JP6684669B2 - Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst - Google Patents

Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst Download PDF

Info

Publication number
JP6684669B2
JP6684669B2 JP2016131923A JP2016131923A JP6684669B2 JP 6684669 B2 JP6684669 B2 JP 6684669B2 JP 2016131923 A JP2016131923 A JP 2016131923A JP 2016131923 A JP2016131923 A JP 2016131923A JP 6684669 B2 JP6684669 B2 JP 6684669B2
Authority
JP
Japan
Prior art keywords
oxide
ammonia
catalyst
containing gas
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016131923A
Other languages
Japanese (ja)
Other versions
JP2018001096A (en
Inventor
堀内 俊孝
俊孝 堀内
久和 進藤
久和 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2016131923A priority Critical patent/JP6684669B2/en
Publication of JP2018001096A publication Critical patent/JP2018001096A/en
Application granted granted Critical
Publication of JP6684669B2 publication Critical patent/JP6684669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニア含有ガス中のアンモニアを分解して水素含有ガスを製造するための触媒およびこの触媒を用いた水素含有ガスを製造する方法に関するものである。   The present invention relates to a catalyst for decomposing ammonia in an ammonia-containing gas to produce a hydrogen-containing gas, and a method for producing a hydrogen-containing gas using this catalyst.

アンモニア含有ガス中のアンモニアを分解して、水素含有ガスを生成させ、当該水素含有ガスを燃料電池などの燃料ガスとして用いることが検討されている。これらのアンモニア分解に用いられる触媒としては、例えば、特許文献1に、セリアとアルミナとを含有する複合酸化物からなる担体に、長周期型周期表の8族〜10族に属する金属元素を有するアンモニア分解触媒が開示されている。また、特許文献2には、触媒活性金属が8族の金属、錫、銅、銀、マンガン、クロムおよびバナジウムからなる群から選ばれる少なくとも一種の金属を酸化還元可能な金属酸化物からなる担体に担持されたアンモニア酸化・分解触媒が開示されている。   It has been studied to decompose ammonia in an ammonia-containing gas to generate a hydrogen-containing gas and use the hydrogen-containing gas as a fuel gas for a fuel cell or the like. As a catalyst used for these ammonia decompositions, for example, in Patent Document 1, a carrier made of a complex oxide containing ceria and alumina contains a metal element belonging to Groups 8 to 10 of the long periodic table. Ammonia decomposition catalysts are disclosed. Further, in Patent Document 2, a catalytically active metal is a carrier made of a metal oxide capable of redox-reducing at least one metal selected from the group consisting of Group 8 metals, tin, copper, silver, manganese, chromium and vanadium. A supported ammonia oxidation / decomposition catalyst is disclosed.

本発明者らも、アンモニア含有ガス中のアンモニアを分解して、水素含有ガスを製造するアンモニア分解触媒として、セリアとジルコニアとを含有する複合酸化物と触媒活性成分としてコバルトを含む触媒を特許文献3に開示している。   The present inventors have also disclosed a catalyst containing a complex oxide containing ceria and zirconia and cobalt as a catalytically active component as an ammonia decomposition catalyst that decomposes ammonia in an ammonia-containing gas to produce a hydrogen-containing gas. It is disclosed in 3.

しかし、従来提案されてきた触媒では、アンモニア分解率が十分でなく、製造される水素含有ガス中に含まれる残存アンモニア濃度が高いため、例えば、燃料電池の燃料ガスに使用する場合、燃料電池が被毒するなどの問題があり改善の余地があった。また、触媒の耐久性についても検討する必要があった。   However, in the conventionally proposed catalysts, the ammonia decomposition rate is not sufficient, and the residual ammonia concentration contained in the hydrogen-containing gas produced is high. Therefore, for example, when used as a fuel gas for a fuel cell, the fuel cell is There was a problem such as poisoning and there was room for improvement. It was also necessary to study the durability of the catalyst.

特開2010−207783号公報JP, 2010-207783, A 特開2010−269239号公報JP, 2010-269239, A 特開2012−11373号公報JP 2012-11373 A

本発明は、アンモニア含有ガス中のアンモニアを高転化率で分解して水素含有ガスを得ることができ、耐久性にも優れたアンモニア分解用触媒を提供することを課題として掲げた。   An object of the present invention is to provide a catalyst for decomposing ammonia which can decompose ammonia in an ammonia-containing gas at a high conversion rate to obtain a hydrogen-containing gas and has excellent durability.

前記課題を解決するための本発明のアンモニア分解用触媒は、アンモニア含有ガス中のアンモニアを分解して水素含有ガスを製造する反応に用いられる触媒であって、前記触媒は触媒活性成分と耐熱性酸化物を含有し、前記触媒活性成分として、長周期型周期表の8族〜10族に属する少なくとも1種の金属元素を含み、前記耐熱性酸化物がアルミナと、希土類元素の酸化物とジルコニアとの複合酸化物を含み、前記耐熱性酸化物中の前記アルミナの含有量が5質量%以上、40質量%以下(酸化物換算)であり、かつ、前記希土類元素の酸化物の含有量が20質量%以上、49質量%以下(酸化物換算)の触媒である。   The ammonia decomposition catalyst of the present invention for solving the above problems is a catalyst used in a reaction for decomposing ammonia in an ammonia-containing gas to produce a hydrogen-containing gas, wherein the catalyst is a catalytically active component and heat resistance. The heat-resistant oxide contains an oxide, contains at least one metal element belonging to groups 8 to 10 of the long periodic table as the catalytically active component, and the heat-resistant oxide is alumina, an oxide of a rare earth element, and zirconia. And a content of the alumina in the heat resistant oxide is 5% by mass or more and 40% by mass or less (as oxide), and a content of the oxide of the rare earth element is The catalyst is 20% by mass or more and 49% by mass or less (as oxide).

前記アンモニア分解用触媒において、前記長周期型周期表の8族〜10族に属する金属元素は、ロジウム、ルテニウム、コバルトよりなる群から選択される少なくとも1種の元素であることが好ましい。   In the catalyst for decomposing ammonia, the metal element belonging to Groups 8 to 10 of the long periodic table is preferably at least one element selected from the group consisting of rhodium, ruthenium and cobalt.

また前記アンモニア分解用触媒において、前記希土類元素の酸化物が、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジムよりなる群から選択される少なくとも1種の元素であることが好ましい。   In the ammonia decomposition catalyst, it is preferable that the oxide of the rare earth element is at least one element selected from the group consisting of yttrium oxide, lanthanum oxide, cerium oxide, and praseodymium oxide.

