JP7067035B2 - Ammonia oxidation method - Google Patents

Ammonia oxidation method Download PDF

Info

Publication number
JP7067035B2
JP7067035B2 JP2017228682A JP2017228682A JP7067035B2 JP 7067035 B2 JP7067035 B2 JP 7067035B2 JP 2017228682 A JP2017228682 A JP 2017228682A JP 2017228682 A JP2017228682 A JP 2017228682A JP 7067035 B2 JP7067035 B2 JP 7067035B2
Authority
JP
Japan
Prior art keywords
ammonia
oxidizing
oxide
containing gas
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017228682A
Other languages
Japanese (ja)
Other versions
JP2019099393A (en
JP2019099393A5 (en
Inventor
哲郎 米本
航平 関
啓介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2017228682A priority Critical patent/JP7067035B2/en
Priority to PCT/JP2018/041300 priority patent/WO2019107098A1/en
Priority to CN201880055374.XA priority patent/CN111051238B/en
Publication of JP2019099393A publication Critical patent/JP2019099393A/en
Publication of JP2019099393A5 publication Critical patent/JP2019099393A5/ja
Application granted granted Critical
Publication of JP7067035B2 publication Critical patent/JP7067035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、アンモニアの酸化方法に関する。 The present invention relates to a method for oxidizing ammonia.

化学プラント、発電所、および下水処理施設などにおいてアンモニアガス及びアンモニア水溶液は産業用として広く使用されている。使用後のアンモニアの処理方法として、例えば特許文献1には、白金と無機酸化物とゼオライトとを含む触媒の存在下、アンモニアを酸化して窒素と水にする方法が記載されている。 Ammonia gas and aqueous ammonia are widely used for industrial purposes in chemical plants, power plants, sewage treatment facilities, and the like. As a method for treating ammonia after use, for example, Patent Document 1 describes a method for oxidizing ammonia to nitrogen and water in the presence of a catalyst containing platinum, an inorganic oxide and zeolite.

国際公開WO2015/099024International release WO2015 / 099024

本発明の目的は、より入手容易な金属を含む触媒の存在下、高い転化率でアンモニアを酸化する方法を提供することにある。 An object of the present invention is to provide a method for oxidizing ammonia at a high conversion rate in the presence of a more readily available metal-containing catalyst.

本発明は、以下を提供する。
[1] ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水にする工程を含むアンモニアの酸化方法。
[2] アンモニアを酸化して窒素と水にする工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われる[1]に記載のアンモニアの酸化方法。
[3] 前記触媒は、酸化ルテニウムが前記担体に担持された触媒である[1]または[2]に記載のアンモニアの酸化方法。
[4] 前記触媒は、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物が前記担体にさらに担持された触媒である[1]~[3]のいずれか一項に記載のアンモニアの酸化方法。
[5] ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒を備えたアンモニア含有ガス酸化装置。
[6] アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、
[5]に記載のアンモニア含有ガス酸化装置と
を備えたアンモニア含有水溶液の処理装置。
The present invention provides:
[1] Ammonia oxidation including a step of oxidizing ammonia in an ammonia-containing gas to nitrogen and water in the presence of a catalyst in which ruthenium and / or a ruthenium compound is supported on a carrier containing rutyl crystalline titanium oxide. Method.
[2] The method for oxidizing ammonia according to [1], wherein the step of oxidizing ammonia to nitrogen and water is performed by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.
[3] The method for oxidizing ammonia according to [1] or [2], wherein the catalyst is a catalyst in which ruthenium oxide is supported on the carrier.
[4] The catalyst is a catalyst in which at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the carrier [1] to [3]. The method for oxidizing aluminum according to any one of the above items.
[5] An ammonia-containing gas oxidizing apparatus comprising a catalyst in which ruthenium and / or a ruthenium compound is supported on a carrier containing rutile crystalline titanium oxide.
[6] A dispersal tower having a dissipating means for dissipating an ammonia-containing gas from an ammonia-containing aqueous solution,
An ammonia-containing aqueous solution processing apparatus provided with the ammonia-containing gas oxidizing apparatus according to [5].

本発明によれば、より入手容易な金属を含む触媒の存在下、高い転化率でアンモニアを酸化する方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for oxidizing ammonia at a high conversion rate in the presence of a catalyst containing a more easily available metal.

〔触媒〕
本発明に係るアンモニアの酸化方法に用いられる触媒は、ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒である。
本明細書において、「ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒」とは、ルチル結晶形の酸化チタンを含有する担体の表面および/または細孔内に、ルテニウムおよび/またはルテニウム化合物が付着している触媒を意味する。
〔catalyst〕
The catalyst used in the method for oxidizing ammonia according to the present invention is a catalyst in which ruthenium and / or a ruthenium compound is supported on a carrier containing ruthenium crystalline titanium oxide.
As used herein, the term "catalyst in which ruthenium and / or a ruthenium compound is supported on a carrier containing rutile crystalline titanium oxide" refers to the surface and / or pores of a carrier containing rutile crystalline titanium oxide. Means a catalyst to which ruthenium and / or ruthenium compounds are attached.

