JP3325041B2 - Decomposition and removal method of nitrous oxide - Google Patents

Decomposition and removal method of nitrous oxide

Info

Publication number
JP3325041B2
JP3325041B2 JP11020592A JP11020592A JP3325041B2 JP 3325041 B2 JP3325041 B2 JP 3325041B2 JP 11020592 A JP11020592 A JP 11020592A JP 11020592 A JP11020592 A JP 11020592A JP 3325041 B2 JP3325041 B2 JP 3325041B2
Authority
JP
Japan
Prior art keywords
nitrous oxide
catalyst
compound
group
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11020592A
Other languages
Japanese (ja)
Other versions
JPH06106027A (en
Inventor
信秀 池山
豊 岩永
祐二 鳥養
正敏 安達
Original Assignee
三井鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井鉱山株式会社 filed Critical 三井鉱山株式会社
Priority to JP11020592A priority Critical patent/JP3325041B2/en
Publication of JPH06106027A publication Critical patent/JPH06106027A/en
Application granted granted Critical
Publication of JP3325041B2 publication Critical patent/JP3325041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種産業排ガス等に含
まれる亜酸化窒素を分解除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing and removing nitrous oxide contained in various industrial exhaust gases.

【0002】[0002]

【従来の技術】燃焼排ガスや化学工場の排ガスなど各種
産業排ガスの大気中の放出については、公害防止、環境
保全の観点から種々の規制措置がとられている。特に窒
素酸化物については、光化学スモッグ、酸性雨等の原因
物質として大気中への排出が厳しく規制されている。従
来、排出規制の対象とされてきた窒素酸化物は一酸化窒
素(NO)及び二酸化窒素(NO2 )であり、脱硝技術
もこれらの物質を対象に研究され、アンモニア等の還元
性物質を用いた接触還元法や金属触媒等の触媒を用いて
窒素と酸素とに分解する方法などが開発されてきた。
2. Description of the Related Art Various control measures have been taken with respect to emission of various industrial exhaust gases such as combustion exhaust gases and exhaust gases from chemical factories into the atmosphere from the viewpoints of pollution prevention and environmental conservation. In particular, emission of nitrogen oxides into the atmosphere as a causative substance such as photochemical smog and acid rain is strictly regulated. Conventionally, nitrogen oxides that have been subject to emission control are nitric oxide (NO) and nitrogen dioxide (NO 2 ), and denitrification technology has also been studied for these substances, and reducing substances such as ammonia have been used. A catalytic reduction method and a method of decomposing into nitrogen and oxygen using a catalyst such as a metal catalyst have been developed.

【0003】窒素酸化物の中でも亜酸化窒素は他の窒素
酸化物に比較して安定で無害と考えられていた。ところ
が、近年、この亜酸化窒素が、成層圏で分解し一酸化窒
素を生成することが明らかになり、また、高い温室効果
を示し、その半減期も約150年と長いことから地球温
暖化への影響も示唆されるなど、問題になってきてい
る。各種排ガス中に含まれる亜酸化窒素の量については
未だ詳細に解明されいいないが、燃料の種類や燃焼条件
等によって異なり、化石燃料の低温燃焼排ガス中に10
0ppm程度の亜酸化窒素が含まれる例が報告されてい
る。この亜酸化窒素は、前記の脱硝方法では全く分解、
除去することはできず、さらにアンモニアを還元剤とす
る脱硝方法においては、脱硝装置の運転条件によっては
一酸化窒素、二酸化窒素及びアンモニア等の反応により
亜酸化窒素が生成し、濃度が増加する場合があることも
明らかとなってきた。
[0003] Among nitrogen oxides, nitrous oxide has been considered to be stable and harmless compared to other nitrogen oxides. However, in recent years, it has been revealed that this nitrous oxide decomposes in the stratosphere to produce nitric oxide, and has a high greenhouse effect, and its half-life is as long as about 150 years. It is becoming a problem, with suggested effects. Although the amount of nitrous oxide contained in various exhaust gases has not yet been elucidated in detail, it varies depending on the type of fuel, combustion conditions, etc.
An example containing about 0 ppm of nitrous oxide has been reported. This nitrous oxide is completely decomposed by the aforementioned denitration method,
In the denitration method using ammonia as a reducing agent, nitrous oxide is generated due to the reaction of nitric oxide, nitrogen dioxide, ammonia, etc., depending on the operating conditions of the denitration device, and the concentration increases. It has become clear that there is.

【0004】これらの状況から各種排ガス中に含まれる
亜酸化窒素を分解除去する方法が種々検討され、提案さ
れている。従来、排ガス中の亜酸化窒素を分解する方法
として提案されている方法の主なものは、高温下におい
て金属触媒と接触させて分解する接触分解法(特開昭6
3−7826号公報など)、アンモニアや水素などの還
元性ガスとともに触媒に接触させて還元分解する接触還
元法(特公昭55−47933号、特開平2−6812
0号公報など)あるいは、光又は放射線により分解する
方法(特開昭63−111927号、特開昭63−11
1929号公報など)などである。これらの方法におい
ては、処理温度が高温であること、通常の燃焼排ガス中
には0.01〜0.15%の硫黄酸化物、5〜20%の
水分、0.5〜100ppmのハロゲン物質が含まれて
おり、これらの物質により触媒が被毒し分解活性が低下
すること、特殊な装置を必要とすることなどの問題点が
多く、実用化に到っていないのが実情である。
Under these circumstances, various methods for decomposing and removing nitrous oxide contained in various exhaust gases have been studied and proposed. Conventionally, the main method proposed as a method for decomposing nitrous oxide in exhaust gas is a catalytic cracking method in which a catalyst is decomposed by contact with a metal catalyst at a high temperature (Japanese Unexamined Patent Publication No.
And a catalytic reduction method in which the catalyst is brought into contact with a catalyst together with a reducing gas such as ammonia or hydrogen to undergo reductive decomposition (Japanese Patent Publication No. 55-47933, JP-A-2-6812).
0, etc.) or a method of decomposing by light or radiation (JP-A-63-111927, JP-A-63-11
1929). In these methods, the treatment temperature is high, and 0.01 to 0.15% of sulfur oxide, 5 to 20% of moisture, and 0.5 to 100 ppm of halogen substance are contained in ordinary flue gas. In many cases, the catalyst is poisoned by these substances and the decomposition activity is reduced, and a special device is required.