また、本発明には、前記の本発明の触媒を用いて、アンモニア含有ガス中のアンモニアを分解し、水素含有ガスを製造する水素含有ガスの製造方法も含まれる。この場合において、前記アンモニア含有ガスが、さらに酸素を含有することが好ましい。   The present invention also includes a method for producing a hydrogen-containing gas, which comprises decomposing ammonia in an ammonia-containing gas to produce a hydrogen-containing gas using the catalyst of the present invention. In this case, it is preferable that the ammonia-containing gas further contains oxygen.

本発明によれば、アンモニア含有ガス中のアンモニアを高転化率で分解して水素含有ガスを得ることができ、長期耐久性にも優れたアンモニア分解用触媒を提供することができるようになった。   According to the present invention, it is possible to decompose ammonia in an ammonia-containing gas at a high conversion rate to obtain a hydrogen-containing gas, and to provide a catalyst for ammonia decomposition excellent in long-term durability. .

本発明のアンモニア分解用触媒は、触媒活性成分と耐熱性酸化物を含有する。本発明の耐熱性酸化物は、アルミナと、希土類元素の酸化物とジルコニアとの複合酸化物を含む。当該耐熱性酸化物は触媒活性成分の担体として働き、触媒活性成分の分散性向上や触媒の機械的強度の向上に寄与する。当該耐熱性酸化物としてアルミナを含むことにより、アンモニア分解用触媒の耐久性が向上する効果があり、また、希土類元素の酸化物を含むことにより、アンモニア分解用触媒のアンモニア分解活性が向上する効果があり、さらに、ジルコニアは希土類元素の酸化物と固溶体を形成することによりアンモニア分解用触媒の耐久性が向上する効果がある。   The ammonia decomposition catalyst of the present invention contains a catalytically active component and a heat resistant oxide. The heat resistant oxide of the present invention includes alumina, a complex oxide of an oxide of a rare earth element and zirconia. The heat-resistant oxide acts as a carrier for the catalytically active component, and contributes to improving the dispersibility of the catalytically active component and improving the mechanical strength of the catalyst. By including alumina as the heat-resistant oxide, there is an effect that the durability of the catalyst for ammonia decomposition is improved, and by containing an oxide of a rare earth element, the effect that the ammonia decomposition activity of the catalyst for ammonia decomposition is improved. Further, zirconia has the effect of improving the durability of the ammonia decomposition catalyst by forming a solid solution with an oxide of a rare earth element.

本発明のアンモニア分解用触媒は、触媒活性成分として、長周期型周期表の8族〜10族に属する少なくとも1種の金属元素を含んでいる。前記金属元素としては、例えば、鉄、ルテニウム、オスミニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金が挙げられる。前記金属元素の中でもルテニウム、コバルト、ロジウム、ニッケルが好ましく、ロジウム、ルテニウム、コバルトがより好ましく、特にコバルト、ロジウムが好ましい。   The ammonia decomposition catalyst of the present invention contains, as a catalytically active component, at least one metal element belonging to Groups 8 to 10 of the long periodic table. Examples of the metal element include iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, and platinum. Among the above metal elements, ruthenium, cobalt, rhodium and nickel are preferable, rhodium, ruthenium and cobalt are more preferable, and cobalt and rhodium are particularly preferable.

触媒中の前記触媒活性成分の含有量は、0.1質量%以上、80質量%以下(金属換算)であることが好ましい。当該含有量が0.1質量%未満ではアンモニア分解速度が不十分となり、効率的なアンモニア分解および水素含有ガスの製造ができないおそれがある。当該含有量が80質量%を超える場合は、触媒の耐熱性が低くなり、アンモニア分解活性の耐久性が低くなるおそれがある。当該含有量は、より好ましくは0.2質量%以上、70質量%以下、さらに好ましくは0.5質量%以上、60質量%以下である。   The content of the catalytically active component in the catalyst is preferably 0.1% by mass or more and 80% by mass or less (as metal). If the content is less than 0.1% by mass, the ammonia decomposition rate becomes insufficient, and efficient ammonia decomposition and hydrogen-containing gas production may not be possible. If the content exceeds 80% by mass, the heat resistance of the catalyst may be low, and the durability of ammonia decomposition activity may be low. The content is more preferably 0.2% by mass or more and 70% by mass or less, further preferably 0.5% by mass or more and 60% by mass or less.

本発明のアンモニア分解用触媒は、触媒活性成分として、長周期型周期表の8族〜10族に属する少なくとも1種の金属元素以外のその他の元素を含んでもよく、例えば、クロム、マンガンなどが挙げられる。当該その他の元素の含有量は、本発明の効果を妨げない範囲であれば任意に設定できる。   The catalyst for decomposing ammonia of the present invention may contain, as a catalytically active component, an element other than at least one metal element belonging to Groups 8 to 10 of the long periodic table, such as chromium and manganese. Can be mentioned. The content of the other elements can be arbitrarily set as long as the effects of the present invention are not impaired.

本発明のアンモニア分解用触媒は、前記耐熱性酸化物中、前記アルミナの含有量が5質量%以上、40質量%以下(酸化物換算)である。当該含有量が5質量%未満では、アンモニア分解用触媒の耐熱性が低くなり、アンモニア分解活性の耐久性が低くなるおそれがあり、当該含有量が40質量%を超えると、アンモニア分解用触媒のアンモニア分解活性が低くなるおそれがある。当該含有量は、より好ましくは10質量%以上、35質量%以下、さらに好ましくは15質量%以上、30質量%以下である。   In the catalyst for ammonia decomposition of the present invention, the content of the alumina in the heat resistant oxide is 5% by mass or more and 40% by mass or less (as oxide). If the content is less than 5% by mass, the heat resistance of the ammonia decomposition catalyst may be low and the durability of the ammonia decomposition activity may be low. If the content exceeds 40% by mass, the ammonia decomposition catalyst Ammonia decomposition activity may become low. The content is more preferably 10% by mass or more and 35% by mass or less, further preferably 15% by mass or more and 30% by mass or less.