<ルテニウム化合物>
ルテニウム化合物としては、酸化ルテニウム、水酸化ルテニウム、塩化ルテニウム、クロロルテニウム酸塩、クロロルテニウム酸塩水和物、ルテニウム酸の塩、ルテニウムオキシ塩化物、ルテニウムオキシ塩化物の塩、ルテニウムアンミン錯体、ルテニウムアンミン錯体の塩化物、臭化ルテニウム、ルテニウムカルボニル錯体、ルテニウム有機酸塩、ルテニウムニトロシル錯体、ルテニウムホスフィン錯体などが挙げられる。
酸化ルテニウムとしては、RuO2などが挙げられる。
水酸化ルテニウムとしては、Ru(OH)3が挙げられる。
塩化ルテニウムとしては、RuCl3、RuCl3水和物などが挙げられる。
クロロルテニウム酸塩としては、K3RuCl6、〔RuCl63-、K2RuCl6などが挙げられる。
クロロルテニウム酸塩水和物としては、〔RuCl5(H2O)42-、〔RuCl2(H2O)4+などが挙げられる。
ルテニウム酸の塩としては、K2RuO4などが挙げられる。
ルテニウムオキシ塩化物としては、Ru2OCl4、Ru2OCl5、Ru2OCl6などが挙げられる。
ルテニウムオキシ塩化物の塩としては、K2Ru2OCl10、Cs2Ru2OCl4などが挙げられる。
ルテニウムアンミン錯体としては、〔Ru(NH362+、〔Ru(NH363+、〔Ru(NH352O〕2+などが挙げられる。
ルテニウムアンミン錯体の塩化物としては、〔Ru(NH35Cl〕2+、〔Ru(NH36〕Cl2、〔Ru(NH36〕Cl3、〔Ru(NH36〕Br3などが挙げられる。
臭化ルテニウムとしては、RuBr3、RuBr3水和物などが挙げられる。
ルテニウムカルボニル錯体としては、Ru(CO)5、Ru3(CO)12などが挙げられる。
ルテニウム有機酸塩としては、[Ru3O(OCOCH36(H2O)3] OCOCH3水和物、Ru2(RCOO)4Cl(R=炭素数1-3のアルキル基)などが挙げられる。
ルテニウムニトロシル錯体としては、K2〔RuCl5NO)〕、〔Ru(NH35(NO)〕Cl3、〔Ru(OH)(NH34(NO)〕(NO32、 Ru(NO)(NO33などが挙げられる。
ルテニウム化合物は、酸化ルテニウム、 塩化ルテニウム、臭化ルテニウム、ルテニウム酸の塩、ルテニウムニトロシル錯体が好ましく、酸化ルテニウムがより好ましい。
<Ruthenium compound>
Examples of the ruthenium compound include ruthenium oxide, ruthenium hydroxide, ruthenium chloride, chlororuthenium acid salt, chlororuthenium acid salt hydrate, ruthenium acid salt, ruthenium oxychloride, ruthenium oxychloride salt, ruthenium ammine complex, and ruthenium ammine. Examples thereof include chloride of the complex, ruthenium bromide, ruthenium carbonyl complex, ruthenium organic acid salt, ruthenium nitrosyl complex, ruthenium phosphine complex and the like.
Examples of ruthenium oxide include RuO 2 .
Examples of ruthenium hydroxide include Ru (OH) 3 .
Examples of ruthenium chloride include RuCl 3 , RuCl trihydrate and the like.
Examples of the chlororuthenium salt include K 3 RuCl 6 , [RuCl 6 ] 3- , and K 2 RuCl 6 .
Examples of the chlororuthenium acid salt hydrate include [RuCl 5 (H 2 O) 4 ] 2- , [RuCl 2 (H 2 O) 4 ] + and the like.
Examples of the ruthenium acid salt include K 2 RuO 4 .
Examples of ruthenium oxychloride include Ru 2 OCl 4 , Ru 2 OCl 5 , and Ru 2 OCl 6 .
Examples of the salt of ruthenium oxychloride include K 2 Ru 2 OCl 10 , Cs 2 Ru 2 OC l 4 and the like.
Examples of the ruthenium ammine complex include [Ru (NH 3 ) 6 ] 2+ , [Ru (NH 3 ) 6 ] 3+ , and [Ru (NH 3 ) 5 H 2 O] 2+ .
Chlorides of the ruthenium ammine complex include [Ru (NH 3 ) 5 Cl] 2+ , [Ru (NH 3 ) 6 ] Cl 2 , [Ru (NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6 ] Br 3 and the like can be mentioned.
Examples of ruthenium bromide include RuBr 3 , RuBr trihydrate and the like.
Examples of the ruthenium carbonyl complex include Ru (CO) 5 and Ru 3 (CO) 12 .
Examples of the ruthenium organic acid salt include [Ru 3 O (OCOCH 3 ) 6 (H 2 O) 3 ] OCOCH trihydrate and Ru 2 (RCOO) 4 Cl ( R = alkyl group having 1-3 carbon atoms). Can be mentioned.
Ruthenium nitrosyl complexes include K 2 [RuCl 5 NO)], [Ru (NH 3 ) 5 (NO)] Cl 3 , [Ru (OH) (NH 3 ) 4 (NO)] (NO 3 ) 2 , Ru. (NO) (NO 3 ) 3 and the like.
The ruthenium compound is preferably ruthenium oxide, ruthenium chloride, ruthenium bromide, a salt of ruthenium acid, a ruthenium nitrosyl complex, and more preferably ruthenium oxide.

触媒中のルテニウムおよび/またはルテニウム化合物の含有量は、金属ルテニウム基準で、0.1~20重量%が好ましく、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。
ルテニウムおよび/またはルテニウム化合物と、ルチル結晶形の酸化チタンを含有する担体との合計量を100重量%として、ルテニウムおよび/またはルテニウム化合物の含有量は、金属ルテニウム基準で、0.1~20重量%が好ましく、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。
The content of ruthenium and / or the ruthenium compound in the catalyst is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, still more preferably 1 to 5% by weight, based on metallic ruthenium.
The content of ruthenium and / or ruthenium compound is 0.1 to 20% by weight based on metallic ruthenium, where the total amount of ruthenium and / or ruthenium compound and the carrier containing ruthenium crystalline titanium oxide is 100% by weight. %, More preferably 0.5 to 10% by weight, even more preferably 1 to 5% by weight.

<ルチル結晶形の酸化チタンを含有する担体>
上記触媒中の担体は、少なくともルチル結晶形の酸化チタンを含有するものであればよく、さらにアナターゼ結晶形の酸化チタンを含有してもよい。
触媒活性の観点から、担体に含有される酸化チタン中の、ルチル結晶形の酸化チタンの含有率は、担体に含有される酸化チタンの全量を100重量%として、20重量%以上が好ましく、30重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上がさらに好ましい。
担体は、酸化チタン以外の金属酸化物を含有してもよい。さらに、酸化チタンと他の金属酸化物との複合酸化物を含有してもよい。また、酸化チタンと他の金属酸化物の混合物であってもよい。酸化チタン以外の金属酸化物としては、酸化アルミニウム、酸化ケイ素、酸化ジルコニウムなどがあげられる。
<Carrier containing rutile crystalline titanium oxide>
The carrier in the catalyst may contain at least rutile crystalline titanium oxide, and may further contain anatase crystalline titanium oxide.
From the viewpoint of catalytic activity, the content of rutile crystalline titanium oxide in the titanium oxide contained in the carrier is preferably 20% by weight or more, with the total amount of titanium oxide contained in the carrier being 100% by weight. By weight% or more is more preferable, 80% by weight or more is further preferable, and 90% by weight or more is further preferable.
The carrier may contain a metal oxide other than titanium oxide. Further, it may contain a composite oxide of titanium oxide and another metal oxide. Further, it may be a mixture of titanium oxide and other metal oxides. Examples of metal oxides other than titanium oxide include aluminum oxide, silicon oxide, and zirconium oxide.

ルチル結晶形の酸化チタンの調製方法としては、以下の方法が挙げられる。
四塩化チタンを氷冷した水に滴下溶解した後、20℃以上の温度でアンモニア水溶液で中和し、水酸化チタン(オルトチタン酸)を生成させ、次いで、生成した沈殿を水洗して塩素イオンを除去した後、600℃以上の温度で焼成する方法(触媒調製化学、1989年、211頁、講談社);
四塩化チタン蒸発器に酸素-窒素混合ガスを通じて反応ガスを調製し、これを反応器に導入し、900℃以上で反応させる方法(触媒調製化学、1989年、89頁、講談社);
四塩化チタンを硫酸アンモニウムの存在下に加水分解した後、焼成する方法(例えば、触媒工学講座10元素別触媒便覧、1978年、254頁、地人書館)。
アナターゼ結晶形の酸化チタンを焼成する方法(例えば、金属酸化物と複合酸化物、1980年、107頁、講談社);
塩化チタン水溶液を加熱加水分解する方法;および
硫酸チタンや塩化チタンなどのチタン化合物水溶液とルチル結晶形の酸化チタン粉末を混合した後、加熱加水分解やアルカリ加水分解し、次いで、500℃前後の温度で焼成する方法。
また、ルチル結晶形の酸化チタンは市販品を使用してもよい。
Examples of the method for preparing rutile crystalline titanium oxide include the following methods.
After dropping and dissolving titanium tetrachloride in ice-cooled water, neutralize it with an aqueous ammonia solution at a temperature of 20 ° C or higher to generate titanium hydroxide (orthotitanic acid), and then wash the generated precipitate with water to produce chlorine ions. (Catalyst Preparation Chemistry, 1989, p. 211, Kodansha);
A method in which a reaction gas is prepared by passing an oxygen-nitrogen mixed gas through a titanium tetrachloride evaporator, introduced into the reactor, and reacted at 900 ° C. or higher (Catalyst Preparation Chemistry, 1989, p. 89, Kodansha);
A method of hydrolyzing titanium tetrachloride in the presence of ammonium sulfate and then firing it (for example, Catalyst Engineering Course, 10 Elemental Catalyst Handbook, 1978, p. 254, Chijin Shokan).
A method for calcining titanium oxide in the form of anatase crystals (for example, metal oxide and composite oxide, 1980, p. 107, Kodansha);
Method of heating and hydrolyzing an aqueous solution of titanium chloride; and after mixing an aqueous solution of a titanium compound such as titanium sulfate or titanium chloride with rutyl crystalline titanium oxide powder, heat hydrolysis or alkaline hydrolysis is performed, and then the temperature is around 500 ° C. How to bake with.
Further, as the rutile crystal form titanium oxide, a commercially available product may be used.

