WO2019107098A1 - Method for oxidizing ammonia - Google Patents
Method for oxidizing ammonia Download PDFInfo
- Publication number
- WO2019107098A1 WO2019107098A1 PCT/JP2018/041300 JP2018041300W WO2019107098A1 WO 2019107098 A1 WO2019107098 A1 WO 2019107098A1 JP 2018041300 W JP2018041300 W JP 2018041300W WO 2019107098 A1 WO2019107098 A1 WO 2019107098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonia
- ruthenium
- catalyst
- oxide
- oxidizing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present invention relates to a method of oxidizing ammonia.
- Patent Document 1 describes a method of oxidizing ammonia to obtain nitrogen and water in the presence of a catalyst containing platinum, an inorganic oxide and zeolite.
- the present invention provides the following.
- Ammonia including the step of oxidizing ammonia in an ammonia-containing gas to obtain nitrogen and water in the presence of a catalyst supported by a ruthenium and / or ruthenium compound supported on a support containing titanium oxide in the rutile crystal form Oxidation method.
- the method for oxidizing ammonia according to [1], wherein the step of oxidizing ammonia to obtain nitrogen and water is carried out by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.
- the catalyst is a catalyst in which ruthenium oxide is supported on the carrier.
- the catalyst is a catalyst in which at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the support [1] to [3] The oxidation method of ammonia according to any one of the above.
- An ammonia-containing gas oxidizing apparatus comprising a catalyst in which ruthenium and / or ruthenium compound is supported on a carrier containing titanium oxide in rutile crystal form.
- a stripping tower having a stripping means for stripping an ammonia-containing gas from an ammonia-containing aqueous solution, The processing apparatus of the ammonia containing aqueous solution provided with the ammonia containing gas oxidizing device as described in [5].
- the catalyst used in the method of oxidizing ammonia according to the present invention is a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form.
- a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form means the inside of the surface and / or the pores of the support containing titanium oxide in the rutile crystal form.
- a catalyst to which a ruthenium and / or a ruthenium compound is attached is attached.
- ruthenium compound As a ruthenium compound, ruthenium oxide, ruthenium hydroxide, ruthenium chloride, chlororuthenate, chlororuthenate hydrate, salt of ruthenium acid, ruthenium oxychloride, salt of ruthenium oxychloride, ruthenium ammine complex, ruthenium ammine
- the chloride of the complex, ruthenium bromide, ruthenium carbonyl complex, ruthenium organic acid salt, ruthenium nitrosyl complex, ruthenium phosphine complex and the like can be mentioned.
- RuO 2 etc. are mentioned as a ruthenium oxide.
- Ru (OH) 3 is mentioned as ruthenium hydroxide.
- Examples of ruthenium chloride include RuCl 3 and RuCl 3 hydrate.
- Examples of chlororuthenate include K 3 RuCl 6 , [RuCl 6 ] 3- , K 2 RuCl 6 and the like.
- Examples of chlororuthenate hydrate include [RuCl 5 (H 2 O) 4 ] 2- , [RuCl 2 (H 2 O) 4 ] + and the like.
- As a salt of ruthenium acid K 2 RuO 4 and the like can be mentioned.
- As ruthenium oxychloride Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6 and the like can be mentioned.
- Examples of the ruthenium ammine complex include [Ru (NH 3 ) 6 ] 2+ , [Ru (NH 3 ) 6 ] 3+ , and [Ru (NH 3 ) 5 H 2 O] 2+ .
- As the chloride of the ruthenium ammine complex [Ru (NH 3 ) 5 Cl] 2+ , [Ru (NH 3 ) 6 ] Cl 2 , [Ru (NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6] ] Br 3 and the like.
- Examples of the ruthenium carbonyl complex include Ru (CO) 5 and Ru 3 (CO) 12 .
- the ruthenium nitrosyl complexes K 2 [RuCl 5 NO)], [Ru (NH 3) 5 (NO ) ] Cl 3, [Ru (OH) (NH 3) 4 (NO) ] (NO 3) 2, Ru (NO) (NO 3) 3 and the like.
- the ruthenium compound is preferably ruthenium oxide, ruthenium chloride, ruthenium bromide, a salt of ruthenium acid, a ruthenium nitrosyl complex, and ruthenium oxide is more preferable.
- the content of ruthenium and / or ruthenium compound in the catalyst is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, and still more preferably 1 to 5% by weight, based on metal ruthenium.
- the total content of the ruthenium and / or ruthenium compound and the support containing titanium oxide in the rutile crystal form is 100% by weight, and the content of ruthenium and / or ruthenium compound is 0.1 to 20% by weight based on metallic ruthenium % Is preferable, 0.5 to 10% by weight is more preferable, and 1 to 5% by weight is more preferable.
- the support in the above catalyst may be at least one containing titanium oxide in rutile crystal form, and may further contain titanium oxide in anatase crystal form.
- the content of titanium oxide in the rutile crystal form in the titanium oxide contained in the carrier is preferably 20% by weight or more, with the total amount of titanium oxide contained in the carrier being 100% by weight, % By weight or more is more preferable, 80% by weight or more is further preferable, and 90% by weight or more is further preferable.
- the support may contain metal oxides other than titanium oxide.
- a composite oxide of titanium oxide and another metal oxide may be contained. It may also be a mixture of titanium oxide and other metal oxides. Examples of metal oxides other than titanium oxide include aluminum oxide, silicon oxide and zirconium oxide.
- the following method is mentioned as a preparation method of the rutile crystal form titanium oxide.
- titanium tetrachloride is dropped and dissolved in ice-cold water, it is neutralized with an aqueous ammonia solution at a temperature of 20 ° C. or higher to form titanium hydroxide (orthotitanic acid), and then the formed precipitate is washed with water to give chloride ion Method of calcining at a temperature of 600 ° C. or higher (catalyst preparation chemistry, p.
- a method of calcining titanium oxide in anatase crystal form for example, metal oxides and complex oxides, page 107, page 107, Kodansha); A method of heating and hydrolyzing an aqueous solution of titanium chloride; and after mixing an aqueous solution of a titanium compound such as titanium sulfate or titanium chloride and a titanium oxide powder in rutile crystal form, heating hydrolysis or alkali hydrolysis is carried out, and then a temperature of around 500 ° C. How to bake.
- titanium oxide in the rutile crystal form may be a commercially available product.
- the support can be obtained by molding titanium oxide in the rutile crystal form into a desired shape.
- the support contains a metal oxide other than titanium oxide in the rutile crystal form, it can be obtained by molding a mixture of titanium oxide in the rutile crystal form and another metal oxide into a desired shape. .
- the titanium oxide containing the titanium oxide in the rutile crystal form used in the present invention means the ratio of the rutile crystal to the anatase crystal in the titanium oxide measured by X-ray diffraction analysis, and the one containing the rutile crystal among them. .
- Various sources are used as X-ray sources.
- copper K ⁇ rays can be mentioned.
- the carrier used in the present invention is a carrier having a peak intensity of rutile crystals and a peak intensity of anatase crystals, or a carrier having a peak intensity of rutile crystals. That is, it may be a carrier having both the diffraction peak of rutile crystal and the diffraction peak of anatase crystal, or may be a carrier having only the diffraction peak of rutile crystal.
- the catalyst is oxidized in the form of rutile crystal. It is preferable that it is a catalyst in which a metal other than ruthenium and / or a metal compound other than a ruthenium compound is further supported on a support containing titanium.
- metals other than ruthenium silicon, zirconium, aluminum, niobium, tin, copper, iron, cobalt, nickel, vanadium, chromium, molybdenum, tungsten and the like can be mentioned.
- metal compounds other than a ruthenium compound the compound which has metals other than the said ruthenium is mentioned,
- the oxide of metals other than the said ruthenium is preferable.
- the metal oxide may be a composite oxide of a plurality of metal species.
- the catalyst may be a catalyst in which an alloy of ruthenium and a metal other than ruthenium, or a composite oxide containing ruthenium and a metal other than ruthenium is further supported on the carrier.
- the catalyst further comprises at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide on a support containing titanium oxide in the rutile crystal form. It is a catalyst.
- the metal salt used to obtain the metal oxide is not particularly limited.
- the shape of the catalyst may, for example, be spherical particles, cylindrical pellets, rings, honeycombs, monoliths, corrugates, or granules of a suitable size which are pulverized and classified after molding, fine particles, and the like.
- the catalyst diameter is preferably 10 mm or less from the viewpoint of catalytic activity.
- the catalyst diameter as used herein means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the form of a cylindrical pellet, and the maximum diameter of a cross section in other shapes.
- the opening diameter is preferably 20 mm or less in general.
- the catalyst used in the method of oxidizing ammonia according to the present invention is prepared, for example, by impregnating a support containing titanium oxide in the rutile crystal form in a solution containing ruthenium and / or a ruthenium compound, and using ruthenium and / or ruthenium on the support. After depositing a ruthenium compound, it can be prepared by a method of drying.
- the solvent in the solution containing a ruthenium and / or a ruthenium compound is not particularly limited, but water, ethanol or the like can be used. After drying, it may be fired.
- a support containing ruthenium oxide in the rutile crystal form is impregnated in a solution containing ruthenium halide to support the ruthenium halide on the support, and the ruthenium halide is used as the support It can be obtained by a method comprising the steps of drying the supported support and firing the dried product.
- the catalyst can be used diluted with an inert substance.
- the catalyst used in the method of oxidizing ammonia according to the present invention may be heat treated prior to use.
- the heat treatment temperature is not particularly limited, but is usually 100 ° C. to 500 ° C.
- the heat treatment can be performed in an inert gas such as nitrogen, argon, or helium, in air, or in a gas containing carbon monoxide, hydrogen, or the like.
- the method for oxidizing ammonia according to the present invention is a method including the step of oxidizing ammonia in the ammonia-containing gas in the presence of the catalyst to obtain nitrogen and water.
- the oxidation reaction formula of ammonia is as follows. NH 3 + 3/4 O 2 ⁇ 1/2 N 2 + 3/2 H 2 O
- the step of oxidizing ammonia to obtain nitrogen and water is preferably performed by contacting an ammonia-containing gas containing oxygen with the catalyst.
- the reaction temperature in the method of oxidizing ammonia according to the present invention is preferably 100 ° C. or more and 500 ° C. or less, more preferably 120 ° C. or more and 400 ° C. or less, and still more preferably 120 ° C. or more and 350 ° C. or less.
- the reaction temperature is preferably 500 ° C. or less from the viewpoint of catalyst activity deterioration, and preferably 100 ° C. or more from the viewpoint of the reaction rate.
- the reaction pressure is preferably 0.005 MPa or more and 1 MPa or less, more preferably 0.005 MPa or more and 0.5 MPa or less.
- the reaction type in the method of oxidizing ammonia according to the present invention includes a fixed bed type and a fluidized bed type.
- the ammonia-containing gas may include gases other than ammonia. Examples of gases other than ammonia include oxygen, water vapor, helium, argon, nitrogen and carbon dioxide.
- the ammonia-containing gas may contain a liquid.
- the ammonia concentration in the ammonia-containing gas is preferably 30% or less.
- the amount of oxygen in the gas is preferably 0.5 to 20 times the amount of ammonia in the gas.
- the ammonia-containing gas containing oxygen can be obtained, for example, by mixing an ammonia-containing gas with an oxygen-containing gas.
- the oxygen-containing gas includes air.
- the feed rate of the ammonia-containing gas containing oxygen as the space velocity GHSV (h -1), preferably not more than 10h -1 over 500000H -1, more preferably less 100h -1 or 50000h -1.
- the method for oxidizing ammonia according to the present invention can be performed using an ammonia-containing gas oxidizer provided with the catalyst.
- the ammonia-containing gas oxidizer includes a gas introducing means for introducing an ammonia-containing gas and an oxygen-containing gas, or an ammonia-containing gas containing oxygen into the ammonia-containing gas oxidizer.
- Ammonia-containing aqueous solution is oxidized by the treatment device of ammonia-containing aqueous solution provided with a diffusion tower having a diffusion means for radiating ammonia-containing gas from ammonia-containing aqueous solution, and the ammonia-containing gas oxidizing device You can get it.
- a step of releasing ammonia-containing gas from ammonia-containing aqueous solution by a diffusion means for releasing ammonia-containing gas from ammonia-containing aqueous solution, and ammonia-containing gas obtained by the above steps Introducing the oxygen-containing gas into the ammonia-containing gas oxidizer by the gas introducing means of the ammonia-containing gas oxidizer; oxidizing the ammonia in the ammonia-containing gas oxidizer in the presence of the catalyst; And a step of obtaining water.
- a method for desorbing the ammonia-containing gas from the ammonia-containing aqueous solution there is a method of obtaining an ammonia-containing gas by bringing the ammonia-containing aqueous solution and the gas into contact with each other and desorbing ammonia in the ammonia-containing aqueous solution to the gas.
- the gas may contain oxygen, and the gas includes, for example, air.
- the space velocity GHSV (h ⁇ 1 ) was calculated by dividing the feed rate (ml / h) of the gas containing ammonia and oxygen by the volume (ml) of the catalyst.
- the analysis of ammonia was performed by analyzing the ammonium ion concentration of the water trap attached to the latter stage of the catalyst layer with an ammonia ion electrode.
- the analysis of NO and NO 2 was performed by analyzing the gas after the catalyst layer with a detector tube.
- the analysis of oxygen, nitrogen and N 2 O was carried out by gas chromatography.
- ammonia conversion rate was calculated by the following equation, where X is the amount of substance (mol) of ammonia supplied and Y is the amount of substance (mol) of unreacted ammonia.
- Ammonia conversion rate (%) [(X-Y) / X] ⁇ 100
- the generation rates of NO, NO 2 and N 2 O were respectively calculated by the following formulas.