【0005】前記の従来技術の中では、接触分解法が最
も簡便で実用的なものと考えられるが、この方法は一般
に高温での処理を必要とする。前記特開昭63−782
6号公報に記載されている方法は、亜酸化窒素を含有す
るガスを元素の周期率表の第Ib族又は第VIII族の
金属又は該金属の酸化物あるいは複合酸化物を含有する
触媒と接触せしめる方法であるが、その実施例から見て
50%以上の脱硝率を得るためには、貴金属触媒を除い
て350℃以上の高温度が必要である。また、本発明者
らの実験によれば、ここに記載されているNiO、Fe
2 3 、CoO、CuOなどの触媒は処理される排ガス
中に水分や硫黄酸化物が含まれていると短時間で失活
し、亜酸化窒素の分解活性が低下するという問題点があ
ることが判明した。
[0005] Among the above prior arts, the catalytic cracking method is considered to be the simplest and practical one, but this method generally requires a treatment at a high temperature. JP-A-63-782
No. 6 discloses a method comprising contacting a gas containing nitrous oxide with a catalyst containing a metal of Group Ib or Group VIII of the periodic table of the elements or an oxide or composite oxide of the metal. In this method, a high temperature of 350 ° C. or more is required except for the noble metal catalyst in order to obtain a denitration rate of 50% or more in the example. Further, according to the experiments of the present inventors, NiO, Fe
Catalysts such as 2 O 3 , CoO, and CuO have the problem that if exhaust gas to be treated contains moisture or sulfur oxides, they are deactivated in a short time, and the activity of decomposing nitrous oxide is reduced. There was found.

【0006】本発明者らは、前記問題点のない亜酸化窒
素の分解除去方法について鋭意検討の結果、Rh2 3
又はCo2 3 、特にこれらの混合物を有効成分とする
触媒が比較的低温でも亜酸化窒素の分解活性が高く、水
分や硫黄酸化物などの被毒による活性低下が非常に小さ
く、長時間にわたって安定した高い亜酸化窒素の分解性
能を維持することができることを見出し、先に出願した
(特願平3−140629号)。
The present inventors have conducted intensive studies on a method for decomposing and removing nitrous oxide which does not have the above-mentioned problems, and as a result, Rh 2 O 3
Or, a catalyst containing Co 2 O 3 , especially a mixture thereof, as an active ingredient has a high activity of decomposing nitrous oxide even at a relatively low temperature, has a very small activity decrease due to poisoning such as moisture or sulfur oxides, The present inventors have found that it is possible to maintain a stable and high decomposition performance of nitrous oxide, and have filed an earlier application (Japanese Patent Application No. 3-140629).

【0007】[0007]

【発明が解決しようとする課題】ところが、前記Rh2
3 −Co2 3 系触媒は、従来使用されていた触媒に
比較し被毒物質に対する耐性が著しく大きいという特性
を有しているが、水分と硫黄酸化物あるいは塩化水素、
ふっ化水素などのハロゲン物質が共存するような条件下
では触媒活性の低下が大きく、長時間にわたって使用す
るにはなお問題があった。本発明の目的は、従来の接触
分解方法における問題点を解決し、比較的低温度での処
理が可能で、水分と硫黄酸化物やハロゲン物質等の触媒
被毒物質の共存する亜酸化窒素含有排ガスを処理するこ
とができる、亜酸化窒素の分解除去方法を提供すること
にある。
However, the above Rh 2
O 3 -Co 2 O 3 catalyst is resistant to compare poisoned materials conventionally used have been the catalyst has a characteristic that significantly greater, moisture and sulfur oxides or hydrogen chloride,
Under conditions in which a halogen substance such as hydrogen fluoride coexists, the catalyst activity is greatly reduced, and there is still a problem in using it for a long time. An object of the present invention is to solve the problems in the conventional catalytic cracking method, to perform treatment at a relatively low temperature, and to contain nitrous oxide in which water and a catalyst poisoning substance such as a sulfur oxide or a halogen substance coexist. An object of the present invention is to provide a method for decomposing and removing nitrous oxide, which can treat exhaust gas.

【0008】[0008]