本発明のアンモニア分解用触媒は、前記耐熱性酸化物中、前記希土類元素の酸化物の含有量が20質量%以上、49質量%以下(酸化物換算)である。当該含有量が20質量%未満では、アンモニア分解用触媒のアンモニア分解活性が低くなるおそれがあり、当該含有量が49質量%を超えると、アンモニア分解用触媒の耐熱性が低くなり、アンモニア分解活性の耐久性が低くなるおそれがある。当該含有量は、より好ましくは25質量%以上、45質量%以下、さらに好ましくは30質量%以上、40質量%以下である。   In the catalyst for ammonia decomposition of the present invention, the content of the oxide of the rare earth element in the heat resistant oxide is 20% by mass or more and 49% by mass or less (as oxide). If the content is less than 20% by mass, the ammonia decomposing catalyst may have a low ammonia decomposing activity, and if the content exceeds 49% by mass, the heat resistance of the ammonia decomposing catalyst may be low and the ammonia decomposing activity may be low. Durability may decrease. The content is more preferably 25% by mass or more and 45% by mass or less, further preferably 30% by mass or more and 40% by mass or less.

本発明における前記希土類元素の酸化物としては、例えば、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ガドリニウム、酸化テルビウム、酸化イッテルビウム等が挙げられる。前記希土類元素の中でも酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジムが好ましく、特に酸化セリウム、酸化プラセオジムがさらに好ましい。   Examples of the oxide of the rare earth element in the present invention include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, gadolinium oxide, terbium oxide, and ytterbium oxide. Among the rare earth elements, yttrium oxide, lanthanum oxide, cerium oxide and praseodymium oxide are preferable, and cerium oxide and praseodymium oxide are particularly preferable.

本発明のアンモニア分解用触媒中の耐熱性酸化物の含有量の範囲は、20質量%以上、99.9質量%以下(酸化物換算)であることが好ましい。当該含有量が20質量%未満では、アンモニア分解用触媒の耐熱性が低くなり、アンモニア分解活性の耐久性が低くなるおそれがあり、当該含有量が99.9質量%を超えると、アンモニア分解用触媒のアンモニア分解活性が低くなるおそれがある。当該含有量は、より好ましくは30質量%以上、99.8質量%以下、さらに好ましくは40質量%以上、99.5質量%以下である。   The range of the content of the heat-resistant oxide in the ammonia decomposition catalyst of the present invention is preferably 20% by mass or more and 99.9% by mass or less (as oxide). If the content is less than 20% by mass, the heat resistance of the ammonia decomposition catalyst may be low, and the durability of the ammonia decomposition activity may be low. If the content exceeds 99.9% by mass, the ammonia decomposition catalyst may be used. The ammonia decomposing activity of the catalyst may be low. The content is more preferably 30% by mass or more and 99.8% by mass or less, and further preferably 40% by mass or more and 99.5% by mass or less.

なお、本発明における複合酸化物としては、アルミナ、希土類元素の酸化物、ジルコニアの少なくとも2つ以上が固溶体を形成している場合、前記酸化物の粒子がナノメートルレベルで分散している場合等があり、好ましいのは、アルミナがナノメートルレベルで分散しており、希土類元素とジルコニアが固溶体を形成して複合酸化物となっている形態である。   As the complex oxide in the present invention, at least two or more of alumina, oxides of rare earth elements, and zirconia form a solid solution, when particles of the oxide are dispersed at the nanometer level, etc. However, it is preferable that alumina is dispersed at the nanometer level, and the rare earth element and zirconia form a solid solution to form a composite oxide.

本発明のアンモニア分解用触媒は、耐熱性酸化物としてアルミナ、希土類元素の酸化物、ジルコニア以外のその他の耐熱性酸化物を含んでもよく、例えば、シリカ、酸化チタンなどが挙げられる。当該その他の耐熱性酸化物の含有量は、本発明の効果を妨げない範囲であれば任意に設定できる。   The ammonia-decomposing catalyst of the present invention may contain alumina, rare earth element oxides, and other heat-resistant oxides other than zirconia as heat-resistant oxides, and examples thereof include silica and titanium oxide. The content of the other heat-resistant oxide can be arbitrarily set as long as the effect of the present invention is not impaired.

本発明のアンモニア分解用触媒は、触媒活性成分と耐熱性酸化物以外のその他の成分として、アルカリ金属やアルカリ土類金属の化合物を含んでもよく、例えば、水酸化セシウム、水酸化カリウム、水酸化カルシウムなどが挙げられる。当該その他の成分の含有量は、本発明の効果を妨げない範囲であれば任意に設定できる。   The ammonia decomposition catalyst of the present invention may contain a compound of an alkali metal or an alkaline earth metal as a component other than the catalytically active component and the heat-resistant oxide, for example, cesium hydroxide, potassium hydroxide, hydroxide. Examples include calcium. The content of the other components can be arbitrarily set as long as the effects of the present invention are not impaired.

本発明に用いられる複合酸化物は、例えば、以下の方法により製造することができる。アルミニウム化合物、希土類元素化合物およびジルコニウム化合物が溶解した水溶液からアルミナ前駆体、希土類元素の酸化物の前駆体およびジルコニア前駆体を沈殿物として析出させる方法、あるいは、アルミナ前駆体、希土類元素の酸化物の前駆体とジルコニア前駆体を沈殿物として同時に析出させる方法などが挙げられる。   The composite oxide used in the present invention can be produced, for example, by the following method. Aluminum compound, a method of precipitating an alumina precursor, a rare earth element oxide precursor and a zirconia precursor as a precipitate from an aqueous solution in which an aluminum compound, a rare earth element compound and a zirconium compound are dissolved, or an alumina precursor, a rare earth element oxide Examples include a method of simultaneously depositing the precursor and the zirconia precursor as a precipitate.

アルミニウム化合物、希土類元素化合物およびジルコニウム化合物としては、一般には硫酸塩、硝酸塩、塩化物、酢酸塩などの塩が用いられる。また、塩を溶解する溶媒としては水やアルコール類が挙げられる。   As the aluminum compound, the rare earth element compound and the zirconium compound, salts such as sulfates, nitrates, chlorides and acetates are generally used. Further, examples of the solvent that dissolves the salt include water and alcohols.

前記前駆体の沈殿物は、前記水溶液にアルカリ性溶液を添加して溶液のpHを調節することによって析出させることができる。前記アルカリ性溶液としては、アンモニア水や、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどが溶解した水溶液またはアルコール溶液が挙げられる。前記前駆体の沈殿物の析出反応を促進させるため、アルカリ性溶液のpHは9以上であることが好ましい。   The precipitate of the precursor can be deposited by adding an alkaline solution to the aqueous solution to adjust the pH of the solution. Examples of the alkaline solution include aqueous ammonia, an aqueous solution or an alcohol solution in which ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate and the like are dissolved. The pH of the alkaline solution is preferably 9 or more in order to accelerate the precipitation reaction of the precipitate of the precursor.