- NO generation rate (%): (outlet NO concentration) / (inlet NH 3 concentration) ⁇ 100 NO 2 production rate (%): (outlet NO 2 concentration) / (inlet NH 3 concentration) ⁇ 100 N 2 O production rate (%): (outlet N 2 O concentration) / (inlet NH 3 concentration) ⁇ 100
- the activity per 1 g of ruthenium was calculated as a value obtained by dividing the reaction amount of ammonia by the mass (g) of Ru.
- Example 1 Production of ammonia oxidation catalyst (A) 50 parts by weight of titanium dioxide in rutile crystal form (Sho Chemical Industry Co., Ltd., STR-60R, 100% rutile crystal form) and ⁇ -alumina (Sumitomo Chemical Co., Ltd., AES) -12] Mix 50 parts by weight, and then 100 parts by weight of this mixture, based on 100 parts by weight of titanium dioxide sol [CSB, content of titanium dioxide in titanium dioxide sol 39% by weight in titanium dioxide sol, titanium dioxide 100% anatase Crystal form: 12.8 parts by weight was diluted with pure water and kneaded.
- rutile crystal form Sho Chemical Industry Co., Ltd., STR-60R, 100% rutile crystal form
- ⁇ -alumina Suditomo Chemical Co., Ltd., AES
- the kneaded product was extruded into a cylindrical shape having a diameter of 1.5 mm, dried, and then crushed to a length of about 2 to 4 mm.
- the resulting molded product was calcined in air at 650 to 680 ° C. for 3 hours to obtain a carrier consisting of a mixture of titanium dioxide and ⁇ -alumina.
- This carrier is impregnated with a commercially available aqueous solution of ruthenium chloride hydrate, dried, and calcined in air at 250 ° C. for 2 hours, whereby ruthenium oxide is supported on the carrier with a supporting rate of 4% by weight.
- Ammonia oxidation catalyst (A) was obtained.
- the NO generation rate was 0.4% and the NO 2 generation rate was 0.2%.
- the catalyst layer outlet gas was collected and analyzed by gas chromatography to find that the N 2 O production rate was 3.3%.
- the outlet of the catalyst layer was connected to a water trap from 2 hours after the initiation of the reaction to 3 hours after the initiation of the reaction to absorb unreacted ammonia.
- the water trap was analyzed at an ammonia ion electrode to find that the ammonia conversion was 95.7%.
- Example 2 Production of ammonia oxidation catalyst (B) 100 parts by weight of titanium dioxide powder (manufactured by Showa Titanium Co., Ltd., F-1R, ratio of rutile crystalline titanium dioxide 93%) and 2 parts by weight of organic binder (manufactured by Yuken Kogyo Co., Ltd.) Mixed with YB-152A], followed by 29 parts by weight of pure water, titanium dioxide sol (CSB, content of titanium dioxide 40% by weight in titanium dioxide sol, 100% anatase crystal form) 12.5 wt% Part was added and kneaded. The mixture was extruded into noodles of 3.0 mm in diameter, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm.
- CSB content of titanium dioxide 40% by weight in titanium dioxide sol, 100% anatase crystal form
- the resulting molded product is heated from room temperature to 600 ° C. in air over 1.7 hours, and then held at 600 ° C. for 3 hours for calcination to obtain a white titanium dioxide carrier [ratio of rutile crystalline titanium dioxide: 90 % Or more].
- the solution was impregnated into the titanium dioxide support by Next, while the titanium dioxide support is stirred by rotating the eggplant-type flask containing the impregnated titanium dioxide support at 80 rpm, the temperature in the eggplant-type flask is brought to 30 ° C. Of mixed gas (water vapor concentration: 2.0% by volume) at a flow rate of 277 mL / min (0.degree. C., 0.1 MPa equivalent) continuously for 4 hours and 20 minutes and allowed to flow for titanium dioxide after impregnation The carrier was dried. After heating 62.3 g of the obtained dried product from room temperature to 300 ° C. in a stream of air over 1.2 hours, it is held at the same temperature for 2 hours and calcined to support silicon dioxide on the titanium dioxide carrier.
- mixed gas water vapor concentration: 2.0% by volume
- the temperature in the eggplant-type flask is brought to 35 ° C., and 692 mL of air in the eggplant-type flask
- the solution was continuously supplied for 3 hours and 40 minutes at a flow rate of 1 min./min (0 ° C., converted to 0.1 MPa) and dried by flowing to obtain 32.21 g of a dried product A.
- the obtained dried product A 32.21 g was placed in a closed vessel, and kept in a thermostat at 20 ° C. for 120 hours.
- the weight of the dried product A after holding was 32.21 g.
- the amount of water based on the weight of the silicon dioxide-supporting titanium dioxide carrier contained in the dried product A after holding was the same as that before holding, and the amount of water evaporated was 0 g. 21.48 g of the dried product A after holding is heated from room temperature to 280 ° C. in 1.2 hours under air flow, and then held at the same temperature for 2 hours and calcined, and the content of ruthenium oxide is 20.34 g of a blue-gray ammonia oxidation catalyst (B) (ruthenium oxide and silicon dioxide supported on titanium dioxide) which is 1.25% by weight were obtained.
- B blue-gray ammonia oxidation catalyst
- Example 2 Ammonia Oxidative Decomposition
- the ammonia conversion rate was 55.6%
- the NO production rate was 0.08%
- the NO 2 production rate was 0.02%
- the N 2 O production rate was 0.98%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Provided is a method for oxidizing ammonia at high conversions in the presence of a catalyst that contains a more readily available metal. The method for oxidizing ammonia comprises a step of obtaining nitrogen and water by oxidizing the ammonia in an ammonia-containing gas in the presence of a catalyst having ruthenium and/or a ruthenium compound supported on a support that contains titanium oxide in the rutile crystalline form. Also provided is an apparatus for oxidizing an ammonia-containing gas, wherein the apparatus is provided with a catalyst having ruthenium and/or a ruthenium compound supported on a support that contains titanium oxide in the rutile crystalline form.
Description
本発明は、アンモニアの酸化方法に関する。
The present invention relates to a method of oxidizing ammonia.
化学プラント、発電所、および下水処理施設などにおいてアンモニアガス及びアンモニア水溶液は産業用として広く使用されている。使用後のアンモニアの処理方法として、例えば特許文献1には、白金と無機酸化物とゼオライトとを含む触媒の存在下、アンモニアを酸化して窒素と水を得る方法が記載されている。
Ammonia gas and aqueous ammonia solution are widely used for industrial use in chemical plants, power plants and sewage treatment facilities. As a method for treating ammonia after use, for example, Patent Document 1 describes a method of oxidizing ammonia to obtain nitrogen and water in the presence of a catalyst containing platinum, an inorganic oxide and zeolite.
本発明の目的は、より入手容易な金属を含む触媒の存在下、高い転化率でアンモニアを酸化する方法を提供することにある。
It is an object of the present invention to provide a process for oxidizing ammonia with high conversion in the presence of a more readily available metal-containing catalyst.
本発明は、以下を提供する。
[1] ルテニウムおよび/またはルテニウム化合物が、ルチル結晶形の酸化チタンを含有する担体に担持された触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水を得る工程を含むアンモニアの酸化方法。
[2] アンモニアを酸化して窒素と水を得る工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われる工程である[1]に記載のアンモニアの酸化方法。
[3] 前記触媒は、酸化ルテニウムが前記担体に担持された触媒である[1]または[2]に記載のアンモニアの酸化方法。
[4] 前記触媒は、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物が前記担体にさらに担持された触媒である[1]~[3]のいずれか一項に記載のアンモニアの酸化方法。
[5] ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒を備えたアンモニア含有ガス酸化装置。
[6] アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、
[5]に記載のアンモニア含有ガス酸化装置と
を備えたアンモニア含有水溶液の処理装置。 The present invention provides the following.
[1] Ammonia including the step of oxidizing ammonia in an ammonia-containing gas to obtain nitrogen and water in the presence of a catalyst supported by a ruthenium and / or ruthenium compound supported on a support containing titanium oxide in the rutile crystal form Oxidation method.
[2] The method for oxidizing ammonia according to [1], wherein the step of oxidizing ammonia to obtain nitrogen and water is carried out by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.
[3] The method according to [1] or [2], wherein the catalyst is a catalyst in which ruthenium oxide is supported on the carrier.
[4] The catalyst is a catalyst in which at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the support [1] to [3] The oxidation method of ammonia according to any one of the above.
[5] An ammonia-containing gas oxidizing apparatus comprising a catalyst in which ruthenium and / or ruthenium compound is supported on a carrier containing titanium oxide in rutile crystal form.
[6] A stripping tower having a stripping means for stripping an ammonia-containing gas from an ammonia-containing aqueous solution,
The processing apparatus of the ammonia containing aqueous solution provided with the ammonia containing gas oxidizing device as described in [5].
[1] ルテニウムおよび/またはルテニウム化合物が、ルチル結晶形の酸化チタンを含有する担体に担持された触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水を得る工程を含むアンモニアの酸化方法。
[2] アンモニアを酸化して窒素と水を得る工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われる工程である[1]に記載のアンモニアの酸化方法。
[3] 前記触媒は、酸化ルテニウムが前記担体に担持された触媒である[1]または[2]に記載のアンモニアの酸化方法。
[4] 前記触媒は、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物が前記担体にさらに担持された触媒である[1]~[3]のいずれか一項に記載のアンモニアの酸化方法。
[5] ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒を備えたアンモニア含有ガス酸化装置。
[6] アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、
[5]に記載のアンモニア含有ガス酸化装置と
を備えたアンモニア含有水溶液の処理装置。 The present invention provides the following.
[1] Ammonia including the step of oxidizing ammonia in an ammonia-containing gas to obtain nitrogen and water in the presence of a catalyst supported by a ruthenium and / or ruthenium compound supported on a support containing titanium oxide in the rutile crystal form Oxidation method.
[2] The method for oxidizing ammonia according to [1], wherein the step of oxidizing ammonia to obtain nitrogen and water is carried out by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.
[3] The method according to [1] or [2], wherein the catalyst is a catalyst in which ruthenium oxide is supported on the carrier.
[4] The catalyst is a catalyst in which at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the support [1] to [3] The oxidation method of ammonia according to any one of the above.
[5] An ammonia-containing gas oxidizing apparatus comprising a catalyst in which ruthenium and / or ruthenium compound is supported on a carrier containing titanium oxide in rutile crystal form.
[6] A stripping tower having a stripping means for stripping an ammonia-containing gas from an ammonia-containing aqueous solution,
The processing apparatus of the ammonia containing aqueous solution provided with the ammonia containing gas oxidizing device as described in [5].
本発明によれば、より入手容易な金属を含む触媒の存在下、高い転化率でアンモニアを酸化する方法を提供することができる。
According to the present invention, it is possible to provide a method for oxidizing ammonia at a high conversion rate in the presence of a catalyst containing a more readily available metal.
〔触媒〕
本発明に係るアンモニアの酸化方法に用いられる触媒は、ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒である。
本明細書において、「ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒」とは、ルチル結晶形の酸化チタンを含有する担体の表面および/または細孔内に、ルテニウムおよび/またはルテニウム化合物が付着している触媒を意味する。 〔catalyst〕
The catalyst used in the method of oxidizing ammonia according to the present invention is a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form.
In the present specification, “a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form” means the inside of the surface and / or the pores of the support containing titanium oxide in the rutile crystal form. And a catalyst to which a ruthenium and / or a ruthenium compound is attached.
本発明に係るアンモニアの酸化方法に用いられる触媒は、ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒である。
本明細書において、「ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒」とは、ルチル結晶形の酸化チタンを含有する担体の表面および/または細孔内に、ルテニウムおよび/またはルテニウム化合物が付着している触媒を意味する。 〔catalyst〕
The catalyst used in the method of oxidizing ammonia according to the present invention is a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form.
In the present specification, “a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in the rutile crystal form” means the inside of the surface and / or the pores of the support containing titanium oxide in the rutile crystal form. And a catalyst to which a ruthenium and / or a ruthenium compound is attached.
<ルテニウム化合物>
ルテニウム化合物としては、酸化ルテニウム、水酸化ルテニウム、塩化ルテニウム、クロロルテニウム酸塩、クロロルテニウム酸塩水和物、ルテニウム酸の塩、ルテニウムオキシ塩化物、ルテニウムオキシ塩化物の塩、ルテニウムアンミン錯体、ルテニウムアンミン錯体の塩化物、臭化ルテニウム、ルテニウムカルボニル錯体、ルテニウム有機酸塩、ルテニウムニトロシル錯体、ルテニウムホスフィン錯体などが挙げられる。
酸化ルテニウムとしては、RuO2などが挙げられる。
水酸化ルテニウムとしては、Ru(OH)3が挙げられる。
塩化ルテニウムとしては、RuCl3、RuCl3水和物などが挙げられる。
クロロルテニウム酸塩としては、K3RuCl6、〔RuCl6〕3-、K2RuCl6などが挙げられる。
クロロルテニウム酸塩水和物としては、〔RuCl5(H2O)4〕2-、〔RuCl2(H2O)4〕+などが挙げられる。
ルテニウム酸の塩としては、K2RuO4などが挙げられる。
ルテニウムオキシ塩化物としては、Ru2OCl4、Ru2OCl5、Ru2OCl6などが挙げられる。
ルテニウムオキシ塩化物の塩としては、K2Ru2OCl10、Cs2Ru2OCl4などが挙げられる。
ルテニウムアンミン錯体としては、〔Ru(NH3)6〕2+、〔Ru(NH3)6〕3+、〔Ru(NH3)5H2O〕2+などが挙げられる。
ルテニウムアンミン錯体の塩化物としては、〔Ru(NH3)5Cl〕2+、〔Ru(NH3)6〕Cl2、〔Ru(NH3)6〕Cl3、〔Ru(NH3)6〕Br3などが挙げられる。
臭化ルテニウムとしては、RuBr3、RuBr3水和物などが挙げられる。
ルテニウムカルボニル錯体としては、Ru(CO)5、Ru3(CO)12などが挙げられる。
ルテニウム有機酸塩としては、[Ru3O(OCOCH3)6(H2O)3] OCOCH3水和物、Ru2(RCOO)4Cl(R=炭素数1-3のアルキル基)などが挙げられる。
ルテニウムニトロシル錯体としては、K2〔RuCl5NO)〕、〔Ru(NH3)5(NO)〕Cl3、〔Ru(OH)(NH3)4(NO)〕(NO3)2、 Ru(NO)(NO3)3などが挙げられる。
ルテニウム化合物は、酸化ルテニウム、 塩化ルテニウム、臭化ルテニウム、ルテニウム酸の塩、ルテニウムニトロシル錯体が好ましく、酸化ルテニウムがより好ましい。 <Ruthenium compound>
As a ruthenium compound, ruthenium oxide, ruthenium hydroxide, ruthenium chloride, chlororuthenate, chlororuthenate hydrate, salt of ruthenium acid, ruthenium oxychloride, salt of ruthenium oxychloride, ruthenium ammine complex, ruthenium ammine The chloride of the complex, ruthenium bromide, ruthenium carbonyl complex, ruthenium organic acid salt, ruthenium nitrosyl complex, ruthenium phosphine complex and the like can be mentioned.