【課題を解決するための手段】本発明は、亜酸化窒素含
有ガスを、Rh2 3 若しくはCo2 3 又はこれらの
混合物よりなるA群化合物、マンガン化合物よりなるB
群化合物及びアルカリ金属化合物若しくはアルカリ土類
金属化合物又はこれらの混合物よりなるC群化合物のそ
れぞれ1種以上を有効成分として含有する多元触媒と、
100〜600℃の温度で接触させ、亜酸化窒素を分解
させることを特徴とする亜酸化窒素の分解除去法及び水
分、硫黄酸化物及びハロゲン物質の中の1種以上の触媒
比毒物質の共存する亜酸化窒素含有ガスを、Rh2 3
若しくはCo2 3 又はこれらの混合物よりなるA群化
合物、マンガン化合物よりなるB群化合物及びアルカリ
金属化合物若しくはアルカリ土類金属化合物又はこれら
の混合物よりなるC群化合物のそれぞれ1種以上を有効
成分として含有する多元触媒と、100〜600℃の温
度で接触させ、亜酸化窒素を分解させることを特徴とす
る亜酸化窒素の分解除去法である。
SUMMARY OF THE INVENTION According to the present invention, a nitrous oxide-containing gas is produced by mixing a Group A compound comprising Rh 2 O 3 or Co 2 O 3 or a mixture thereof, and a B compound comprising a manganese compound.
A multi-component catalyst comprising, as an active ingredient, at least one of each of a group C compound and an alkali metal compound or an alkaline earth metal compound or a mixture thereof; and
A method for decomposing and removing nitrous oxide, comprising contacting at a temperature of 100 to 600 ° C. to decompose nitrous oxide, and coexistence of one or more catalytically toxic substances among moisture, sulfur oxides and halogen substances. The nitrous oxide-containing gas is Rh 2 O 3
Or at least one of Group A compounds composed of Co 2 O 3 or a mixture thereof, Group B compounds composed of a manganese compound, and Group C compounds composed of an alkali metal compound or an alkaline earth metal compound or a mixture thereof as active ingredients This is a method for decomposing and removing nitrous oxide, which comprises contacting a contained multi-way catalyst at a temperature of 100 to 600 ° C. to decompose nitrous oxide.

【0009】本発明の方法において使用する触媒は、R
2 3 若しくはCo2 3 又はこれらの混合物よりな
るA群化合物、マンガン化合物よりなるB群化合物及び
アルカリ金属化合物若しくはアルカリ土類金属化合物又
はこれらの混合物よりなるC群化合物のそれぞれ1種以
上の混合物を有効成分として含有する多元触媒である。
これらの触媒は、各有効成分をSiO2 を主成分とする
コロイダルシリカなどのバインダー成分とともに造粒す
るか、チタニア、アルミナ、シリカ/アルミナ、あるい
はマグネシア等の担体に担持させた形で使用するのが好
都合である。また、触媒の形状、大きさ等は使用目的、
使用状況等に応じて適宜選定すればよく、粒状、俵状、
球状、リング状、円柱状、板状、ハニカム状などの形状
が使用できるが、ガスとの接触効率や圧力損失の点など
からハニカム状、板状などが特に好ましい。
The catalyst used in the process of the present invention is R
at least one of Group A compounds composed of h 2 O 3 or Co 2 O 3 or mixtures thereof, Group B compounds composed of manganese compounds, and Group C compounds composed of alkali metal compounds or alkaline earth metal compounds or mixtures thereof Is a multi-way catalyst containing a mixture of the above as an active ingredient.
These catalysts are used in the form of granulating each active ingredient together with a binder component such as colloidal silica containing SiO 2 as a main component, or supported on a carrier such as titania, alumina, silica / alumina, or magnesia. Is convenient. The shape, size, etc. of the catalyst are intended for use,
It may be appropriately selected according to the use situation, etc.
A shape such as a sphere, a ring, a column, a plate, or a honeycomb shape can be used, but a honeycomb shape, a plate shape, or the like is particularly preferable from the viewpoint of gas contact efficiency and pressure loss.

【0010】本発明で使用する多元触媒の製造方法は特
に限定されるものではないが、好ましい方法として次の
ような例があげられる。すなわち、粉末状のRh2 3
又はCo2 3 若しくはこれらを任意の割合で混合した
混合粉末にマンガン化合物を添加し、さらにアルカリ金
属化合物若しくはアルカリ土類金属化合物又はこれらの
混合物を添加したものを原料とし、適当なバインダー成
分とともに水と混練し、必要により担体成分を添加して
混合後適当な大きさに成形して乾燥したものを粉砕して
粒度調整する方法、バインダー成分および担体成分とと
もに水と混練し任意の形状に成形後乾燥する方法、バイ
ンダー成分とともに水と混合してスラリー状とし、任意
の形状の担体に付着させ乾燥する方法などをとることが
できる。ここで、マンガン化合物、アルカリ金属化合物
又はアルカリ土類金属化合物として酸化物以外の化合物
を使用した場合には、酸化雰囲気中で300℃以上、好
ましくは400〜800℃の温度で加熱処理し、大部分
を酸化物の形態に変化させて使用する。なお、使用条件
によっては使用中に徐々に酸化が進行するので、事前の
酸化処理を省略することもできる。このようにして製造
した多元触媒中でマンガン化合物、アルカリ金属化合物
あるいはアルカリ土類金属化合物がどのような形で有効
に作用するのが明らかではないが、大部分は酸化物の形
で存在するものと推定される。
[0010] The method for producing the multi-way catalyst used in the present invention is not particularly limited, but preferred examples include the following examples. That is, powdered Rh 2 O 3
Alternatively, a manganese compound is added to Co 2 O 3 or a mixed powder obtained by mixing them at an arbitrary ratio, and further an alkali metal compound or an alkaline earth metal compound or a mixture thereof is used as a raw material, together with a suitable binder component. A method of kneading with water, adding a carrier component as necessary, mixing, shaping to an appropriate size, drying and pulverizing the dried product, adjusting the particle size, kneading with water together with a binder component and a carrier component, and shaping into an arbitrary shape A post-drying method, a method of mixing with water together with a binder component to form a slurry, attaching the slurry to a carrier having an arbitrary shape, and drying may be employed. Here, when a compound other than an oxide is used as the manganese compound, alkali metal compound or alkaline earth metal compound, heat treatment is performed in an oxidizing atmosphere at a temperature of 300 ° C. or higher, preferably 400 to 800 ° C. The part is used after being changed to an oxide form. In addition, since oxidation progresses gradually during use depending on use conditions, the prior oxidation treatment can be omitted. It is not clear how the manganese compound, alkali metal compound or alkaline earth metal compound works effectively in the multi-way catalyst produced in this way, but most exist in the form of oxide. It is estimated to be.