担体は、ルチル結晶形の酸化チタンを所望の形状に成型することにより得ることができる。担体が、ルチル結晶形の酸化チタン以外の金属酸化物を含有する場合は、ルチル結晶形の酸化チタンと、それ以外の金属酸化物との混合物を所望の形状に成型することにより得ることができる。 The carrier can be obtained by molding rutile crystalline titanium oxide into a desired shape. When the carrier contains a metal oxide other than the rutile crystalline titanium oxide, it can be obtained by molding a mixture of the rutile crystalline titanium oxide and the other metal oxide into a desired shape. ..

本発明において使用されるルチル結晶形の酸化チタンを含有する酸化チタンとは、X線回折分析法によって酸化チタン中のルチル結晶とアナターゼ結晶の比率を測定し、そのうちルチル結晶を含有するものを指す。X線源としてはいろいろな線源が使用される。たとえば、銅のKα線などがあげられる。銅のKα線を使用した場合、ルチル結晶の比率とアナターゼ結晶の比率はそれぞれ、(110)面の2θ=27.5度の回折ピークの強度と、(101)面の2θ=25.3度の回折ピークの強度を用いて決定する。本発明に使用する担体はルチル結晶のピーク強度及びアナターゼ結晶のピーク強度を有する担体、又は、ルチル結晶のピーク強度を有する担体である。すなわち、ルチル結晶の回折ピーク及びアナターゼ結晶の回折ピークの両方を有する担体であってもよいし、ルチル結晶の回折ピークのみを有する担体であってもよい。 The titanium oxide containing rutile crystal form titanium oxide used in the present invention refers to those containing rutile crystals obtained by measuring the ratio of rutile crystals to anatase crystals in titanium oxide by an X-ray diffraction analysis method. .. Various sources are used as X-ray sources. For example, copper Kα ray and the like can be mentioned. When copper Kα rays are used, the ratio of rutile crystals and the ratio of anatase crystals are the intensity of the diffraction peak of 2θ = 27.5 degrees on the (110) plane and 2θ = 25.3 degrees on the (101) plane, respectively. It is determined using the intensity of the diffraction peak of. The carrier used in the present invention is a carrier having a peak intensity of rutile crystals and a peak intensity of anatase crystals, or a carrier having a peak intensity of rutile crystals. That is, it may be a carrier having both a diffraction peak of a rutile crystal and a diffraction peak of an anatase crystal, or a carrier having only a diffraction peak of a rutile crystal.

触媒被毒の原因となる物質が触媒表面に吸着することを阻害し、触媒の性能が低下することを防ぐ、あるいは触媒活性点のシンタリングを防ぐ等の目的で、前記触媒は、ルチル結晶形の酸化チタンを含有する担体に、ルテニウム以外の金属および/またはルテニウム化合物以外の金属化合物がさらに担持された触媒であることが好ましい。 The catalyst is in the rutyl crystal form for the purpose of inhibiting the adsorption of substances that cause catalyst poisoning on the catalyst surface, preventing the performance of the catalyst from deteriorating, or preventing the catalysis of catalytically active sites. It is preferable that the catalyst further carries a metal other than ruthenium and / or a metal compound other than the ruthenium compound on the carrier containing titanium oxide.

ルテニウム以外の金属としては、ケイ素、ジルコニウム、アルミニウム、ニオブ、スズ、銅、鉄、コバルト、ニッケル、バナジウム、クロム、モリブデン、タングステン等が挙げられる。ルテニウム化合物以外の金属化合物としては、前記ルテニウム以外の金属を有する化合物が挙げられ、前記ルテニウム以外の金属の酸化物が好ましい。金属酸化物は、複数の金属種の複合酸化物であってもよい。また、前記触媒は、前記担体に、ルテニウムとルテニウム以外の金属との合金や、ルテニウムとルテニウム以外の金属とを含む複合酸化物がさらに担持された触媒でもよい。
前記触媒は、より好ましくは、ルチル結晶形の酸化チタンを含有する担体に、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物がさらに担持された触媒である。
Examples of metals other than ruthenium include silicon, zirconium, aluminum, niobium, tin, copper, iron, cobalt, nickel, vanadium, chromium, molybdenum, and tungsten. Examples of the metal compound other than the ruthenium compound include compounds having a metal other than the ruthenium, and an oxide of the metal other than the ruthenium is preferable. The metal oxide may be a composite oxide of a plurality of metal species. Further, the catalyst may be a catalyst in which an alloy of ruthenium and a metal other than ruthenium or a composite oxide containing ruthenium and a metal other than ruthenium is further supported on the carrier.
More preferably, the catalyst further carries at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide on a carrier containing rutile crystalline titanium oxide. It is a catalyst.

金属の酸化物を得るために用いられる金属塩は、特に限定されない。 The metal salt used to obtain the oxide of the metal is not particularly limited.

触媒の形状としては、球形粒状、円柱形ペレット状、リング形状、ハニカム形状、モノリス形状、コルゲート形状、あるいは成型後に粉砕分級した適度の大きさの顆粒状、微粒子などが挙げられる。球形粒状、円柱形ペレット状、リング形状の場合、触媒活性の観点から、触媒直径は10mm以下が好ましい。なお、ここでいう触媒直径とは、球形粒状では球の直径、円柱形ペレット状では断面の直径、その他の形状では断面の最大直径を意味する。 ハニカム形状、モノリス形状、コルゲート形状の場合、開口径は通常20mm以下が好ましい。 Examples of the shape of the catalyst include spherical granules, cylindrical pellets, ring shapes, honeycomb shapes, monolithic shapes, corrugated shapes, granules of appropriate size pulverized and classified after molding, fine particles, and the like. In the case of spherical granules, cylindrical pellets, and ring shape, the catalyst diameter is preferably 10 mm or less from the viewpoint of catalytic activity. The catalyst diameter referred to here means the diameter of a sphere for spherical granules, the diameter of a cross section for a cylindrical pellet, and the maximum diameter of a cross section for other shapes. In the case of a honeycomb shape, a monolith shape, or a corrugated shape, the opening diameter is usually preferably 20 mm or less.

