JP2008246437A - Treatment method of halogenated aliphatic hydrocarbon-containing gas - Google Patents

Treatment method of halogenated aliphatic hydrocarbon-containing gas Download PDF

Info

Publication number
JP2008246437A
JP2008246437A JP2007093712A JP2007093712A JP2008246437A JP 2008246437 A JP2008246437 A JP 2008246437A JP 2007093712 A JP2007093712 A JP 2007093712A JP 2007093712 A JP2007093712 A JP 2007093712A JP 2008246437 A JP2008246437 A JP 2008246437A
Authority
JP
Japan
Prior art keywords
catalyst
aliphatic hydrocarbon
decomposition
halogenated aliphatic
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093712A
Other languages
Japanese (ja)
Other versions
JP5041848B2 (en
Inventor
Kikuo Yamamoto
喜久雄 山本
Akihiro Saito
聡洋 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2007093712A priority Critical patent/JP5041848B2/en
Publication of JP2008246437A publication Critical patent/JP2008246437A/en
Application granted granted Critical
Publication of JP5041848B2 publication Critical patent/JP5041848B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of decomposition-treating halogenated aliphatic hydrocarbon in a halogenated aliphatic hydrocarbon-containing gas such as 1,2dichloroethane or vinyl chloride at low temperatures suppressing a production of a by-product. <P>SOLUTION: The method comprises the first decomposing process in which the halogenated aliphatic hydrocarbon-containing gas contacts a decomposition catalyst (A) in which a decomposition activity of the vinyl chloride at the temperature of 250°C, a vinyl chloride concentration of 1,000 ppm, and a spacial speed of 5,000 hr<SP>-1</SP>is 50-80%, and subsequently the second decomposing process in which the halogenated aliphatic hydrocarbon-containing gas treated by the first decomposing process contacts with a decomposition catalyst (B) in which the decomposition activity of the vinyl chloride is more than 80%. As the decomposition catalyst (A), metal oxides such as vanadium oxide, tungstic oxide, molybdenum oxide, or titanium oxide are represented. As the decomposition catalyst (B), a composite catalyst of the above metal oxides and chloride salts of second and third transition series elements in the periodic table of the elements is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハロゲン化脂肪族炭化水素ガスの新規な処理方法に関する。詳しくは、ハロゲン化脂肪族炭化水素含有ガスを分解触媒と接触せしめて、含有されるハロゲン化脂肪族炭化水素の分解を行うに際し、副生物の生成を著しく低減することができ、且つ、高い分解率を達成することが可能な、ハロゲン化脂肪族炭化水素含有ガスの処理方法を提供するものである。   The present invention relates to a novel method for treating halogenated aliphatic hydrocarbon gas. Specifically, when the halogenated aliphatic hydrocarbon-containing gas is brought into contact with the cracking catalyst to decompose the halogenated aliphatic hydrocarbon contained therein, the production of by-products can be remarkably reduced, and high decomposition is achieved. The present invention provides a method for treating a halogenated aliphatic hydrocarbon-containing gas capable of achieving a high rate.

塩化ビニルモノマーの製造プラントにおいて、1,2−ジクロロエタンや塩化ビニルは、各種の有用な中間原料、製品として生産される。上記製造工程において、排ガス中に含有される1,2−ジクロロエタンや塩化ビニルが、工程の排ガス中に残存することもあり、これらのハロゲン化脂肪族炭化水素を排ガスから除去するための技術が検討されている。   In a vinyl chloride monomer production plant, 1,2-dichloroethane and vinyl chloride are produced as various useful intermediate materials and products. In the above manufacturing process, 1,2-dichloroethane and vinyl chloride contained in the exhaust gas may remain in the exhaust gas of the process, and a technique for removing these halogenated aliphatic hydrocarbons from the exhaust gas is studied. Has been.

従来、排ガス中のハロゲン化脂肪族炭化水素を除去する技術としては、吸着法、直接燃焼法、触媒燃焼法が知られている。   Conventionally, an adsorption method, a direct combustion method, and a catalytic combustion method are known as techniques for removing halogenated aliphatic hydrocarbons in exhaust gas.

しかしながら、上記吸着法の場合、高濃度のハロゲン化脂肪族炭化水素の除去には有効であるが、低濃度の場合除去効率が悪い。また、直接燃焼の場合、通常800℃以上の高温が必要なため経済的ではなく、しかも、窒素酸化物の生成による2次公害も懸念される。   However, the above adsorption method is effective for removing high-concentration halogenated aliphatic hydrocarbons, but the removal efficiency is poor at low concentrations. Further, in the case of direct combustion, a high temperature of 800 ° C. or higher is usually required, which is not economical, and there is a concern about secondary pollution due to the generation of nitrogen oxides.

一方、ハロゲン化脂肪族炭化水素を分解する方法として、近年、分解触媒を使用した処理方法が提案されている。例えば、モルデナイトと白金族元素(金属)或いは金属酸化物からなる担持触媒、金属元素、金属酸化物からなる複合触媒を使用する方法である(特許文献1〜4参照)。この方法は、高活性の触媒を使用することにより、前記燃焼法に比べて低い温度でハロゲン化脂肪族炭化水素の高い分解率を達成することができ、窒素酸化物の生成防止に対しても効果が認められる。   On the other hand, as a method for decomposing halogenated aliphatic hydrocarbons, a treatment method using a decomposition catalyst has recently been proposed. For example, there is a method of using a supported catalyst made of mordenite and a platinum group element (metal) or metal oxide, or a composite catalyst made of metal element or metal oxide (see Patent Documents 1 to 4). This method can achieve a high decomposition rate of halogenated aliphatic hydrocarbons at a lower temperature than the combustion method by using a highly active catalyst, and also prevents the formation of nitrogen oxides. The effect is recognized.