前記前駆体の沈殿物を、焼成することにより複合酸化物が得られる。当該沈殿物の焼成は空気雰囲気下で行うことができる。焼成温度としては300℃以上、800℃以下が好ましい。焼成温度が300℃未満では、得られる複合酸化物が担体としての安定性に欠けるおそれがあり、800℃を超えると複合酸化物の比表面積が低下するおそれがある。   A composite oxide is obtained by firing the precipitate of the precursor. The firing of the precipitate can be performed in an air atmosphere. The firing temperature is preferably 300 ° C or higher and 800 ° C or lower. If the firing temperature is less than 300 ° C, the obtained composite oxide may lack stability as a carrier, and if it exceeds 800 ° C, the specific surface area of the composite oxide may decrease.

本発明のアンモニア分解用触媒は、顆粒状、ペレット状、ハニカム状等の形状に成形して製造することができる。必要により成形助剤として澱粉等の有機バインダー、シリカゾルやアルミナゾル等の無機バインダーやガラス繊維等のセラミック繊維を添加することができる。成形助剤は触媒組成物の15質量%以下、好ましくは10質量%以下で添加することが好ましい。   The ammonia decomposition catalyst of the present invention can be manufactured by molding into a granular shape, a pellet shape, a honeycomb shape or the like. If necessary, an organic binder such as starch, an inorganic binder such as silica sol or alumina sol, or a ceramic fiber such as glass fiber can be added as a molding aid. The molding aid is preferably added in an amount of 15% by mass or less, preferably 10% by mass or less of the catalyst composition.

また、本発明のアンモニア分解用触媒は、触媒活性成分を耐熱性酸化物に担持することにより製造することもできる。例えば、触媒活性成分の元素の化合物を所定の濃度で含有する溶液に前記耐熱性酸化物を含む担体を浸漬して所定量の触媒活性成分の元素を含む溶液を前記担体に含浸させ、これを焼成することにより得られる。このとき、前記耐熱性酸化物を含む担体は粉末状で使用してもよいし、顆粒状、ペレット状、ハニカム状等の形状に成形して使用してもよいし、予め、コーティングなどにより前記耐熱性酸化物を含む担体をコージェライトハニカム基材などの基材に固定化して使用してもよい。また、前記複合酸化物を製造する際に、アルミニウム化合物、希土類元素化合物およびジルコニウム化合物が溶解した水溶液に触媒活性成分の元素の化合物を溶解させて、アルミナ前駆体、希土類元素の酸化物の前駆体とジルコニア前駆体の沈殿と同時に、触媒活性成分の元素の金属前駆体を沈殿物として析出させ、これを焼成することにより得ることもできる。   The ammonia decomposition catalyst of the present invention can also be produced by supporting a catalytically active component on a heat-resistant oxide. For example, a carrier containing the refractory oxide is immersed in a solution containing a compound of the element of the catalytically active component at a predetermined concentration to impregnate the carrier with a solution containing the element of the catalytically active component in a predetermined amount, and It is obtained by firing. At this time, the carrier containing the heat-resistant oxide may be used in the form of powder, or may be formed into a shape such as a granule, a pellet, or a honeycomb, and may be used in advance by coating or the like. A carrier containing a heat-resistant oxide may be immobilized on a base material such as a cordierite honeycomb base material before use. Further, in producing the composite oxide, an aluminum compound, a rare earth element compound and a zirconium compound are dissolved in an aqueous solution in which an element compound of a catalytically active component is dissolved to give an alumina precursor, a precursor of a rare earth element oxide. It can also be obtained by simultaneously depositing the zirconia precursor and the metal precursor of the element of the catalytically active component as a precipitate, and calcining this.

前記担持方法における焼成は空気雰囲気下で実施することができ、焼成温度としては300〜600℃が好ましい。焼成温度が300℃未満では、前記触媒活性成分の元素の化合物が十分に熱分解せず、アンモニア分解活性が低くなるおそれがあり、600℃を超えると担持させた金属元素が粒成長してアンモニア分解活性が低下するおそれがある。   The firing in the supporting method can be performed in an air atmosphere, and the firing temperature is preferably 300 to 600 ° C. If the calcination temperature is lower than 300 ° C, the compound of the element of the catalytically active component may not be sufficiently thermally decomposed and the ammonia decomposition activity may be low. Degradation activity may decrease.

本発明には、本発明の触媒を用いた水素含有ガスの製造方法も含まれる。原料として用いるアンモニア含有ガスは、アンモニア単独あるいは、アンモニアと他のガスとの混合ガスが挙げられる。前記他のガスとしては、酸素あるいは空気が好ましい。アンモニア分解反応は吸熱反応であるが、アンモニア含有ガス中に酸素が共存することにより、アンモニアあるいは水素の燃焼反応が併発する。これらの燃焼反応が吸熱反応の熱エネルギーを補うことで、外部からのエネルギー供給が不要になったり、反応進行が安定したりするため、アンモニア含有ガスは酸素あるいは空気を含むことが好ましいのである。   The present invention also includes a method for producing a hydrogen-containing gas using the catalyst of the present invention. Examples of the ammonia-containing gas used as a raw material include ammonia alone or a mixed gas of ammonia and another gas. Oxygen or air is preferable as the other gas. Although the ammonia decomposition reaction is an endothermic reaction, the coexistence of oxygen in the ammonia-containing gas causes the combustion reaction of ammonia or hydrogen to occur simultaneously. It is preferable that the ammonia-containing gas contains oxygen or air, because the combustion reaction supplements the heat energy of the endothermic reaction to eliminate the need for external energy supply and stabilize the reaction progress.