本発明に係るアンモニアの酸化方法に使用される触媒は、例えば、ルテニウムおよび/またはルテニウム化合物を含む溶液に、ルチル結晶形の酸化チタンを含有する担体を含侵させて、担体にルテニウムおよび/またはルテニウム化合物を付着させた後、乾燥する方法により調製することができる。ルテニウムおよび/またはルテニウム化合物を含む溶液中の溶媒は特に限定されないが、水やエタノールなどを用いることができる。乾燥後、焼成してもよい。
触媒が酸化ルテニウムを含有する場合、ハロゲン化ルテニウムを含む溶液に、ルチル結晶形の酸化チタンを含有する担体を含侵させて、担体にハロゲン化ルテニウムを担持させる工程と、ハロゲン化ルテニウムが担体に担持された担持物を乾燥させる工程と、乾燥物を焼成する工程とを有する方法により得ることができる。
The catalyst used in the method for oxidizing ammonia according to the present invention is, for example, a solution containing ruthenium and / or a ruthenium compound impregnated with a carrier containing ruthenium crystalline titanium oxide, and the carrier is impregnated with ruthenium and / or. It can be prepared by a method of attaching a ruthenium compound and then drying it. The solvent in the solution containing ruthenium and / or the ruthenium compound is not particularly limited, but water, ethanol, or the like can be used. After drying, it may be fired.
When the catalyst contains ruthenium oxide, a step of impregnating a solution containing ruthenium halide with a carrier containing rutyl crystalline titanium oxide to support the carrier with ruthenium halide, and ruthenium halide being used as a carrier. It can be obtained by a method having a step of drying the supported carrier and a step of firing the dried product.

触媒は不活性物質で希釈して用いることができる。 The catalyst can be diluted with an inert substance before use.

本発明に係るアンモニアの酸化方法に使用される触媒は、使用前に熱処理してもよい。熱処理温度は特に限定されないが、通常100℃~500℃で行われる。また、熱処理は、窒素やアルゴン、ヘリウムなどの不活性ガス中、空気中、一酸化炭素や水素などを含むガス中で行うことができる。 The catalyst used in the method for oxidizing ammonia according to the present invention may be heat-treated before use. The heat treatment temperature is not particularly limited, but is usually 100 ° C. to 500 ° C. Further, the heat treatment can be performed in an inert gas such as nitrogen, argon or helium, in air, or in a gas containing carbon monoxide or hydrogen.

〔アンモニアの酸化方法〕
本発明に係るアンモニアの酸化方法は、上記触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水にする工程を含む方法である。アンモニアの酸化反応式は以下のとおりである。
NH+3/4O→1/2N+3/2H
[Ammonia oxidation method]
The method for oxidizing ammonia according to the present invention is a method including a step of oxidizing ammonia in an ammonia-containing gas into nitrogen and water in the presence of the catalyst. The oxidation reaction formula of ammonia is as follows.
NH 3 + 3/4O 2 → 1 / 2N 2 + 3 / 2H 2 O

アンモニアを酸化して窒素と水にする工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われることが好ましい。 The step of oxidizing ammonia to nitrogen and water is preferably carried out by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.

本発明に係るアンモニアの酸化方法における反応温度は、好ましくは100℃以上500℃以下であり、より好ましくは120℃以上400℃以下であり、さらに好ましくは120℃以上350℃以下である。反応温度は触媒活性劣化の観点から500℃以下が好ましく、反応速度の観点から100℃以上が好ましい。
反応圧力は、好ましくは0.005MPa以上1MPa以下であり、より好ましくは0.005MPa以上0.5MPa以下である。
本発明に係るアンモニアの酸化方法における反応形式としては、固定床形式、流動床形式が挙げられる。
The reaction temperature in the method for oxidizing ammonia according to the present invention is preferably 100 ° C. or higher and 500 ° C. or lower, more preferably 120 ° C. or higher and 400 ° C. or lower, and further preferably 120 ° C. or higher and 350 ° C. or lower. The reaction temperature is preferably 500 ° C. or lower from the viewpoint of deterioration of catalytic activity, and preferably 100 ° C. or higher from the viewpoint of reaction rate.
The reaction pressure is preferably 0.005 MPa or more and 1 MPa or less, and more preferably 0.005 MPa or more and 0.5 MPa or less.
Examples of the reaction type in the method for oxidizing ammonia according to the present invention include a fixed bed type and a fluidized bed type.

<アンモニア含有ガス>
アンモニア含有ガスは、アンモニア以外の気体を含んでもよい。アンモニア以外の気体としては、酸素、水蒸気、ヘリウム、アルゴン、窒素、二酸化炭素が挙げられる。アンモニア含有ガスは、液体を含んでもよい。
アンモニア含有ガス中のアンモニア濃度は、30%以下が好ましい。
アンモニア含有ガスが、さらに酸素を含む場合、該ガス中の酸素量は、該ガス中のアンモニア量に対して0.5~20倍であることが好ましい。
酸素を含むアンモニア含有ガスは、例えば、アンモニア含有ガスと、酸素含有ガスとを混合して得ることができる。酸素含有ガスとしては、空気が挙げられる。
酸素を含むアンモニア含有ガスの供給速度は、空間速度GHSV(h-1)として、好ましくは10h-1以上500000h-1以下であり、より好ましくは100h-1以上50000h-1以下である。
<Ammonia-containing gas>
The ammonia-containing gas may contain a gas other than ammonia. Examples of gases other than ammonia include oxygen, water vapor, helium, argon, nitrogen, and carbon dioxide. The ammonia-containing gas may contain a liquid.
The ammonia concentration in the ammonia-containing gas is preferably 30% or less.
When the ammonia-containing gas further contains oxygen, the amount of oxygen in the gas is preferably 0.5 to 20 times the amount of ammonia in the gas.
The oxygen-containing ammonia-containing gas can be obtained, for example, by mixing an ammonia-containing gas and an oxygen-containing gas. Examples of the oxygen-containing gas include air.
The supply speed of the ammonia-containing gas containing oxygen is preferably 10h -1 or more and 500,000h -1 or less, and more preferably 100h -1 or more and 50,000h -1 or less as the space speed GHSV (h -1 ).

〔アンモニア含有ガス酸化装置〕
本発明に係るアンモニアの酸化方法は、前記触媒を備えたアンモニア含有ガス酸化装置を使用して行うことができる。アンモニア含有ガス酸化装置は、アンモニア含有ガスおよび酸素含有ガス、または酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入するガス導入手段を備える。
本発明に係るアンモニアの酸化方法の一態様として、ガス導入手段から、酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、前記ガス中のアンモニアを酸化して窒素と水にする工程とを有する方法が挙げられる。
[Ammonia-containing gas oxidizing device]
The method for oxidizing ammonia according to the present invention can be carried out using an ammonia-containing gas oxidizing apparatus equipped with the catalyst. The ammonia-containing gas oxidizing apparatus includes a gas introducing means for introducing an ammonia-containing gas and an oxygen-containing gas, or an ammonia-containing gas containing oxygen into the ammonia-containing gas oxidizing apparatus.
As one aspect of the method for oxidizing ammonia according to the present invention, a step of introducing an ammonia-containing gas containing oxygen into an ammonia-containing gas oxidizing apparatus from a gas introducing means, and a step of introducing ammonia in the gas in the presence of the catalyst. Examples thereof include a method having a step of oxidizing to nitrogen and water.