しかしながら、上記分解温度は、低いといっても400℃以上であり、特に、1,2−ジクロロエタンを分解処理した場合、塩化ビニル、クロロメタン、四塩化炭素等のハロゲン化脂肪族炭化水素系の副生物が生成し、結果的に、得られる排ガス中のハロゲン化脂肪族炭化水素の濃度を十分低くすることが困難となるという問題があった。   However, although the decomposition temperature is low, it is 400 ° C. or higher. In particular, when 1,2-dichloroethane is decomposed, halogenated aliphatic hydrocarbons such as vinyl chloride, chloromethane, and carbon tetrachloride are used. By-products are generated, and as a result, there is a problem that it is difficult to sufficiently reduce the concentration of the halogenated aliphatic hydrocarbon in the obtained exhaust gas.

特公平6−59388公報Japanese Patent Publication No. 6-59388 特開平11−47603公報Japanese Patent Laid-Open No. 11-47603 特許第3760090号Patent No. 3760090 2001−246230公報2001-246230 2005−144321公報2005-144321

従って、本発明の目的は、350℃以下、特に、300℃未満という、より低い温度で、ハロゲン化脂肪族炭化水素を高度に分解処理することができるハロゲン化脂肪族炭化水素含有ガスの処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for treating a halogenated aliphatic hydrocarbon-containing gas capable of highly decomposing a halogenated aliphatic hydrocarbon at a lower temperature of 350 ° C. or lower, particularly less than 300 ° C. Is to provide.

本発明者らは上記課題を解決するため鋭意検討した結果、分解反応の前段において、ハロゲン化脂肪族炭化水素の分解活性を特定の範囲に低く抑えた分解触媒を使用して、主として酸化分解と部分的脱塩化水素反応を行い、後段において、上記分解活性が高い分解触媒を使用して、完全脱塩化水素反応と酸化分解反応を主として行うことにより、特に、低温域での反応においても効率の良い分解性能を発揮すると共に副生有機ハロゲン化合物の生成を極めて効果的に抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention mainly used oxidative decomposition and a decomposition catalyst in which the decomposition activity of the halogenated aliphatic hydrocarbon is suppressed to a specific range in the previous stage of the decomposition reaction. By performing a partial dehydrochlorination reaction, and using a cracking catalyst having a high cracking activity in the latter stage, mainly performing a complete dehydrochlorination reaction and an oxidative decomposition reaction, it is possible to improve the efficiency even in the reaction at low temperatures. The inventors have found that the present invention can be accomplished by exhibiting good decomposition performance and extremely effectively suppressing the formation of by-product organic halogen compounds.

即ち、本発明は、ハロゲン化脂肪族炭化水素含有ガスを分解触媒と接触せしめて含有されるハロゲン化脂肪族炭化水素を分解する方法であって、上記ハロゲン化脂肪族炭化水素含有ガスを、温度250℃、塩化ビニル濃度1000ppm及び空間速度5000hr−1における塩化ビニルの分解活性が50〜80%の分解触媒(A)と接触せしめる第一分解工程と、上記第一分解工程にて処理されたハロゲン化脂肪族炭化水素含有ガスを、温度250℃、塩化ビニル濃度1000ppm及び空間速度5000hr−1における塩化ビニルの分解活性が80%を超える分解触媒(B)と接触せしめる第二分解工程とを含むことを特徴とするハロゲン化脂肪族炭化水素含有ガスの処理方法である。 That is, the present invention is a method for decomposing a halogenated aliphatic hydrocarbon containing gas by bringing the halogenated aliphatic hydrocarbon-containing gas into contact with a cracking catalyst. A first decomposition step of contacting with a decomposition catalyst (A) having a decomposition activity of vinyl chloride at 250 ° C., a vinyl chloride concentration of 1000 ppm and a space velocity of 5000 hr −1, and a halogen treated in the first decomposition step; A second cracking step in which a gas containing aliphatic hydrocarbon is brought into contact with a cracking catalyst (B) having a cracking activity of vinyl chloride exceeding 80% at a temperature of 250 ° C., a vinyl chloride concentration of 1000 ppm and a space velocity of 5000 hr −1 . Is a method of treating a halogenated aliphatic hydrocarbon-containing gas.

本発明の方法によれば、後述するように、350℃以下、更には300℃以下という低温度領域においても、ハロゲン化脂肪族炭化水素を効率よく分解することが可能であり、その結果、副生物の生成を極めて効果的に抑制しながらハロゲン化脂肪族炭化水素含有ガスの処理を行うことが可能となった。   According to the method of the present invention, as will be described later, halogenated aliphatic hydrocarbons can be efficiently decomposed even in a low temperature range of 350 ° C. or lower, and further 300 ° C. or lower. It has become possible to treat halogenated aliphatic hydrocarbon-containing gases while suppressing the production of living organisms very effectively.

従って、本発明の分解方法は、塩化ビニルの製造プラントなどにおいて、排ガス中に含有される1,2−ジクロロエタンや塩化ビニルについて十分な濃度低減化効果が発揮される。   Therefore, the decomposition method of the present invention exhibits a sufficient concentration reducing effect for 1,2-dichloroethane and vinyl chloride contained in exhaust gas in a vinyl chloride production plant or the like.

本発明の分解方法の対象とするガスは、ハロゲン化脂肪族炭化水素を含有するガスである。かかるハロゲン化脂肪族炭化水素は、炭化水素分子構造中にハロゲン元素である塩素、フッ素、臭素、ヨウ素のうち、少なくとも1種の元素を1つ以上有する脂肪族炭化水素である。具体的には、クロロホルム、ジクロロメタン、トリタロロメタン、四塩化炭素、臭化メチル、1,2−ジクロロエタン、塩化ビニル、フロン類等が挙げられる。そのうち、本発明の方法は、特に、塩化ビニル、又は、1,2−ジタロロエタンの分解に対して有効である。   The gas targeted for the decomposition method of the present invention is a gas containing a halogenated aliphatic hydrocarbon. Such a halogenated aliphatic hydrocarbon is an aliphatic hydrocarbon having at least one element selected from the group consisting of chlorine, fluorine, bromine and iodine which are halogen elements in the hydrocarbon molecular structure. Specific examples include chloroform, dichloromethane, tritarolomethane, carbon tetrachloride, methyl bromide, 1,2-dichloroethane, vinyl chloride, and chlorofluorocarbons. Among them, the method of the present invention is particularly effective for the decomposition of vinyl chloride or 1,2-ditaroloethane.