RuO 2 etc. are mentioned as a ruthenium oxide.
Ru (OH) 3 is mentioned as ruthenium hydroxide.
Examples of ruthenium chloride include RuCl 3 and RuCl 3 hydrate.
Examples of chlororuthenate include K 3 RuCl 6 , [RuCl 6 ] 3- , K 2 RuCl 6 and the like.
Examples of chlororuthenate hydrate include [RuCl 5 (H 2 O) 4 ] 2- , [RuCl 2 (H 2 O) 4 ] + and the like.
As a salt of ruthenium acid, K 2 RuO 4 and the like can be mentioned.
As ruthenium oxychloride, Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6 and the like can be mentioned.
The salt of ruthenium oxychloride, and the like K 2 Ru 2 OCl 10, Cs 2 Ru 2 OC l4.
Examples of the ruthenium ammine complex include [Ru (NH 3 ) 6 ] 2+ , [Ru (NH 3 ) 6 ] 3+ , and [Ru (NH 3 ) 5 H 2 O] 2+ .
As the chloride of the ruthenium ammine complex, [Ru (NH 3 ) 5 Cl] 2+ , [Ru (NH 3 ) 6 ] Cl 2 , [Ru (NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6] ] Br 3 and the like.
The ruthenium bromide, and the like RuBr 3, RuBr 3 hydrate.
Examples of the ruthenium carbonyl complex include Ru (CO) 5 and Ru 3 (CO) 12 .
Examples of ruthenium organic acid salts include [Ru 3 O (OCOCH 3 ) 6 (H 2 O) 3 ] OCOCH 3 hydrate, Ru 2 (RCOO) 4 Cl (R = alkyl group having 1-3 carbon atoms), etc. It can be mentioned.
The ruthenium nitrosyl complexes, K 2 [RuCl 5 NO)], [Ru (NH 3) 5 (NO ) ] Cl 3, [Ru (OH) (NH 3) 4 (NO) ] (NO 3) 2, Ru (NO) (NO 3) 3 and the like.
The ruthenium compound is preferably ruthenium oxide, ruthenium chloride, ruthenium bromide, a salt of ruthenium acid, a ruthenium nitrosyl complex, and ruthenium oxide is more preferable.
ルテニウム化合物としては、酸化ルテニウム、水酸化ルテニウム、塩化ルテニウム、クロロルテニウム酸塩、クロロルテニウム酸塩水和物、ルテニウム酸の塩、ルテニウムオキシ塩化物、ルテニウムオキシ塩化物の塩、ルテニウムアンミン錯体、ルテニウムアンミン錯体の塩化物、臭化ルテニウム、ルテニウムカルボニル錯体、ルテニウム有機酸塩、ルテニウムニトロシル錯体、ルテニウムホスフィン錯体などが挙げられる。
酸化ルテニウムとしては、RuO2などが挙げられる。
水酸化ルテニウムとしては、Ru(OH)3が挙げられる。
塩化ルテニウムとしては、RuCl3、RuCl3水和物などが挙げられる。
クロロルテニウム酸塩としては、K3RuCl6、〔RuCl6〕3-、K2RuCl6などが挙げられる。
クロロルテニウム酸塩水和物としては、〔RuCl5(H2O)4〕2-、〔RuCl2(H2O)4〕+などが挙げられる。
ルテニウム酸の塩としては、K2RuO4などが挙げられる。
ルテニウムオキシ塩化物としては、Ru2OCl4、Ru2OCl5、Ru2OCl6などが挙げられる。
ルテニウムオキシ塩化物の塩としては、K2Ru2OCl10、Cs2Ru2OCl4などが挙げられる。
ルテニウムアンミン錯体としては、〔Ru(NH3)6〕2+、〔Ru(NH3)6〕3+、〔Ru(NH3)5H2O〕2+などが挙げられる。
ルテニウムアンミン錯体の塩化物としては、〔Ru(NH3)5Cl〕2+、〔Ru(NH3)6〕Cl2、〔Ru(NH3)6〕Cl3、〔Ru(NH3)6〕Br3などが挙げられる。
臭化ルテニウムとしては、RuBr3、RuBr3水和物などが挙げられる。
ルテニウムカルボニル錯体としては、Ru(CO)5、Ru3(CO)12などが挙げられる。
ルテニウム有機酸塩としては、[Ru3O(OCOCH3)6(H2O)3] OCOCH3水和物、Ru2(RCOO)4Cl(R=炭素数1-3のアルキル基)などが挙げられる。
ルテニウムニトロシル錯体としては、K2〔RuCl5NO)〕、〔Ru(NH3)5(NO)〕Cl3、〔Ru(OH)(NH3)4(NO)〕(NO3)2、 Ru(NO)(NO3)3などが挙げられる。
ルテニウム化合物は、酸化ルテニウム、 塩化ルテニウム、臭化ルテニウム、ルテニウム酸の塩、ルテニウムニトロシル錯体が好ましく、酸化ルテニウムがより好ましい。 <Ruthenium compound>
As a ruthenium compound, ruthenium oxide, ruthenium hydroxide, ruthenium chloride, chlororuthenate, chlororuthenate hydrate, salt of ruthenium acid, ruthenium oxychloride, salt of ruthenium oxychloride, ruthenium ammine complex, ruthenium ammine The chloride of the complex, ruthenium bromide, ruthenium carbonyl complex, ruthenium organic acid salt, ruthenium nitrosyl complex, ruthenium phosphine complex and the like can be mentioned.
RuO 2 etc. are mentioned as a ruthenium oxide.
Ru (OH) 3 is mentioned as ruthenium hydroxide.
Examples of ruthenium chloride include RuCl 3 and RuCl 3 hydrate.
Examples of chlororuthenate include K 3 RuCl 6 , [RuCl 6 ] 3- , K 2 RuCl 6 and the like.
Examples of chlororuthenate hydrate include [RuCl 5 (H 2 O) 4 ] 2- , [RuCl 2 (H 2 O) 4 ] + and the like.
As a salt of ruthenium acid, K 2 RuO 4 and the like can be mentioned.
As ruthenium oxychloride, Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6 and the like can be mentioned.
The salt of ruthenium oxychloride, and the like K 2 Ru 2 OCl 10, Cs 2 Ru 2 OC l4.
Examples of the ruthenium ammine complex include [Ru (NH 3 ) 6 ] 2+ , [Ru (NH 3 ) 6 ] 3+ , and [Ru (NH 3 ) 5 H 2 O] 2+ .
As the chloride of the ruthenium ammine complex, [Ru (NH 3 ) 5 Cl] 2+ , [Ru (NH 3 ) 6 ] Cl 2 , [Ru (NH 3 ) 6 ] Cl 3 , [Ru (NH 3 ) 6] ] Br 3 and the like.
The ruthenium bromide, and the like RuBr 3, RuBr 3 hydrate.
Examples of the ruthenium carbonyl complex include Ru (CO) 5 and Ru 3 (CO) 12 .
Examples of ruthenium organic acid salts include [Ru 3 O (OCOCH 3 ) 6 (H 2 O) 3 ] OCOCH 3 hydrate, Ru 2 (RCOO) 4 Cl (R = alkyl group having 1-3 carbon atoms), etc. It can be mentioned.
The ruthenium nitrosyl complexes, K 2 [RuCl 5 NO)], [Ru (NH 3) 5 (NO ) ] Cl 3, [Ru (OH) (NH 3) 4 (NO) ] (NO 3) 2, Ru (NO) (NO 3) 3 and the like.
The ruthenium compound is preferably ruthenium oxide, ruthenium chloride, ruthenium bromide, a salt of ruthenium acid, a ruthenium nitrosyl complex, and ruthenium oxide is more preferable.
触媒中のルテニウムおよび/またはルテニウム化合物の含有量は、金属ルテニウム基準で、0.1~20重量%が好ましく、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。
ルテニウムおよび/またはルテニウム化合物と、ルチル結晶形の酸化チタンを含有する担体との合計量を100重量%として、ルテニウムおよび/またはルテニウム化合物の含有量は、金属ルテニウム基準で、0.1~20重量%が好ましく、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。 The content of ruthenium and / or ruthenium compound in the catalyst is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, and still more preferably 1 to 5% by weight, based on metal ruthenium.
The total content of the ruthenium and / or ruthenium compound and the support containing titanium oxide in the rutile crystal form is 100% by weight, and the content of ruthenium and / or ruthenium compound is 0.1 to 20% by weight based on metallic ruthenium % Is preferable, 0.5 to 10% by weight is more preferable, and 1 to 5% by weight is more preferable.
ルテニウムおよび/またはルテニウム化合物と、ルチル結晶形の酸化チタンを含有する担体との合計量を100重量%として、ルテニウムおよび/またはルテニウム化合物の含有量は、金属ルテニウム基準で、0.1~20重量%が好ましく、0.5~10重量%がより好ましく、1~5重量%がさらに好ましい。 The content of ruthenium and / or ruthenium compound in the catalyst is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, and still more preferably 1 to 5% by weight, based on metal ruthenium.
The total content of the ruthenium and / or ruthenium compound and the support containing titanium oxide in the rutile crystal form is 100% by weight, and the content of ruthenium and / or ruthenium compound is 0.1 to 20% by weight based on metallic ruthenium % Is preferable, 0.5 to 10% by weight is more preferable, and 1 to 5% by weight is more preferable.
<ルチル結晶形の酸化チタンを含有する担体>
上記触媒中の担体は、少なくともルチル結晶形の酸化チタンを含有するものであればよく、さらにアナターゼ結晶形の酸化チタンを含有してもよい。
触媒活性の観点から、担体に含有される酸化チタン中の、ルチル結晶形の酸化チタンの含有率は、担体に含有される酸化チタンの全量を100重量%として、20重量%以上が好ましく、30重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上がさらに好ましい。
担体は、酸化チタン以外の金属酸化物を含有してもよい。さらに、酸化チタンと他の金属酸化物との複合酸化物を含有してもよい。また、酸化チタンと他の金属酸化物の混合物であってもよい。酸化チタン以外の金属酸化物としては、酸化アルミニウム、酸化ケイ素、酸化ジルコニウムなどがあげられる。 <Carrier containing titanium oxide in rutile crystal form>
The support in the above catalyst may be at least one containing titanium oxide in rutile crystal form, and may further contain titanium oxide in anatase crystal form.
From the viewpoint of catalytic activity, the content of titanium oxide in the rutile crystal form in the titanium oxide contained in the carrier is preferably 20% by weight or more, with the total amount of titanium oxide contained in the carrier being 100% by weight, % By weight or more is more preferable, 80% by weight or more is further preferable, and 90% by weight or more is further preferable.
The support may contain metal oxides other than titanium oxide. Furthermore, a composite oxide of titanium oxide and another metal oxide may be contained. It may also be a mixture of titanium oxide and other metal oxides. Examples of metal oxides other than titanium oxide include aluminum oxide, silicon oxide and zirconium oxide.
上記触媒中の担体は、少なくともルチル結晶形の酸化チタンを含有するものであればよく、さらにアナターゼ結晶形の酸化チタンを含有してもよい。
触媒活性の観点から、担体に含有される酸化チタン中の、ルチル結晶形の酸化チタンの含有率は、担体に含有される酸化チタンの全量を100重量%として、20重量%以上が好ましく、30重量%以上がより好ましく、80重量%以上がさらに好ましく、90重量%以上がさらに好ましい。
担体は、酸化チタン以外の金属酸化物を含有してもよい。さらに、酸化チタンと他の金属酸化物との複合酸化物を含有してもよい。また、酸化チタンと他の金属酸化物の混合物であってもよい。酸化チタン以外の金属酸化物としては、酸化アルミニウム、酸化ケイ素、酸化ジルコニウムなどがあげられる。 <Carrier containing titanium oxide in rutile crystal form>
The support in the above catalyst may be at least one containing titanium oxide in rutile crystal form, and may further contain titanium oxide in anatase crystal form.
From the viewpoint of catalytic activity, the content of titanium oxide in the rutile crystal form in the titanium oxide contained in the carrier is preferably 20% by weight or more, with the total amount of titanium oxide contained in the carrier being 100% by weight, % By weight or more is more preferable, 80% by weight or more is further preferable, and 90% by weight or more is further preferable.
The support may contain metal oxides other than titanium oxide. Furthermore, a composite oxide of titanium oxide and another metal oxide may be contained. It may also be a mixture of titanium oxide and other metal oxides. Examples of metal oxides other than titanium oxide include aluminum oxide, silicon oxide and zirconium oxide.
