOを得た。
(Example 2)
(Catalyst B)
Ce (NO 3 ) 3.6H 2 O was dissolved in water to obtain a 0.2N solution, 5% aqueous ammonia was added to form a precipitate at pH 10, and the mixture was stirred and allowed to stand for suction filtration. Washed. After drying at 100 ° C., calcination was carried out in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. Ni (NO 3 ) 2 .6H 2 O was dissolved in methanol, and the resulting CeO 2 was impregnated. Firing was performed in air at 500 ° C. for 1 hour, and after evacuation, reduction was performed in hydrogen for 12 hours. Ni / CeO 2 was obtained. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle. After stirring overnight, the THF was removed by an evaporator, vacuum-dried to 400 ° C., 315 ° C., The reduction treatment was performed in a hydrogen stream (diluted with nitrogen, 10% by volume of hydrogen) for 1 hour. 0.48 mass% Ni-2.45 mass% Ru / CeO 2 was obtained.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。
上記の還元処理後、触媒を反応器に詰め替えて実験を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は2.6%であった。SV=15000hr−1に変えた時の結果は、分解率1.7%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more.
After the above reduction treatment, the experiment was conducted by refilling the catalyst into the reactor. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 2.6%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.7%.

次に、触媒を充填した状態で、窒素で希釈した水素10体積%のガスを流通させ、300℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は7.2%であった。SV=15000hr−1に変えた時の結果は、分解率4.1%であった。 Next, in a state where the catalyst was filled, a gas of 10% by volume of hydrogen diluted with nitrogen was circulated, and hydrogen treatment was performed at 300 ° C. for 2 hours. As a result of the ammonia decomposition reaction carried out after the treatment, the decomposition rate was 7.2% at 300 ° C., SV = 6000 hr −1 , normal pressure. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.1%.

さらに、触媒を充填した状態で、窒素で希釈した水素10体積%のガスを流通させ、400℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は8.5%であった。SV=15000hr−1に変えた時の結果は、分解率5.1%であった。 Furthermore, in a state where the catalyst was filled, a gas of 10% by volume of hydrogen diluted with nitrogen was circulated, and hydrogen treatment was performed at 400 ° C. for 2 hours. The results of the ammonia decomposition reaction carried out after the treatment were 300 ° C., SV = 6000 hr −1 , normal pressure, and the decomposition rate was 8.5%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 5.1%.

(比較例1)
(触媒C)
ルテニウム含有率3.938質量%のルテニウム溶液13.365gを、γ−アルミナ(BET比表面積103m/g)の担体10gに均一になるように含浸し、Ru換算で5質量%になるように調整後、90〜120℃で乾燥を行った。その後、300℃,1時間の水素還元を行った。5質量%Ru/Alを得た。BET表面積を測定した結果、130m/gであった。
(Comparative Example 1)
(Catalyst C)
13.365 g of a ruthenium solution having a ruthenium content of 3.938% by mass is uniformly impregnated into 10 g of a carrier of γ-alumina (BET specific surface area 103 m 2 / g) so that the Ru content is 5% by mass. After the adjustment, drying was performed at 90 to 120 ° C. Thereafter, hydrogen reduction was performed at 300 ° C. for 1 hour. 5 wt% Ru / Al 2 O 3 was obtained. As a result of measuring the BET surface area, it was 130 m 2 / g.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。上記の触媒を反応器に詰めて実験を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は6.9%であった。SV=15000hr−1に変えた時の結果は、分解率3.9%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. The experiment was conducted with the above catalyst packed in a reactor. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 6.9%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 3.9%.

次に、触媒を充填した状態で、窒素で希釈した水素10体積%のガスを流通させ、300℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は6.9%であった。SV=15000hr−1に変えた時の結果は、分解率3.9%であった。 Next, in a state where the catalyst was filled, a gas of 10% by volume of hydrogen diluted with nitrogen was circulated, and hydrogen treatment was performed at 300 ° C. for 2 hours. As a result of the ammonia decomposition reaction carried out after the treatment, the decomposition rate was 6.9% at 300 ° C., SV = 6000 hr −1 , normal pressure. The result when changing to SV = 15000 hr −1 was a decomposition rate of 3.9%.

さらに、触媒を充填した状態で窒素で希釈した水素10体積%のガスを流通させ、400℃、2時間の水素処理を実施した。処理後に実施したアンモニア分解反応の結果は、300℃、SV=6000hr−1、常圧で分解率は6.8%であった。SV=15000hr−1に変えた時の結果は、分解率3.9%であった。 Further, a gas of 10% by volume of hydrogen diluted with nitrogen was circulated in a state where the catalyst was filled, and hydrogen treatment was performed at 400 ° C. for 2 hours. As a result of the ammonia decomposition reaction performed after the treatment, the decomposition rate was 6.8% at 300 ° C., SV = 6000 hr −1 , normal pressure. The result when changing to SV = 15000 hr −1 was a decomposition rate of 3.9%.

本発明は、アンモニアの分解に関するものであり、アンモニア臭気を有するガスの無臭化する環境的な分野、アンモニアを窒素、水素に転化する分野に応用できるものである。   The present invention relates to the decomposition of ammonia, and can be applied to an environmental field in which a gas having an ammonia odor is not brominated, and a field in which ammonia is converted to nitrogen or hydrogen.