また、前記ハロゲン化脂肪族炭化水素を含むガスとしては、塩化ビニルの製造プラントから排出される、1,2−ジクロロエタンや塩化ビニルを含む排ガスが代表的である。   The gas containing the halogenated aliphatic hydrocarbon is typically exhaust gas containing 1,2-dichloroethane or vinyl chloride discharged from a vinyl chloride production plant.

更に、前記ハロゲン化脂肪族炭化水素を含むガスは、水、酸素、水素、塩化水素、窒素酸化物、硫黄酸化物、脂肪族炭化水素、微粒子などを含んでいてもよい。   Furthermore, the gas containing the halogenated aliphatic hydrocarbon may contain water, oxygen, hydrogen, hydrogen chloride, nitrogen oxide, sulfur oxide, aliphatic hydrocarbon, fine particles, and the like.

本発明の特徴は、前記ハロゲン化脂肪族炭化水素含有ガスを、触媒活性の異なる、第一分解工程及び第二分解工程を含む分解工程により、順次処理することにある。即ち、第一分解工程は、分解触媒(A)の低い触媒活性を利用して、ハロゲン化脂肪族炭化水素の酸化分解反応と部分的脱塩化水素反応を行うことを目的とし、第二分解工程では、分解触媒(B)の高い触媒活性を利用して、ハロゲン化脂肪族炭化水素の完全脱塩化水素反応と酸化分解反応を行うことを目的としてするものである。そして、かかる組み合せにより、低温度領域での反応において、効率の良い分解性能を発揮するとともに新たに副生するハロゲン化脂肪族炭化水素の生成を低減するものである。   A feature of the present invention resides in that the halogenated aliphatic hydrocarbon-containing gas is sequentially processed by a decomposition step including a first decomposition step and a second decomposition step having different catalytic activities. That is, the first cracking step aims to perform an oxidative cracking reaction and a partial dehydrochlorination reaction of a halogenated aliphatic hydrocarbon using the low catalytic activity of the cracking catalyst (A). The purpose of the present invention is to carry out a complete dehydrochlorination reaction and an oxidative decomposition reaction of a halogenated aliphatic hydrocarbon using the high catalytic activity of the decomposition catalyst (B). Such a combination exhibits efficient decomposition performance in a reaction in a low temperature region, and reduces the generation of newly produced by-produced halogenated aliphatic hydrocarbons.

上記本発明の方法に対して、分解触媒(A)又は分解触媒(B)のみを使用したハロゲン化脂肪族炭化水素含有ガスの分解では、350℃以下の低温においては、分解性能の低下を引き起こし、一方、分解温度を高温にすると分解性能は向上するものの、副生物が多量に生成する。   In the decomposition of the halogenated aliphatic hydrocarbon-containing gas using only the decomposition catalyst (A) or the decomposition catalyst (B), the decomposition performance is lowered at a low temperature of 350 ° C. or lower. On the other hand, when the decomposition temperature is increased, the decomposition performance is improved, but a large amount of by-products are generated.

本発明において、第一分解工程に使用する分解触媒(A)は、250℃、空間速度5000hr−1の条件での塩化ビニルの分解活性(α)が50〜80%、好ましくは、55〜75%の活性を有する触媒である。即ち、上記分解触媒(A)の分解活性が、50%より小さい場合、或いは、80%を超える場合、ハロゲン化脂肪族炭化水素の酸化分解反応と部分的脱塩化水素反応を十分行うことができず、続く第二分解工程との組み合わせにおいて、ガス中のハロゲン化脂肪族炭化水素を十分低減することができない。   In the present invention, the decomposition catalyst (A) used in the first decomposition step has a vinyl chloride decomposition activity (α) of 50 to 80%, preferably 55 to 75 at 250 ° C. and a space velocity of 5000 hr-1. % Catalyst having a% activity. That is, when the cracking activity of the cracking catalyst (A) is less than 50% or exceeds 80%, the oxidative cracking reaction and the partial dehydrochlorination reaction of the halogenated aliphatic hydrocarbon can be sufficiently performed. In addition, the halogenated aliphatic hydrocarbon in the gas cannot be sufficiently reduced in combination with the subsequent second decomposition step.

上記分解触媒を具体的に例示すれば、酸化バナジウム、酸化タングステン、酸化モリブデン、酸化チタンより選ばれた少なくとも一種の金属酸化物を含有してなる触媒が挙げられる。これらの金属酸化物は、それぞれ単独でも、前記分解活性を発することもできるが、好ましくは、これらの金属酸化物を組み合せた複合酸化物の形態が好ましい。例えば、酸化チタン60重量%〜99重量%、酸化バナジウム、酸化タングステン、酸化モリブデンから選ばれた少なくとも一種以上からなる金属酸化物40重量%〜1重量%の組成が好適である。上記酸化チタンの割合が、99重量%を超える場合、ハロゲン化脂肪族炭化水素の酸化分解除去性能が低下する傾向があり、また、60重量%より少ない場合、分解性能は良いが触媒が高価となりすぎる。   Specific examples of the decomposition catalyst include a catalyst containing at least one metal oxide selected from vanadium oxide, tungsten oxide, molybdenum oxide, and titanium oxide. Each of these metal oxides can be used alone or can exhibit the decomposition activity. However, a composite oxide in which these metal oxides are combined is preferable. For example, a composition of 60% to 99% by weight of titanium oxide, 40% to 1% by weight of metal oxide composed of at least one selected from vanadium oxide, tungsten oxide, and molybdenum oxide is preferable. When the proportion of the titanium oxide exceeds 99% by weight, the oxidative decomposition removal performance of the halogenated aliphatic hydrocarbon tends to decrease. When the proportion is less than 60% by weight, the decomposition performance is good but the catalyst is expensive. Too much.

尚、上記複合酸化物を得る方法は、公知の方法が特に制限なく採用される。例えば、例えば、共沈法、ゾルゲル法、混練法等が挙げられる。   In addition, a well-known method is employ | adopted for the method of obtaining the said complex oxide without a restriction | limiting especially. For example, a coprecipitation method, a sol-gel method, a kneading method, etc. are mentioned, for example.