ルチル結晶形の酸化チタンの調製方法としては、以下の方法が挙げられる。
四塩化チタンを氷冷した水に滴下溶解した後、20℃以上の温度でアンモニア水溶液で中和し、水酸化チタン(オルトチタン酸)を生成させ、次いで、生成した沈殿を水洗して塩素イオンを除去した後、600℃以上の温度で焼成する方法(触媒調製化学、1989年、211頁、講談社);
四塩化チタン蒸発器に酸素-窒素混合ガスを通じて反応ガスを調製し、これを反応器に導入し、反応ガスを900℃以上で酸化反応させる方法(触媒調製化学、1989年、89頁、講談社);
四塩化チタンを硫酸アンモニウムの存在下に加水分解した後、焼成する方法(例えば、触媒工学講座10元素別触媒便覧、1978年、254頁、地人書館)。
アナターゼ結晶形の酸化チタンを焼成する方法(例えば、金属酸化物と複合酸化物、1980年、107頁、講談社);
塩化チタン水溶液を加熱加水分解する方法;および
硫酸チタンや塩化チタンなどのチタン化合物水溶液とルチル結晶形の酸化チタン粉末を混合した後、加熱加水分解やアルカリ加水分解し、次いで、500℃前後の温度で焼成する方法。
また、ルチル結晶形の酸化チタンは市販品を使用してもよい。 The following method is mentioned as a preparation method of the rutile crystal form titanium oxide.
After titanium tetrachloride is dropped and dissolved in ice-cold water, it is neutralized with an aqueous ammonia solution at a temperature of 20 ° C. or higher to form titanium hydroxide (orthotitanic acid), and then the formed precipitate is washed with water to give chloride ion Method of calcining at a temperature of 600 ° C. or higher (catalyst preparation chemistry, p. 211, Kodansha);
A method of preparing a reaction gas through an oxygen-nitrogen mixed gas in a titanium tetrachloride evaporator, introducing it into a reactor , and oxidizing the reaction gas at 900 ° C. or higher (Catalyst preparation chemistry, p. 89, Kodansha) ;
A method in which titanium tetrachloride is hydrolyzed in the presence of ammonium sulfate and then calcined (for example, Catalyst Engineering Lecture 10: Catalyst Handbook by Element, p. 254, Jijin Shokan, 1978).
A method of calcining titanium oxide in anatase crystal form (for example, metal oxides and complex oxides, page 107, page 107, Kodansha);
A method of heating and hydrolyzing an aqueous solution of titanium chloride; and after mixing an aqueous solution of a titanium compound such as titanium sulfate or titanium chloride and a titanium oxide powder in rutile crystal form, heating hydrolysis or alkali hydrolysis is carried out, and then a temperature of around 500 ° C. How to bake.
In addition, titanium oxide in the rutile crystal form may be a commercially available product.
四塩化チタンを氷冷した水に滴下溶解した後、20℃以上の温度でアンモニア水溶液で中和し、水酸化チタン(オルトチタン酸)を生成させ、次いで、生成した沈殿を水洗して塩素イオンを除去した後、600℃以上の温度で焼成する方法(触媒調製化学、1989年、211頁、講談社);
四塩化チタン蒸発器に酸素-窒素混合ガスを通じて反応ガスを調製し、これを反応器に導入し、反応ガスを900℃以上で酸化反応させる方法(触媒調製化学、1989年、89頁、講談社);
四塩化チタンを硫酸アンモニウムの存在下に加水分解した後、焼成する方法(例えば、触媒工学講座10元素別触媒便覧、1978年、254頁、地人書館)。
アナターゼ結晶形の酸化チタンを焼成する方法(例えば、金属酸化物と複合酸化物、1980年、107頁、講談社);
塩化チタン水溶液を加熱加水分解する方法;および
硫酸チタンや塩化チタンなどのチタン化合物水溶液とルチル結晶形の酸化チタン粉末を混合した後、加熱加水分解やアルカリ加水分解し、次いで、500℃前後の温度で焼成する方法。
また、ルチル結晶形の酸化チタンは市販品を使用してもよい。 The following method is mentioned as a preparation method of the rutile crystal form titanium oxide.
After titanium tetrachloride is dropped and dissolved in ice-cold water, it is neutralized with an aqueous ammonia solution at a temperature of 20 ° C. or higher to form titanium hydroxide (orthotitanic acid), and then the formed precipitate is washed with water to give chloride ion Method of calcining at a temperature of 600 ° C. or higher (catalyst preparation chemistry, p. 211, Kodansha);
A method of preparing a reaction gas through an oxygen-nitrogen mixed gas in a titanium tetrachloride evaporator, introducing it into a reactor , and oxidizing the reaction gas at 900 ° C. or higher (Catalyst preparation chemistry, p. 89, Kodansha) ;
A method in which titanium tetrachloride is hydrolyzed in the presence of ammonium sulfate and then calcined (for example, Catalyst Engineering Lecture 10: Catalyst Handbook by Element, p. 254, Jijin Shokan, 1978).
A method of calcining titanium oxide in anatase crystal form (for example, metal oxides and complex oxides, page 107, page 107, Kodansha);
A method of heating and hydrolyzing an aqueous solution of titanium chloride; and after mixing an aqueous solution of a titanium compound such as titanium sulfate or titanium chloride and a titanium oxide powder in rutile crystal form, heating hydrolysis or alkali hydrolysis is carried out, and then a temperature of around 500 ° C. How to bake.
In addition, titanium oxide in the rutile crystal form may be a commercially available product.
担体は、ルチル結晶形の酸化チタンを所望の形状に成型することにより得ることができる。担体が、ルチル結晶形の酸化チタン以外の金属酸化物を含有する場合は、ルチル結晶形の酸化チタンと、それ以外の金属酸化物との混合物を所望の形状に成型することにより得ることができる。
The support can be obtained by molding titanium oxide in the rutile crystal form into a desired shape. When the support contains a metal oxide other than titanium oxide in the rutile crystal form, it can be obtained by molding a mixture of titanium oxide in the rutile crystal form and another metal oxide into a desired shape. .
本発明において使用されるルチル結晶形の酸化チタンを含有する酸化チタンとは、X線回折分析法によって酸化チタン中のルチル結晶とアナターゼ結晶の比率を測定し、そのうちルチル結晶を含有するものを指す。X線源としてはいろいろな線源が使用される。たとえば、銅のKα線などがあげられる。銅のKα線を使用した場合、ルチル結晶の比率とアナターゼ結晶の比率はそれぞれ、(110)面の2θ=27.5度の回折ピークの強度と、(101)面の2θ=25.3度の回折ピークの強度を用いて決定する。本発明に使用する担体はルチル結晶のピーク強度及びアナターゼ結晶のピーク強度を有する担体、又は、ルチル結晶のピーク強度を有する担体である。すなわち、ルチル結晶の回折ピーク及びアナターゼ結晶の回折ピークの両方を有する担体であってもよいし、ルチル結晶の回折ピークのみを有する担体であってもよい。
The titanium oxide containing the titanium oxide in the rutile crystal form used in the present invention means the ratio of the rutile crystal to the anatase crystal in the titanium oxide measured by X-ray diffraction analysis, and the one containing the rutile crystal among them. . Various sources are used as X-ray sources. For example, copper Kα rays can be mentioned. When copper Kα rays are used, the ratio of rutile crystals to the ratio of anatase crystals are respectively the intensity of the diffraction peak of 2θ = 27.5 degrees in the (110) plane and 2θ = 25.3 degrees in the (101) plane. It is determined using the intensity of the diffraction peak of The carrier used in the present invention is a carrier having a peak intensity of rutile crystals and a peak intensity of anatase crystals, or a carrier having a peak intensity of rutile crystals. That is, it may be a carrier having both the diffraction peak of rutile crystal and the diffraction peak of anatase crystal, or may be a carrier having only the diffraction peak of rutile crystal.
触媒被毒の原因となる物質が触媒表面に吸着することによって、触媒の性能が低下することを防ぐ、あるいは触媒活性点のシンタリングを防ぐ等の目的で、前記触媒は、ルチル結晶形の酸化チタンを含有する担体に、ルテニウム以外の金属および/またはルテニウム化合物以外の金属化合物がさらに担持された触媒であることが好ましい。
In order to prevent the performance of the catalyst from being degraded by the adsorption of a substance causing catalyst poisoning on the catalyst surface, or to prevent the sintering of the catalyst active site, the catalyst is oxidized in the form of rutile crystal. It is preferable that it is a catalyst in which a metal other than ruthenium and / or a metal compound other than a ruthenium compound is further supported on a support containing titanium.
ルテニウム以外の金属としては、ケイ素、ジルコニウム、アルミニウム、ニオブ、スズ、銅、鉄、コバルト、ニッケル、バナジウム、クロム、モリブデン、タングステン等が挙げられる。ルテニウム化合物以外の金属化合物としては、前記ルテニウム以外の金属を有する化合物が挙げられ、前記ルテニウム以外の金属の酸化物が好ましい。金属酸化物は、複数の金属種の複合酸化物であってもよい。また、前記触媒は、前記担体に、ルテニウムとルテニウム以外の金属との合金や、ルテニウムとルテニウム以外の金属とを含む複合酸化物がさらに担持された触媒でもよい。
前記触媒は、より好ましくは、ルチル結晶形の酸化チタンを含有する担体に、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物がさらに担持された触媒である。 As metals other than ruthenium, silicon, zirconium, aluminum, niobium, tin, copper, iron, cobalt, nickel, vanadium, chromium, molybdenum, tungsten and the like can be mentioned. As metal compounds other than a ruthenium compound, the compound which has metals other than the said ruthenium is mentioned, The oxide of metals other than the said ruthenium is preferable. The metal oxide may be a composite oxide of a plurality of metal species. The catalyst may be a catalyst in which an alloy of ruthenium and a metal other than ruthenium, or a composite oxide containing ruthenium and a metal other than ruthenium is further supported on the carrier.
More preferably, the catalyst further comprises at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide on a support containing titanium oxide in the rutile crystal form. It is a catalyst.
前記触媒は、より好ましくは、ルチル結晶形の酸化チタンを含有する担体に、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物がさらに担持された触媒である。 As metals other than ruthenium, silicon, zirconium, aluminum, niobium, tin, copper, iron, cobalt, nickel, vanadium, chromium, molybdenum, tungsten and the like can be mentioned. As metal compounds other than a ruthenium compound, the compound which has metals other than the said ruthenium is mentioned, The oxide of metals other than the said ruthenium is preferable. The metal oxide may be a composite oxide of a plurality of metal species. The catalyst may be a catalyst in which an alloy of ruthenium and a metal other than ruthenium, or a composite oxide containing ruthenium and a metal other than ruthenium is further supported on the carrier.
More preferably, the catalyst further comprises at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide on a support containing titanium oxide in the rutile crystal form. It is a catalyst.
金属の酸化物を得るために用いられる金属塩は、特に限定されない。
The metal salt used to obtain the metal oxide is not particularly limited.
触媒の形状としては、球形粒状、円柱形ペレット状、リング形状、ハニカム形状、モノリス形状、コルゲート形状、あるいは成型後に粉砕分級した適度の大きさの顆粒状、微粒子などが挙げられる。球形粒状、円柱形ペレット状、リング形状の場合、触媒活性の観点から、触媒直径は10mm以下が好ましい。なお、ここでいう触媒直径とは、球形粒状では球の直径、円柱形ペレット状では断面の直径、その他の形状では断面の最大直径を意味する。 ハニカム形状、モノリス形状、コルゲート形状の場合、開口径は通常20mm以下が好ましい。
The shape of the catalyst may, for example, be spherical particles, cylindrical pellets, rings, honeycombs, monoliths, corrugates, or granules of a suitable size which are pulverized and classified after molding, fine particles, and the like. In the case of a spherical granular shape, a cylindrical pellet shape, or a ring shape, the catalyst diameter is preferably 10 mm or less from the viewpoint of catalytic activity. Here, the catalyst diameter as used herein means the diameter of a sphere in the case of spherical particles, the diameter of a cross section in the form of a cylindrical pellet, and the maximum diameter of a cross section in other shapes. In the case of a honeycomb shape, a monolith shape, or a corrugated shape, the opening diameter is preferably 20 mm or less in general.
本発明に係るアンモニアの酸化方法に使用される触媒は、例えば、ルテニウムおよび/またはルテニウム化合物を含む溶液に、ルチル結晶形の酸化チタンを含有する担体を含侵させて、担体にルテニウムおよび/またはルテニウム化合物を付着させた後、乾燥する方法により調製することができる。ルテニウムおよび/またはルテニウム化合物を含む溶液中の溶媒は特に限定されないが、水やエタノールなどを用いることができる。乾燥後、焼成してもよい。
触媒が酸化ルテニウムを含有する場合、ハロゲン化ルテニウムを含む溶液に、ルチル結晶形の酸化チタンを含有する担体を含侵させて、担体にハロゲン化ルテニウムを担持させる工程と、ハロゲン化ルテニウムが担体に担持された担持物を乾燥させる工程と、乾燥物を焼成する工程とを有する方法により得ることができる。 The catalyst used in the method of oxidizing ammonia according to the present invention is prepared, for example, by impregnating a support containing titanium oxide in the rutile crystal form in a solution containing ruthenium and / or a ruthenium compound, and using ruthenium and / or ruthenium on the support. After depositing a ruthenium compound, it can be prepared by a method of drying. The solvent in the solution containing a ruthenium and / or a ruthenium compound is not particularly limited, but water, ethanol or the like can be used. After drying, it may be fired.
When the catalyst contains ruthenium oxide, a support containing ruthenium oxide in the rutile crystal form is impregnated in a solution containing ruthenium halide to support the ruthenium halide on the support, and the ruthenium halide is used as the support It can be obtained by a method comprising the steps of drying the supported support and firing the dried product.