Claims (3)

ルテニウムと希土類酸化物を含むことを特徴とするアンモニアを窒素、水素に転化する触媒。 A catalyst for converting ammonia into nitrogen and hydrogen, characterized by containing ruthenium and a rare earth oxide. ルテニウムと希土類酸化物を含む触媒前駆体を窒素で希釈し水素濃度は1から30体積%としたものを用いて還元することを特徴とする請求項1記載のアンモニアを窒素、水素に転化する触媒の製造方法。 2. The catalyst for converting ammonia into nitrogen and hydrogen according to claim 1, wherein the catalyst precursor containing ruthenium and rare earth oxide is diluted with nitrogen to have a hydrogen concentration of 1 to 30% by volume. Manufacturing method. 請求項1記載の触媒を用いて、アンモニアを窒素、水素に転化することを特徴とするアンモニア分解方法。 An ammonia decomposing method comprising converting ammonia into nitrogen and hydrogen using the catalyst according to claim 1.
JP2013143097A 2013-07-08 2013-07-08 Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst Pending JP2013237045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143097A JP2013237045A (en) 2013-07-08 2013-07-08 Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143097A JP2013237045A (en) 2013-07-08 2013-07-08 Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008107510A Division JP2009254979A (en) 2008-04-17 2008-04-17 Method of manufacturing ammonia decomposing catalyst

Publications (1)

Publication Number Publication Date
JP2013237045A true JP2013237045A (en) 2013-11-28

Family

ID=49762572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143097A Pending JP2013237045A (en) 2013-07-08 2013-07-08 Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Country Status (1)

Country Link
JP (1) JP2013237045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013652A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人産業技術総合研究所 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition
WO2019107098A1 (en) * 2017-11-29 2019-06-06 住友化学株式会社 Method for oxidizing ammonia
WO2019188219A1 (en) * 2018-03-26 2019-10-03 昭和電工株式会社 Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JPH02199196A (en) * 1989-01-27 1990-08-07 Nkk Corp Treatment of ammonia
JPH05329370A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Ammonia decomposition catalyst
JPH05330802A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Production of ammonia-cracked gas and production of hydrogen
JPH08196871A (en) * 1995-01-20 1996-08-06 Catalysts & Chem Ind Co Ltd Decomposition of ammonia
JPH1085557A (en) * 1996-09-12 1998-04-07 Nippon Shokubai Co Ltd Purifying method for ammonia-containing exhaust gas
JPH1085601A (en) * 1996-09-12 1998-04-07 Showa Denko Kk Ammonia decomposition catalyst, its production and method for decomposing ammonia
JP2002102701A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Ordinary temperature catalyst
JP2002336699A (en) * 2002-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Method of decomposing and removing ammonia

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (en) * 1987-10-30 1989-05-11 Nkk Corp Catalyst for ammonia decomposition
JPH02199196A (en) * 1989-01-27 1990-08-07 Nkk Corp Treatment of ammonia
JPH05329370A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Ammonia decomposition catalyst
JPH05330802A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Production of ammonia-cracked gas and production of hydrogen
JPH08196871A (en) * 1995-01-20 1996-08-06 Catalysts & Chem Ind Co Ltd Decomposition of ammonia
JPH1085557A (en) * 1996-09-12 1998-04-07 Nippon Shokubai Co Ltd Purifying method for ammonia-containing exhaust gas
JPH1085601A (en) * 1996-09-12 1998-04-07 Showa Denko Kk Ammonia decomposition catalyst, its production and method for decomposing ammonia
JP2002102701A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Ordinary temperature catalyst
JP2002336699A (en) * 2002-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd Method of decomposing and removing ammonia

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013652A1 (en) * 2014-07-24 2016-01-28 国立研究開発法人産業技術総合研究所 Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition
JP2016023126A (en) * 2014-07-24 2016-02-08 国立大学法人群馬大学 Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste
WO2019107098A1 (en) * 2017-11-29 2019-06-06 住友化学株式会社 Method for oxidizing ammonia
JP2019099393A (en) * 2017-11-29 2019-06-24 住友化学株式会社 Method for oxidizing ammonia
JP7067035B2 (en) 2017-11-29 2022-05-16 住友化学株式会社 Ammonia oxidation method
WO2019188219A1 (en) * 2018-03-26 2019-10-03 昭和電工株式会社 Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas
JPWO2019188219A1 (en) * 2018-03-26 2021-03-11 昭和電工株式会社 Ammonia decomposition catalyst and its production method, and hydrogen gas production method
JP7264154B2 (en) 2018-03-26 2023-04-25 株式会社レゾナック Ammonia decomposition catalyst, method for producing the same, and method for producing hydrogen gas

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP6922046B2 (en) Nitrous oxide decomposition catalyst
TW201231158A (en) An alumina support, a preparation method for the same, and a silver catalyst prepared from the same, and use thereof
HU228480B1 (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
JP2021130100A (en) Ammonia decomposition catalyst
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
KR20150145352A (en) Exhaust gas purification catalyst and method for preparing the same
JP2017081812A (en) Manganese-zirconium-based composite oxide and manufacturing method therefor and application thereof
JP5792771B2 (en) Method for decomposing N2O using a catalyst consisting essentially of cerium oxide, lanthanum oxide and an oxide of at least one rare earth metal other than cerium and lanthanum and provided in the form of a solid solution
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
CN109985663A (en) The method that the Cu-SSZ-13 molecular sieve of a kind of pair of one kettle way fabricated in situ is post-processed
JP2009254979A (en) Method of manufacturing ammonia decomposing catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
CN107486206B (en) Manganese-based material and preparation method and application thereof
JP2012223769A (en) Method for producing ammonia decomposition catalyst
JP2012223768A (en) Catalyst and method for decomposing ammonia
JP2010194420A (en) Copper-based catalyst, and pretreatment method therefor
JP2009254980A (en) Ammonia decomposing catalyst and ammonia decomposing method
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same
TWI594797B (en) Method for fabricating catalyst, catalyst and method for manufacturing methanol
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2013203609A (en) Oxygen storable ceramic material, method for producing the same, and catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331