また、分解触媒(A)の形状は特に制限されないが、分解触媒自体を粒状、ペレット状、ハニカム型、モノリス型等に成型しても良く、また、分解触媒をコージェライト等の耐火性基材からなるハニカム成型体、不活性繊維状成型体等の基材の表面に付着せしめて使用することもできる。   Further, the shape of the cracking catalyst (A) is not particularly limited, but the cracking catalyst itself may be formed into a granular shape, a pellet shape, a honeycomb type, a monolith type, or the like, and the cracking catalyst is a fire-resistant substrate such as cordierite. It can also be used by adhering to the surface of a substrate such as a honeycomb molded body or an inert fibrous molded body made of the above.

一方、第二分解工程に使用する分解触媒(B)は、前記塩化ビニルの分解活性(α)が80%を超える触媒である。   On the other hand, the decomposition catalyst (B) used in the second decomposition step is a catalyst having a decomposition activity (α) of vinyl chloride exceeding 80%.

本発明において、上記分解触媒(B)の分解活性が、80%より小さい場合、ハロゲン化脂肪族炭化水素の完全脱塩化水素反応と酸化分解反応を十分行うことができず、前の第一分解工程との組み合わせにおいて、ガス中のハロゲン化脂肪族炭化水素を十分低減することができない。   In the present invention, when the cracking activity of the cracking catalyst (B) is less than 80%, the complete dehydrochlorination reaction and oxidative cracking reaction of the halogenated aliphatic hydrocarbon cannot be performed sufficiently, and the previous first cracking In combination with the process, the halogenated aliphatic hydrocarbon in the gas cannot be sufficiently reduced.

上記分解触媒を具体的に例示すれば、元素周期表における第二、第三遷移系列元素の塩化物(以下、特定塩化物ともいう。)と、前記分解触媒(A)で例示した金属酸化物及びシリカを単独、或いは複合酸化物としたものを含有する触媒が挙げられる。   Specifically, the cracking catalyst is exemplified by chlorides of second and third transition series elements in the periodic table (hereinafter also referred to as specific chlorides), and metal oxides exemplified in the cracking catalyst (A). And a catalyst containing silica alone or a composite oxide.

上記特定塩化物としては、具体的に、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、モリブデン(Mo)、タンタル(Ta)、ニオブ(Nb)、レニウム(Re)等の塩化物、ハライドクラスターを挙げることができ、中でも、塩化ルテニウムが好ましい。また、上記特定塩化物は、単独、又は、組合せて使用することができる。   Specific examples of the specific chloride include platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), molybdenum (Mo), and tantalum (Ta). And chlorides such as niobium (Nb) and rhenium (Re), and halide clusters. Among these, ruthenium chloride is preferable. Moreover, the said specific chloride can be used individually or in combination.

これらの特定塩化物と酸化物を含有する分解触媒(B)の形態は、複合体の形態が好ましい。例えば、金属酸化物70重量%〜99.8重量%、上記特定塩化物20重量%〜0.2重量%の範囲で複合化されたものが挙げられる。上記特定塩化物が0.2重量%より少ない場合、分解活性を80%を超えて十分高く上げることができず、ハロゲン化脂肪族炭化水素の分解除去性能が低下する傾向があり、また、30重量%を越えると分解性能は良いが触媒が高価となりすぎるとともに副生物が増加する傾向が見られる。   The form of the decomposition catalyst (B) containing these specific chlorides and oxides is preferably a composite form. For example, the metal oxide is compounded in the range of 70% by weight to 99.8% by weight and the specific chloride in the range of 20% by weight to 0.2% by weight. When the above-mentioned specific chloride is less than 0.2% by weight, the decomposition activity cannot be sufficiently increased to exceed 80%, and the decomposition removal performance of the halogenated aliphatic hydrocarbon tends to be reduced. If it exceeds wt%, the decomposition performance is good, but the catalyst becomes too expensive and by-products tend to increase.

前記分解触媒(B)において、分解触媒を構成する態様は特に制限されない。例えば、前記特定塩化物を酸化物に担持させる方法、前記複合酸化物の形成時に特定塩化物を存在させておき、共沈法、ゾルゲル法、混練法等により調製する方法等が挙げられる。   In the cracking catalyst (B), the aspect constituting the cracking catalyst is not particularly limited. For example, a method of supporting the specific chloride on an oxide, a method of allowing the specific chloride to be present at the time of forming the composite oxide, and preparing by a coprecipitation method, a sol-gel method, a kneading method, or the like can be given.

また、分解触媒(B)の形状は、前記分解触媒(A)と同様な形状を採用することができる。   Moreover, the shape similar to the said decomposition catalyst (A) can be employ | adopted for the shape of a decomposition catalyst (B).

前記第一分解工程、第二分解工程において、触媒の使用する方法において、成形方法は公知の方法が特に制限なく採用される。例えば、混合粉末にバインダーを加えて所定の形状に成形した後、焼成する方法が挙げられる。また、前記基材に分解触媒を付着せしめる方法は、分解触媒を懸濁状、ペースト状とし、その表面に塗布し、乾燥、焼成する方法が好適である。   In the first decomposition step and the second decomposition step, a known method can be adopted without particular limitation as the molding method in the method using the catalyst. For example, there is a method in which a binder is added to the mixed powder to form it into a predetermined shape and then fired. As a method for attaching the decomposition catalyst to the substrate, a method in which the decomposition catalyst is suspended or pasted, applied to the surface, dried and fired is preferable.

また、前記酸化物に特定塩化物を担持させる方法は、公知の方法が特に制限無く採用される。例えば、酸化物の成形体に特定塩化物の水溶液、懸濁液を含浸せしめた後、乾燥、必要に応じて焼成する方法が挙げられる。   In addition, as a method for supporting the specific chloride on the oxide, a known method is employed without any particular limitation. For example, a method of impregnating an oxide compact with an aqueous solution or suspension of a specific chloride, followed by drying and firing as necessary.