【0011】多元触媒の製造に使用するマンガン化合物
としては、酸化によりMnO2 に変化するものであれば
特に制限はなくMn(OH)2 、MnSO4 、MnCO
3 、MnCl2 なども使用できるが、特にMnO2 ある
いはMn(CH3 COO)2の形で使用するのが好まし
い。また、アルカリ金属化合物若しくはアルカリ土類金
属化合物としてはK2 CO3 、KNO3 、KOH、K2
SO4 、Na2 CO3、MgCO3 、CaCO3 などを
使用することができる。Rh2 3 やCo2 3 の粉末
にこれらのマンガン化合物やアルカリ金属化合物、アル
カリ土類金属化合物等を混合する方法としては粉末状で
混合するか水に溶解させて添加混合する方法を採ること
ができる。
[0011] Manganese compounds used in the production of multi-way catalysts
Is the oxidation of MnOTwoIf it changes to
No particular limitation Mn (OH)Two, MnSOFour, MnCO
Three, MnClTwoEtc. can be used, but in particular MnOTwois there
Or Mn (CHThreeCOO)TwoPreferably used in the form of
No. In addition, alkali metal compounds or alkaline earth gold
As a genus compound, KTwoCOThree, KNOThree, KOH, KTwo
SOFour, NaTwoCOThree, MgCOThree, CaCOThreeEtc.
Can be used. RhTwoOThreeAnd CoTwoO ThreePowder
These manganese compounds and alkali metal compounds,
As a method for mixing potassium earth metal compounds, etc., powder
Adopt a method of mixing or dissolving in water and adding and mixing
Can be.

【0012】触媒中の有効成分の含有比率は、各有効成
分の単体若しくはこれらの混合物を各種担体上に担持さ
せた担持触媒から、少量のバインダー成分とともに成形
した含有率98重量%以上のものまで、処理ガスの性
状、処理装置や処理温度あるいは要求される亜酸化窒素
の分解率などの処理条件に応じて、広い範囲内で任意に
設定することができる。なお、担体上に担持させる場合
には担持量が金属酸化物として0.1〜30重量%の範
囲となるようにするのが好ましい。0.1重量%未満で
は触媒活性が低く、30重量%を超えると担体による補
強効果が小さくなる。
The content ratio of the active ingredient in the catalyst can be from a supported catalyst in which each active ingredient or a mixture thereof is supported on various supports, to a content of 98% by weight or more molded with a small amount of a binder component. It can be arbitrarily set within a wide range according to the processing conditions such as the properties of the processing gas, the processing apparatus and the processing temperature, or the required decomposition rate of nitrous oxide. When the metal oxide is carried on a carrier, the amount of the metal oxide is preferably in the range of 0.1 to 30% by weight. If it is less than 0.1% by weight, the catalytic activity is low, and if it exceeds 30% by weight, the reinforcing effect of the carrier becomes small.

【0013】また、触媒有効成分中に含まれるA、B及
びC群化合物の混合割合は、重量割合でA群化合物10
〜90%、B群化合物5〜45%及びC群化合物5〜4
5%である。
The mixing ratio of the A, B and C compounds contained in the active catalyst component is as follows:
~ 90%, Group B compound 5 ~ 45% and Group C compound 5 ~ 4
5%.

【0014】このようにして調製した触媒を反応槽に充
填し、亜酸化窒素含有ガスを通して反応させることによ
り亜酸化窒素を酸素と窒素とに分解することができる。
反応温度及びガスの空間速度(SV)は、ガス中の亜酸
化窒素濃度、触媒の形態や使用量、反応装置の形状等に
より異なるが、反応温度は、100〜600℃の範囲、
特に150〜600℃の範囲が好ましく、空間速度は、
3000〜20000(hr-1)の範囲が好ましい。温
度が100℃未満では亜酸化窒素の分解が進行しにく
く、また、600℃を超えると触媒の劣化が激しくなる
ので好ましくない。空間速度が3000(hr-1)未満
では亜酸化窒素の分解率には変化はないもののガスの処
理能力が小さくなり実用的でなく、また、20000
(hr-1)を超えると亜酸化窒素の分解率が低下するの
で好ましくない。
The catalyst thus prepared is charged into a reaction vessel, and nitrous oxide can be decomposed into oxygen and nitrogen by reacting through a nitrous oxide-containing gas.
The reaction temperature and the space velocity of the gas (SV) vary depending on the concentration of nitrous oxide in the gas, the form and amount of the catalyst used, the shape of the reactor, and the like.
In particular, the range of 150 to 600 ° C. is preferable, and the space velocity is
The range of 3000 to 20000 (hr -1 ) is preferable. If the temperature is lower than 100 ° C., decomposition of nitrous oxide hardly proceeds, and if it is higher than 600 ° C., deterioration of the catalyst becomes severe, which is not preferable. When the space velocity is less than 3000 (hr -1 ), the decomposition rate of nitrous oxide does not change, but the gas processing capacity is reduced and it is not practical.
If it exceeds (hr -1 ), the decomposition rate of nitrous oxide decreases, which is not preferable.