触媒が酸化ルテニウムを含有する場合、ハロゲン化ルテニウムを含む溶液に、ルチル結晶形の酸化チタンを含有する担体を含侵させて、担体にハロゲン化ルテニウムを担持させる工程と、ハロゲン化ルテニウムが担体に担持された担持物を乾燥させる工程と、乾燥物を焼成する工程とを有する方法により得ることができる。 The catalyst used in the method of oxidizing ammonia according to the present invention is prepared, for example, by impregnating a support containing titanium oxide in the rutile crystal form in a solution containing ruthenium and / or a ruthenium compound, and using ruthenium and / or ruthenium on the support. After depositing a ruthenium compound, it can be prepared by a method of drying. The solvent in the solution containing a ruthenium and / or a ruthenium compound is not particularly limited, but water, ethanol or the like can be used. After drying, it may be fired.
When the catalyst contains ruthenium oxide, a support containing ruthenium oxide in the rutile crystal form is impregnated in a solution containing ruthenium halide to support the ruthenium halide on the support, and the ruthenium halide is used as the support It can be obtained by a method comprising the steps of drying the supported support and firing the dried product.
触媒は不活性物質で希釈して用いることができる。
The catalyst can be used diluted with an inert substance.
本発明に係るアンモニアの酸化方法に使用される触媒は、使用前に熱処理してもよい。熱処理温度は特に限定されないが、通常100℃~500℃で行われる。また、熱処理は、窒素やアルゴン、ヘリウムなどの不活性ガス中、空気中、一酸化炭素や水素などを含むガス中で行うことができる。
The catalyst used in the method of oxidizing ammonia according to the present invention may be heat treated prior to use. The heat treatment temperature is not particularly limited, but is usually 100 ° C. to 500 ° C. The heat treatment can be performed in an inert gas such as nitrogen, argon, or helium, in air, or in a gas containing carbon monoxide, hydrogen, or the like.
〔アンモニアの酸化方法〕
本発明に係るアンモニアの酸化方法は、上記触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水を得る工程を含む方法である。アンモニアの酸化反応式は以下のとおりである。
NH3+3/4O2→1/2N2+3/2H2O [Ammonia oxidation method]
The method for oxidizing ammonia according to the present invention is a method including the step of oxidizing ammonia in the ammonia-containing gas in the presence of the catalyst to obtain nitrogen and water. The oxidation reaction formula of ammonia is as follows.
NH 3 + 3/4 O 2 → 1/2 N 2 + 3/2 H 2 O
本発明に係るアンモニアの酸化方法は、上記触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水を得る工程を含む方法である。アンモニアの酸化反応式は以下のとおりである。
NH3+3/4O2→1/2N2+3/2H2O [Ammonia oxidation method]
The method for oxidizing ammonia according to the present invention is a method including the step of oxidizing ammonia in the ammonia-containing gas in the presence of the catalyst to obtain nitrogen and water. The oxidation reaction formula of ammonia is as follows.
NH 3 + 3/4 O 2 → 1/2 N 2 + 3/2 H 2 O
アンモニアを酸化して窒素と水を得る工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われることが好ましい。
The step of oxidizing ammonia to obtain nitrogen and water is preferably performed by contacting an ammonia-containing gas containing oxygen with the catalyst.
本発明に係るアンモニアの酸化方法における反応温度は、好ましくは100℃以上500℃以下であり、より好ましくは120℃以上400℃以下であり、さらに好ましくは120℃以上350℃以下である。反応温度は触媒活性劣化の観点から500℃以下が好ましく、反応速度の観点から100℃以上が好ましい。
反応圧力は、好ましくは0.005MPa以上1MPa以下であり、より好ましくは0.005MPa以上0.5MPa以下である。
本発明に係るアンモニアの酸化方法における反応形式としては、固定床形式、流動床形式が挙げられる。 The reaction temperature in the method of oxidizing ammonia according to the present invention is preferably 100 ° C. or more and 500 ° C. or less, more preferably 120 ° C. or more and 400 ° C. or less, and still more preferably 120 ° C. or more and 350 ° C. or less. The reaction temperature is preferably 500 ° C. or less from the viewpoint of catalyst activity deterioration, and preferably 100 ° C. or more from the viewpoint of the reaction rate.
The reaction pressure is preferably 0.005 MPa or more and 1 MPa or less, more preferably 0.005 MPa or more and 0.5 MPa or less.
The reaction type in the method of oxidizing ammonia according to the present invention includes a fixed bed type and a fluidized bed type.
反応圧力は、好ましくは0.005MPa以上1MPa以下であり、より好ましくは0.005MPa以上0.5MPa以下である。
本発明に係るアンモニアの酸化方法における反応形式としては、固定床形式、流動床形式が挙げられる。 The reaction temperature in the method of oxidizing ammonia according to the present invention is preferably 100 ° C. or more and 500 ° C. or less, more preferably 120 ° C. or more and 400 ° C. or less, and still more preferably 120 ° C. or more and 350 ° C. or less. The reaction temperature is preferably 500 ° C. or less from the viewpoint of catalyst activity deterioration, and preferably 100 ° C. or more from the viewpoint of the reaction rate.
The reaction pressure is preferably 0.005 MPa or more and 1 MPa or less, more preferably 0.005 MPa or more and 0.5 MPa or less.
The reaction type in the method of oxidizing ammonia according to the present invention includes a fixed bed type and a fluidized bed type.
<アンモニア含有ガス>
アンモニア含有ガスは、アンモニア以外の気体を含んでもよい。アンモニア以外の気体としては、酸素、水蒸気、ヘリウム、アルゴン、窒素、二酸化炭素が挙げられる。アンモニア含有ガスは、液体を含んでもよい。
アンモニア含有ガス中のアンモニア濃度は、30%以下が好ましい。
アンモニア含有ガスが、さらに酸素を含む場合、該ガス中の酸素量は、該ガス中のアンモニア量に対して0.5~20倍であることが好ましい。
酸素を含むアンモニア含有ガスは、例えば、アンモニア含有ガスと、酸素含有ガスとを混合して得ることができる。酸素含有ガスとしては、空気が挙げられる。
酸素を含むアンモニア含有ガスの供給速度は、空間速度GHSV(h-1)として、好ましくは10h-1以上500000h-1以下であり、より好ましくは100h-1以上50000h-1以下である。 <Ammonia-containing gas>
The ammonia-containing gas may include gases other than ammonia. Examples of gases other than ammonia include oxygen, water vapor, helium, argon, nitrogen and carbon dioxide. The ammonia-containing gas may contain a liquid.
The ammonia concentration in the ammonia-containing gas is preferably 30% or less.
When the ammonia-containing gas further contains oxygen, the amount of oxygen in the gas is preferably 0.5 to 20 times the amount of ammonia in the gas.
The ammonia-containing gas containing oxygen can be obtained, for example, by mixing an ammonia-containing gas with an oxygen-containing gas. The oxygen-containing gas includes air.
The feed rate of the ammonia-containing gas containing oxygen, as the space velocity GHSV (h -1), preferably not more than 10h -1 over 500000H -1, more preferably less 100h -1 or 50000h -1.
アンモニア含有ガスは、アンモニア以外の気体を含んでもよい。アンモニア以外の気体としては、酸素、水蒸気、ヘリウム、アルゴン、窒素、二酸化炭素が挙げられる。アンモニア含有ガスは、液体を含んでもよい。
アンモニア含有ガス中のアンモニア濃度は、30%以下が好ましい。
アンモニア含有ガスが、さらに酸素を含む場合、該ガス中の酸素量は、該ガス中のアンモニア量に対して0.5~20倍であることが好ましい。
酸素を含むアンモニア含有ガスは、例えば、アンモニア含有ガスと、酸素含有ガスとを混合して得ることができる。酸素含有ガスとしては、空気が挙げられる。
酸素を含むアンモニア含有ガスの供給速度は、空間速度GHSV(h-1)として、好ましくは10h-1以上500000h-1以下であり、より好ましくは100h-1以上50000h-1以下である。 <Ammonia-containing gas>
The ammonia-containing gas may include gases other than ammonia. Examples of gases other than ammonia include oxygen, water vapor, helium, argon, nitrogen and carbon dioxide. The ammonia-containing gas may contain a liquid.
The ammonia concentration in the ammonia-containing gas is preferably 30% or less.
When the ammonia-containing gas further contains oxygen, the amount of oxygen in the gas is preferably 0.5 to 20 times the amount of ammonia in the gas.
The ammonia-containing gas containing oxygen can be obtained, for example, by mixing an ammonia-containing gas with an oxygen-containing gas. The oxygen-containing gas includes air.
The feed rate of the ammonia-containing gas containing oxygen, as the space velocity GHSV (h -1), preferably not more than 10h -1 over 500000H -1, more preferably less 100h -1 or 50000h -1.
〔アンモニア含有ガス酸化装置〕
本発明に係るアンモニアの酸化方法は、前記触媒を備えたアンモニア含有ガス酸化装置を使用して行うことができる。アンモニア含有ガス酸化装置は、アンモニア含有ガスおよび酸素含有ガス、または酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入するガス導入手段を備える。
本発明に係るアンモニアの酸化方法の一態様として、ガス導入手段から、酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、前記ガス中のアンモニアを酸化して窒素と水を得る工程とを有する方法が挙げられる。 [Ammonia-containing gas oxidizer]
The method for oxidizing ammonia according to the present invention can be performed using an ammonia-containing gas oxidizer provided with the catalyst. The ammonia-containing gas oxidizer includes a gas introducing means for introducing an ammonia-containing gas and an oxygen-containing gas, or an ammonia-containing gas containing oxygen into the ammonia-containing gas oxidizer.
As one aspect of the method of oxidizing ammonia according to the present invention, a step of introducing an ammonia-containing gas containing oxygen into an ammonia-containing gas oxidizer from a gas introducing means, ammonia in the gas in the presence of the catalyst And C. oxidizing to obtain nitrogen and water.
本発明に係るアンモニアの酸化方法は、前記触媒を備えたアンモニア含有ガス酸化装置を使用して行うことができる。アンモニア含有ガス酸化装置は、アンモニア含有ガスおよび酸素含有ガス、または酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入するガス導入手段を備える。
本発明に係るアンモニアの酸化方法の一態様として、ガス導入手段から、酸素を含むアンモニア含有ガスを、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、前記ガス中のアンモニアを酸化して窒素と水を得る工程とを有する方法が挙げられる。 [Ammonia-containing gas oxidizer]
The method for oxidizing ammonia according to the present invention can be performed using an ammonia-containing gas oxidizer provided with the catalyst. The ammonia-containing gas oxidizer includes a gas introducing means for introducing an ammonia-containing gas and an oxygen-containing gas, or an ammonia-containing gas containing oxygen into the ammonia-containing gas oxidizer.
As one aspect of the method of oxidizing ammonia according to the present invention, a step of introducing an ammonia-containing gas containing oxygen into an ammonia-containing gas oxidizer from a gas introducing means, ammonia in the gas in the presence of the catalyst And C. oxidizing to obtain nitrogen and water.
〔アンモニア含有水溶液の処理装置〕
アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、前記アンモニア含有ガス酸化装置とを備えたアンモニア含有水溶液の処理装置により、アンモニア含有水溶液中のアンモニアを酸化して窒素と水を得ることができる。
本発明に係るアンモニアの酸化方法の一態様として、アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段により、アンモニア含有水溶液からアンモニア含有ガスを放散する工程と、前記工程により得られたアンモニア含有ガスと、酸素含有ガスとを、アンモニア含有ガス酸化装置のガス導入手段により、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、アンモニア含有ガス酸化装置内のアンモニアを酸化して、窒素と水を得る工程とを有する方法が挙げられる。
アンモニア含有水溶液からアンモニア含有ガスを放散する方法としては、アンモニア含有水溶液と気体とを接触させ、アンモニア含有水溶液中のアンモニアを前記気体に放散することによりアンモニア含有ガスを得る方法が挙げられる。前記気体は、酸素を含んでもよく、前記気体としては、例えば空気が挙げられる。 [Processing device for ammonia-containing aqueous solution]
Ammonia-containing aqueous solution is oxidized by the treatment device of ammonia-containing aqueous solution provided with a diffusion tower having a diffusion means for radiating ammonia-containing gas from ammonia-containing aqueous solution, and the ammonia-containing gas oxidizing device You can get it.
As an aspect of the method of oxidizing ammonia according to the present invention, a step of releasing ammonia-containing gas from ammonia-containing aqueous solution by a diffusion means for releasing ammonia-containing gas from ammonia-containing aqueous solution, and ammonia-containing gas obtained by the above steps Introducing the oxygen-containing gas into the ammonia-containing gas oxidizer by the gas introducing means of the ammonia-containing gas oxidizer; oxidizing the ammonia in the ammonia-containing gas oxidizer in the presence of the catalyst; And a step of obtaining water.
As a method for desorbing the ammonia-containing gas from the ammonia-containing aqueous solution, there is a method of obtaining an ammonia-containing gas by bringing the ammonia-containing aqueous solution and the gas into contact with each other and desorbing ammonia in the ammonia-containing aqueous solution to the gas. The gas may contain oxygen, and the gas includes, for example, air.
アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、前記アンモニア含有ガス酸化装置とを備えたアンモニア含有水溶液の処理装置により、アンモニア含有水溶液中のアンモニアを酸化して窒素と水を得ることができる。
本発明に係るアンモニアの酸化方法の一態様として、アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段により、アンモニア含有水溶液からアンモニア含有ガスを放散する工程と、前記工程により得られたアンモニア含有ガスと、酸素含有ガスとを、アンモニア含有ガス酸化装置のガス導入手段により、アンモニア含有ガス酸化装置内へ導入する工程と、前記触媒の存在下、アンモニア含有ガス酸化装置内のアンモニアを酸化して、窒素と水を得る工程とを有する方法が挙げられる。
アンモニア含有水溶液からアンモニア含有ガスを放散する方法としては、アンモニア含有水溶液と気体とを接触させ、アンモニア含有水溶液中のアンモニアを前記気体に放散することによりアンモニア含有ガスを得る方法が挙げられる。前記気体は、酸素を含んでもよく、前記気体としては、例えば空気が挙げられる。 [Processing device for ammonia-containing aqueous solution]
Ammonia-containing aqueous solution is oxidized by the treatment device of ammonia-containing aqueous solution provided with a diffusion tower having a diffusion means for radiating ammonia-containing gas from ammonia-containing aqueous solution, and the ammonia-containing gas oxidizing device You can get it.