前記アンモニア含有ガス中のアンモニアと酸素の配合比としては、アンモニア1モルに対して酸素の配合範囲が0.05〜0.35モルであることが好ましい。当該酸素の配合範囲が0.05モル未満では前記の熱エネルギー供給が不十分となるおそれがあり、0.35モルを超えると燃焼するアンモニアや水素が多くなるため、製造される水素含有ガス中の水素の濃度が低くなる恐れがある。酸素の配合範囲は好ましくは0.1〜0.25モルである。また、アンモニア含有ガスには、アンモニアと酸素あるいは空気以外に、例えば窒素、希ガス、二酸化炭素など本発明に係る反応に不活性なガスを含むものでもよい。当該不活性なガスの配合量は、本発明の効果を妨げない範囲であれば任意に設定できる。   As a mixing ratio of ammonia and oxygen in the ammonia-containing gas, it is preferable that the mixing range of oxygen is 0.05 to 0.35 mol with respect to 1 mol of ammonia. If the blending range of oxygen is less than 0.05 mol, the heat energy supply may be insufficient, and if it exceeds 0.35 mol of ammonia and hydrogen burn, the hydrogen-containing gas produced There is a risk that the hydrogen concentration in the The blending range of oxygen is preferably 0.1 to 0.25 mol. Further, the ammonia-containing gas may contain, in addition to ammonia and oxygen or air, a gas inert to the reaction according to the present invention, such as nitrogen, a rare gas, or carbon dioxide. The compounding amount of the inert gas can be arbitrarily set as long as the effect of the present invention is not impaired.

本発明においてアンモニア含有ガス中のアンモニアを分解して水素含有ガスを製造する反応の反応温度の範囲は400〜900℃が好ましく、より好ましくは500〜800℃である。なお、反応温度とはアンモニア含有ガスが流通する触媒層の温度である。   In the present invention, the reaction temperature range of the reaction for decomposing ammonia in the ammonia-containing gas to produce the hydrogen-containing gas is preferably 400 to 900 ° C, more preferably 500 to 800 ° C. The reaction temperature is the temperature of the catalyst layer through which the ammonia-containing gas flows.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(触媒調製)
(実施例1)
純水564gにジルコニアゾル(ZrO2換算25質量%濃度)7.65g、硝酸アルミニウム九水和物7.68g、硝酸セリウム六水和物5.18gを溶解して、金属硝酸塩水溶液を調製した。別途、純水268gに水酸化カリウム23.3gを溶解して、水酸化カリウム水溶液を調製した。得られた水酸化カリウム水溶液を撹拌しながら、前記金属硝酸塩水溶液を滴下し、懸濁液を得た。得られた懸濁液を吸引ろ過して、さらに水洗を行い、沈殿物を得た。得られた沈殿物を120℃の乾燥機で一晩乾燥させた後、空気雰囲気下、500℃で3時間焼成して、アルミナ、セリア、ジルコニアからなる複合酸化物(A)を得た。
(Catalyst preparation)
(Example 1)
Zirconia sol (25 mass% concentration in terms of ZrO 2 ) 7.65 g, aluminum nitrate nonahydrate 7.68 g, and cerium nitrate hexahydrate 5.18 g were dissolved in pure water 564 g to prepare a metal nitrate aqueous solution. Separately, 23.3 g of potassium hydroxide was dissolved in 268 g of pure water to prepare an aqueous potassium hydroxide solution. While stirring the obtained potassium hydroxide aqueous solution, the metal nitrate aqueous solution was added dropwise to obtain a suspension. The obtained suspension was suction filtered and washed with water to obtain a precipitate. The obtained precipitate was dried overnight in a drier at 120 ° C., and then calcined in an air atmosphere at 500 ° C. for 3 hours to obtain a composite oxide (A) composed of alumina, ceria, and zirconia.

前記複合酸化物(A)100g、純水100g、炭酸セシウム5.0gおよびコロイダルシリカゾル10gを混合し、ボールミル湿式粉砕してスラリーを得た。1平方インチ当たり600セルを有する六角セルコージェライトハニカム基材に、得られたスラリーをウォッシュコート法によってコートし120℃で乾燥させた。得られた乾燥後のハニカム成型体を500℃で1時間焼成を行うことによって、複合酸化物(A)をコートしたハニカム基材を得た。得られた当該ハニカム基材の複合酸化物(A)のコート量はハニカム基材1L当たり300gであった。   100 g of the composite oxide (A), 100 g of pure water, 5.0 g of cesium carbonate and 10 g of colloidal silica sol were mixed and wet-milled with a ball mill to obtain a slurry. A hexagonal cell cordierite honeycomb substrate having 600 cells per square inch was coated with the obtained slurry by a wash coating method and dried at 120 ° C. The obtained dried honeycomb molded body was fired at 500 ° C. for 1 hour to obtain a honeycomb substrate coated with the composite oxide (A). The amount of the composite oxide (A) coated on the obtained honeycomb substrate was 300 g per 1 L of the honeycomb substrate.

次いで、前記のコートハニカム基材に所定濃度の硝酸ロジウム水溶液を含浸させた後、500℃で3時間焼成して触媒活性成分としてロジウムがハニカム基材1L当たり金属換算で5.0g担持された本発明の触媒(1)を調製した。   Next, the coated honeycomb base material was impregnated with an aqueous solution of rhodium nitrate having a predetermined concentration, and then baked at 500 ° C. for 3 hours to carry rhodium as a catalytically active component of 5.0 g per 1 L of the honeycomb base material in terms of metal. The inventive catalyst (1) was prepared.

(実施例2)
純水653gにジルコニアゾル(ZrO2換算25質量%濃度)6.9g、硝酸アルミニウム九水和物4.67g、硝酸セリウム六水和物3.9gを溶解して、金属硝酸塩水溶液を調製した。別途、純水183gに水酸化カリウム27.3gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例1と同様にして、アルミナ、セリア、ジルコニアからなる複合酸化物(B)を得た。さらに、実施例1と同様にして、コートハニカム基材を得て、実施例1と同様にしてロジウムが担持された触媒(2)を調製した。
(Example 2)
Zirconia sol of pure water 653 g (ZrO 2 in terms of 25% strength by weight) 6.9 g, aluminum nitrate nonahydrate 4.67 g, was dissolved cerium nitrate hexahydrate 3.9 g, was prepared a metal nitrate aqueous solution. Separately, 27.3 g of potassium hydroxide was dissolved in 183 g of pure water to prepare a potassium hydroxide aqueous solution. Thereafter, in the same manner as in Example 1, a composite oxide (B) made of alumina, ceria, and zirconia was obtained. Furthermore, a coated honeycomb substrate was obtained in the same manner as in Example 1, and a catalyst (2) carrying rhodium was prepared in the same manner as in Example 1.