〔アンモニア含有水溶液の処理装置〕
アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、前記アンモニア含有ガス酸化装置とを備えたアンモニア含有水溶液の処理装置により、アンモニア含有水溶液中のアンモニアを酸化して窒素と水にすることができる。
本発明に係るアンモニアの酸化方法の一態様として、アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段により、アンモニア含有水溶液からアンモニア含有ガスを放散する工程と、前記工程により得られたアンモニア含有ガスと、酸素含有ガスとを、アンモニア含有ガス酸化装置のガス導入手段により、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、アンモニア含有ガス酸化装置内のアンモニアを酸化して、窒素と水にする工程とを有する方法が挙げられる。
アンモニア含有水溶液からアンモニア含有ガスを放散する方法としては、アンモニア含有水溶液と気体とを接触させ、アンモニア含有水溶液中のアンモニアを前記気体に放散することによりアンモニア含有ガスを得る方法が挙げられる。前記気体は、酸素を含んでもよく、前記気体としては、例えば空気が挙げられる。
[Ammonia-containing aqueous solution treatment device]
Ammonia in the ammonia-containing aqueous solution is oxidized to nitrogen and water by a dispersal tower having a dissipating means for dissipating the ammonia-containing gas from the ammonia-containing aqueous solution and a treatment device for the ammonia-containing aqueous solution provided with the ammonia-containing gas oxidizing device. can do.
As one aspect of the method for oxidizing ammonia according to the present invention, a step of dissipating the ammonia-containing gas from the ammonia-containing aqueous solution by a dissipating means for dissipating the ammonia-containing gas from the ammonia-containing aqueous solution, and an ammonia-containing gas obtained by the above steps. , The step of introducing the oxygen-containing gas into the ammonia-containing gas oxidizing device by the gas introducing means of the ammonia-containing gas oxidizing device, and in the presence of the catalyst, the ammonia in the ammonia-containing gas oxidizing device is oxidized to nitrogen. And a method having a step of making water.
Examples of the method of dissipating the ammonia-containing gas from the ammonia-containing aqueous solution include a method of contacting the ammonia-containing aqueous solution with a gas and dissipating the ammonia in the ammonia-containing aqueous solution to the gas to obtain the ammonia-containing gas. The gas may contain oxygen, and examples of the gas include air.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。空間速度GHSV(h-1)はアンモニアおよび酸素を含むガスの供給速度(ml/h)を触媒の体積(ml)で除することにより算出した。アンモニアの分析は触媒層後段に取り付けた水トラップのアンモニウムイオン濃度をアンモニアイオン電極で分析することで行った。NO、NOの分析は触媒層後段のガスを検知管で分析することで行った。酸素、窒素、NOの分析はガスクロマトグラフィーにより行った。アンモニア転化率は供給したアンモニアの物質量(mol)をX、未反応のアンモニアの物質量(mol)をYとして以下の式で算出した。
アンモニア転化率(%)=[(X-Y)/X]×100
NO、NO、NO生成率はそれぞれ下記の式で算出した。
NO生成率(%):(出口NO濃度)/(入口NH濃度)× 100
NO生成率(%):(出口NO濃度)/(入口NH濃度)× 100
O生成率(%):(出口NO濃度)/(入口NH濃度)× 100
ルテニウム1g当たりの活性は、アンモニアの反応量をRuの質量(g)で除した値として算出した。
Hereinafter, examples of the present invention will be shown, but the present invention is not limited thereto. The space velocity GHSV (h -1 ) was calculated by dividing the supply rate (ml / h) of the gas containing ammonia and oxygen by the volume (ml) of the catalyst. Ammonia was analyzed by analyzing the ammonium ion concentration of the water trap attached to the latter stage of the catalyst layer with the ammonia ion electrode. The analysis of NO and NO 2 was performed by analyzing the gas in the latter stage of the catalyst layer with a detector tube. Analysis of oxygen, nitrogen and N2O was performed by gas chromatography. The ammonia conversion rate was calculated by the following formula, where the amount of substance (mol) of the supplied ammonia was X and the amount of substance (mol) of unreacted ammonia was Y.
Ammonia conversion rate (%) = [(XY) / X] × 100
The NO, NO 2 , and N 2 O production rates were calculated by the following formulas, respectively.
NO generation rate (%): (outlet NO concentration) / (inlet NH 3 concentration) x 100
NO 2 generation rate (%): (outlet NO 2 concentration) / (inlet NH 3 concentration) x 100
N 2 O generation rate (%): (outlet N 2 O concentration) / (inlet NH 3 concentration) × 100
The activity per 1 g of ruthenium was calculated as a value obtained by dividing the reaction amount of ammonia by the mass (g) of Ru.

<実施例1>
(a)アンモニア酸化触媒(A)の製造
ルチル結晶形の二酸化チタン〔堺化学工業株式会社製、STR-60R、100%ルチル結晶形〕50重量部とα-アルミナ〔住友化学株式会社製、AES-12〕50重量部とを混合し、次いでこの混合物100重量部に対し、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量39重量%、二酸化チタンは100%アナターゼ結晶形〕12.8重量部を純水で希釈し、混練した。この混練物を直径1.5mmの円柱状に押出し、乾燥した後、長さ2~4mm程度に破砕した。得られた成型体を空気中、650~680℃で3時間焼成し、二酸化チタンとα-アルミナの混合物からなる担体を得た。この担体に、市販の塩化ルテニウム水和物の水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(A)得た。
<Example 1>
(A) Production of Ammonia Oxidation Catalyst (A) Rutyl Crystal Form Titanium Dioxide [manufactured by Sakai Chemical Industry Co., Ltd., STR-60R, 100% Rutile Crystal Form] 50 parts by weight and α-alumina [manufactured by Sumitomo Chemical Co., Ltd., AES -12] 50 parts by weight is mixed, and then titanium dioxide sol [manufactured by Sakai Chemical Industry Co., Ltd., CSB, titanium dioxide content in titanium dioxide sol is 39% by weight, titanium dioxide is 100% anatase, based on 100 parts by weight of this mixture. Crystal form] 12.8 parts by weight was diluted with pure water and kneaded. This kneaded product was extruded into a cylinder having a diameter of 1.5 mm, dried, and then crushed to a length of about 2 to 4 mm. The obtained molded product was calcined in air at 650 to 680 ° C. for 3 hours to obtain a carrier composed of a mixture of titanium dioxide and α-alumina. This carrier is impregnated with a commercially available aqueous solution of ruthenium chloride hydrate, dried, and then calcined in air at 250 ° C. for 2 hours so that ruthenium oxide is supported on the carrier with a loading ratio of 4% by weight. The ammonia oxidation catalyst (A) was obtained.