As an aspect of the method of oxidizing ammonia according to the present invention, a step of releasing ammonia-containing gas from ammonia-containing aqueous solution by a diffusion means for releasing ammonia-containing gas from ammonia-containing aqueous solution, and ammonia-containing gas obtained by the above steps Introducing the oxygen-containing gas into the ammonia-containing gas oxidizer by the gas introducing means of the ammonia-containing gas oxidizer; oxidizing the ammonia in the ammonia-containing gas oxidizer in the presence of the catalyst; And a step of obtaining water.
As a method for desorbing the ammonia-containing gas from the ammonia-containing aqueous solution, there is a method of obtaining an ammonia-containing gas by bringing the ammonia-containing aqueous solution and the gas into contact with each other and desorbing ammonia in the ammonia-containing aqueous solution to the gas. The gas may contain oxygen, and the gas includes, for example, air.
以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。空間速度GHSV(h-1)はアンモニアおよび酸素を含むガスの供給速度(ml/h)を触媒の体積(ml)で除することにより算出した。アンモニアの分析は触媒層後段に取り付けた水トラップのアンモニウムイオン濃度をアンモニアイオン電極で分析することで行った。NO、NO2の分析は触媒層後段のガスを検知管で分析することで行った。酸素、窒素、N2Oの分析はガスクロマトグラフィーにより行った。アンモニア転化率は供給したアンモニアの物質量(mol)をX、未反応のアンモニアの物質量(mol)をYとして以下の式で算出した。
アンモニア転化率(%)=[(X-Y)/X]×100
NO、NO2、N2O生成率はそれぞれ下記の式で算出した。
NO生成率(%):(出口NO濃度)/(入口NH3濃度)× 100
NO2生成率(%):(出口NO2濃度)/(入口NH3濃度)× 100
N2O生成率(%):(出口N2O濃度)/(入口NH3濃度)× 100
ルテニウム1g当たりの活性は、アンモニアの反応量をRuの質量(g)で除した値として算出した。 Hereinafter, although the example of the present invention is shown, the present invention is not limited by these. The space velocity GHSV (h −1 ) was calculated by dividing the feed rate (ml / h) of the gas containing ammonia and oxygen by the volume (ml) of the catalyst. The analysis of ammonia was performed by analyzing the ammonium ion concentration of the water trap attached to the latter stage of the catalyst layer with an ammonia ion electrode. The analysis of NO and NO 2 was performed by analyzing the gas after the catalyst layer with a detector tube. The analysis of oxygen, nitrogen and N 2 O was carried out by gas chromatography. The ammonia conversion rate was calculated by the following equation, where X is the amount of substance (mol) of ammonia supplied and Y is the amount of substance (mol) of unreacted ammonia.
Ammonia conversion rate (%) = [(X-Y) / X] × 100
The generation rates of NO, NO 2 and N 2 O were respectively calculated by the following formulas.
NO generation rate (%): (outlet NO concentration) / (inlet NH 3 concentration) × 100
NO 2 production rate (%): (outlet NO 2 concentration) / (inlet NH 3 concentration) × 100
N 2 O production rate (%): (outlet N 2 O concentration) / (inlet NH 3 concentration) × 100
The activity per 1 g of ruthenium was calculated as a value obtained by dividing the reaction amount of ammonia by the mass (g) of Ru.
アンモニア転化率(%)=[(X-Y)/X]×100
NO、NO2、N2O生成率はそれぞれ下記の式で算出した。
NO生成率(%):(出口NO濃度)/(入口NH3濃度)× 100
NO2生成率(%):(出口NO2濃度)/(入口NH3濃度)× 100
N2O生成率(%):(出口N2O濃度)/(入口NH3濃度)× 100
ルテニウム1g当たりの活性は、アンモニアの反応量をRuの質量(g)で除した値として算出した。 Hereinafter, although the example of the present invention is shown, the present invention is not limited by these. The space velocity GHSV (h −1 ) was calculated by dividing the feed rate (ml / h) of the gas containing ammonia and oxygen by the volume (ml) of the catalyst. The analysis of ammonia was performed by analyzing the ammonium ion concentration of the water trap attached to the latter stage of the catalyst layer with an ammonia ion electrode. The analysis of NO and NO 2 was performed by analyzing the gas after the catalyst layer with a detector tube. The analysis of oxygen, nitrogen and N 2 O was carried out by gas chromatography. The ammonia conversion rate was calculated by the following equation, where X is the amount of substance (mol) of ammonia supplied and Y is the amount of substance (mol) of unreacted ammonia.
Ammonia conversion rate (%) = [(X-Y) / X] × 100
The generation rates of NO, NO 2 and N 2 O were respectively calculated by the following formulas.
NO generation rate (%): (outlet NO concentration) / (inlet NH 3 concentration) × 100
NO 2 production rate (%): (outlet NO 2 concentration) / (inlet NH 3 concentration) × 100
N 2 O production rate (%): (outlet N 2 O concentration) / (inlet NH 3 concentration) × 100
The activity per 1 g of ruthenium was calculated as a value obtained by dividing the reaction amount of ammonia by the mass (g) of Ru.
<実施例1>
(a)アンモニア酸化触媒(A)の製造
ルチル結晶形の二酸化チタン〔堺化学工業株式会社製、STR-60R、100%ルチル結晶形〕50重量部とα-アルミナ〔住友化学株式会社製、AES-12〕50重量部とを混合し、次いでこの混合物100重量部に対し、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量39重量%、二酸化チタンは100%アナターゼ結晶形〕12.8重量部を純水で希釈し、混練した。この混練物を直径1.5mmの円柱状に押出し、乾燥した後、長さ2~4mm程度に破砕した。得られた成型体を空気中、650~680℃で3時間焼成し、二酸化チタンとα-アルミナの混合物からなる担体を得た。この担体に、市販の塩化ルテニウム水和物の水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(A)得た。 Example 1
(A) Production of ammonia oxidation catalyst (A) 50 parts by weight of titanium dioxide in rutile crystal form (Sho Chemical Industry Co., Ltd., STR-60R, 100% rutile crystal form) and α-alumina (Sumitomo Chemical Co., Ltd., AES) -12] Mix 50 parts by weight, and then 100 parts by weight of this mixture, based on 100 parts by weight of titanium dioxide sol [CSB, content of titanium dioxide in titanium dioxide sol 39% by weight in titanium dioxide sol, titanium dioxide 100% anatase Crystal form: 12.8 parts by weight was diluted with pure water and kneaded. The kneaded product was extruded into a cylindrical shape having a diameter of 1.5 mm, dried, and then crushed to a length of about 2 to 4 mm. The resulting molded product was calcined in air at 650 to 680 ° C. for 3 hours to obtain a carrier consisting of a mixture of titanium dioxide and α-alumina. This carrier is impregnated with a commercially available aqueous solution of ruthenium chloride hydrate, dried, and calcined in air at 250 ° C. for 2 hours, whereby ruthenium oxide is supported on the carrier with a supporting rate of 4% by weight. Ammonia oxidation catalyst (A) was obtained.
(a)アンモニア酸化触媒(A)の製造
ルチル結晶形の二酸化チタン〔堺化学工業株式会社製、STR-60R、100%ルチル結晶形〕50重量部とα-アルミナ〔住友化学株式会社製、AES-12〕50重量部とを混合し、次いでこの混合物100重量部に対し、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量39重量%、二酸化チタンは100%アナターゼ結晶形〕12.8重量部を純水で希釈し、混練した。この混練物を直径1.5mmの円柱状に押出し、乾燥した後、長さ2~4mm程度に破砕した。得られた成型体を空気中、650~680℃で3時間焼成し、二酸化チタンとα-アルミナの混合物からなる担体を得た。この担体に、市販の塩化ルテニウム水和物の水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(A)得た。 Example 1
(A) Production of ammonia oxidation catalyst (A) 50 parts by weight of titanium dioxide in rutile crystal form (Sho Chemical Industry Co., Ltd., STR-60R, 100% rutile crystal form) and α-alumina (Sumitomo Chemical Co., Ltd., AES) -12] Mix 50 parts by weight, and then 100 parts by weight of this mixture, based on 100 parts by weight of titanium dioxide sol [CSB, content of titanium dioxide in titanium dioxide sol 39% by weight in titanium dioxide sol, titanium dioxide 100% anatase Crystal form: 12.8 parts by weight was diluted with pure water and kneaded. The kneaded product was extruded into a cylindrical shape having a diameter of 1.5 mm, dried, and then crushed to a length of about 2 to 4 mm. The resulting molded product was calcined in air at 650 to 680 ° C. for 3 hours to obtain a carrier consisting of a mixture of titanium dioxide and α-alumina. This carrier is impregnated with a commercially available aqueous solution of ruthenium chloride hydrate, dried, and calcined in air at 250 ° C. for 2 hours, whereby ruthenium oxide is supported on the carrier with a supporting rate of 4% by weight. Ammonia oxidation catalyst (A) was obtained.
(b)アンモニア酸化分解
上記アンモニア酸化触媒(A)0.84gとSiC2.00gとを内径1cmの石英ガラス製反応管中に充填して触媒層を形成させ、ヘリウム62ml/min流通下で200℃まで昇温した後、アンモニア2ml/min、酸素16ml/min、水20ml/min、ヘリウム62ml/minを反応管に供給し、反応を行った。反応開始後30分後に触媒層後段のガスを採取し、検知管にてNO、NO2の分析を行ったところNO生成率0.4%、NO2生成率0.2%であった。反応開始後2時間後に触媒層出口ガスを採取しガスクロマトグラフィーで分析したところ、N2O生成率は3.3%であった。反応開始後2時間後から反応開始後3時間後にかけて触媒層の出口を水トラップに接続し、未反応アンモニアを吸収させた。上記水トラップをアンモニアイオン電極にて分析したところアンモニア転化率は95.7%であった。 (B) Ammonia oxidation decomposition 0.84 g of the above ammonia oxidation catalyst (A) and 2.00 g of SiC are packed in a quartz glass reaction tube with an inner diameter of 1 cm to form a catalyst layer, and 200 ° C. under a flow of 62 ml / min of helium. After raising the temperature up to 2 ml / min of ammonia, 16 ml / min of oxygen, 20 ml / min of water and 62 ml / min of helium were supplied to the reaction tube to carry out a reaction. Thirty minutes after the start of the reaction, the gas in the latter stage of the catalyst layer was collected, and NO and NO 2 were analyzed by the detection tube. As a result, the NO generation rate was 0.4% and the NO 2 generation rate was 0.2%. Two hours after the start of the reaction, the catalyst layer outlet gas was collected and analyzed by gas chromatography to find that the N 2 O production rate was 3.3%. The outlet of the catalyst layer was connected to a water trap from 2 hours after the initiation of the reaction to 3 hours after the initiation of the reaction to absorb unreacted ammonia. The water trap was analyzed at an ammonia ion electrode to find that the ammonia conversion was 95.7%.
上記アンモニア酸化触媒(A)0.84gとSiC2.00gとを内径1cmの石英ガラス製反応管中に充填して触媒層を形成させ、ヘリウム62ml/min流通下で200℃まで昇温した後、アンモニア2ml/min、酸素16ml/min、水20ml/min、ヘリウム62ml/minを反応管に供給し、反応を行った。反応開始後30分後に触媒層後段のガスを採取し、検知管にてNO、NO2の分析を行ったところNO生成率0.4%、NO2生成率0.2%であった。反応開始後2時間後に触媒層出口ガスを採取しガスクロマトグラフィーで分析したところ、N2O生成率は3.3%であった。反応開始後2時間後から反応開始後3時間後にかけて触媒層の出口を水トラップに接続し、未反応アンモニアを吸収させた。上記水トラップをアンモニアイオン電極にて分析したところアンモニア転化率は95.7%であった。 (B) Ammonia oxidation decomposition 0.84 g of the above ammonia oxidation catalyst (A) and 2.00 g of SiC are packed in a quartz glass reaction tube with an inner diameter of 1 cm to form a catalyst layer, and 200 ° C. under a flow of 62 ml / min of helium. After raising the temperature up to 2 ml / min of ammonia, 16 ml / min of oxygen, 20 ml / min of water and 62 ml / min of helium were supplied to the reaction tube to carry out a reaction. Thirty minutes after the start of the reaction, the gas in the latter stage of the catalyst layer was collected, and NO and NO 2 were analyzed by the detection tube. As a result, the NO generation rate was 0.4% and the NO 2 generation rate was 0.2%. Two hours after the start of the reaction, the catalyst layer outlet gas was collected and analyzed by gas chromatography to find that the N 2 O production rate was 3.3%. The outlet of the catalyst layer was connected to a water trap from 2 hours after the initiation of the reaction to 3 hours after the initiation of the reaction to absorb unreacted ammonia. The water trap was analyzed at an ammonia ion electrode to find that the ammonia conversion was 95.7%.