(実施例3)
純水607gにジルコニアゾル(ZrO2換算25質量%濃度)9.27g、硝酸アルミニウム九水和物4.15g、硝酸セリウム六水和物6.09gを溶解して、金属硝酸塩水溶液を調製した。別途、純水181gに水酸化カリウム27.0gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例1と同様にして、アルミナ、セリア、ジルコニアからなる複合酸化物(C)を得た。さらに、実施例1と同様にして、コートハニカム基材を得て、実施例1と同様にしてロジウムが担持された触媒(3)を調製した。
(Example 3)
A zirconia sol (25 mass% concentration in terms of ZrO 2 ) 9.27 g, aluminum nitrate nonahydrate 4.15 g, and cerium nitrate hexahydrate 6.09 g were dissolved in pure water 607 g to prepare a metal nitrate aqueous solution. Separately, 27.0 g of potassium hydroxide was dissolved in 181 g of pure water to prepare a potassium hydroxide aqueous solution. Thereafter, in the same manner as in Example 1, a composite oxide (C) made of alumina, ceria and zirconia was obtained. Further, a coated honeycomb substrate was obtained in the same manner as in Example 1, and a catalyst (3) carrying rhodium was prepared in the same manner as in Example 1.

(実施例4)
純水653gに硝酸コバルト六水和物22.1g、硝酸アルミニウム九水和物4.67g、硝酸セリウム六水和物3.9gおよびジルコニアゾル(ZrO2換算25質量%濃度)6.9gを溶解して、金属硝酸塩水溶液を調製した。別途、純水247gに水酸化カリウム27.3gを溶解して、水酸化カリウム水溶液を調製した。得られた水酸化カリウム水溶液を撹拌しながら、前記金属硝酸塩水溶液を滴下し、懸濁液を得た。得られた懸濁液を吸引ろ過して、さらに水洗を行い、沈殿物を得た。得られた沈殿物を120℃の乾燥機で一晩乾燥させた後、空気雰囲気下、500℃で3時間焼成して、触媒活性成分としてコバルトがアルミナ、セリア、ジルコニアからなる複合酸化物(D)に担持された触媒を得た。当該触媒を、実施例1と同様にしてハニカム基材にコートして本発明の触媒(4)を調製した。得られた当該ハニカム基材の触媒のコート量はハニカム基材1L当たり300gであった。
(Example 4)
In 653 g of pure water, 22.1 g of cobalt nitrate hexahydrate, 4.67 g of aluminum nitrate nonahydrate, 3.9 g of cerium nitrate hexahydrate and 6.9 g of zirconia sol (25 mass% concentration in terms of ZrO 2 ) were dissolved. Then, a metal nitrate aqueous solution was prepared. Separately, 27.3 g of potassium hydroxide was dissolved in 247 g of pure water to prepare an aqueous potassium hydroxide solution. While stirring the obtained potassium hydroxide aqueous solution, the metal nitrate aqueous solution was added dropwise to obtain a suspension. The obtained suspension was suction filtered and washed with water to obtain a precipitate. The obtained precipitate was dried overnight in a drier at 120 ° C., and then calcined in an air atmosphere at 500 ° C. for 3 hours to obtain a complex oxide (D) in which cobalt as an active component was alumina, ceria, and zirconia. ) Was obtained. The catalyst was coated on the honeycomb substrate in the same manner as in Example 1 to prepare the catalyst (4) of the present invention. The coated amount of the catalyst on the obtained honeycomb substrate was 300 g per 1 L of the honeycomb substrate.

(比較例1)
純水543gに硝酸セリウム六水和物9.53gおよびジルコニアゾル(ZrO2換算25質量%濃度)10.8gを溶解して、金属硝酸塩水溶液を調製した。別途、純水247gに水酸化カリウム21.4gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例1と同様にして、セリア、ジルコニアからなる複合酸化物(E)を得た。さらに、実施例1と同様にして、コートハニカム基材を得て、実施例1と同様にしてロジウムが担持された触媒(5)を調製した。
(Comparative Example 1)
A metal nitrate aqueous solution was prepared by dissolving 9.53 g of cerium nitrate hexahydrate and 10.8 g of zirconia sol (concentration of 25% by mass in terms of ZrO 2 ) in 543 g of pure water. Separately, 21.4 g of potassium hydroxide was dissolved in 247 g of pure water to prepare an aqueous potassium hydroxide solution. Thereafter, in the same manner as in Example 1, a composite oxide (E) composed of ceria and zirconia was obtained. Further, a coated honeycomb substrate was obtained in the same manner as in Example 1, and a catalyst (5) carrying rhodium was prepared in the same manner as in Example 1.

(比較例2)
純水462gに硝酸アルミニウム九水和物9.68gおよび硝酸セリウム六水和物11.2gを溶解して、金属硝酸塩水溶液を調製した。別途、純水244gに水酸化カリウム21.2gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例1と同様にして、アルミナ、セリアからなる複合酸化物(F)を得た。さらに、実施例1と同様にして、コートハニカム基材を得て、実施例1と同様にしてロジウムが担持された触媒(6)を調製した。
(Comparative example 2)
An aluminum metal nitrate aqueous solution was prepared by dissolving 9.68 g of aluminum nitrate nonahydrate and 11.2 g of cerium nitrate hexahydrate in 462 g of pure water. Separately, 21.2 g of potassium hydroxide was dissolved in 244 g of pure water to prepare an aqueous potassium hydroxide solution. Thereafter, in the same manner as in Example 1, a composite oxide (F) composed of alumina and ceria was obtained. Furthermore, a coated honeycomb substrate was obtained in the same manner as in Example 1, and a catalyst (6) carrying rhodium was prepared in the same manner as in Example 1.

(比較例3)
純水462gに硝酸アルミニウム九水和物1.80g、硝酸セリウム六水和物8.95gおよびジルコニアゾル(ZrO2換算25質量%濃度)7.89gを溶解して、金属硝酸塩水溶液を調製した。別途、純水250gに水酸化カリウム21.8gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例1と同様にして、アルミナ、セリア、ジルコニアからなる複合酸化物(G)を得た。さらに、実施例1と同様にして、コートハニカム基材を得て、実施例1と同様にしてロジウムが担持された触媒(7)を調製した。
(Comparative example 3)
Aqueous metal nitrate solution was prepared by dissolving 1.80 g of aluminum nitrate nonahydrate, 8.95 g of cerium nitrate hexahydrate and 7.89 g of zirconia sol (concentration of 25% by mass in terms of ZrO 2 ) in 462 g of pure water. Separately, 21.8 g of potassium hydroxide was dissolved in 250 g of pure water to prepare an aqueous potassium hydroxide solution. Thereafter, in the same manner as in Example 1, a composite oxide (G) made of alumina, ceria, and zirconia was obtained. Further, a coated honeycomb substrate was obtained in the same manner as in Example 1, and a catalyst (7) carrying rhodium was prepared in the same manner as in Example 1.