上述の触媒の調製方法において、焼成温度は、得られる分解触媒の機能を低下させない温度が適宜選択される。一般には、150〜500℃、特に、200〜350℃であることが好ましい。   In the above-described catalyst preparation method, the calcination temperature is appropriately selected so as not to lower the function of the obtained decomposition catalyst. Generally, it is preferable that it is 150-500 degreeC, especially 200-350 degreeC.

本発明において、前記それぞれの分解工程において、ハロゲン化脂肪族炭化水素を分解する際の条件は特に制限されないが、好適な条件を例示すれば、分解触媒へのハロゲン化脂肪族炭化水素の反応温度は、150〜350℃、好ましくは、170〜300℃であることが好ましい。かかる反応温度が150℃未満、特に170℃未満ではハロゲン化脂肪族炭化水素の分解除去性能が低下し、300℃、特に350℃を超える場合は、副生物が増加する傾向があると共に、エネルーギー消費量が増大する。   In the present invention, the conditions for decomposing the halogenated aliphatic hydrocarbon in each of the decomposition steps are not particularly limited, but as an example of suitable conditions, the reaction temperature of the halogenated aliphatic hydrocarbon to the decomposition catalyst Is 150 to 350 ° C., preferably 170 to 300 ° C. When the reaction temperature is less than 150 ° C., particularly less than 170 ° C., the decomposition and removal performance of the halogenated aliphatic hydrocarbon decreases, and when it exceeds 300 ° C., particularly 350 ° C., by-products tend to increase and energy consumption is reduced. The amount increases.

上記反応温度の調整は、反応器に供給するガス温度を調整する方法、反応器の加熱温度を調整する方法等を適宜採用することができる。   For adjusting the reaction temperature, a method of adjusting the gas temperature supplied to the reactor, a method of adjusting the heating temperature of the reactor, and the like can be appropriately employed.

また、反応器内の空間速度は、100〜50000h−1、好ましくは、150〜40000h−1が適当である。 The space velocity in the reactor is 100 to 50000 h −1 , preferably 150 to 40000 h −1 .

本発明において、第一分解工程と第二分解工程とにおけるハロゲン化脂肪族炭化水素含有ガスの処理時間の比率は特に制限されないが、後述の分解触媒を充填した充填塔を使用して反応を行う場合、第一分解工程触媒と第二分解工程触媒のそれぞれの分解触媒の充填量比が、重量比で、0.9/0.1〜0.1/0.9で好ましくは0.8/0.2〜0.2/0.8となるように調整することが好ましい。   In the present invention, the ratio of the treatment time of the halogenated aliphatic hydrocarbon-containing gas in the first decomposition step and the second decomposition step is not particularly limited, but the reaction is performed using a packed tower packed with a decomposition catalyst described later. In this case, the filling ratio of the cracking catalysts of the first cracking process catalyst and the second cracking process catalyst is 0.9 / 0.1 to 0.1 / 0.9, preferably 0.8 / weight ratio. It is preferable to adjust so that it may become 0.2-0.2 / 0.8.

本発明において、ハロゲン化脂肪族炭化水素の分解に使用される反応装置は、処理されるガス(ハロゲン化脂肪族炭化水素)と分解触媒との接触を行うことのできる構造を有するものであれば特に制限されない。例えば、分解触媒が粉末状、粒状であれば、充填型の固定床方式で流通式反応器、側流式反応器および流動床式反応器が使用される。この場合、分解触媒をかかる反応器に充填し、形成された触媒充填層にハロゲン化脂肪族炭化水素を含有するガスを流し触媒に接触させる方法が採用される。   In the present invention, the reactor used for the decomposition of the halogenated aliphatic hydrocarbon has any structure capable of contacting the gas to be treated (halogenated aliphatic hydrocarbon) with the decomposition catalyst. There is no particular limitation. For example, if the cracking catalyst is powdery or granular, a flow type reactor, a side flow type reactor and a fluidized bed type reactor are used in a packed fixed bed system. In this case, a method is adopted in which the cracking catalyst is filled in such a reactor, and a gas containing a halogenated aliphatic hydrocarbon is allowed to flow through the formed catalyst packed bed to contact the catalyst.

また、前記分解触媒の形状が繊維状、モノリス状およびハニカム状を成す場合、流通式の反応器が使用される。この場合、繊維状、モノリス状、ハニカム状の触媒を反応器内に配置し、ハロゲン化脂肪族炭化水素を含有する触媒内にガスを通過させる方法が採用される。   When the cracking catalyst has a fibrous shape, a monolith shape, or a honeycomb shape, a flow reactor is used. In this case, a method in which a fibrous, monolithic, or honeycomb-shaped catalyst is disposed in the reactor and gas is passed through the catalyst containing the halogenated aliphatic hydrocarbon is employed.

本発明の第一分解工程と、第二分解工程の実施に際して、それぞれの反応に使用する分解触媒を、同一の反応器内にガスの流れ方向に順次充填して行ってもよいし、第一分解工程と、第二分解工程としての別々の反応器に触媒を充填し直列に接続して行ってもよいが、分解触媒が粒状、粉末状の場合、分解触媒の混合を避けるため、第一分解工程、第二分解工程は別個の反応器を準備し、ハロゲン化脂肪族炭化水素ガスとの接触を行うのが一般的である。   In carrying out the first decomposition step and the second decomposition step of the present invention, the decomposition catalyst used for each reaction may be sequentially charged in the gas flow direction in the same reactor. The cracking step and the second cracking step may be carried out by charging the catalyst in separate reactors and connecting them in series. However, if the cracking catalyst is granular or powdery, the first step is to avoid mixing the cracking catalyst. In the cracking step and the second cracking step, separate reactors are generally prepared and contacted with a halogenated aliphatic hydrocarbon gas.

また、各分解工程において、更に反応器内に多段に分解触媒を存在せしめて反応を行うことができるのは、言うまでもない。   In each cracking step, it is needless to say that the reaction can be carried out in the presence of cracking catalysts in multiple stages in the reactor.

以下、本発明を更に具体的に説明するため、実施例を示すが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.