(b)アンモニア酸化分解
上記アンモニア酸化触媒(A)0.84gとSiC2.00gとを内径1cmの石英ガラス製反応管中に充填して触媒層を形成させ、ヘリウム62ml/min流通下で200℃まで昇温した後、アンモニア2ml/min、酸素16ml/min、水20ml/min、ヘリウム62ml/minを反応管に供給し、反応を行った。反応開始後30分後に触媒層後段のガスを採取し、検知管にてNO、NOの分析を行ったところNO生成率0.4%、NO生成率0.2%であった。反応開始後2時間後に触媒層出口ガスを採取しガスクロマトグラフィーで分析したところ、NO生成率は3.3%であった。反応開始後2時間後から反応開始後3時間後にかけて触媒層の出口を水トラップに接続し、未反応アンモニアを吸収させた。上記水トラップをアンモニアイオン電極にて分析したところアンモニア転化率は95.7%であった。
(B) Ammonia Oxidation Decomposition The above ammonia oxidation catalyst (A) 0.84 g and SiC 2.00 g are filled in a quartz glass reaction tube having an inner diameter of 1 cm to form a catalyst layer, and 200 ° C. under a helium 62 ml / min flow. After the temperature was raised to 2 ml / min, ammonia 2 ml / min, oxygen 16 ml / min, water 20 ml / min, and helium 62 ml / min were supplied to the reaction tube to carry out the reaction. Thirty minutes after the start of the reaction, the gas in the latter stage of the catalyst layer was sampled, and NO and NO 2 were analyzed with a detector tube. As a result, the NO production rate was 0.4% and the NO 2 production rate was 0.2%. Two hours after the start of the reaction, the gas at the outlet of the catalyst layer was collected and analyzed by gas chromatography. As a result, the N2O production rate was 3.3%. From 2 hours after the start of the reaction to 3 hours after the start of the reaction, the outlet of the catalyst layer was connected to a water trap to absorb unreacted ammonia. When the above water trap was analyzed with an ammonia ion electrode, the ammonia conversion rate was 95.7%.

<実施例2>
(a)アンモニア酸化触媒(B)の製造
二酸化チタン粉末〔昭和タイタニウム株式会社製、F-1R、ルチル結晶形二酸化チタン比率93%〕100重量部と有機バインダー2重量部〔ユケン工業株式会社製、YB-152A〕とを混合し、次いで純水29重量部、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量40重量%、100%アナターゼ結晶形〕12.5重量部を加えて混練した。この混合物を直径3.0mmのヌードル状に押出し、60℃で2時間乾燥した後、長さ3~5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、600℃で3時間保持して焼成し、白色の二酸化チタン担体〔ルチル結晶形二酸化チタン比率90%以上〕を得た。
上記で得られた二酸化チタン担体の内60.0gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、テトラエトキシシラン〔和光純薬工業株式会社製、Si(OC〕2.13gをエタノール9.22gに溶解して調製した溶液を該ナス型フラスコ内に20分間で滴下することにより、該溶液を二酸化チタン担体に含浸させた。次いで、含浸後の二酸化チタン担体が入ったナス型フラスコを80rpmで回転させることにより該二酸化チタン担体を撹拌しながら、ナス型フラスコ内の温度を30℃とし、ナス型フラスコ内に水蒸気と窒素との混合ガス(水蒸気濃度:2.0体積%)を277mL/min(0℃、0.1MPa換算)の流量で連続的に4時間20分の間供給し、流通させることにより含浸後の二酸化チタン担体を乾燥した。得られた乾燥物62.3gを、空気流通下、室温から300℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、二酸化ケイ素が二酸化チタン担体に担持されてなる固体(二酸化ケイ素担持二酸化チタン担体)60.6gを得た。得られた二酸化ケイ素担持二酸化チタン担体の内30.1gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、塩化ルテニウム水和物〔株式会社フルヤ金属製、RuCl・nHO、Ru含有量40.75重量%〕0.71gを純水6.89gに溶解して調製した水溶液を該ナス型フラスコ内に30分間で滴下することにより、該水溶液を含浸させ、37.70gの塩化ルテニウム担持物を得た。次いで、上記の塩化ルテニウム担持物が入ったナス型フラスコを80rpmで回転させることにより該塩化ルテニウム担持物を撹拌しながら、ナス型フラスコ内の温度を35℃とし、ナス型フラスコ内に空気を692mL/min(0℃、0.1MPa換算)の流量で連続的に3時間40分の間供給し、流通させることにより乾燥し、32.21gの乾燥物Aを得た。得られた乾燥物A32.21gを、密閉容器に入れ、恒温槽中、20℃で120時間保持した。保持後の乾燥物Aの重量は32.21gであった。保持後の乾燥物Aに含まれる二酸化ケイ素担持二酸化チタン担体の重量を基準とする水分量は保持前と変化はみられず、水の蒸発量は0gであった。保持後の乾燥物Aの内21.48gを、空気流通下、室温から280℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25重量%である青灰色のアンモニア酸化触媒(B)(酸化ルテニウムおよび二酸化ケイ素が、二酸化チタンに担持された)20.34gを得た。
<Example 2>
(A) Production of Titanium Dioxide Powder (B) Titanium Dioxide Powder [Showa Titanium Co., Ltd., F-1R, Rutile Crystalline Titanium Dioxide Ratio 93%] 100 parts by weight and 2 parts by weight of organic binder [Yuken Kogyo Co., Ltd., YB-152A] is mixed, then 29 parts by weight of pure water, titanium dioxide sol [manufactured by Sakai Chemical Industry Co., Ltd., CSB, titanium dioxide content in titanium dioxide sol 40% by weight, 100% anatase crystal form] 12.5 weight The portion was added and kneaded. This mixture was extruded into a noodle shape having a diameter of 3.0 mm, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The obtained molded product was heated in air from room temperature to 600 ° C. for 1.7 hours, held at 600 ° C. for 3 hours, and then calcined to obtain a white titanium dioxide carrier [rutile crystalline titanium dioxide ratio 90. % Or more] was obtained.
60.0 g of the titanium dioxide carrier obtained above was placed in a 200 mL eggplant-shaped flask, set in a rotary impregnation-drying device, and the eggplant-shaped flask was tilted 60 degrees from the vertical direction and rotated at 80 rpm. , Tetraethoxysilane [manufactured by Wako Pure Chemical Industries, Ltd., Si (OC 2 H 5 ) 4 ] 2.13 g of ethanol is dissolved in 9.22 g of ethanol, and a solution prepared is dropped into the eggplant-shaped flask in 20 minutes. The solution was impregnated into the titanium dioxide carrier. Next, the temperature inside the eggplant-shaped flask was set to 30 ° C. while stirring the titanium dioxide carrier by rotating the eggplant-shaped flask containing the impregnated titanium dioxide carrier at 80 rpm, and steam and nitrogen were added to the eggplant-shaped flask. Titanium dioxide after impregnation by continuously supplying the mixed gas (water vapor concentration: 2.0% by volume) at a flow rate of 277 mL / min (0 ° C, 0.1 MPa conversion) for 4 hours and 20 minutes and circulating it. The carrier was dried. 62.3 g of the obtained dried product was heated from room temperature to 300 ° C. for 1.2 hours under air flow, held at the same temperature for 2 hours and fired, and silicon dioxide was supported on a titanium dioxide carrier. 60.6 g of a solid (silicon dioxide-supported titanium dioxide carrier) was obtained. 30.1 g of the obtained silicon dioxide-supported titanium dioxide carrier was placed in a 200 mL eggplant-shaped flask, set in a rotary impregnation-drying device, and the eggplant-shaped flask was tilted 60 degrees from the vertical direction and rotated at 80 rpm. However, an aqueous solution prepared by dissolving 0.71 g of ruthenium chloride hydrate [Furuya Metal Co., Ltd., RuCl 3.nH2O , Ru content 40.75% by weight] in 6.89 g of pure water was prepared as the eggplant type. The aqueous solution was impregnated by dropping into a flask for 30 minutes to obtain 37.70 g of ruthenium chloride carrier. Next, while stirring the ruthenium chloride carrier by rotating the eggplant-shaped flask containing the ruthenium chloride carrier at 80 rpm, the temperature inside the eggplant-shaped flask was set to 35 ° C., and 692 mL of air was introduced into the eggplant-shaped flask. It was continuously supplied at a flow rate of / min (0 ° C., converted to 0.1 MPa) for 3 hours and 40 minutes, and dried by circulating to obtain 32.21 g of dried product A. 32.21 g of the obtained dried product A was placed in a closed container and kept at 20 ° C. for 120 hours in a constant temperature bath. The weight of the dried product A after holding was 32.21 g. The amount of water based on the weight of the silicon dioxide-supported titanium dioxide carrier contained in the dried product A after holding did not change from that before holding, and the amount of water evaporated was 0 g. 21.48 g of the dried product A after holding was heated from room temperature to 280 ° C. for 1.2 hours under air flow, and then held at the same temperature for 2 hours and fired to increase the content of ruthenium oxide. 20.34 g of a blue-gray ammonia oxidation catalyst (B) (ruthenium oxide and silicon dioxide supported on titanium dioxide) was obtained in an amount of 1.25% by weight.