(比較例4)
純水462gに硝酸コバルト六水和物35.3g、硝酸アルミニウム九水和物1.80g、硝酸セリウム六水和物8.95gおよびジルコニアゾル(ZrO2換算25質量%濃度)7.89gを溶解して、金属硝酸塩水溶液を調製した。別途、純水250gに水酸化カリウム21.8gを溶解して、水酸化カリウム水溶液を調製した。以降は、実施例4と同様にして、コバルトがアルミナ、セリア、ジルコニアからなる複合酸化物(H)に担持された触媒を得た。さらに、当該触媒を、実施例1と同様にしてハニカム基材にコートして触媒(8)を調製した。得られた当該ハニカム基材の触媒のコート量はハニカム基材1L当たり300gであった。
(Comparative example 4)
Dissolve 35.3 g of cobalt nitrate hexahydrate, 1.80 g of aluminum nitrate nonahydrate, 8.95 g of cerium nitrate hexahydrate and 7.89 g of zirconia sol (concentration of 25% by mass in terms of ZrO 2 ) in 462 g of pure water. Then, a metal nitrate aqueous solution was prepared. Separately, 21.8 g of potassium hydroxide was dissolved in 250 g of pure water to prepare an aqueous potassium hydroxide solution. Thereafter, in the same manner as in Example 4, a catalyst in which cobalt was supported on the composite oxide (H) composed of alumina, ceria, and zirconia was obtained. Further, the catalyst was coated on the honeycomb substrate in the same manner as in Example 1 to prepare a catalyst (8). The coated amount of the catalyst on the obtained honeycomb substrate was 300 g per 1 L of the honeycomb substrate.

(アンモニア含有ガスの分解反応)
実施例および比較例で得たハニカム基材コートした触媒を30mmφのSUS316製管型反応管に充填し、常圧下、アンモニアと空気を体積比率でアンモニア/空気が1/1.1となるように混合したガスを空間速度28,000h-1で反応管に導入した。電気炉で反応管を加熱し、出口ガス流量を測定および出口ガス成分を分析し、アンモニア転化率(%)を評価した。また、前記反応管へのガス導入を100時間継続して行い、100時間後のアンモニア転化率を評価した。なお、アンモニア転化率(%)は、出口ガス流量とアンモニア燃焼式、アンモニア分解式のマスバランスをもとに下記計算式により求めた。評価結果を表1に示した。
(Decomposition reaction of ammonia-containing gas)
The honeycomb substrate-coated catalysts obtained in Examples and Comparative Examples were filled in a 30 mmφ SUS316 tubular reaction tube, and ammonia and air were mixed at a volume ratio of ammonia / air of 1 / 1.1 under normal pressure. The mixed gas was introduced into the reaction tube at a space velocity of 28,000 h -1 . The reaction tube was heated in an electric furnace, the outlet gas flow rate was measured, the outlet gas component was analyzed, and the ammonia conversion rate (%) was evaluated. Further, the introduction of gas into the reaction tube was continued for 100 hours, and the ammonia conversion rate after 100 hours was evaluated. The ammonia conversion rate (%) was calculated by the following calculation formula based on the outlet gas flow rate and the mass balance of the ammonia combustion formula and the ammonia decomposition formula. The evaluation results are shown in Table 1.

アンモニア転化率(%)=100−(((アンモニア供給量−アンモニア燃焼量−アンモニア分解量)/アンモニア供給量)×100)
ここで、アンモニア燃焼量およびアンモニア分解量は下記式で求められる。
アンモニア燃焼量=4/3×(酸素供給量−(ガス流量×ガス中の酸素濃度))
アンモニア分解量=2/3×ガス流量×ガス中の水素濃度
Ammonia conversion rate (%) = 100-(((ammonia supply amount-ammonia combustion amount-ammonia decomposition amount) / ammonia supply amount) x 100)
Here, the combustion amount of ammonia and the decomposition amount of ammonia are calculated by the following formulas.
Ammonia combustion amount = 4/3 x (oxygen supply amount- (gas flow rate x oxygen concentration in gas))
Ammonia decomposition amount = 2/3 x gas flow rate x hydrogen concentration in gas

また、アンモニア燃焼式、アンモニア分解式は以下のとおりである。   The ammonia combustion type and ammonia decomposition type are as follows.

Figure 0006684669
Figure 0006684669

Figure 0006684669
Figure 0006684669

Figure 0006684669
Figure 0006684669

表1の結果から明らかなように、本発明の実施例1〜4では、耐熱性酸化物がアルミナと、希土類酸化物としてセリアと、ジルコニアとの複合酸化物を含み、前記耐熱性酸化物中、当該アルミナの含有量が5〜40質量%の範囲内、希土類元素の酸化物の含有量が20〜49質量%の範囲内であることからアンモニア分解活性が高く、連続評価100時間後も活性を維持しており、耐久性にも優れることが確認された。一方、比較例1は、耐熱性酸化物としてアルミナを含んでいないので、初期のアンモニア分解活性は高いものの、連続評価時の活性低下が大きいこと、比較例2は、耐熱性酸化物としてアルミナを一定量含んでいるものの、セリアの含有量が高いため、初期のアンモニア分解活性は高いものの、連続評価時の活性低下が大きいこと、比較例3、4では耐熱性酸化物としてアルミナを含んでいるものの含有量が低く、セリアの含有量が高いため、初期のアンモニア分解活性は高いものの、連続評価時の活性低下が大きいことが確認された。   As is clear from the results of Table 1, in Examples 1 to 4 of the present invention, the heat-resistant oxide contained alumina, a complex oxide of ceria and zirconia as rare earth oxides, and Since the content of the alumina is in the range of 5 to 40 mass% and the content of the oxide of the rare earth element is in the range of 20 to 49 mass%, the ammonia decomposing activity is high, and the activity is active even after 100 hours of continuous evaluation. It was confirmed that the durability was maintained and the durability was excellent. On the other hand, Comparative Example 1 does not contain alumina as a heat-resistant oxide, so that although the initial ammonia decomposing activity is high, the activity decrease during continuous evaluation is large. Comparative Example 2 uses alumina as a heat-resistant oxide. Although a certain amount of ceria is contained, the content of ceria is high, so that the ammonia decomposing activity at the initial stage is high, but the activity decrease during continuous evaluation is large. In Comparative Examples 3 and 4, alumina is contained as a heat-resistant oxide. It was confirmed that the ammonia decomposing activity was high at the initial stage because of the low content of the substances and the high content of ceria, but the activity was largely decreased during the continuous evaluation.