尚、実施例、比較例において、使用した分解触媒の塩化ビニルの分解活性は以下の方法により測定した。   In Examples and Comparative Examples, the decomposition activity of vinyl chloride of the decomposition catalyst used was measured by the following method.

(塩化ビニルの分解活性α)
固定床方式の流通式反応器に触媒を充填し、250℃、空間速度5000hr−1で塩化ビニル濃度1000ppmを含有してなる空気を触媒層に通過させ、反応器出口の塩化ビニル濃度を測定し、下記(1)式より分解活性αを求めた。
(Decomposition activity α of vinyl chloride)
A fixed bed type flow reactor is filled with a catalyst, and air containing 1000 ppm of vinyl chloride at 250 ° C. and a space velocity of 5000 hr −1 is passed through the catalyst layer, and the concentration of vinyl chloride at the outlet of the reactor is measured. The decomposition activity α was determined from the following formula (1).

α=(1000−VCM出口濃度(ppm))×100/1000 (1)
実施例1
<第一分解工程触媒>
酸化バナジウム(和光純薬)6重量%、酸化タングステン(和光純薬)2重量%、酸化チタン(SSPM堺化学工業製)92重量部を混練し、400℃空気下で焼成し目的とする粉末状触媒を得た。
α = (1000−VCM outlet concentration (ppm)) × 100/1000 (1)
Example 1
<First decomposition step catalyst>
6% by weight of vanadium oxide (Wako Pure Chemical Industries), 2% by weight of tungsten oxide (Wako Pure Chemical Industries), and 92 parts by weight of titanium oxide (SSPM Sakai Chemical Industry Co., Ltd.) are kneaded and calcined in air at 400 ° C. A catalyst was obtained.

得られた触媒の分解活性は、75.6であった。
<第二分解工程触媒>
500℃で焼成した酸化チタン(CS300S 堺化学工業製)100重量部を、塩化ルテニウム(RuCl・nHO Ru含有量40%)(和光純薬)5重量部を100重量部の純水に溶解して調製した水溶液に含浸し、室温で12時間放置した。触媒と水を分離した後、窒素気流下、100℃で乾燥した。500ml/分の窒素気流下電気炉で室温から300℃に30分間で昇温し、2時間焼成することにより塩化ルテニウム1.9重量%を含有する粉末状酸化チタン担持塩化ルテニウムを得た。
The decomposition activity of the obtained catalyst was 75.6.
<Second decomposition step catalyst>
100 parts by weight of titanium oxide (CS300S manufactured by Sakai Chemical Industry) baked at 500 ° C., 5 parts by weight of ruthenium chloride (RuCl 3 · nH 2 O Ru content 40%) (Wako Pure Chemical Industries) in 100 parts by weight of pure water It was impregnated with an aqueous solution prepared by dissolution and allowed to stand at room temperature for 12 hours. After separating the catalyst and water, it was dried at 100 ° C. under a nitrogen stream. The temperature was raised from room temperature to 300 ° C. in an electric furnace under a nitrogen stream of 500 ml / min for 30 minutes and calcinated for 2 hours to obtain powdered ruthenium chloride-supported ruthenium chloride containing 1.9% by weight of ruthenium chloride.

得られた触媒の250℃でのVCM分解活性は、99.9以上であった。
<触媒性能評価>
上記方法によって得られた各触媒をそれぞれ平均粒径100〜150μmの大きさの粉体とした。上記のようにして得られた分解触媒を常圧固定床流通式反応装置に、総触媒量0.6ml、第一分解工程触媒と第二分解工程触媒の重量比が1:1となるように充填した。
The VCM decomposition activity at 250 ° C. of the obtained catalyst was 99.9 or more.
<Catalyst performance evaluation>
Each catalyst obtained by the above method was made into a powder having an average particle size of 100 to 150 μm. The cracking catalyst obtained as described above is placed in an atmospheric pressure fixed bed flow reactor so that the total catalyst amount is 0.6 ml and the weight ratio of the first cracking process catalyst and the second cracking process catalyst is 1: 1. Filled.

先ず、前処理として、空気気流下300℃で1時間前処理をした。その後、1、2ジクロロエタン5000ppm、酸素7%、窒素をバランスとした組成のガスを100ml/分、空間速度10000hr−1となるように通過させ、分解を実施した。 First, as pretreatment, pretreatment was performed at 300 ° C. for 1 hour under an air stream. Thereafter, a gas having a composition balanced with 1,2 dichloroethane of 5000 ppm, oxygen of 7%, and nitrogen was passed at a rate of 100 ml / min and a space velocity of 10,000 hr −1 to carry out decomposition.

尚、実験は、第一分解工程、第二分解工程共に、反応温度を、250℃300℃、350℃の各温度に変えた場合についてそれぞれ行った。結果を表1に併せて示す。   Note that the experiment was performed for each of the first decomposition step and the second decomposition step when the reaction temperature was changed to 250 ° C., 300 ° C., and 350 ° C., respectively. The results are also shown in Table 1.

実施例2
<第一分解工程触媒>
実施例1の第一分解工程で使用した分解触媒を使用した。
<第二分解工程触媒>
塩化パラジウム(PdCl)(和光純薬)2重量部と500℃で焼成した酸化チタン(CS300S 堺化学工業製)98重量部を混練し、500ml/分の窒素気流下電気炉で室温から300℃に30分間で昇温し、2時間焼成することにより塩化パラジウム2重量%を含有する粉末状酸化チタン担持塩化パラジウムを得た。
Example 2
<First decomposition step catalyst>
The decomposition catalyst used in the first decomposition step of Example 1 was used.
<Second decomposition step catalyst>
2 parts by weight of palladium chloride (PdCl 2 ) (Wako Pure Chemical Industries) and 98 parts by weight of titanium oxide (CS300S manufactured by Sakai Chemical Industry) calcined at 500 ° C. were kneaded and heated from room temperature to 300 ° C. in an electric furnace under a nitrogen stream of 500 ml / min. Was heated for 30 minutes and calcined for 2 hours to obtain powdered titanium oxide-supported palladium chloride containing 2% by weight of palladium chloride.