【0015】本発明の方法によれば、アンモニアや水素
などの還元剤を必要とすることなく、排ガス中の亜酸化
窒素を酸素と窒素とに分解することができる。しかも本
発明で使用する触媒は、比較的低温でも高活性で、水
分、硫黄酸化物、ハロゲン物質などの被毒による活性低
下が非常に小さく、特に被毒作用の大きい硫黄酸化物や
ハロゲン物質に水分が共存するような条件化においても
長時間にわたって安定した高い脱硝率を維持することが
できる。
According to the method of the present invention, nitrous oxide in exhaust gas can be decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention has a high activity even at a relatively low temperature, has a very small decrease in activity due to poisoning of moisture, sulfur oxides, halogen substances, etc., and is particularly suitable for sulfur oxides and halogen substances having a large poisoning action. Even under conditions where moisture coexists, a stable and high denitration rate can be maintained for a long time.

【0016】[0016]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製)市販のCo2 3 (純度99.5%)、
Rh2 3 (純度99.0%)、Mn(CH3 COO)
2 (純度99.5%)、KOH(純度99.5%)及び
Na2CO3 (純度99.5%)を使用し、次の操作に
従って触媒を調製した。 (1)Co2 3 又はRh2 3 の単味触媒 Co2 3 又はRh2 3 100重量部に対しバインダ
ー(成形助剤)としてコロイダルシリカをSiO2 とし
て3重量部添加して水練りした。この混練物を直径約3
0mmの球状に成形し、空気雰囲気中で120℃で24
時間乾燥させたものを破砕し、1〜3mmの粒状触媒を
得た。これらの触媒をそれぞれ(Co23 )及び(R
2 3 )と表示する。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Preparation of catalyst) Commercially available Co 2 O 3 (purity 99.5%),
Rh 2 O 3 (purity 99.0%), Mn (CH 3 COO)
Using 2 (purity 99.5%), KOH (purity 99.5%) and Na 2 CO 3 (purity 99.5%), a catalyst was prepared according to the following procedure. (1) Co 2 O 3 or Rh 2 O 3 PLAIN catalyst Co 2 O 3 or Rh 2 O 3 with respect to 100 parts by weight of the binder (a molding aid) colloidal silica was added 3 parts by weight SiO 2 as a water Kneaded. This kneaded material is about 3 mm in diameter.
It is molded into a spherical shape of 0 mm, and is
The dried product was crushed to obtain a granular catalyst of 1 to 3 mm. These catalysts are referred to as (Co 2 O 3 ) and (R
h 2 O 3 ).

【0017】(2)Co2 3 及びカリウム化合物の混
合触媒 Co2 3 100重量部及びKOH5重量部にコロイダ
ルシリカをSiO2 として3重量部添加し、水練りし
た。この混練物を直径約30mmの球状に成形し、空気
雰囲気中で120℃で24時間乾燥させ、さらに空気雰
囲気下に500℃で1時間加熱処理したものを破砕し、
1〜3mmの粒状触媒を得た。この触媒を(Co2 3
−K)と表示する。 (3)Co2 3 及びマンガン化合物の混合触媒 Co2 3 100重量部及び5重量部のMn(CH3
OO)2 にコロイダルシリカをSiO2 として3重量部
添加し、水練りした。この混練物を直径約30mmの球
状に成形し、空気雰囲気中で120℃で24時間乾燥さ
せ、さらに空気雰囲気下に500℃で1時間加熱処理し
たものを破砕し、1〜3mmの粒状触媒を得た。この触
媒を(Co2 3 −Mn)と表示する。
(2) Mixed catalyst of Co 2 O 3 and potassium compound 3 parts by weight of colloidal silica as SiO 2 was added to 100 parts by weight of Co 2 O 3 and 5 parts by weight of KOH, and the mixture was kneaded with water. This kneaded material was formed into a spherical shape having a diameter of about 30 mm, dried at 120 ° C. for 24 hours in an air atmosphere, and further crushed after heating at 500 ° C. for 1 hour in an air atmosphere.
A 1-3 mm granular catalyst was obtained. This catalyst is (Co 2 O 3
−K). (3) Mixed catalyst of Co 2 O 3 and manganese compound 100 parts by weight of Co 2 O 3 and 5 parts by weight of Mn (CH 3 C)
(OO) 2 , 3 parts by weight of colloidal silica as SiO 2 was added, and the mixture was kneaded with water. This kneaded material was formed into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further subjected to a heat treatment at 500 ° C. for 1 hour in an air atmosphere. Obtained. Show this catalyst and (Co 2 O 3 -Mn).

【0018】(4)Co2 3 及びマンガン化合物の混
合物にカリウム化合物又はナトリウム化合物を添加した
触媒 Co2 3 100重量部及び5重量部のMn(CH3
OO)2 にKOH又はNa2 CO3 を5重量部添加した
混合物に、コロイダルシリカをSiO2 として3重量部
添加し、水練りした。この混練物を直径約30mmの球
状に成形し、空気雰囲気中で120℃で24時間乾燥さ
せ、さらに空気雰囲気下に500℃で1時間加熱処理し
たものを破砕し、1〜3mmの粒状触媒を得た。これら
の触媒を(Co2 3 −Mn−K)及び(Co2 3
Mn−Na)と表示する。 (5)Co2 3 、Rh2 3 及びマンガン化合物の混
合物にカリウム化合物又はナトリウム化合物を添加した
触媒 Co2 3 とRh2 3 とをそれぞれ98/2又は50
/50の割合で混合した混合物100重量部、5重量部
のMn(CH3 COO)2 及びKOH5重量部の混合物
にコロイダルシリカをSiO2 として3重量部添加し水
練りした。この混練物を直径約30mmの球状に成形
し、空気雰囲気中で120℃で24時間乾燥させ、さら
に空気雰囲気下に500℃で1時間加熱処理したものを
破砕し、1〜3mmの粒状触媒を得た。これらの触媒を
(Co2 3 −Rh2 3 −Mn−K−2/98)及び
(Co2 3 −Rh2 3 −Mn−K−50/50)と
表示する。
(4) Catalyst in which a potassium compound or a sodium compound is added to a mixture of Co 2 O 3 and a manganese compound 100 parts by weight of Co 2 O 3 and 5 parts by weight of Mn (CH 3 C)
(OO) 2 , 3 parts by weight of colloidal silica as SiO 2 was added to a mixture of 5 parts by weight of KOH or Na 2 CO 3 and kneaded with water. This kneaded material was formed into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further subjected to a heat treatment at 500 ° C. for 1 hour in an air atmosphere. Obtained. These catalysts (Co 2 O 3 -Mn-K ) and (Co 2 O 3 -
Mn-Na). (5) Catalyst in which a potassium compound or a sodium compound is added to a mixture of Co 2 O 3 , Rh 2 O 3 and a manganese compound Co 2 O 3 and Rh 2 O 3 are respectively 98/2 or 50.
3 parts by weight of colloidal silica as SiO 2 was added to a mixture of 100 parts by weight of a mixture of / 50 and 5 parts by weight of Mn (CH 3 COO) 2 and 5 parts by weight of KOH, followed by water kneading. This kneaded material was formed into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further subjected to a heat treatment at 500 ° C. for 1 hour in an air atmosphere. Obtained. To view these catalysts and (Co 2 O 3 -Rh 2 O 3 -Mn-K-2/98) and (Co 2 O 3 -Rh 2 O 3 -Mn-K-50/50).