本発明は、アンモニア含有ガス中のアンモニアを分解して水素含有ガスを効率的に製造することができる触媒に関するものである。特に耐久性に優れたアンモニア分解用触媒を得ることができる。   The present invention relates to a catalyst capable of efficiently producing a hydrogen-containing gas by decomposing ammonia in the ammonia-containing gas. It is possible to obtain a catalyst for ammonia decomposition which is particularly excellent in durability.

Claims (5)

アンモニア含有ガス中のアンモニアを分解して水素含有ガスを製造する反応に用いられる触媒であって、
前記触媒は触媒活性成分と耐熱性酸化物を含有し、
前記触媒活性成分として、長周期型周期表の8族〜10族に属する少なくとも1種の金属元素を含み、
前記耐熱性酸化物がアルミナと、希土類元素の酸化物とジルコニアとの複合酸化物を含み、
前記耐熱性酸化物中の前記アルミナの含有量が5質量%以上、40質量%以下(酸化物換算)であり、かつ、前記希土類元素の酸化物の含有量が20質量%以上、41.0質量%以下(酸化物換算)であることを特徴とするアンモニア分解用触媒。
A catalyst used in a reaction for decomposing ammonia in an ammonia-containing gas to produce a hydrogen-containing gas,
The catalyst contains a catalytically active component and a refractory oxide,
The catalytically active component contains at least one metal element belonging to Groups 8 to 10 of the long periodic table,
The heat-resistant oxide includes alumina, a composite oxide of a rare earth element oxide and zirconia,
The content of the alumina in the heat-resistant oxide is 5% by mass or more and 40% by mass or less (as oxide), and the content of the oxide of the rare earth element is 20% by mass or more, 41.0 A catalyst for decomposing ammonia, which is less than or equal to mass% (as oxide).
前記長周期型周期表の8族〜10族に属する金属元素が、ロジウム、ルテニウム、コバルトよりなる群から選択される少なくとも1種の元素である請求項1記載のアンモニア分解用触媒。   The catalyst for ammonia decomposition according to claim 1, wherein the metal element belonging to Groups 8 to 10 of the long periodic table is at least one element selected from the group consisting of rhodium, ruthenium and cobalt. 前期希土類元素の酸化物が、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジムよりなる群から選択される少なくとも1種の元素である請求項1または2記載のアンモニア分解用触媒。   The catalyst for decomposing ammonia according to claim 1 or 2, wherein the oxide of the rare earth element is at least one element selected from the group consisting of yttrium oxide, lanthanum oxide, cerium oxide and praseodymium oxide. 請求項1〜3のいずれかに記載の触媒を用いて、アンモニア含有ガス中のアンモニアを分解し、水素含有ガスを製造することを特徴とする水素含有ガスの製造方法。   A method for producing a hydrogen-containing gas, which comprises decomposing ammonia in an ammonia-containing gas to produce a hydrogen-containing gas using the catalyst according to claim 1. 前記アンモニア含有ガスが、さらに酸素を含有する請求項4記載の水素含有ガスの製造方法。   The method for producing a hydrogen-containing gas according to claim 4, wherein the ammonia-containing gas further contains oxygen.
JP2016131923A 2016-07-01 2016-07-01 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst Active JP6684669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131923A JP6684669B2 (en) 2016-07-01 2016-07-01 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131923A JP6684669B2 (en) 2016-07-01 2016-07-01 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst

Publications (2)

Publication Number Publication Date
JP2018001096A JP2018001096A (en) 2018-01-11
JP6684669B2 true JP6684669B2 (en) 2020-04-22

Family

ID=60947147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131923A Active JP6684669B2 (en) 2016-07-01 2016-07-01 Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst

Country Status (1)

Country Link
JP (1) JP6684669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241841A1 (en) * 2020-05-28 2021-12-02 한국화학연구원 Ammonia cracking catalyst, and method of cracking ammonia and generating hydrogen by using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102544718B1 (en) 2021-03-15 2023-06-20 한국화학연구원 Catalyst for Decomposing Ammonia, Method of Preparing the Same and Method for Generating Hydrogen Using the Same
US11845051B2 (en) 2021-04-19 2023-12-19 Toyota Jidosha Kabushiki Kaisha Ammonia synthesis catalyst, method of producing the same, and method of synthesizing ammonia using the same
KR102627993B1 (en) * 2023-01-20 2024-01-23 한국화학연구원 Catalyst for Decomposing Ammonia, Method of Preparing the Same and Method for Generating Hydrogen Using the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241841A1 (en) * 2020-05-28 2021-12-02 한국화학연구원 Ammonia cracking catalyst, and method of cracking ammonia and generating hydrogen by using same

Also Published As

Publication number Publication date
JP2018001096A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
KR101579776B1 (en) Manufacturing method of perovskite-type nickel based catalysts
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
JP5624343B2 (en) Hydrogen production method
RU2532924C1 (en) Catalyst of oxidation conversion of hydrocarbon gases with obtaining of carbon oxide and hydrogen
JP6751606B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JPWO2017094688A1 (en) Hydrocarbon steam reforming catalyst
JP2007229619A (en) Composite oxide for pm combustion catalyst, and filter
JP4810907B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP5105709B2 (en) Water gas shift reaction catalyst
JP6719363B2 (en) Method for producing catalyst for methane oxidation removal and catalyst for methane oxidation removal
CN115722220A (en) Catalytic oxidation catalyst, and preparation method and application thereof
JP5746539B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst
JP2008284512A (en) Oxygen absorbing-releasing material and exhaust gas purifying catalyst containing the same
JPH0729055B2 (en) Catalyst for oxidizing carbon-containing compound and method for producing the same
JP2007000773A (en) Catalyst carrier and its manufacturing method, and catalyst for cleaning exhaust gas
JP4250971B2 (en) Inorganic material and shift catalyst using the same
JP2007054685A (en) Catalyst for water gas shift reaction
CN112717914A (en) Methane and carbon dioxide reforming catalyst, preparation method and application
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150