得られた触媒の分解活性は、97.5であった。
<触媒性能評価>
実施例1と同様な方法により触媒性能評価を実施した。結果を表1に併せて示す。
The decomposition activity of the obtained catalyst was 97.5.
<Catalyst performance evaluation>
The catalyst performance was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例3
<第一分解工程触媒>
触媒として酸化タングステン(和光純薬)8重量%、酸化バナジウム0.5重量%と酸化チタン91重量%(SCN204 堺化学工業製)を粉砕し粉末状として使用した。
Example 3
<First decomposition step catalyst>
As a catalyst, 8% by weight of tungsten oxide (Wako Pure Chemical Industries), 0.5% by weight of vanadium oxide and 91% by weight of titanium oxide (SCN204, manufactured by Sakai Chemical Industry) were pulverized and used as a powder.

得られた触媒の分解活性は、71.1であった。
<第二分解工程触媒>
実施例1の第一分解工程触媒である塩化ルテニウム1.9重量%を含有する粉末状酸化チタン担持塩化ルテニウムを使用した。
The decomposition activity of the obtained catalyst was 71.1.
<Second decomposition step catalyst>
The powdery ruthenium chloride-supported ruthenium chloride containing 1.9% by weight of ruthenium chloride, which is the catalyst for the first decomposition step of Example 1, was used.

得られた触媒の分解活性は、99.9以上であった。
<触媒性能評価>
実施例1と同様な方法により触媒性能評価を実施した。結果を表1に併せて示す。
The decomposition activity of the obtained catalyst was 99.9 or more.
<Catalyst performance evaluation>
The catalyst performance was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例1
<第一分解工程触媒>
実施例1の二段触媒の塩化ルテニウム1.9重量%を含有する粉末状酸化チタン担持塩化ルテニウムを用いた。
Comparative Example 1
<First decomposition step catalyst>
Powdered ruthenium chloride-supported titanium oxide containing 1.9% by weight of ruthenium chloride as the two-stage catalyst of Example 1 was used.

得られた触媒の分解活性は、99.9以上であった。
<第二分解工程触媒>
実施例1の第一分解工程で使用した分解触媒を使用した。
<触媒性能評価>
実施例1と同様な方法により触媒性能評価を実施した。結果を表1に併せて示す。
The decomposition activity of the obtained catalyst was 99.9 or more.
<Second decomposition step catalyst>
The decomposition catalyst used in the first decomposition step of Example 1 was used.
<Catalyst performance evaluation>
The catalyst performance was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例2
実施例1の第一分解工程で使用した分解触媒の酸化バナジウム、酸化タングステン、酸化チタン触媒と、実施例1の第二分解工程で使用した分解触媒の酸化チタン担持塩化ルテニウム触媒とを、重量比1:1の割合で、小型ミキサーにより混合して触媒とした。
<触媒性能評価>
実施例1と同様な方法により触媒性能評価を実施した。結果を表1に併せて示す。
Comparative Example 2
The weight ratio of the decomposition catalyst vanadium oxide, tungsten oxide, titanium oxide catalyst used in the first decomposition step of Example 1 to the titanium oxide-supported ruthenium chloride catalyst used in the second decomposition step of Example 1 The catalyst was mixed by a small mixer at a ratio of 1: 1.
<Catalyst performance evaluation>
The catalyst performance was evaluated in the same manner as in Example 1. The results are also shown in Table 1.

Figure 2008246437
Figure 2008246437

Claims (6)

ハロゲン化脂肪族炭化水素含有ガスを分解触媒と接触せしめて含有されるハロゲン化脂肪族炭化水素を分解する方法であって、上記ハロゲン化脂肪族炭化水素含有ガスを、温度250℃、塩化ビニル濃度1000ppm及び空間速度5000hr−1における塩化ビニルの分解活性が50〜80%の分解触媒(A)と接触せしめる第一分解工程と、上記第一分解工程にて処理されたハロゲン化脂肪族炭化水素含有ガスを、温度250℃、塩化ビニル濃度1000ppm及び空間速度5000hr−1における塩化ビニルの分解活性が80%を超える分解触媒(B)と接触せしめる第二分解工程とを含むことを特徴とするハロゲン化脂肪族炭化水素含有ガスの処理方法。 A method for decomposing a halogenated aliphatic hydrocarbon contained by contacting a halogenated aliphatic hydrocarbon-containing gas with a cracking catalyst, wherein the halogenated aliphatic hydrocarbon-containing gas is treated at a temperature of 250 ° C. and a vinyl chloride concentration. A first cracking step in which the cracking activity of vinyl chloride at 1000 ppm and a space velocity of 5000 hr −1 is brought into contact with a cracking catalyst (A) of 50 to 80%, and a halogenated aliphatic hydrocarbon treated in the first cracking step And a second decomposition step in which a gas is brought into contact with a decomposition catalyst (B) having a decomposition activity of vinyl chloride exceeding 80% at a temperature of 250 ° C., a vinyl chloride concentration of 1000 ppm and a space velocity of 5000 hr −1 . A method for treating an aliphatic hydrocarbon-containing gas. 分解触媒(A)が、酸化バナジウム、酸化タングステン、酸化モリブデン、酸化チタンより選ばれた少なくとも一種の金属酸化物を含有する請求項1記載のハロゲン化脂肪族炭化水素含有ガスの処理方法。 The method for treating a halogenated aliphatic hydrocarbon-containing gas according to claim 1, wherein the decomposition catalyst (A) contains at least one metal oxide selected from vanadium oxide, tungsten oxide, molybdenum oxide, and titanium oxide. 分解触媒(B)が、元素周期表における第二、第三遷移系列元素の塩化物より選ばれた少なくとも一種の金属塩化物と、酸化チタン、アルミナ、シリカ、酸化ジルコニウム、よりなる群より選ばれた少なくとも一種の金属酸化物とを含有する請求項1記載のハロゲン化脂肪族炭化水素含有ガスの処理方法。 The cracking catalyst (B) is selected from the group consisting of at least one metal chloride selected from the chlorides of the second and third transition series elements in the periodic table, and titanium oxide, alumina, silica, and zirconium oxide. The method for treating a halogenated aliphatic hydrocarbon-containing gas according to claim 1, further comprising at least one metal oxide. 前記第一分解工程及び第二分解工程において、ハロゲン化脂肪族炭化水素含有ガスを150〜350℃の温度で触媒と接触させる、請求項1〜3の何れか1項に記載のハロゲン化脂肪族炭化水素含有ガスの処理方法。 The halogenated aliphatic according to any one of claims 1 to 3, wherein in the first decomposition step and the second decomposition step, the halogenated aliphatic hydrocarbon-containing gas is brought into contact with the catalyst at a temperature of 150 to 350 ° C. Treatment method for hydrocarbon-containing gas. ハロゲン化脂肪族炭化水素が、1,2−ジクロロエタン及び/又は塩化ビニルである、請求項1〜4の何れか1項に記載のハロゲン化脂肪族炭化水素含有ガスの処理方法。 The method for treating a halogenated aliphatic hydrocarbon-containing gas according to any one of claims 1 to 4, wherein the halogenated aliphatic hydrocarbon is 1,2-dichloroethane and / or vinyl chloride. 第一分解工程に供給するハロゲン化炭化水素含有ガス中のハロゲン化脂肪族炭化水素の濃度が50〜20000ppmである請求項1〜5の何れか1項に記載のハロゲン化脂肪族炭化水素含有ガスの処理方法。 The halogenated aliphatic hydrocarbon-containing gas according to any one of claims 1 to 5, wherein the concentration of the halogenated aliphatic hydrocarbon in the halogenated hydrocarbon-containing gas supplied to the first decomposition step is 50 to 20000 ppm. Processing method.
JP2007093712A 2007-03-30 2007-03-30 Method for treating halogenated aliphatic hydrocarbon-containing gas Expired - Fee Related JP5041848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093712A JP5041848B2 (en) 2007-03-30 2007-03-30 Method for treating halogenated aliphatic hydrocarbon-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093712A JP5041848B2 (en) 2007-03-30 2007-03-30 Method for treating halogenated aliphatic hydrocarbon-containing gas