(b)アンモニア酸化分解
上記アンモニア酸化触媒(B)を使用したこと以外は、実施例1と同様に行った。その結果、アンモニア転化率55.6%、NO生成率0.08%、NO生成率0.02%、NO生成率0.98%であった。
(B) Ammonia Oxidation Decomposition The same procedure as in Example 1 was carried out except that the above ammonia oxidation catalyst (B) was used. As a result, the ammonia conversion rate was 55.6%, the NO production rate was 0.08%, the NO 2 production rate was 0.02%, and the N2O production rate was 0.98%.

<参考例1>
(a)アンモニア酸化触媒(C)の製造
1~2mmの球状に整形されたアナターゼ結晶形の二酸化チタン〔堺化学工業株式会社製、CS-300S-12、100%アナターゼ結晶形〕10gに対して、塩化ルテニウム水和物0.77gと水3.25gとを滴下した。得られた混合物を18時間風乾後、空気200ml/min流通下の管状炉にて250℃で2時間焼成することで酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(C)を得た。
<Reference example 1>
(A) Production of Ammonia Oxidation Catalyst (C) For 10 g of titanium dioxide in the form of anatase crystal shaped into a sphere of 1 to 2 mm [manufactured by Sakai Chemical Industry Co., Ltd., CS-300S-12, 100% anatase crystal form] , 0.77 g of ruthenium chloride hydrate and 3.25 g of water were added dropwise. The obtained mixture is air-dried for 18 hours and then calcined at 250 ° C. for 2 hours in a tubular furnace under 200 ml / min air flow to support an ammonia oxidation catalyst in which ruthenium oxide is supported on the carrier at a loading ratio of 4% by weight. (C) was obtained.

(b)アンモニア酸化分解
上記アンモニア酸化触媒(C)を使用したこと以外は、実施例1と同様に反応させた。その結果、アンモニア転化率19.7%、NO生成率0.02%、NO生成率0.0%、NO生成率0.0%であった。
(B) Ammonia Oxidation Decomposition The reaction was carried out in the same manner as in Example 1 except that the above ammonia oxidation catalyst (C) was used. As a result, the ammonia conversion rate was 19.7%, the NO production rate was 0.02%, the NO 2 production rate was 0.0%, and the N2O production rate was 0.0%.

Figure 0007067035000001
Figure 0007067035000001

Claims (8)

酸化ルテニウムがルチル結晶形の酸化チタンを含有する担体に担持されており、酸化ルテニウムの含有量とルチル結晶形の酸化チタンを含有する担体の含有量の合計量を100重量%として、酸化ルテニウムの含有量が金属ルテニウム基準で0.5~10重量%である触媒の存在下、
アンモニア含有ガス中のアンモニアを酸化して窒素と水にする工程を含み、アンモニア含有ガスは酸素を含んでおり、アンモニア含有ガス中の酸素量がアンモニア量に対して0.5倍以上であ
アンモニア含有ガス中のアンモニアを酸化して窒素と水にする工程におけるアンモニア含有ガスの供給速度(空間速度)が10h -1 ~500000h -1 であり、反応温度が100℃~500℃であり、反応圧力が0.005MPa~1MPaである、アンモニアの酸化方法。
Ruthenium oxide is supported on a carrier containing rutile crystalline titanium oxide, and ruthenium oxide is 100% by weight, with the total content of ruthenium oxide and the carrier containing rutile crystalline titanium oxide being 100% by weight. In the presence of a catalyst whose content is 0.5-10% by weight based on metallic ruthenium .
The step of oxidizing the ammonia in the ammonia-containing gas to nitrogen and water is included, the ammonia-containing gas contains oxygen, and the amount of oxygen in the ammonia-containing gas is 0.5 times or more the amount of ammonia . ,
The supply speed (space speed) of the ammonia-containing gas in the step of oxidizing the ammonia in the ammonia-containing gas to nitrogen and water is 10h -1 to 500,000h -1 , the reaction temperature is 100 ° C to 500 ° C, and the reaction occurs. A method for oxidizing ammonia, wherein the pressure is 0.005 MPa to 1 MPa .
前記アンモニア含有ガス中の酸素量がアンモニア量に対して0.5倍~20倍である、請求項1に記載のアンモニアの酸化方法。 The method for oxidizing ammonia according to claim 1, wherein the amount of oxygen in the ammonia-containing gas is 0.5 to 20 times the amount of ammonia. 前記アンモニア含有ガス中のアンモニア濃度が30%以下である、請求項1または2に記載のアンモニアの酸化方法。 The method for oxidizing ammonia according to claim 1 or 2, wherein the ammonia concentration in the ammonia-containing gas is 30% or less. アンモニアを酸化して窒素と水にする工程の反応温度が120℃~350℃である、請求項1~3のいずれか一項に記載のアンモニアの酸化方法。 The method for oxidizing ammonia according to any one of claims 1 to 3, wherein the reaction temperature in the step of oxidizing ammonia to nitrogen and water is 120 ° C to 350 ° C. アンモニアを酸化して窒素と水にする工程は、前記アンモニア含有ガスを前記触媒に接触させることにより行われる、請求項1~4のいずれか一項に記載のアンモニアの酸化方法。 The method for oxidizing ammonia according to any one of claims 1 to 4, wherein the step of oxidizing ammonia to nitrogen and water is performed by bringing the ammonia-containing gas into contact with the catalyst. 前記触媒は、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物が前記担体にさらに担持された触媒である、請求項1~のいずれか一項に記載のアンモニアの酸化方法。 The catalyst is any one of claims 1 to 5 , wherein the catalyst is a catalyst in which at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the carrier. The method for oxidizing aluminum according to the section. 酸化ルテニウムがルチル結晶形の酸化チタンを含有する担体に担持されており、酸化ルテニウムの含有量とルチル結晶形の酸化チタンを含有する担体の含有量の合計量を100重量%として、酸化ルテニウムの含有量が金属ルテニウム基準で0.5~10重量%である触媒が充填された反応器と、
アンモニア含有ガスおよび酸素含有ガス、あるいは、酸素を含むアンモニア含有ガスを反応器内へ導入するガス導入手段とを備えており、
請求項1~のいずれか一項に記載のアンモニアの酸化方法を実施するためのアンモニア含有ガス酸化装置。
Ruthenium oxide is supported on a carrier containing rutile crystalline titanium oxide, and ruthenium oxide is 100% by weight, with the total content of ruthenium oxide and the carrier containing rutile crystalline titanium oxide being 100% by weight. A catalyst-filled reactor in which the content of rutile is 0.5 to 10% by weight based on metal rutile , and
It is equipped with a gas introducing means for introducing an ammonia-containing gas and an oxygen-containing gas, or an oxygen-containing ammonia-containing gas into a reactor.
An ammonia-containing gas oxidizing apparatus for carrying out the method for oxidizing ammonia according to any one of claims 1 to 6 .
アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、請求項に記載のアンモニア含有ガス酸化装置と
を備えたアンモニア含有水溶液の処理装置。
A device for treating an ammonia-containing aqueous solution, comprising a dissipating tower having a dissipating means for dissipating the ammonia-containing gas from the ammonia-containing aqueous solution, and the ammonia-containing gas oxidizing device according to claim 7 .
JP2017228682A 2017-11-29 2017-11-29 Ammonia oxidation method Active JP7067035B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017228682A JP7067035B2 (en) 2017-11-29 2017-11-29 Ammonia oxidation method
PCT/JP2018/041300 WO2019107098A1 (en) 2017-11-29 2018-11-07 Method for oxidizing ammonia
CN201880055374.XA CN111051238B (en) 2017-11-29 2018-11-07 Method for oxidizing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017228682A JP7067035B2 (en) 2017-11-29 2017-11-29 Ammonia oxidation method