<実施例2>
(a)アンモニア酸化触媒(B)の製造
二酸化チタン粉末〔昭和タイタニウム株式会社製、F-1R、ルチル結晶形二酸化チタン比率93%〕100重量部と有機バインダー2重量部〔ユケン工業株式会社製、YB-152A〕とを混合し、次いで純水29重量部、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量40重量%、100%アナターゼ結晶形〕12.5重量部を加えて混練した。この混合物を直径3.0mmのヌードル状に押出し、60℃で2時間乾燥した後、長さ3~5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、600℃で3時間保持して焼成し、白色の二酸化チタン担体〔ルチル結晶形二酸化チタン比率90%以上〕を得た。
上記で得られた二酸化チタン担体の内60.0gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、テトラエトキシシラン〔和光純薬工業株式会社製、Si(OC2H5)4〕2.13gをエタノール9.22gに溶解して調製した溶液を該ナス型フラスコ内に20分間で滴下することにより、該溶液を二酸化チタン担体に含浸させた。次いで、含浸後の二酸化チタン担体が入ったナス型フラスコを80rpmで回転させることにより該二酸化チタン担体を撹拌しながら、ナス型フラスコ内の温度を30℃とし、ナス型フラスコ内に水蒸気と窒素との混合ガス(水蒸気濃度:2.0体積%)を277mL/min(0℃、0.1MPa換算)の流量で連続的に4時間20分の間供給し、流通させることにより含浸後の二酸化チタン担体を乾燥した。得られた乾燥物62.3gを、空気流通下、室温から300℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、二酸化ケイ素が二酸化チタン担体に担持されてなる固体(二酸化ケイ素担持二酸化チタン担体)60.6gを得た。得られた二酸化ケイ素担持二酸化チタン担体の内30.1gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、塩化ルテニウム水和物〔株式会社フルヤ金属製、RuCl3・nH2O、Ru含有量40.75重量%〕0.71gを純水6.89gに溶解して調製した水溶液を該ナス型フラスコ内に30分間で滴下することにより、該水溶液を含浸させ、37.70gの塩化ルテニウム担持物を得た。次いで、上記の塩化ルテニウム担持物が入ったナス型フラスコを80rpmで回転させることにより該塩化ルテニウム担持物を撹拌しながら、ナス型フラスコ内の温度を35℃とし、ナス型フラスコ内に空気を692mL/min(0℃、0.1MPa換算)の流量で連続的に3時間40分の間供給し、流通させることにより乾燥し、32.21gの乾燥物Aを得た。得られた乾燥物A32.21gを、密閉容器に入れ、恒温槽中、20℃で120時間保持した。保持後の乾燥物Aの重量は32.21gであった。保持後の乾燥物Aに含まれる二酸化ケイ素担持二酸化チタン担体の重量を基準とする水分量は保持前と変化はみられず、水の蒸発量は0gであった。保持後の乾燥物Aの内21.48gを、空気流通下、室温から280℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25重量%である青灰色のアンモニア酸化触媒(B)(酸化ルテニウムおよび二酸化ケイ素が、二酸化チタンに担持された)20.34gを得た。 Example 2
(A) Production of ammonia oxidation catalyst (B) 100 parts by weight of titanium dioxide powder (manufactured by Showa Titanium Co., Ltd., F-1R, ratio of rutile crystalline titanium dioxide 93%) and 2 parts by weight of organic binder (manufactured by Yuken Kogyo Co., Ltd.) Mixed with YB-152A], followed by 29 parts by weight of pure water, titanium dioxide sol (CSB, content of titanium dioxide 40% by weight in titanium dioxide sol, 100% anatase crystal form) 12.5 wt% Part was added and kneaded. The mixture was extruded into noodles of 3.0 mm in diameter, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The resulting molded product is heated from room temperature to 600 ° C. in air over 1.7 hours, and then held at 600 ° C. for 3 hours for calcination to obtain a white titanium dioxide carrier [ratio of rutile crystalline titanium dioxide: 90 % Or more].
60.0 g of the titanium dioxide carrier obtained above is placed in a 200 mL eggplant-type flask and set in a rotary impregnation-drying apparatus, and the eggplant-type flask is rotated 60 degrees from the vertical direction and rotated at 80 rpm A solution prepared by dissolving 2.13 g of tetraethoxysilane [Si (OC 2 H 5 ) 4 made by Wako Pure Chemical Industries, Ltd.] in 9.22 g of ethanol is dropped into the eggplant-type flask over 20 minutes. The solution was impregnated into the titanium dioxide support by Next, while the titanium dioxide support is stirred by rotating the eggplant-type flask containing the impregnated titanium dioxide support at 80 rpm, the temperature in the eggplant-type flask is brought to 30 ° C. Of mixed gas (water vapor concentration: 2.0% by volume) at a flow rate of 277 mL / min (0.degree. C., 0.1 MPa equivalent) continuously for 4 hours and 20 minutes and allowed to flow for titanium dioxide after impregnation The carrier was dried. After heating 62.3 g of the obtained dried product from room temperature to 300 ° C. in a stream of air over 1.2 hours, it is held at the same temperature for 2 hours and calcined to support silicon dioxide on the titanium dioxide carrier. 60.6 g of a solid (silicon dioxide-supported titanium dioxide support) was obtained. 30.1 g of the obtained silicon dioxide-supporting titanium dioxide support is placed in a 200 mL eggplant type flask, set in a rotary impregnation-drying apparatus, and rotated at 80 rpm with the eggplant type flask inclined 60 degrees from the vertical direction The eggplant type aqueous solution prepared by dissolving 0.71 g of ruthenium chloride hydrate (made by Furuya Metal Co., Ltd., RuCl 3 · n H 2 O, Ru content 40.75% by weight) in 6.89 g of pure water The aqueous solution was impregnated by dropping into the flask for 30 minutes to obtain 37.70 g of ruthenium chloride support. Then, while the ruthenium chloride support is stirred by rotating the above-mentioned ruthenium chloride support containing the above-mentioned ruthenium chloride support at 80 rpm, the temperature in the eggplant-type flask is brought to 35 ° C., and 692 mL of air in the eggplant-type flask The solution was continuously supplied for 3 hours and 40 minutes at a flow rate of 1 min./min (0 ° C., converted to 0.1 MPa) and dried by flowing to obtain 32.21 g of a dried product A. The obtained dried product A 32.21 g was placed in a closed vessel, and kept in a thermostat at 20 ° C. for 120 hours. The weight of the dried product A after holding was 32.21 g. The amount of water based on the weight of the silicon dioxide-supporting titanium dioxide carrier contained in the dried product A after holding was the same as that before holding, and the amount of water evaporated was 0 g. 21.48 g of the dried product A after holding is heated from room temperature to 280 ° C. in 1.2 hours under air flow, and then held at the same temperature for 2 hours and calcined, and the content of ruthenium oxide is 20.34 g of a blue-gray ammonia oxidation catalyst (B) (ruthenium oxide and silicon dioxide supported on titanium dioxide) which is 1.25% by weight were obtained.
(a)アンモニア酸化触媒(B)の製造
二酸化チタン粉末〔昭和タイタニウム株式会社製、F-1R、ルチル結晶形二酸化チタン比率93%〕100重量部と有機バインダー2重量部〔ユケン工業株式会社製、YB-152A〕とを混合し、次いで純水29重量部、二酸化チタンゾル〔堺化学工業株式会社製、CSB、二酸化チタンゾル中の二酸化チタン含有量40重量%、100%アナターゼ結晶形〕12.5重量部を加えて混練した。この混合物を直径3.0mmのヌードル状に押出し、60℃で2時間乾燥した後、長さ3~5mm程度に破砕した。得られた成形体を、空気中で室温から600℃まで1.7時間かけて昇温した後、600℃で3時間保持して焼成し、白色の二酸化チタン担体〔ルチル結晶形二酸化チタン比率90%以上〕を得た。
上記で得られた二酸化チタン担体の内60.0gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、テトラエトキシシラン〔和光純薬工業株式会社製、Si(OC2H5)4〕2.13gをエタノール9.22gに溶解して調製した溶液を該ナス型フラスコ内に20分間で滴下することにより、該溶液を二酸化チタン担体に含浸させた。次いで、含浸後の二酸化チタン担体が入ったナス型フラスコを80rpmで回転させることにより該二酸化チタン担体を撹拌しながら、ナス型フラスコ内の温度を30℃とし、ナス型フラスコ内に水蒸気と窒素との混合ガス(水蒸気濃度:2.0体積%)を277mL/min(0℃、0.1MPa換算)の流量で連続的に4時間20分の間供給し、流通させることにより含浸後の二酸化チタン担体を乾燥した。得られた乾燥物62.3gを、空気流通下、室温から300℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、二酸化ケイ素が二酸化チタン担体に担持されてなる固体(二酸化ケイ素担持二酸化チタン担体)60.6gを得た。得られた二酸化ケイ素担持二酸化チタン担体の内30.1gを、200mLのナス型フラスコに入れ、回転式含浸-乾燥装置にセットし、該ナス型フラスコを鉛直方向から60度傾けて80rpmで回転させながら、塩化ルテニウム水和物〔株式会社フルヤ金属製、RuCl3・nH2O、Ru含有量40.75重量%〕0.71gを純水6.89gに溶解して調製した水溶液を該ナス型フラスコ内に30分間で滴下することにより、該水溶液を含浸させ、37.70gの塩化ルテニウム担持物を得た。次いで、上記の塩化ルテニウム担持物が入ったナス型フラスコを80rpmで回転させることにより該塩化ルテニウム担持物を撹拌しながら、ナス型フラスコ内の温度を35℃とし、ナス型フラスコ内に空気を692mL/min(0℃、0.1MPa換算)の流量で連続的に3時間40分の間供給し、流通させることにより乾燥し、32.21gの乾燥物Aを得た。得られた乾燥物A32.21gを、密閉容器に入れ、恒温槽中、20℃で120時間保持した。保持後の乾燥物Aの重量は32.21gであった。保持後の乾燥物Aに含まれる二酸化ケイ素担持二酸化チタン担体の重量を基準とする水分量は保持前と変化はみられず、水の蒸発量は0gであった。保持後の乾燥物Aの内21.48gを、空気流通下、室温から280℃まで1.2時間かけて昇温した後、同温度で2時間保持して焼成し、酸化ルテニウムの含有量が1.25重量%である青灰色のアンモニア酸化触媒(B)(酸化ルテニウムおよび二酸化ケイ素が、二酸化チタンに担持された)20.34gを得た。 Example 2
(A) Production of ammonia oxidation catalyst (B) 100 parts by weight of titanium dioxide powder (manufactured by Showa Titanium Co., Ltd., F-1R, ratio of rutile crystalline titanium dioxide 93%) and 2 parts by weight of organic binder (manufactured by Yuken Kogyo Co., Ltd.) Mixed with YB-152A], followed by 29 parts by weight of pure water, titanium dioxide sol (CSB, content of titanium dioxide 40% by weight in titanium dioxide sol, 100% anatase crystal form) 12.5 wt% Part was added and kneaded. The mixture was extruded into noodles of 3.0 mm in diameter, dried at 60 ° C. for 2 hours, and then crushed to a length of about 3 to 5 mm. The resulting molded product is heated from room temperature to 600 ° C. in air over 1.7 hours, and then held at 600 ° C. for 3 hours for calcination to obtain a white titanium dioxide carrier [ratio of rutile crystalline titanium dioxide: 90 % Or more].
60.0 g of the titanium dioxide carrier obtained above is placed in a 200 mL eggplant-type flask and set in a rotary impregnation-drying apparatus, and the eggplant-type flask is rotated 60 degrees from the vertical direction and rotated at 80 rpm A solution prepared by dissolving 2.13 g of tetraethoxysilane [Si (OC 2 H 5 ) 4 made by Wako Pure Chemical Industries, Ltd.] in 9.22 g of ethanol is dropped into the eggplant-type flask over 20 minutes. The solution was impregnated into the titanium dioxide support by Next, while the titanium dioxide support is stirred by rotating the eggplant-type flask containing the impregnated titanium dioxide support at 80 rpm, the temperature in the eggplant-type flask is brought to 30 ° C. Of mixed gas (water vapor concentration: 2.0% by volume) at a flow rate of 277 mL / min (0.degree. C., 0.1 MPa equivalent) continuously for 4 hours and 20 minutes and allowed to flow for titanium dioxide after impregnation The carrier was dried. After heating 62.3 g of the obtained dried product from room temperature to 300 ° C. in a stream of air over 1.2 hours, it is held at the same temperature for 2 hours and calcined to support silicon dioxide on the titanium dioxide carrier. 60.6 g of a solid (silicon dioxide-supported titanium dioxide support) was obtained. 30.1 g of the obtained silicon dioxide-supporting titanium dioxide support is placed in a 200 mL eggplant type flask, set in a rotary impregnation-drying apparatus, and rotated at 80 rpm with the eggplant type flask inclined 60 degrees from the vertical direction The eggplant type aqueous solution prepared by dissolving 0.71 g of ruthenium chloride hydrate (made by Furuya Metal Co., Ltd., RuCl 3 · n H 2 O, Ru content 40.75% by weight) in 6.89 g of pure water The aqueous solution was impregnated by dropping into the flask for 30 minutes to obtain 37.70 g of ruthenium chloride support. Then, while the ruthenium chloride support is stirred by rotating the above-mentioned ruthenium chloride support containing the above-mentioned ruthenium chloride support at 80 rpm, the temperature in the eggplant-type flask is brought to 35 ° C., and 692 mL of air in the eggplant-type flask The solution was continuously supplied for 3 hours and 40 minutes at a flow rate of 1 min./min (0 ° C., converted to 0.1 MPa) and dried by flowing to obtain 32.21 g of a dried product A. The obtained dried product A 32.21 g was placed in a closed vessel, and kept in a thermostat at 20 ° C. for 120 hours. The weight of the dried product A after holding was 32.21 g. The amount of water based on the weight of the silicon dioxide-supporting titanium dioxide carrier contained in the dried product A after holding was the same as that before holding, and the amount of water evaporated was 0 g. 21.48 g of the dried product A after holding is heated from room temperature to 280 ° C. in 1.2 hours under air flow, and then held at the same temperature for 2 hours and calcined, and the content of ruthenium oxide is 20.34 g of a blue-gray ammonia oxidation catalyst (B) (ruthenium oxide and silicon dioxide supported on titanium dioxide) which is 1.25% by weight were obtained.
(b)アンモニア酸化分解
上記アンモニア酸化触媒(B)を使用したこと以外は、実施例1と同様に行った。その結果、アンモニア転化率55.6%、NO生成率0.08%、NO2生成率0.02%、N2O生成率0.98%であった。 (B) Ammonia Oxidative Decomposition The procedure of Example 1 was repeated except that the above ammonia oxidation catalyst (B) was used. As a result, the ammonia conversion rate was 55.6%, the NO production rate was 0.08%, the NO 2 production rate was 0.02%, and the N 2 O production rate was 0.98%.