【0019】(6)Co2 3 及びRh2 3 を使用し
たチタニア担持触媒 Co2 3 10重量部及びRh2 3 10重量部の混合
物にコロイダルシリカをSiO2 として3重量部添加
し、さらに窒素雰囲気中、500℃で5時間加熱処理し
たγ−チタニア100重量部を加えて水練りした。この
混練物を直径約30mmの球状に成形し、空気雰囲気中
で120℃で24時間乾燥させ、さらに空気雰囲気下に
500℃で1時間加熱処理したものを破砕し、1〜3m
mの粒状触媒を得た。この触媒を(Co2 3 −Rh2
3 /TiO2 )と表示する。
[0019] (6) Co 2 O 3 and Rh 2 O 3 colloidal silica 3 parts by weight was added as SiO 2 in the mixture of titania supported catalyst Co 2 O 3 10 parts by weight of Rh 2 O 3 10 parts by weight Using Further, 100 parts by weight of γ-titania heat-treated at 500 ° C. for 5 hours in a nitrogen atmosphere was added, followed by water kneading. This kneaded material was formed into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further heat-treated at 500 ° C. for 1 hour in an air atmosphere to be crushed, and then subjected to crushing.
m of granular catalyst were obtained. This catalyst is referred to as (Co 2 O 3 -Rh 2
O 3 / TiO 2 ).

【0020】(7)Co2 3 、Rh2 3 及びマンガ
ン化合物の混合物にカリウム化合物を添加したチタニア
担持触媒 窒素雰囲気中、500℃で5時間加熱処理したγ−チタ
ニア100重量部にCo2 3 10重量部、Rh2 3
10重量部、2重量部のMn(CH3 COO) 2 及びK
OH2重量部を添加した混合物にコロイダルシリカをS
iO2 として3重量部添加し水練りした。この混練物を
直径約30mmの球状に成形し、空気雰囲気中で120
℃で24時間乾燥させ、さらに空気雰囲気下に500℃
で1時間加熱処理したものを破砕し、1〜3mmの粒状
触媒を得た。この触媒を(Co23 −Rh2 3 −M
n−K/TiO2 )と表示する。
(7) CoTwoOThree, RhTwoOThreeAnd manga
Titania with potassium compound added to a mixture of phosphorous compounds
Supported catalyst γ-tita heat-treated at 500 ° C for 5 hours in a nitrogen atmosphere
Near 100 parts by weight of CoTwoOThree10 parts by weight, RhTwoOThree
10 parts by weight, 2 parts by weight of Mn (CHThreeCOO) TwoAnd K
Colloidal silica was added to the mixture to which 2 parts by weight of OH was added.
iOTwoAnd 3 parts by weight were added and kneaded with water. This kneaded material
Formed into a spherical shape with a diameter of about 30 mm,
Dried at 24 ° C for 24 hours, and further dried at 500 ° C in an air atmosphere.
Crushed one hour heat treatment with 1 ~ 3mm granular
A catalyst was obtained. This catalyst is (CoTwoOThree-RhTwoOThree-M
n-K / TiOTwo).

【0021】(亜酸化窒素分解除去試験)前記のように
調製した触媒それぞれ25mlを、内径20mmの石英
管よりなる試験装置に充填し、所定の温度条件で、所定
の組成に調製したガスを通し、反応管入口と出口におけ
るガス中の亜酸化窒素の濃度を測定した。その値から、
亜酸化窒素の分解率を算出し、触媒の活性度を比較し
た。
(Nitrous Oxide Decomposition Removal Test) 25 ml of each of the catalysts prepared as described above were charged into a test apparatus consisting of a quartz tube having an inner diameter of 20 mm, and a gas prepared to a predetermined composition was passed under a predetermined temperature condition. The concentration of nitrous oxide in the gas at the inlet and outlet of the reaction tube was measured. From that value,
The decomposition rate of nitrous oxide was calculated, and the activity of the catalyst was compared.