Publications (3)

Publication Number Publication Date
JP2019099393A JP2019099393A (en) 2019-06-24
JP2019099393A5 JP2019099393A5 (en) 2020-05-28
JP7067035B2 true JP7067035B2 (en) 2022-05-16

Family

ID=66664477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017228682A Active JP7067035B2 (en) 2017-11-29 2017-11-29 Ammonia oxidation method

Country Status (3)

Country Link
JP (1) JP7067035B2 (en)
CN (1) CN111051238B (en)
WO (1) WO2019107098A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797893B (en) * 2022-04-25 2023-08-11 昆明理工大学 Ammonia oxidation catalyst, preparation method and application thereof
JP2023167677A (en) * 2022-05-12 2023-11-24 住友化学株式会社 Catalyst, catalyst precursor, method for manufacturing catalyst, catalyst packing reaction tube, and method for decomposing nitrous oxide
CN114917753B (en) * 2022-06-16 2023-04-28 中晶环境科技股份有限公司 Use of a support for selectively catalyzing ammonia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254981A (en) 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and method of decomposing ammonia
JP2013237045A (en) 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2016023126A (en) 2014-07-24 2016-02-08 国立大学法人群馬大学 Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste
WO2016088896A1 (en) 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
JP2016198720A (en) 2015-04-09 2016-12-01 国立大学法人宇都宮大学 Ammonia decomposition catalyst, method for producing ammonia decomposition catalyst, method for producing hydrogen and apparatus for producing hydrogen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852667B2 (en) * 1998-02-16 2005-02-08 Sumitomo Chemical Company Limited Process for producing chlorine
CN1506300A (en) * 2002-12-12 2004-06-23 中国科学院大连化学物理研究所 Ruthenium-based catalyst for decomposing ammonia to prepare mixed H2-N2 gas and its prepn
CN101862674B (en) * 2010-05-24 2012-02-08 清华大学 Monolithic catalyst for use in preparation of chloride by using hydrogen chloride and preparation method thereof
DK2612706T3 (en) * 2010-08-31 2020-01-02 Hitachi Shipbuilding Eng Co Process for producing hydrogen
JP2012161717A (en) * 2011-02-04 2012-08-30 Sumitomo Chemical Co Ltd Method for producing supported ruthenium oxide, and method for producing chlorine
EP2524727A1 (en) * 2011-05-19 2012-11-21 Amminex A/S Method for preparing a supported ruthenium catalyst
CN102728350A (en) * 2012-07-10 2012-10-17 北京纬纶华业环保科技股份有限公司 Catalyst for treating industrial waste water by catalytic wet air oxidation (CWAO)
JP6145921B2 (en) * 2012-11-06 2017-06-14 国立大学法人 大分大学 Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
JP6474809B2 (en) * 2013-07-30 2019-02-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Ammonia slip catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254981A (en) 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and method of decomposing ammonia
JP2013237045A (en) 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2016023126A (en) 2014-07-24 2016-02-08 国立大学法人群馬大学 Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste
WO2016088896A1 (en) 2014-12-05 2016-06-09 国立大学法人東京工業大学 Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method
JP2016198720A (en) 2015-04-09 2016-12-01 国立大学法人宇都宮大学 Ammonia decomposition catalyst, method for producing ammonia decomposition catalyst, method for producing hydrogen and apparatus for producing hydrogen

Also Published As

Publication number Publication date
CN111051238A (en) 2020-04-21
JP2019099393A (en) 2019-06-24
CN111051238B (en) 2023-06-16
WO2019107098A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
JP5382100B2 (en) Chlorine production method
Yang et al. Surface in situ doping modification over Mn2O3 for toluene and propene catalytic oxidation: the effect of isolated Cuδ+ insertion into the mezzanine of surface MnO2 cladding
JP7067035B2 (en) Ammonia oxidation method
Hinojosa-Reyes et al. Hydrogen production by tailoring the brookite and Cu2O ratio of sol-gel Cu-TiO2 photocatalysts
JP4982736B2 (en) A water splitting catalyst by light and a method for producing the same.
Ren et al. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3
Okunaka et al. Preparation of fine particles of sheelite-monoclinic phase BiVO 4 via an aqueous chelating method for efficient photocatalytic oxygen evolution under visible-light irradiation
CN108067265B (en) Preparation method of methane conversion catalyst
JP2013139017A (en) Method for producing carried ruthenium oxide, and method for producing chlorine
Suzuki et al. Z-scheme water splitting into H2 and O2 using tungstic acid as an oxygen-evolving photocatalyst under visible light irradiation
JP6837828B2 (en) Low temperature oxidation catalyst
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
CN115722220B (en) Catalytic oxidation catalyst and preparation method and application thereof
TW202243736A (en) Chlorine gas decomposition catalyst, exhaust gas treatment device, and method for decomposing chlorine gas
Zhao et al. Catalytic wet peroxide degradation of acrylonitrile wastewater by ordered mesoporous Ag/CeO 2: synthesis, performance and kinetics
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2012161716A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
JP5833467B2 (en) Method for producing supported ruthenium oxide and method for producing chlorine
WO2023021806A1 (en) Nitrous oxide decomposition method and nitrous oxide decomposition device
WO2023219074A1 (en) Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide
JP7328549B2 (en) Ammonia dehydrogenation reaction catalyst, method for producing ammonia dehydrogenation reaction catalyst, and method for producing hydrogen using ammonia dehydrogenation reaction catalyst
JP2012161717A (en) Method for producing supported ruthenium oxide, and method for producing chlorine
WO2023084825A1 (en) Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide
JP2015013260A (en) Photocatalyst, and hydrogen generation method using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151