Publications (2)

Publication Number Publication Date
JP2008246437A true JP2008246437A (en) 2008-10-16
JP5041848B2 JP5041848B2 (en) 2012-10-03

Family

ID=39972019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093712A Expired - Fee Related JP5041848B2 (en) 2007-03-30 2007-03-30 Method for treating halogenated aliphatic hydrocarbon-containing gas

Country Status (1)

Country Link
JP (1) JP5041848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162452A (en) * 2009-01-14 2010-07-29 Tokuyama Corp Treatment method of exhaust gas containing aliphatic halogenated hydrocarbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3139067T3 (en) 2015-09-04 2023-03-13 Desch Antriebstechnik Gmbh & Co. Kg Planetary gear unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111065A (en) * 1974-07-18 1976-01-28 Sumitomo Chemical Co
JPH0283017A (en) * 1987-09-21 1990-03-23 Degussa Ag Method and apparatus for catalytic reaction of waste containing hydrocarbon, halogenated hydrocarbon and carbon monoxide
JPH05154346A (en) * 1991-12-06 1993-06-22 Kureha Chem Ind Co Ltd Decomposition of aliphatic halide
JP2000126601A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Decomposition catalyst for organic halogen compound and decomposition method
JP2001246230A (en) * 2000-03-08 2001-09-11 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2003053149A (en) * 2001-08-22 2003-02-25 Nkk Corp Removing method of organic chlorine compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111065A (en) * 1974-07-18 1976-01-28 Sumitomo Chemical Co
JPH0283017A (en) * 1987-09-21 1990-03-23 Degussa Ag Method and apparatus for catalytic reaction of waste containing hydrocarbon, halogenated hydrocarbon and carbon monoxide
JPH05154346A (en) * 1991-12-06 1993-06-22 Kureha Chem Ind Co Ltd Decomposition of aliphatic halide
JP2000126601A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Decomposition catalyst for organic halogen compound and decomposition method
JP2001246230A (en) * 2000-03-08 2001-09-11 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2003053149A (en) * 2001-08-22 2003-02-25 Nkk Corp Removing method of organic chlorine compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162452A (en) * 2009-01-14 2010-07-29 Tokuyama Corp Treatment method of exhaust gas containing aliphatic halogenated hydrocarbon

Also Published As

Publication number Publication date
JP5041848B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
JP4759739B2 (en) Ethylene decomposition catalyst
JP5577319B2 (en) Process for regenerating a ruthenium-containing or ruthenium compound-containing catalyst poisoned with sulfur in the form of a sulfur compound
JP5642703B2 (en) Method for regenerating a ruthenium oxide-containing catalyst for hydrogen chloride oxidation
CN113996291A (en) Low-temperature HVOCs catalytic combustion catalyst, and preparation method and application thereof
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP2007117911A (en) Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
JP5041848B2 (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
CN115722220B (en) Catalytic oxidation catalyst and preparation method and application thereof
KR101839778B1 (en) A method for producing an metal aluminate oxidation catalyst having improved endotoxicity against organic chloro compounds and an oxidation catalyst
JP2008006323A (en) Catalyst for decomposing halogenated aliphatic hydrocarbon
JP4759731B2 (en) Noble metal-containing catalyst having water repellency
WO2010130772A1 (en) Removal of contaminant materials from a process stream
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4345472B2 (en) Method for removing sulfur compounds
KR100862272B1 (en) Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
WO2023084825A1 (en) Method for regenerating catalyst for nitrous oxide decomposition and method for decomposing nitrous oxide
JP3332024B2 (en) Organic compound combustion removal catalyst and combustion removal method
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP5388788B2 (en) Method for treating exhaust gas containing halogenated aliphatic hydrocarbon
CN110841624B (en) Cerium-tin catalyst for low-temperature catalytic elimination of vinyl chloride and preparation method and application thereof
JP3948060B2 (en) Halogen-containing organic compound combustion removal catalyst and combustion removal method
JP2011162382A (en) Method for producing chlorine
CN116832809A (en) Halogen-containing organic waste gas catalytic combustion catalyst and preparation method and application thereof
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees