JP5840068B2 - Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst - Google Patents

Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst Download PDF

Info

Publication number
JP5840068B2
JP5840068B2 JP2012106286A JP2012106286A JP5840068B2 JP 5840068 B2 JP5840068 B2 JP 5840068B2 JP 2012106286 A JP2012106286 A JP 2012106286A JP 2012106286 A JP2012106286 A JP 2012106286A JP 5840068 B2 JP5840068 B2 JP 5840068B2
Authority
JP
Japan
Prior art keywords
nitrous oxide
cobalt
oxide
catalyst
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012106286A
Other languages
Japanese (ja)
Other versions
JP2013233488A (en
Inventor
彰 仁科
彰 仁科
淳 森島
淳 森島
北口 真也
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012106286A priority Critical patent/JP5840068B2/en
Publication of JP2013233488A publication Critical patent/JP2013233488A/en
Application granted granted Critical
Publication of JP5840068B2 publication Critical patent/JP5840068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本願発明は、亜酸化窒素分解触媒、当該亜酸化窒素分解触媒の製造方法及び亜酸化窒素含有ガスの処理方法に関するものである。   The present invention relates to a nitrous oxide decomposition catalyst, a method for producing the nitrous oxide decomposition catalyst, and a method for treating a nitrous oxide-containing gas.

発電用ガスタービン、ボイラー、ごみ焼却炉などから排出される各種燃焼排ガスや化学プラントなどから排出される各種産業排ガス中に含まれる亜酸化窒素(NO)は、二酸化炭素の約310倍の温室効果を示すことから、その効率的な分解除去方法の開発が望まれている。 Nitrous oxide (N 2 O) contained in various combustion exhaust gases discharged from power generation gas turbines, boilers, waste incinerators, etc. and various industrial exhaust gases discharged from chemical plants, etc. is about 310 times that of carbon dioxide. Since the greenhouse effect is exhibited, the development of an efficient decomposition and removal method is desired.

亜酸化窒素を触媒に接触させて分解除去する方法として、疎水性アルミナにルテニウムおよび/またはロジウムと酸化ジルコニウムなどとを担持した触媒を用いる方法(特許文献1)や酸化ロジウムや三二酸化コバルト(Co)と、マンガン化合物と、アルカリ又はアルカリ土類金属化合物とを含有する触媒を用いる方法(特許文献2)などが提案されているが、これら従来技術では亜酸化窒素を低温で処理するためにはロジウムなどの高価な貴金属を用いる必要があり実用的には不向きである。 As a method for decomposing and removing nitrous oxide by contacting it with a catalyst, a method using a catalyst in which ruthenium and / or rhodium and zirconium oxide are supported on hydrophobic alumina (Patent Document 1), rhodium oxide, cobalt trioxide (Co) 2 O 3 ), a manganese compound, and a method using a catalyst containing an alkali or alkaline earth metal compound (Patent Document 2) have been proposed. In these conventional techniques, nitrous oxide is treated at a low temperature. Therefore, it is necessary to use an expensive noble metal such as rhodium, which is not suitable for practical use.

一方、貴金属を用いないものとして、四三酸化コバルト(Co)を主成分としアルカリ金属および/またはアルカリ土類金属を含有する触媒が提案されているが(特許文献3)、当該アルカリ金属やアルカリ土類金属を含有する触媒は排ガス中の二酸化炭素の吸着などにより触媒活性の低下を生じやすく実用的には不向きである。 On the other hand, as a catalyst that does not use a noble metal, there has been proposed a catalyst containing cobalt trioxide (Co 3 O 4 ) as a main component and containing an alkali metal and / or an alkaline earth metal (Patent Document 3). A catalyst containing a metal or an alkaline earth metal tends to cause a decrease in catalytic activity due to adsorption of carbon dioxide in exhaust gas, and is not suitable for practical use.

またコバルト酸化物にセシウムおよび/またはルビジウムを特定のモル比で配合した亜酸化窒素分解触媒が提案されているが(特許文献4)、当該触媒は一酸化窒素、二酸化窒素や二酸化硫黄により被毒され易く排ガス中に当該物質が存在する排ガス処理には好ましくないものである。   Further, a nitrous oxide decomposition catalyst in which cesium and / or rubidium are blended in a specific molar ratio with cobalt oxide has been proposed (Patent Document 4), but the catalyst is poisoned by nitrogen monoxide, nitrogen dioxide or sulfur dioxide. This is not preferable for exhaust gas treatment in which the substance is easily present in the exhaust gas.

特開平6−142517号公報JP-A-6-142517 特開平6−106027号公報JP-A-6-106027 特開2007−54717号公報JP 2007-54717 A 特願2010−198073号公報Japanese Patent Application No. 2010-198073

本発明の目的は、高価な貴金属を使用せず、低温で亜酸化窒素を効率よく分解除去し、耐久性の優れた亜酸化窒素分解触媒および亜酸化窒素含有ガスの処理方法を提供することにある。   An object of the present invention is to provide an efficient nitrous oxide decomposition catalyst and a method for treating a nitrous oxide-containing gas that efficiently decomposes and removes nitrous oxide at a low temperature without using expensive noble metals. is there.

本発明者らは上記目的を達成すべく鋭意研究を進めた結果、触媒成分としてコバルトの酸化物及びビスマスの酸化物を含有すると共に、触媒組成を最適化した亜酸化窒素分解触媒は低温活性が良好であり、かつ耐久性も優れていることを見出して本発明を完成するに至った。   As a result of diligent research to achieve the above object, the present inventors have found that a nitrous oxide decomposition catalyst containing a cobalt oxide and a bismuth oxide as a catalyst component and having an optimized catalyst composition has low-temperature activity. The present invention was completed by finding that it was good and excellent in durability.

すなわち本発明の亜酸化窒素分解触媒は触媒成分としてコバルト酸化物及びビスマスの酸化物を含有し、かつコバルトに対するビスマスの原子比が0.0005〜0.15であることを特徴としている。   That is, the nitrous oxide decomposition catalyst of the present invention is characterized in that it contains cobalt oxide and bismuth oxide as catalyst components, and the atomic ratio of bismuth to cobalt is 0.0005 to 0.15.

また前記亜酸化窒素分解触媒はコバルト炭酸塩を焼成して得られた四三酸化コバルトと、硝酸ビスマスを含む水溶液とを混合し乾燥し焼成して製造することが好ましい。   The nitrous oxide decomposition catalyst is preferably produced by mixing cobalt trioxide obtained by firing cobalt carbonate and an aqueous solution containing bismuth nitrate, drying and firing.

本発明の亜酸化窒素分解触媒は、処理ガス中に窒素酸化物(NO、NOなど)、硫黄酸化物(SO、SO、SOなど)や二酸化炭素が含まれる場合でも、低温で長期にわたり亜酸化窒素を効率的に分解除去することができる。 The nitrous oxide decomposition catalyst of the present invention can be used for a long time at a low temperature even when the processing gas contains nitrogen oxides (NO, NO 2 etc.), sulfur oxides (SO, SO 2 , SO 3 etc.) and carbon dioxide. Thus, nitrous oxide can be efficiently decomposed and removed.

次に本発明の亜酸化窒素分解触媒の製造方法は、コバルト炭酸塩を焼成して得られた四三酸化コバルトに、硝酸ビスマスを含む水溶液を加え十分に混合し乾燥、焼成して製造するものである。上記の製造方法を用いることにより、簡便かつ容易に当該亜酸化窒素分解触媒を製造することができる。   Next, the method for producing a nitrous oxide decomposition catalyst according to the present invention is produced by adding an aqueous solution containing bismuth nitrate to cobalt trioxide obtained by firing cobalt carbonate, thoroughly mixing, drying and firing. It is. By using the above production method, the nitrous oxide decomposition catalyst can be produced simply and easily.

また本発明の亜酸化窒素含有ガスの処理方法は亜酸化窒素含有ガスに窒素酸化物や硫黄酸化物が含まれていても、亜酸化窒素を効率よく長期に亘り安定的に処理することができる。   In addition, the method for treating a nitrous oxide-containing gas of the present invention can efficiently and stably treat nitrous oxide over a long period of time even if the nitrous oxide-containing gas contains nitrogen oxides or sulfur oxides. .

以下、本発明の実施形態を詳細に説明するが、本発明は下記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えることができることは勿論である。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. .

本発明の亜酸化窒素分解触媒は触媒成分としてコバルト酸化物とビスマス酸化物を含有する亜酸化窒素分解触媒であり、触媒成分におけるコバルトに対するビスマスの原子比が0.0005〜0.15であることを特徴としている。コバルトに対するビスマスの原子比は0.0005〜0.15であって、より好ましくは0.001〜0.10、特に好ましくは0.005〜0.05である。コバルトに対するビスマスの原子比が0.15を超える場合は触媒中のコバルト酸化物の含有率が少なくなるため初期活性や長期耐久性が十分得られない場合があること、また原子比が0.0005未満である場合は、ビスマスの添加効果が弱まり低温での反応速度が著しく低下すること、がありこれらの範囲外では好ましくはないからである。   The nitrous oxide decomposition catalyst of the present invention is a nitrous oxide decomposition catalyst containing cobalt oxide and bismuth oxide as catalyst components, and the atomic ratio of bismuth to cobalt in the catalyst component is 0.0005 to 0.15. It is characterized by. The atomic ratio of bismuth to cobalt is 0.0005 to 0.15, more preferably 0.001 to 0.10, and particularly preferably 0.005 to 0.05. When the atomic ratio of bismuth to cobalt exceeds 0.15, the content of cobalt oxide in the catalyst is reduced, so that initial activity and long-term durability may not be sufficiently obtained, and the atomic ratio is 0.0005. If it is less than the range, the effect of adding bismuth is weakened and the reaction rate at a low temperature may be remarkably reduced, which is not preferable outside these ranges.

コバルト酸化物とビスマス酸化物を前記の原子比で含有することで低温活性が著しく向上したり耐久性が大幅に改善されたりする原因は不明であるが、コバルトの酸化物中にビスマスが固溶化することによる効果であると考えられる。また従来技術であるコバルト酸化物にセシウムなどのアルカリ金属を添加した触媒は同様に初期の低温活性は良好であるが、ガス中に窒素酸化物が存在するとセシウムが硝酸セシウムを形成して急速に活性が低下することが判っている。これに対しビスマスの硝酸塩は低温で分解するためセシウムのような活性低下することなく特異的に長期耐久性が得られる。   The reason why the low-temperature activity is remarkably improved or the durability is greatly improved by containing cobalt oxide and bismuth oxide in the above-mentioned atomic ratio is unknown, but bismuth is dissolved in cobalt oxide. It is thought that it is an effect by doing. Similarly, a catalyst obtained by adding an alkali metal such as cesium to cobalt oxide, which is a prior art, similarly has good initial low-temperature activity. However, when nitrogen oxide is present in the gas, cesium forms cesium nitrate rapidly. It has been found that the activity decreases. On the other hand, bismuth nitrate decomposes at low temperatures, so that long-term durability can be obtained specifically without lowering the activity like cesium.

当該触媒に用いるコバルト酸化物は、Co、CoOやCoを含有していても良いが、好ましくは四三酸化コバルト(Co)である。 The cobalt oxide used for the catalyst may contain Co 3 O 4 , CoO, or Co 2 O 3 , but is preferably cobalt trioxide (Co 3 O 4 ).

コバルト酸化物の原料として、市販のコバルト酸化物を用いることができるが、硝酸コバルト、塩化コバルト、酢酸コバルト、水酸化コバルトまたはコバルト炭酸塩(炭酸コバルト、塩基性炭酸コバルトなど)を用いることができる。例えば(1)当該原料を焼成しコバルト酸化物とすること、(2)水媒体に溶解しPH調整し沈殿物を得た後、焼成し、コバルト酸化物とすること、ができる。最も好ましくはコバルト炭酸塩を焼成して得られたコバルト酸化物である。当該方法を用いることで、高い比表面積を有するコバルト酸化物を得ることでき、更に当該酸化物を用いることにより高い比表面積を有する亜酸化窒素分解触媒を得ることができるからである。   Commercially available cobalt oxide can be used as a raw material for cobalt oxide, but cobalt nitrate, cobalt chloride, cobalt acetate, cobalt hydroxide, or cobalt carbonate (such as cobalt carbonate or basic cobalt carbonate) can be used. . For example, (1) the raw material can be fired to obtain a cobalt oxide, and (2) the precipitate can be dissolved in an aqueous medium and adjusted for pH to obtain a precipitate, and then fired to obtain a cobalt oxide. Most preferred is a cobalt oxide obtained by firing cobalt carbonate. This is because a cobalt oxide having a high specific surface area can be obtained by using the method, and a nitrous oxide decomposition catalyst having a high specific surface area can be obtained by using the oxide.

コバルト酸化物の原料としてコバルト炭酸塩を用いる場合の焼成温度は、250℃〜750℃であるのが好ましく、300℃〜650℃であるのがより好ましい。250℃以下であるとコバルト炭酸塩は分解せず十分にコバルト酸化物を得られにくいこと、750℃以上であるとコバルト酸化物の結晶変化や比表面積低下を伴って粒子成長する場合があるので好ましくない。   The firing temperature when cobalt carbonate is used as the raw material for the cobalt oxide is preferably 250 ° C. to 750 ° C., and more preferably 300 ° C. to 650 ° C. When the temperature is 250 ° C. or lower, cobalt carbonate is not decomposed sufficiently and it is difficult to obtain a cobalt oxide sufficiently. When the temperature is 750 ° C. or higher, particles may grow with crystal change of cobalt oxide or a decrease in specific surface area. It is not preferable.

ビスマス酸化物の原料としては、硝酸ビスマス、水酸化ビスマス、酢酸ビスマス、クエン酸ビスマス、炭酸ビスマス、酸化ビスマスを用いることができ、これらを水性媒体中に分散し所望の化合物として使用することができる。   As raw materials for bismuth oxide, bismuth nitrate, bismuth hydroxide, bismuth acetate, bismuth citrate, bismuth carbonate, bismuth oxide can be used, and these can be dispersed in an aqueous medium and used as desired compounds. .

なお、前記ビスマス酸化物の原料は水に溶解し難いため、予めビスマス酸化物の原料に酸やアルカリを加えて溶解させておくことができる。例えば硝酸ビスマスを原料として用いる場合は硝酸、硫酸、塩酸、リン酸などの無機酸や、酢酸及びクエン酸などの有機酸を添加して溶解し酸性水溶液として用いることが好ましい。   Since the bismuth oxide raw material is difficult to dissolve in water, it can be dissolved in advance by adding acid or alkali to the bismuth oxide raw material. For example, when bismuth nitrate is used as a raw material, it is preferable to add and dissolve an inorganic acid such as nitric acid, sulfuric acid, hydrochloric acid and phosphoric acid, or an organic acid such as acetic acid and citric acid and use it as an acidic aqueous solution.

当該触媒の比表面積は25m/g以上であることがより好ましい。特に好ましくは35〜100m/gである。触媒の比表面積が25m/g以下である場合、触媒の活性点の数が少なくなり十分な活性が得られない。前述のようにコバルト炭酸塩をコバルト源として用いて、250〜750℃で焼成したものを使用することで、容易に触媒の比表面積を前記範囲とすることができる。 The specific surface area of the catalyst is more preferably 25 m 2 / g or more. Especially preferably, it is 35-100 m < 2 > / g. When the specific surface area of the catalyst is 25 m 2 / g or less, the number of active sites of the catalyst is reduced and sufficient activity cannot be obtained. As described above, the specific surface area of the catalyst can be easily adjusted to the above range by using a material obtained by calcining at 250 to 750 ° C. using cobalt carbonate as a cobalt source.

また当該触媒を粉末X線回折法にて測定した回折パターンにおいて、コバルト酸化物が四三酸化コバルト(Co)の結晶構造を有しており、かつビスマス酸化物に由来する回折ピークが検出されないことが好ましい。このようにビスマス酸化物に由来する回折ピークが検出されないのは、主成分であるコバルト酸化物(すなわち四三酸化コバルト)の近傍にビスマス酸化物が非晶質な微細粒子として存在するか、ビスマス酸化物がコバルト酸化物に固溶して固溶体を形成しているケースなどが考えられる。特にビスマス酸化物がコバルト酸化物に固溶して固溶体を形成していることが好ましい。 Further, in the diffraction pattern obtained by measuring the catalyst by powder X-ray diffraction, the cobalt oxide has a crystal structure of cobalt trioxide (Co 3 O 4 ), and the diffraction peak derived from bismuth oxide is Preferably it is not detected. Thus, the diffraction peak derived from bismuth oxide is not detected because the bismuth oxide exists as amorphous fine particles in the vicinity of the main component cobalt oxide (ie, cobalt tetroxide). There may be a case where an oxide forms a solid solution by dissolving in cobalt oxide. In particular, it is preferable that bismuth oxide forms a solid solution by dissolving in cobalt oxide.

当該触媒はコバルト酸化物とビスマス酸化物以外に、必要により周期律表8〜11族からなる群から選ばれる少なくとも一種の金属元素の化合物を添加することもできる。当該金属元素としてはルテニウム、ロジウム、イリジウム、パラジウム、白金、鉄、ニッケル、銅、銀が好ましい。当該添加する成分の量は、コバルト酸化物とビスマス酸化物との合計を100質量%としたとき、0.01〜20質量%であることが好ましく、0.1〜10質量%であることがより好ましい。   In addition to cobalt oxide and bismuth oxide, the catalyst may be added with a compound of at least one metal element selected from the group consisting of groups 8 to 11 of the periodic table, if necessary. As the metal element, ruthenium, rhodium, iridium, palladium, platinum, iron, nickel, copper, and silver are preferable. The amount of the component to be added is preferably 0.01 to 20% by mass, and preferably 0.1 to 10% by mass, when the total of the cobalt oxide and the bismuth oxide is 100% by mass. More preferred.

当該触媒はコバルト酸化物とビスマス酸化物を多孔質無機酸化物に担持、あるいは多孔質無機酸化物と混合、して使用することも可能である。この場合に、コバルト酸化物とビスマス酸化物の量は、全ての触媒成分を100質量%としたとき、0.1〜50質量%であることが好ましく、1〜20質量%であることがより好ましい。多孔質無機酸化物としてアルミニウム、シリコン、チタン、セリウム、マグネシウムおよびジルコニウムよりなる群から選ばれる1種以上の元素の酸化物が使用できる。   The catalyst can be used by supporting cobalt oxide and bismuth oxide on a porous inorganic oxide or mixing with a porous inorganic oxide. In this case, the amount of cobalt oxide and bismuth oxide is preferably 0.1 to 50% by mass and more preferably 1 to 20% by mass when all the catalyst components are 100% by mass. preferable. As the porous inorganic oxide, an oxide of one or more elements selected from the group consisting of aluminum, silicon, titanium, cerium, magnesium and zirconium can be used.

次に亜酸化窒素分解触媒の代表的な製造方法について下記に示すが、本発明の主旨に反しない限り、下記製造方法に限定されるものではない。(1)コバルト酸化物もしくは炭酸塩、水酸化物などのコバルト酸化物前駆体とビスマス化合物を十分に混合し、必要により焼成する方法(混合法)、(2)コバルト酸化物とビスマス化合物の水溶液又は水性分散液と混合し、必要によりPH調整・ろ過した後、乾燥・焼成する方法(含浸法)、(3)コバルトの水溶液又は水性分散液とビスマス化合物の水溶液又は水性分散液とを混合し、必要によりPH調整・ろ過した後、乾燥・焼成する方法(共沈法または沈着法)を用いることができるが、好ましくはコバルト酸化物にビスマス化合物の水溶液または水性液を混合する含浸法である。   Next, although the typical manufacturing method of a nitrous oxide decomposition | disassembly catalyst is shown below, unless it is contrary to the main point of this invention, it is not limited to the following manufacturing method. (1) A method of sufficiently mixing a cobalt oxide precursor such as cobalt oxide, carbonate, hydroxide or the like and a bismuth compound, and firing if necessary (mixing method), (2) an aqueous solution of cobalt oxide and bismuth compound Or mixing with aqueous dispersion, adjusting pH and filtering if necessary, drying and baking (impregnation method), (3) mixing cobalt aqueous solution or aqueous dispersion with bismuth compound aqueous solution or aqueous dispersion. If necessary, a method of adjusting pH and filtering and drying and baking (coprecipitation method or deposition method) can be used, but an impregnation method in which an aqueous solution or an aqueous solution of a bismuth compound is mixed with cobalt oxide is preferable. .

本発明の亜酸化窒素分解触媒の製造方法としてより好ましいのは、コバルト炭酸塩を焼成して得られた四三酸化コバルトに、硝酸ビスマスの水溶液を加え十分に混合し乾燥、焼成して製造するものである。上記亜酸化窒素分解触媒の製造方法において硝酸ビスマスを溶解するために酸として硝酸を添加することが更に好ましい。上記の製造方法を用いることにより、簡便・容易にコバルト酸化物中に均一にビスマス酸化物が分散した亜酸化窒素分解触媒を製造することができる。   More preferably, the method for producing the nitrous oxide decomposition catalyst of the present invention is produced by adding an aqueous solution of bismuth nitrate to cobalt trioxide obtained by calcining cobalt carbonate, thoroughly mixing, drying and calcining. Is. In the above method for producing a nitrous oxide decomposition catalyst, it is more preferable to add nitric acid as an acid in order to dissolve bismuth nitrate. By using the above production method, a nitrous oxide decomposition catalyst in which bismuth oxide is uniformly dispersed in cobalt oxide can be produced easily and easily.

上記触媒製造方法において酸化コバルトとビスマス水溶液の混合後の乾燥条件は特に限定されるものではないが、生産性を考慮して乾燥温度が80〜200℃で乾燥時間を1〜20時間とすることが好ましい。乾燥温度が80℃未満又は乾燥時間が1時間未満では乾燥が不十分となって触媒性能に悪影響を与える場合があるからである。また乾燥温度を200℃より高くしたり、乾燥時間を20時間より長くしたりすることはエネルギー効率や生産効率の観点で好ましくないからである。   In the above catalyst production method, the drying conditions after mixing the cobalt oxide and the bismuth aqueous solution are not particularly limited, but considering the productivity, the drying temperature is 80 to 200 ° C. and the drying time is 1 to 20 hours. Is preferred. This is because if the drying temperature is less than 80 ° C. or the drying time is less than 1 hour, drying may be insufficient and the catalyst performance may be adversely affected. Moreover, it is because it is unpreferable from a viewpoint of energy efficiency or production efficiency to make drying temperature higher than 200 degreeC, or to make drying time longer than 20 hours.

また前記乾燥に次いで触媒の焼成条件についても適宜変更可能であって、特に限定されるものではないが、空気雰囲気下300〜700℃で1〜10時間焼成することが好ましい。焼成温度が300℃未満のとき、焼成時間が1時間未満のとき、にはコバルト酸化物中のビスマス酸化物が均一に分散せず所定の性能が得られない場合があり好ましくはないからである。また焼成温度が700℃を超えたり、焼成時間が10時間を越えたりする場合は触媒の比表面積低下や熱負荷によるシンタリングで性能低下を招く場合があるので好ましくないからである。   Further, the firing conditions of the catalyst after the drying can be appropriately changed, and are not particularly limited. However, it is preferably fired at 300 to 700 ° C. for 1 to 10 hours in an air atmosphere. This is because when the firing temperature is less than 300 ° C. and the firing time is less than 1 hour, the bismuth oxide in the cobalt oxide may not be uniformly dispersed and a predetermined performance may not be obtained. . Also, if the calcination temperature exceeds 700 ° C. or the calcination time exceeds 10 hours, it is not preferable because the specific surface area of the catalyst may decrease or the performance may be deteriorated by sintering due to heat load.

本発明の亜酸化窒素分解触媒の形状については特に制限はなく、円柱状、リング状、球状、板状、ハニカム状、その他一体に成形されたものなど適宜選択することができる。この触媒の成形は一般的な成形方法、例えば打錠成形法、押出成形法などによって行うことができる。球状の場合、その平均粒径は、通常、1〜10mmである。ハニカム状の場合は押出成形法やシート状素子を巻き固める方法などにより製造され、そのガス通過口(セル形状)の形は6角形、4角形、3角形またはコルゲーション形のいずれであってもよい。セル密度(セル数/単位断面)は、通常、25〜800セル/平方インチである。また前記触媒成分を押出成形しても良いし、所定の形状を有したコージライトなどのセラミック担体やメタル担体の上に担持しても良い。   The shape of the nitrous oxide decomposition catalyst of the present invention is not particularly limited, and can be appropriately selected from a cylindrical shape, a ring shape, a spherical shape, a plate shape, a honeycomb shape, and other integrally formed ones. The catalyst can be molded by a general molding method such as a tableting method or an extrusion method. In the case of a spherical shape, the average particle diameter is usually 1 to 10 mm. In the case of a honeycomb shape, it is manufactured by an extrusion molding method or a method of winding a sheet-like element, and the shape of the gas passage port (cell shape) may be any of a hexagonal shape, a quadrangular shape, a triangular shape, or a corrugation shape. . The cell density (number of cells / unit cross section) is usually 25 to 800 cells / in 2. The catalyst component may be extruded or supported on a ceramic carrier such as cordierite having a predetermined shape or a metal carrier.

次に亜酸化窒素含有ガスの処理方法は本発明の亜酸化窒素分解触媒を用いるものであり、炭化水素、一酸化炭素、水素やアンモニアのような還元剤を添加しなくても亜酸化窒素を窒素と酸素に直接分解することができる。また亜酸化窒素含有ガスに窒素酸化物や硫黄酸化物が含まれていても本発明の亜酸化窒素分解触媒を用いることで、被毒による活性低下が抑制され長期にわたり安定的に処理することができる。   Next, a method for treating a nitrous oxide-containing gas uses the nitrous oxide decomposition catalyst of the present invention, and nitrous oxide is removed without adding a reducing agent such as hydrocarbon, carbon monoxide, hydrogen or ammonia. It can be decomposed directly into nitrogen and oxygen. In addition, even if the nitrous oxide-containing gas contains nitrogen oxides or sulfur oxides, the use of the nitrous oxide decomposition catalyst of the present invention can suppress a decrease in activity due to poisoning and can stably treat for a long time. it can.

亜酸化窒素含有ガスの亜酸化窒素濃度は1〜50000ppmであり、より好ましくは5〜5000ppmであることが好ましい。亜酸化窒素濃度が1ppm未満である場合は効率的な処理が困難であり、50000ppmを超える場合は触媒法以外で処理することが好ましい。   The nitrous oxide concentration of the nitrous oxide-containing gas is 1 to 50000 ppm, more preferably 5 to 5000 ppm. When the nitrous oxide concentration is less than 1 ppm, efficient treatment is difficult, and when it exceeds 50,000 ppm, it is preferable to treat by a method other than the catalytic method.

なお、当該亜酸化窒素含有ガスに他の窒素酸化物が含まれるときは、NO濃度とNO濃度との合計で1000ppm未満が好ましく、500ppm未満であることが更に好ましい。また硫黄酸化物が含まれるときは、硫黄酸化物の濃度は500ppm未満であることが好ましく、100ppm未満であることが更に好ましい。当該亜酸化窒素含有ガスには他に窒素、酸素、二酸化炭素、一酸化炭素、水、水素及びアンモニア等が含まれていても良い。 When the nitrous oxide-containing gas contains other nitrogen oxides, the total of the NO concentration and the NO 2 concentration is preferably less than 1000 ppm, more preferably less than 500 ppm. When sulfur oxide is contained, the concentration of sulfur oxide is preferably less than 500 ppm, and more preferably less than 100 ppm. In addition, the nitrous oxide-containing gas may contain nitrogen, oxygen, carbon dioxide, carbon monoxide, water, hydrogen, ammonia, and the like.

また当該処理方法における反応温度は200〜700℃であり、好ましくは250〜450℃、更に好ましくは300〜400℃であることが好ましい。反応温度が200℃未満では処理ガス中に共存する窒素酸化物や硫黄酸化物が触媒に蓄積などによって長期に亘り安定的に処理することができない場合があり、700℃を越える場合は排ガスを加熱するために多量の燃料が必要となり経済性が問題となる。また空間速度(SV)は、1,000〜50,000hr−1、好ましくは2,000〜20,000hr−1である。更に本発明の処理方法における反応圧は0.1〜2MPa、好ましくは0.1〜1MPaである。 Moreover, the reaction temperature in the said processing method is 200-700 degreeC, Preferably it is 250-450 degreeC, More preferably, it is preferable that it is 300-400 degreeC. If the reaction temperature is less than 200 ° C, nitrogen oxides or sulfur oxides coexisting in the treatment gas may not be stably treated for a long time due to accumulation in the catalyst. If it exceeds 700 ° C, the exhaust gas is heated. In order to do so, a large amount of fuel is required, which causes a problem of economy. The space velocity (SV) is 1,000 to 50,000 hr −1 , preferably 2,000 to 20,000 hr −1 . Furthermore, the reaction pressure in the processing method of the present invention is 0.1 to 2 MPa, preferably 0.1 to 1 MPa.

当該亜酸化窒素含有ガスの処理方法は発電用ガスタービン、ボイラー、ごみ焼却炉、下水汚泥焼却炉などの各種燃焼排ガスやアジピン酸や硝酸などを製造する化学プラントなどから排出される産業排ガス中などに適用することができる。   The treatment method of the nitrous oxide-containing gas includes various combustion exhaust gases such as gas turbines for power generation, boilers, waste incinerators, sewage sludge incinerators, and industrial exhaust gases emitted from chemical plants that produce adipic acid, nitric acid, etc. Can be applied to.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

(実施例1)
市販の塩基性炭酸コバルト(ナカライテスク社製)を空気雰囲気下、400℃で2時間焼成して得られた四三酸化コバルト20gに、硝酸ビスマス(和光純薬製)1.21gと硝酸(和光純薬製、60質量%)2.54gを含む水溶液を加えて、ペースト状として、十分に混合し、120℃の乾燥機で5時間乾燥してから、空気雰囲気下、500℃で2時間焼成してBi/Coの原子比が0.01/1の触媒を得た。
(Example 1)
Commercially available basic cobalt carbonate (manufactured by Nacalai Tesque) in an air atmosphere was calcined at 400 ° C. for 2 hours to 20 g of cobalt trioxide, 1.21 g of bismuth nitrate (manufactured by Wako Pure Chemical Industries) and nitric acid ( An aqueous solution containing 2.54 g (manufactured by Koyo Pure Chemical Co., Ltd.) is added and mixed well as a paste, dried in a 120 ° C. dryer for 5 hours, and then fired at 500 ° C. for 2 hours in an air atmosphere. Thus, a catalyst having a Bi / Co atomic ratio of 0.01 / 1 was obtained.

(実施例2)
実施例1の塩基性炭酸コバルトを空気雰囲気下、600℃で2時間焼成して得られた四三酸化コバルト20gに硝酸ビスマス2.43gと硝酸5.10gを加えた以外は実施例1と同様にして、Bi/Coの原子比が0.02/1の触媒を得た。
(Example 2)
The same as Example 1 except that 2.43 g of bismuth nitrate and 5.10 g of nitric acid were added to 20 g of cobalt trioxide obtained by calcining the basic cobalt carbonate of Example 1 in an air atmosphere at 600 ° C. for 2 hours. Thus, a catalyst having a Bi / Co atomic ratio of 0.02 / 1 was obtained.

(実施例3)
実施例1の四三酸化コバルト20gに硝酸ビスマス3.64gと硝酸7.64gを含む水溶液を加えた以外は実施例1と同様にして、Bi/Coの原子比が0.03/1の触媒を得た。
(Example 3)
A catalyst having a Bi / Co atomic ratio of 0.03 / 1, in the same manner as in Example 1, except that an aqueous solution containing 3.64 g of bismuth nitrate and 7.64 g of nitric acid was added to 20 g of cobalt trioxide of Example 1. Got.