上記アンモニア酸化触媒(B)を使用したこと以外は、実施例1と同様に行った。その結果、アンモニア転化率55.6%、NO生成率0.08%、NO2生成率0.02%、N2O生成率0.98%であった。 (B) Ammonia Oxidative Decomposition The procedure of Example 1 was repeated except that the above ammonia oxidation catalyst (B) was used. As a result, the ammonia conversion rate was 55.6%, the NO production rate was 0.08%, the NO 2 production rate was 0.02%, and the N 2 O production rate was 0.98%.
<参考例1>
(a)アンモニア酸化触媒(C)の製造
1~2mmの球状に整形されたアナターゼ結晶形の二酸化チタン〔堺化学工業株式会社製、CS-300S-12、100%アナターゼ結晶形〕10gに対して、塩化ルテニウム水和物0.77gと水3.25gとを滴下した。得られた混合物を18時間風乾後、空気200ml/min流通下の管状炉にて250℃で2時間焼成することで酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(C)を得た。 Reference Example 1
(A) Preparation of ammonia oxidation catalyst (C) 1 to 2 mm of spherically shaped anatase crystalline form of titanium dioxide [CS-300S-12, 100% anatase crystalline form, made by Sakai Chemical Industry Co., Ltd.] 10 g Then, 0.77 g of ruthenium chloride hydrate and 3.25 g of water were dropped. The resulting mixture is air-dried for 18 hours and calcined at 250 ° C. for 2 hours in a tubular furnace under a flow of 200 ml / min of air, whereby an ammonia oxidation catalyst comprising ruthenium oxide supported on the above carrier at a loading of 4% by weight I got (C).
(a)アンモニア酸化触媒(C)の製造
1~2mmの球状に整形されたアナターゼ結晶形の二酸化チタン〔堺化学工業株式会社製、CS-300S-12、100%アナターゼ結晶形〕10gに対して、塩化ルテニウム水和物0.77gと水3.25gとを滴下した。得られた混合物を18時間風乾後、空気200ml/min流通下の管状炉にて250℃で2時間焼成することで酸化ルテニウムが4重量%の担持率で上記担体に担持されてなるアンモニア酸化触媒(C)を得た。 Reference Example 1
(A) Preparation of ammonia oxidation catalyst (C) 1 to 2 mm of spherically shaped anatase crystalline form of titanium dioxide [CS-300S-12, 100% anatase crystalline form, made by Sakai Chemical Industry Co., Ltd.] 10 g Then, 0.77 g of ruthenium chloride hydrate and 3.25 g of water were dropped. The resulting mixture is air-dried for 18 hours and calcined at 250 ° C. for 2 hours in a tubular furnace under a flow of 200 ml / min of air, whereby an ammonia oxidation catalyst comprising ruthenium oxide supported on the above carrier at a loading of 4% by weight I got (C).
(b)アンモニア酸化分解
上記アンモニア酸化触媒(C)を使用したこと以外は、実施例1と同様に反応させた。その結果、アンモニア転化率19.7%、NO生成率0.02%、NO2生成率0.0%、N2O生成率0.0%であった。 (B) Ammonia oxidation decomposition The reaction was carried out in the same manner as in Example 1 except that the above ammonia oxidation catalyst (C) was used. As a result, the ammonia conversion rate was 19.7%, the NO production rate was 0.02%, the NO 2 production rate was 0.0%, and the N 2 O production rate was 0.0%.
上記アンモニア酸化触媒(C)を使用したこと以外は、実施例1と同様に反応させた。その結果、アンモニア転化率19.7%、NO生成率0.02%、NO2生成率0.0%、N2O生成率0.0%であった。 (B) Ammonia oxidation decomposition The reaction was carried out in the same manner as in Example 1 except that the above ammonia oxidation catalyst (C) was used. As a result, the ammonia conversion rate was 19.7%, the NO production rate was 0.02%, the NO 2 production rate was 0.0%, and the N 2 O production rate was 0.0%.
本発明によれば、より入手容易な金属を含む触媒の存在下、高い転化率でアンモニアを酸化する方法を提供することができる。
According to the present invention, it is possible to provide a method for oxidizing ammonia at a high conversion rate in the presence of a catalyst containing a more readily available metal.
Claims (6)
- ルテニウムおよび/またはルテニウム化合物が、ルチル結晶形の酸化チタンを含有する担体に担持された触媒の存在下、アンモニア含有ガス中のアンモニアを酸化して窒素と水を得る工程を含むアンモニアの酸化方法。 A method of oxidizing ammonia, comprising the step of oxidizing ammonia in an ammonia-containing gas to obtain nitrogen and water in the presence of a catalyst supported by a ruthenium and / or ruthenium compound supported on a support containing titanium oxide in rutile crystal form.
- アンモニアを酸化して窒素と水を得る工程は、酸素を含むアンモニア含有ガスを前記触媒に接触させることにより行われる工程である請求項1に記載のアンモニアの酸化方法。 The method of oxidizing ammonia according to claim 1, wherein the step of oxidizing ammonia to obtain nitrogen and water is a step carried out by bringing an ammonia-containing gas containing oxygen into contact with the catalyst.
- 前記触媒は、酸化ルテニウムが前記担体に担持された触媒である請求項1または2に記載のアンモニアの酸化方法。 The method for oxidizing ammonia according to claim 1, wherein the catalyst is a catalyst in which ruthenium oxide is supported on the carrier.
- 前記触媒は、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物が前記担体にさらに担持された触媒である請求項1~3のいずれか一項に記載のアンモニアの酸化方法。 The catalyst according to any one of claims 1 to 3, wherein at least one oxide selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide and tin oxide is further supported on the support. The method of oxidizing ammonia according to claim 1.
- ルテニウムおよび/またはルテニウム化合物がルチル結晶形の酸化チタンを含有する担体に担持された触媒を備えたアンモニア含有ガス酸化装置。 An ammonia-containing gas oxidizing apparatus comprising a catalyst in which a ruthenium and / or a ruthenium compound is supported on a support containing titanium oxide in a rutile crystal form.
- アンモニア含有水溶液からアンモニア含有ガスを放散する放散手段を有する放散塔と、請求項5に記載のアンモニア含有ガス酸化装置とを備えたアンモニア含有水溶液の処理装置。 The processing apparatus of the ammonia containing aqueous solution provided with the diffusion tower which has the spreading | diffusion means to radiate | emit ammonia containing gas from ammonia containing aqueous solution, and the ammonia containing gas oxidizing device of Claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880055374.XA CN111051238B (en) | 2017-11-29 | 2018-11-07 | Method for oxidizing ammonia |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017228682A JP7067035B2 (en) | 2017-11-29 | 2017-11-29 | Ammonia oxidation method |
JP2017-228682 | 2017-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107098A1 true WO2019107098A1 (en) | 2019-06-06 |
Family
ID=66664477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041300 WO2019107098A1 (en) | 2017-11-29 | 2018-11-07 | Method for oxidizing ammonia |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7067035B2 (en) |
CN (1) | CN111051238B (en) |
WO (1) | WO2019107098A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114797893A (en) * | 2022-04-25 | 2022-07-29 | 昆明理工大学 | Ammonia oxidation catalyst and preparation method and application thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023167677A (en) * | 2022-05-12 | 2023-11-24 | 住友化学株式会社 | Catalyst, catalyst precursor, method for manufacturing catalyst, catalyst packing reaction tube, and method for decomposing nitrous oxide |
CN114917753B (en) * | 2022-06-16 | 2023-04-28 | 中晶环境科技股份有限公司 | Use of a support for selectively catalyzing ammonia |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009254981A (en) * | 2008-04-17 | 2009-11-05 | Nippon Shokubai Co Ltd | Ammonia decomposing catalyst and method of decomposing ammonia |
JP2013237045A (en) * | 2013-07-08 | 2013-11-28 | Nippon Shokubai Co Ltd | Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst |
JP2016023126A (en) * | 2014-07-24 | 2016-02-08 | 国立大学法人群馬大学 | Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste |
WO2016088896A1 (en) * | 2014-12-05 | 2016-06-09 | 国立大学法人東京工業大学 | Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method |
JP2016198720A (en) * | 2015-04-09 | 2016-12-01 | 国立大学法人宇都宮大学 | Ammonia decomposition catalyst, method for producing ammonia decomposition catalyst, method for producing hydrogen and apparatus for producing hydrogen |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101516812B1 (en) * | 1998-02-16 | 2015-04-30 | 스미또모 가가꾸 가부시끼가이샤 | Process for producing chlorine |
CN1506300A (en) * | 2002-12-12 | 2004-06-23 | 中国科学院大连化学物理研究所 | Ruthenium-based catalyst for decomposing ammonia to prepare mixed H2-N2 gas and its prepn |
CN101862674B (en) * | 2010-05-24 | 2012-02-08 | 清华大学 | Monolithic catalyst for use in preparation of chloride by using hydrogen chloride and preparation method thereof |
EP2612706B1 (en) * | 2010-08-31 | 2019-10-30 | Hitachi Zosen Corporation | Process for producing hydrogen |
JP2012161717A (en) * | 2011-02-04 | 2012-08-30 | Sumitomo Chemical Co Ltd | Method for producing supported ruthenium oxide, and method for producing chlorine |
EP2524727A1 (en) * | 2011-05-19 | 2012-11-21 | Amminex A/S | Method for preparing a supported ruthenium catalyst |
CN102728350A (en) * | 2012-07-10 | 2012-10-17 | 北京纬纶华业环保科技股份有限公司 | Catalyst for treating industrial waste water by catalytic wet air oxidation (CWAO) |
JP6145921B2 (en) * | 2012-11-06 | 2017-06-14 | 国立大学法人 大分大学 | Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus |
EP3027309B1 (en) * | 2013-07-30 | 2020-05-27 | Johnson Matthey Public Limited Company | Ammonia slip catalyst |
-
2017
- 2017-11-29 JP JP2017228682A patent/JP7067035B2/en active Active
-
2018
- 2018-11-07 WO PCT/JP2018/041300 patent/WO2019107098A1/en active Application Filing
- 2018-11-07 CN CN201880055374.XA patent/CN111051238B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009254981A (en) * | 2008-04-17 | 2009-11-05 | Nippon Shokubai Co Ltd | Ammonia decomposing catalyst and method of decomposing ammonia |
JP2013237045A (en) * | 2013-07-08 | 2013-11-28 | Nippon Shokubai Co Ltd | Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst |
JP2016023126A (en) * | 2014-07-24 | 2016-02-08 | 国立大学法人群馬大学 | Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste |
WO2016088896A1 (en) * | 2014-12-05 | 2016-06-09 | 国立大学法人東京工業大学 | Composite body, method for producing composite body, ammonia synthesis catalyst, and ammonia synthesis method |
JP2016198720A (en) * | 2015-04-09 | 2016-12-01 | 国立大学法人宇都宮大学 | Ammonia decomposition catalyst, method for producing ammonia decomposition catalyst, method for producing hydrogen and apparatus for producing hydrogen |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114797893A (en) * | 2022-04-25 | 2022-07-29 | 昆明理工大学 | Ammonia oxidation catalyst and preparation method and application thereof |
CN114797893B (en) * | 2022-04-25 | 2023-08-11 | 昆明理工大学 | Ammonia oxidation catalyst, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2019099393A (en) | 2019-06-24 |
CN111051238B (en) | 2023-06-16 |
JP7067035B2 (en) | 2022-05-16 |
CN111051238A (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Surface in situ doping modification over Mn2O3 for toluene and propene catalytic oxidation: the effect of isolated Cuδ+ insertion into the mezzanine of surface MnO2 cladding | |
WO2019107098A1 (en) | Method for oxidizing ammonia | |
JP4982736B2 (en) | A water splitting catalyst by light and a method for producing the same. | |
CN108906044B (en) | Manganese-cerium-ruthenium composite oxide catalyst and preparation method and application thereof | |
Ren et al. | Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3 | |
CN108067265B (en) | Preparation method of methane conversion catalyst | |
JP6684669B2 (en) | Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst | |
JP2013139017A (en) | Method for producing carried ruthenium oxide, and method for producing chlorine | |
CN115722220B (en) | Catalytic oxidation catalyst and preparation method and application thereof | |
WO2023084825A1 (en) | Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide | |
PL231314B1 (en) | Oxide catalyst carrier for low temperature combustion of methane from sources of low-calorie and its manufacturing | |
JP5706476B2 (en) | Carbon monoxide oxidation catalyst and production method thereof | |
JP2017124366A (en) | Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst | |
JP2017001010A (en) | Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst | |
WO2023021806A1 (en) | Nitrous oxide decomposition method and nitrous oxide decomposition device | |
WO2023219074A1 (en) | Catalyst, catalyst precursor, method for producing catalyst, reaction tube filled with catalyst, and method for decomposing nitrous oxide | |
WO2024171961A1 (en) | Method for decomposing nitrous oxide and method for producing nitrous oxide decomposition catalyst | |
JP2013146720A (en) | Method for producing supported ruthenium oxide, and method for production of chlorine | |
JP2008246437A (en) | Treatment method of halogenated aliphatic hydrocarbon-containing gas | |
Batakliev et al. | Gas phase ozone decomposition over co-precipitated Ni-based catalysts | |
JP2016010750A (en) | Photocatalyst composite and production method thereof | |
TW202432229A (en) | Chlorine decomposition method and chlorine removal method | |
JP2021154221A (en) | Ammonia-containing gas treatment method, treatment material and production method of treatment material | |
JP5736219B2 (en) | Method for producing supported ruthenium and method for producing chlorine | |
CN115487832A (en) | Catalyst for low-temperature propane oxidation and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18883558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18883558 Country of ref document: EP Kind code of ref document: A1 |