【0022】(実施例1)触媒層の温度を表1に示すよ
うに設定し、150ppmのN2 Oを含有する空気を、
6000hr-1の空間速度で通過させ、N2 Oの分解率
を測定した。結果は、表1に示すとおりである。本発明
で使用する触媒は比較的低温度でも高い亜酸化窒素の分
解活性を示し、特にCo2 3 とRh2 3 とを配合し
た触媒群では著しい相乗効果が認められる。
Example 1 The temperature of the catalyst layer was set as shown in Table 1, and air containing 150 ppm of N 2 O was
It was passed at a space velocity of 6000 hr -1 and the decomposition rate of N 2 O was measured. The results are as shown in Table 1. The catalyst used in the present invention exhibits a high activity of decomposing nitrous oxide even at a relatively low temperature, and a remarkable synergistic effect is recognized particularly in a catalyst group in which Co 2 O 3 and Rh 2 O 3 are blended.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)触媒層の温度を表2に示すよ
うに設定し、150ppmのN2 O、50ppmのSO
2 及び14%の水分を含有する空気を、5000hr-1
の空間速度で通過させ、反応開始から100時間後のN
2 Oの分解率を測定した。結果は、表2に示す。
Example 2 The temperature of the catalyst layer was set as shown in Table 2, and 150 ppm of N 2 O and 50 ppm of SO were used.
Air containing 2 and 14% moisture is 5000 hr -1
At a space velocity of N, and 100 hours after the start of the reaction.
The decomposition rate of 2 O was measured. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3)触媒層の温度を表3に示すよ
うに設定し、150ppmのN2 O、35ppmのHC
l及び14%の水分を含有する空気を、5000hr-1
の空間速度で通過させ、反応開始から100時間後のN
2 Oの分解率を測定した。結果は、表3に示す。
Example 3 The temperature of the catalyst layer was set as shown in Table 3, and 150 ppm of N 2 O and 35 ppm of HC were used.
air containing 1% and 14% moisture at 5000 hr -1
At a space velocity of N, and 100 hours after the start of the reaction.
The decomposition rate of 2 O was measured. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】(実施例4)触媒層の温度を表4に示すよ
うに設定し、150ppmのN2 O、50ppmのSO
2 、35ppmのHCl及び14%の水分を含有する空
気を、5000hr-1の空間速度で通過させ、反応開始
から100時間後のN2 Oの分解率を測定した。結果
は、表4に示す。
Example 4 The temperature of the catalyst layer was set as shown in Table 4, and 150 ppm of N 2 O and 50 ppm of SO were used.
2. Air containing 35 ppm HCl and 14% moisture was passed through at a space velocity of 5000 hr -1 and the decomposition rate of N 2 O was measured 100 hours after the start of the reaction. The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】表2〜4の結果から、本発明の触媒を使用
した場合には失活の程度が極めて小さく、比較的低温度
でも高い亜酸化窒素の分解活性を示し、特にCo
2 3 、Rh2 3 、Mn(CH3 COO)2 及びKO
Hを併用した触媒では、200℃で約50%、250℃
では約90%、300〜400℃では99%以上の高い
分解率を維持していることがわかる。
From the results shown in Tables 2 to 4, when the catalyst of the present invention was used, the degree of deactivation was extremely small, and the catalyst showed high nitrous oxide decomposition activity even at a relatively low temperature.
2 O 3 , Rh 2 O 3 , Mn (CH 3 COO) 2 and KO
About 50% at 200 ° C, 250 ° C
It can be seen that a high decomposition rate of about 90% and 99% or more at 300 to 400 ° C. are maintained.

【0031】[0031]

【発明の効果】本発明の方法によれば、アンモニアや水
素などの還元剤を必要とすることなく、排ガス中の亜酸
化窒素を効率よく酸素と窒素とに分解することができ
る。しかも本発明で使用する触媒は、比較的低温でも活
性が高く、水分や硫黄酸化物など触媒被毒物質の被毒に
よる活性低下が非常に小さく、長時間にわたって安定し
た高い脱硝率を維持することができるので、水分、硫黄
酸化物あるいはハロゲン物質などの混在することの多い
亜酸化窒素を含有する各種排ガスの処理に極めて効果が
大きい。
According to the method of the present invention, nitrous oxide in exhaust gas can be efficiently decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention has a high activity even at a relatively low temperature, has a very small decrease in activity due to poisoning of catalyst poisoning substances such as moisture and sulfur oxides, and maintains a stable high denitration rate for a long time. Therefore, it is extremely effective in treating various exhaust gases containing nitrous oxide, which often contains moisture, sulfur oxides or halogen substances.

フロントページの続き (72)発明者 安達 正敏 福岡県北九州市若松区響町1丁目3番地 三井鉱山株式会社 九州研究所内 (56)参考文献 特開 昭55−54960(JP,A) 特開 平4−341324(JP,A) 特開 昭63−7826(JP,A) 特開 平5−131117(JP,A) 特開 平5−220350(JP,A) 特開 平5−192540(JP,A) 特開 平6−23236(JP,A) 特開 平6−106028(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/94 B01J 21/00 - 38/74 Continuation of front page (72) Inventor Masatoshi Adachi 1-3-3 Hibiki-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Mitsui Mining Co., Ltd. Kyushu Research Laboratory (56) References JP-A-55-54960 (JP, A) JP-A-4 JP-A-341324 (JP, A) JP-A-63-7826 (JP, A) JP-A-5-131117 (JP, A) JP-A-5-220350 (JP, A) JP-A-5-192540 (JP, A) JP-A-6-23236 (JP, A) JP-A-6-106028 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/94 B01J 21/00-38 / 74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜酸化窒素含有ガスを、三二酸化ロジウ
ム(Rh2 3 )若しくは三二酸化コバルト(Co2
3 )又はこれらの混合物よりなるA群化合物、マンガン
化合物よりなるB群化合物及びアルカリ金属化合物若し
くはアルカリ土類金属化合物又はこれらの混合物よりな
るC群化合物のそれぞれ1種以上を有効成分として含有
する多元触媒と、100〜600℃の温度で接触させ、
亜酸化窒素を分解させることを特徴とする亜酸化窒素の
分解除去法。
1. The method of claim 1, wherein the nitrous oxide-containing gas is rhodium trioxide (Rh 2 O 3 ) or cobalt trioxide (Co 2 O 3 ).
3 ) or a multicomponent containing, as an active ingredient, at least one of each of Group A compounds composed of a mixture thereof, Group B compounds composed of a manganese compound, and Group C compounds composed of an alkali metal compound or an alkaline earth metal compound or a mixture thereof. Contact with the catalyst at a temperature of 100-600 ° C.,
A method for decomposing and removing nitrous oxide, comprising decomposing nitrous oxide.
【請求項2】 水分、硫黄酸化物及びハロゲン物質の中
の1種以上の触媒被毒物質の共存する亜酸化窒素含有ガ
スを、三二酸化ロジウム(Rh2 3 )若しくは三二酸
化コバルト(Co2 3 )又はこれらの混合物よりなる
A群化合物、マンガン化合物よりなるB群化合物及びア
ルカリ金属化合物若しくはアルカリ土類金属化合物又は
これらの混合物よりなるC群化合物のそれぞれ1種以上
を有効成分として含有する多元触媒と、100〜600
℃の温度で接触させ、亜酸化窒素を分解させることを特
徴とする亜酸化窒素の分解除去法。
2. Nitrous oxide-containing gas in which one or more catalyst poisons among moisture, sulfur oxides and halogen substances coexist with rhodium trioxide (Rh 2 O 3 ) or cobalt trioxide (Co 2 O 3 ) or a group A compound consisting of a mixture thereof, a group B compound consisting of a manganese compound, and an alkali metal compound or an alkaline earth metal compound or a group C compound consisting of a mixture thereof. Multi-way catalyst, 100-600
A method for decomposing and removing nitrous oxide, comprising contacting at a temperature of ° C. to decompose nitrous oxide.
JP11020592A 1992-04-28 1992-04-28 Decomposition and removal method of nitrous oxide Expired - Lifetime JP3325041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020592A JP3325041B2 (en) 1992-04-28 1992-04-28 Decomposition and removal method of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020592A JP3325041B2 (en) 1992-04-28 1992-04-28 Decomposition and removal method of nitrous oxide

Publications (2)

Publication Number Publication Date
JPH06106027A JPH06106027A (en) 1994-04-19
JP3325041B2 true JP3325041B2 (en) 2002-09-17

Family

ID=14529724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020592A Expired - Lifetime JP3325041B2 (en) 1992-04-28 1992-04-28 Decomposition and removal method of nitrous oxide

Country Status (1)

Country Link
JP (1) JP3325041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089179B1 (en) 2018-11-05 2020-03-16 (주)아름다운환경 Sewage treatment plant N2O removal system
KR20210044939A (en) 2019-10-15 2021-04-26 (주)아름다운환경 Sewage treatment plant N2O removal system to control exhaust gas suction flow rate
KR20210044940A (en) 2019-10-15 2021-04-26 (주)아름다운환경 Sewage treatment plant N2O removal system to control exhaust gas collection flow

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672540B2 (en) * 2005-12-07 2011-04-20 株式会社日本触媒 Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas
WO2008142765A1 (en) * 2007-05-18 2008-11-27 Nippon Shokubai Co., Ltd. Catalyst for nitrous oxide decomposition and method of purifying gas containing nitrous oxide
JP5840068B2 (en) * 2012-05-07 2016-01-06 株式会社日本触媒 Nitrous oxide decomposition catalyst and method for producing nitrous oxide decomposition catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089179B1 (en) 2018-11-05 2020-03-16 (주)아름다운환경 Sewage treatment plant N2O removal system
KR20210044939A (en) 2019-10-15 2021-04-26 (주)아름다운환경 Sewage treatment plant N2O removal system to control exhaust gas suction flow rate
KR20210044940A (en) 2019-10-15 2021-04-26 (주)아름다운환경 Sewage treatment plant N2O removal system to control exhaust gas collection flow

Also Published As

Publication number Publication date
JPH06106027A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US4952545A (en) Process for removing nitrogen oxides from exhaust gases
AU755129B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
EP1293250A1 (en) A titanium, molybdenum and vanadium containing catalyst for removing organohalogen compounds, its process of production and use
US6858562B1 (en) Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof
JPH06106028A (en) Treatment of nitrous oxide containing gas
JPH06246135A (en) Treatment of gaseous nitrous oxide
JP3270082B2 (en) Decomposition and removal method of nitrous oxide
JP3270080B2 (en) Method for decomposing and removing nitrous oxide
JP3236031B2 (en) Method for decomposing and removing nitrous oxide
JPH06190244A (en) Decomposition treatment of nitrous oxide
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3027219B2 (en) How to remove nitrogen oxides
JPH067640A (en) Treatment of nitrous oxide containing gas
JP3270092B2 (en) Method for decomposing and removing nitrous oxide
JP3324777B2 (en) Method for treating nitrogen oxide-containing gas
JP2004082070A (en) Denitrification catalyst
JPH05220350A (en) Method for decomposing and removing nitrous oxide
JP2000342970A (en) Exhaust gas treatment catalyst and method for purifying gas
JPH0673613B2 (en) Exhaust gas purification method
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2001129406A (en) Low temperature denitration catalyst
KR100429825B1 (en) Catalyst for purifying exhaust gas of automobil and method for manufacturing the same
JP2001038200A (en) Adsorbent for nitrogen oxide or the like, its production and method for removing nitrogen oxide or the like

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8