(実施例4)
実施例1の塩基性炭酸コバルトを空気雰囲気下、700℃で2時間焼成して得られた四三酸化コバルト20gに硝酸ビスマス0.36gと硝酸0.76gを含む水溶液を加えた以外は実施例1と同様にして、Bi/Coの原子比が0.003/1の触媒を得た。
Example 4
Example except that an aqueous solution containing 0.36 g of bismuth nitrate and 0.76 g of nitric acid was added to 20 g of cobalt trioxide obtained by baking the basic cobalt carbonate of Example 1 at 700 ° C. for 2 hours in an air atmosphere. In the same manner as in Example 1, a catalyst having a Bi / Co atomic ratio of 0.003 / 1 was obtained.

(実施例5)
実施例1において予め焼成していない塩基性炭酸コバルト20gに硝酸ビスマスを7.04gと硝酸14.78gを含む水溶液を加えた以外は実施例1と同様にして、Bi/Coの原子比が0.075/1の触媒を得た。
(Example 5)
In the same manner as in Example 1, except that an aqueous solution containing 7.04 g of bismuth nitrate and 14.78 g of nitric acid was added to 20 g of basic cobalt carbonate not previously calcined in Example 1, the Bi / Co atomic ratio was 0. 075/1 catalyst was obtained.

(比較例1)
実施例1において、硝酸ビスマスの代わりに硝酸カリウム0.39gを含む水溶液を加えた以外は実施例1と同様にして触媒を得た。当該触媒においてK/Coの原子比は0.02/1であった。
(Comparative Example 1)
In Example 1, a catalyst was obtained in the same manner as in Example 1 except that an aqueous solution containing 0.39 g of potassium nitrate was added instead of bismuth nitrate. In the catalyst, the atomic ratio of K / Co was 0.02 / 1.

(比較例2)
実施例1において、硝酸ビスマスと硝酸を加えないこと以外は実施例1と同様にして触媒を得た。
(Comparative Example 2)
In Example 1, a catalyst was obtained in the same manner as in Example 1 except that bismuth nitrate and nitric acid were not added.

(比較例3)
実施例1において、市販の四三酸化コバルト(高純度化学研究所製)20gに硝酸ビスマス36.44gと硝酸76.44gを含む水溶液を加えた以外は実施例1と同様にして、Bi/Coの原子比が0.3/1の触媒を得た。
(Comparative Example 3)
In Example 1, Bi / Co was prepared in the same manner as in Example 1 except that 20 g of commercially available cobalt trioxide (manufactured by High-Purity Chemical Laboratory) was added with an aqueous solution containing 36.44 g of bismuth nitrate and 76.44 g of nitric acid. A catalyst having an atomic ratio of 0.3 / 1 was obtained.

Figure 0005840068
Figure 0005840068

(比表面積の測定)
実施例1〜5及び比較例1〜3の触媒の比表面積は、窒素ガスを用いたBET法で測定した。
(Measurement of specific surface area)
The specific surface areas of the catalysts of Examples 1 to 5 and Comparative Examples 1 to 3 were measured by the BET method using nitrogen gas.

(触媒活性試験)
実施例1〜5及び比較例1〜3の触媒を以下の手順により触媒活性試験をした。各触媒の粉末を加圧成形した後に、顆粒状に破砕し、分級し、0.6〜1.18mmの範囲のものを得た。当該触媒1mlを内径10mmのSUS製反応管に充填し、下記合成ガスを空間速度10,000hr−1、反応温度350℃で当該反応管に導入した後、1時間経過後及び20時間経過後の当該反応管の入口側と出口側の亜酸化窒素濃度をガスクロマトグラフ(島津製作所製、GC8A、カラム:porapakQ)で測定し、下記式1により亜酸化窒素分解率を求め、表1に示した。
(Catalytic activity test)
The catalysts of Examples 1 to 5 and Comparative Examples 1 to 3 were subjected to catalytic activity test according to the following procedure. After each catalyst powder was pressure-molded, it was crushed into granules and classified to obtain a catalyst in the range of 0.6 to 1.18 mm. 1 ml of the catalyst was filled into a SUS reaction tube having an inner diameter of 10 mm, and the following synthesis gas was introduced into the reaction tube at a space velocity of 10,000 hr −1 and a reaction temperature of 350 ° C., after 1 hour and after 20 hours. The nitrous oxide concentrations on the inlet side and outlet side of the reaction tube were measured with a gas chromatograph (manufactured by Shimadzu Corporation, GC8A, column: porapakQ), and the nitrous oxide decomposition rate was determined by the following formula 1 and shown in Table 1.

<合成ガスの組成>
O:300ppm、CO:300ppm、NO:50ppm、SO:50ppm、O:16体積%、HO:10体積%、N:バランス
<Composition of synthesis gas>
N 2 O: 300ppm, CO 2 : 300ppm, NO: 50ppm, SO 2: 50ppm, O 2: 16 vol%, H 2 O: 10 vol%, N 2: balance

Figure 0005840068
Figure 0005840068

本発明によれば高価な貴金属を用いなくても低温で高活性を有する亜酸化窒素分解触媒を提供することができる。亜酸化窒素含有ガスに窒素酸化物や硫黄酸化物が含まれていても安定的に処理可能であり、各種産業用途に利用されることが期待できる。   According to the present invention, a nitrous oxide decomposition catalyst having high activity at a low temperature can be provided without using an expensive noble metal. Even if the nitrous oxide-containing gas contains nitrogen oxides or sulfur oxides, it can be treated stably and can be expected to be used in various industrial applications.

Claims (6)

触媒成分としてコバルト酸化物及びビスマス酸化物を含有し、コバルトに対するビスマスの原子比が0.0005〜0.15であることを特徴とする亜酸化窒素分解触媒。 A nitrous oxide decomposition catalyst comprising cobalt oxide and bismuth oxide as a catalyst component, wherein the atomic ratio of bismuth to cobalt is 0.0005 to 0.15. 当該触媒の比表面積が25m/g以上であることを特徴とする請求項1記載の亜酸化窒素分解触媒。 2. The nitrous oxide decomposition catalyst according to claim 1, wherein the catalyst has a specific surface area of 25 m 2 / g or more. 当該コバルト酸化物四三酸化コバルト(Co)であることを特徴とする請求項1〜2のいずれか1項記載の亜酸化窒素分解触媒。 3. The nitrous oxide decomposition catalyst according to claim 1 , wherein the cobalt oxide is tribasic cobalt tetraoxide (Co 3 O 4 ). コバルト炭酸塩を焼成して得られた四三酸化コバルト(Co)と、硝酸ビスマスを含む水溶液とを混合し乾燥し焼成することを特徴とする請求項1〜3のいずれか1項記載の亜酸化窒素分解触媒を製造する方法。 And tricobalt tetroxide obtained by firing the cobalt carbonate (Co 3 O 4), any one of claims 1 to 3, characterized by mixing dried and calcined to an aqueous solution containing bismuth nitrate A process for producing the described nitrous oxide decomposition catalyst. 当該のコバルト炭酸塩の焼成温度が250℃〜750℃であることを特徴とする請求項4記載の亜酸化窒素分解触媒を製造する方法。 The method for producing a nitrous oxide decomposition catalyst according to claim 4, wherein the calcination temperature of the cobalt carbonate is 250C to 750C. 請求項1〜3のいずれか1項記載の亜酸化窒素分解触媒を用いて亜酸化窒素含有ガスを処理することを特徴とする亜酸化窒素含有ガスの処理方法。 A method for treating a nitrous oxide-containing gas, wherein the nitrous oxide-containing gas is treated using the nitrous oxide decomposition catalyst according to any one of claims 1 to 3.
JP2012106286A 2012-05-07 2012-05-07 Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst Active JP5840068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106286A JP5840068B2 (en) 2012-05-07 2012-05-07 Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106286A JP5840068B2 (en) 2012-05-07 2012-05-07 Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2013233488A JP2013233488A (en) 2013-11-21
JP5840068B2 true JP5840068B2 (en) 2016-01-06

Family

ID=49760045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106286A Active JP5840068B2 (en) 2012-05-07 2012-05-07 Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst

Country Status (1)

Country Link
JP (1) JP5840068B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314673A (en) * 1992-02-18 1994-05-24 E. I. Du Pont De Nemours And Company Process for the conversion of N2 O
JP3325041B2 (en) * 1992-04-28 2002-09-17 三井鉱山株式会社 Decomposition and removal method of nitrous oxide
JP3221116B2 (en) * 1992-11-04 2001-10-22 堺化学工業株式会社 Catalyst for decomposition of nitrous oxide
JP2007054714A (en) * 2005-08-23 2007-03-08 Kyoto Univ Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP5483723B2 (en) * 2010-09-03 2014-05-07 株式会社日本触媒 Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same

Also Published As

Publication number Publication date
JP2013233488A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
RU2456074C2 (en) Catalyst, preparation method thereof and use thereof for decomposing n2o
CN111889101B (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
JP2002282689A (en) Catalyst carrier and catalyst, and method for producing them
JP2006272079A (en) Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method
Hu et al. Synergism between manganese and cobalt on Mn–Co oxides for the catalytic combustion of VOCs: A combined kinetics and diffuse reflectance infrared fourier transform spectroscopy study
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
CN109603808B (en) Preparation method and application of zirconium pillared montmorillonite-loaded Ce-Nb composite catalyst
WO2021043267A1 (en) Low-temperature denitration catalyst
JP2007152263A (en) Catalyst for nitrous oxide decomposition and method for purifying nitrous oxide-containing gas
JP2005342710A (en) Heat-resistant denitrifying catalyst
JP5483723B2 (en) Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
JP5840068B2 (en) Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst
KR20240108372A (en) Method for regenerating a catalyst for decomposing nitrous oxide and method for decomposing nitrous oxide
JP5812789B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst
JP5812788B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst, and method for treating nitrous oxide-containing gas
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
KR101629487B1 (en) Manganese-ceria-tungsten-titania catalyst for removing nox at low temperature and preparing method same
JP4745271B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
KR101464542B1 (en) Catalyst for selective oxidation of ammonia and method for catalyst improving effciency of selective oxidation using same
KR20120128029A (en) A tungsten/titania-based catalyst, a method of preparing the same and a method of removing ammonia by using the same
CN111185217A (en) Solid phase method preparation method and application of chromium-based carbon nitride catalyst
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
WO2013047484A1 (en) Catalyst for decomposition of nitrous oxide, method for producing catalyst for decomposition of nitrous oxide, and method for processing nitrous oxide-containing gas
JP2013193051A (en) Catalyst for decomposing nitrous oxide and method of manufacturing catalyst for decomposing nitrous oxide
JP2003245554A (en) Hydrogen generating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151110

R150 Certificate of patent or registration of utility model

Ref document number: 5840068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150