JPH06106028A - Treatment of nitrous oxide containing gas - Google Patents

Treatment of nitrous oxide containing gas

Info

Publication number
JPH06106028A
JPH06106028A JP4254622A JP25462292A JPH06106028A JP H06106028 A JPH06106028 A JP H06106028A JP 4254622 A JP4254622 A JP 4254622A JP 25462292 A JP25462292 A JP 25462292A JP H06106028 A JPH06106028 A JP H06106028A
Authority
JP
Japan
Prior art keywords
nitrous oxide
catalyst
compound
group
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4254622A
Other languages
Japanese (ja)
Inventor
Nobuhide Ikeyama
信秀 池山
Yutaka Iwanaga
豊 岩永
Yuji Torikai
祐二 鳥養
Masatoshi Adachi
正敏 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP4254622A priority Critical patent/JPH06106028A/en
Publication of JPH06106028A publication Critical patent/JPH06106028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PURPOSE:To effectively decompose nitrous oxide in waste gas by bringing nitrous oxide contg. gas in the presence of materials poisoning a catalyst unto contact with a multicomponent catalyst contg. Rh2O3, Co2O3, cerium compounds, alkali metal compounds, alkaline earth metal compounds, etc., at a specified temperature CONSTITUTION:Nitrous oxide contg. gas in the presence of one or more of materials poisoning a catalyst, moisture, sulfur compounds and halogenated compounds, is brought into contact with a multicomponent catalyst contg. as effective components one or more of group A compounds consisting of Rh2O3 or Co2O3, or their mixture, group B compounds consisting of cerium compounds (example: CeO2) and group C compounds consisting of alkali metal compounds (example: K2CO3) or alkaline earth metal compounds or their mixture each at a temperature of 100-600 deg.C. Thus, nitrous oxide in waste gas is effectively decomposed into oxygen and nitrogen at a relatively low temperature without requiring a reducing agent, such as ammonia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種産業排ガス等に含
まれる亜酸化窒素を分解除去する、亜酸化窒素含有ガス
の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a nitrous oxide-containing gas for decomposing and removing nitrous oxide contained in various industrial exhaust gases.

【0002】[0002]

【従来の技術】燃焼排ガスや化学工場の排ガスなど各種
産業排ガスの大気中の放出については、公害防止、環境
保全の観点から種々の規制措置がとられている。特に窒
素酸化物については、光化学スモッグ、酸性雨等の原因
物質として大気中への排出が厳しく規制されている。従
来、排出規制の対象とされてきた窒素酸化物は一酸化窒
素(NO)及び二酸化窒素(NO2 )であり、脱硝技術
もこれらの物質を対象に研究され、アンモニア等の還元
性物質を用いた接触還元法や金属触媒等の触媒を用いて
窒素と酸素とに分解する方法などが開発されてきた。
2. Description of the Related Art Regarding the release of various industrial exhaust gases such as combustion exhaust gases and exhaust gases from chemical plants into the atmosphere, various regulatory measures have been taken from the viewpoint of pollution prevention and environmental protection. In particular, nitrogen oxides are strictly regulated to be released into the atmosphere as photochemical smog, acid rain, and other causative substances. Conventionally, the nitrogen oxides that have been subject to emission regulations are nitric oxide (NO) and nitrogen dioxide (NO 2 ), and denitration technology has also been studied for these substances, using reducing substances such as ammonia. The catalytic reduction method and the method of decomposing it into nitrogen and oxygen using a catalyst such as a metal catalyst have been developed.

【0003】窒素酸化物の中でも亜酸化窒素は他の窒素
酸化物に比較して安定で無害と考えられていた。ところ
が、近年、この亜酸化窒素が、成層圏で分解し一酸化窒
素を生成することが明らかになり、また、高い温室効果
を示し、その半減期も約150年と長いことから地球温
暖化への影響も示唆されるなど、問題になってきてい
る。各種排ガス中に含まれる亜酸化窒素の量については
未だ詳細に解明されいいないが、燃料の種類や燃焼条件
等によって異なり、化石燃料の低温燃焼排ガス中に10
0ppm程度の亜酸化窒素が含まれる例が報告されてい
る。この亜酸化窒素は、前記の脱硝方法では全く分解、
除去することはできず、さらにアンモニアを還元剤とす
る脱硝方法においては、脱硝装置の運転条件によっては
一酸化窒素、二酸化窒素及びアンモニア等の反応により
亜酸化窒素が生成し、濃度が増加する場合があることも
明らかとなってきた。
Among nitrogen oxides, nitrous oxide was considered to be stable and harmless as compared with other nitrogen oxides. However, in recent years, it has become clear that this nitrous oxide decomposes in the stratosphere to produce nitric oxide, and it also shows a high greenhouse effect, and its half-life is as long as about 150 years, which contributes to global warming. It is becoming a problem, with some implications. The amount of nitrous oxide contained in various exhaust gases has not yet been elucidated in detail, but it varies depending on the type of fuel, combustion conditions, etc.
It has been reported that nitrous oxide is contained at about 0 ppm. This nitrous oxide is completely decomposed by the denitration method described above,
In the case of denitrification method using ammonia as a reducing agent, nitrous oxide is produced by the reaction of nitric oxide, nitrogen dioxide and ammonia depending on the operating conditions of the denitrification equipment, and the concentration increases. It has become clear that there is.

【0004】これらの状況から各種排ガス中に含まれる
亜酸化窒素を分解除去する方法が種々検討され、提案さ
れている。従来、排ガス中の亜酸化窒素を分解する方法
として提案されている方法の主なものは、高温下におい
て金属触媒と接触させて分解する接触分解法(特開昭6
3−7826号公報など)、アンモニアや水素などの還
元性ガスとともに触媒に接触させて還元分解する接触還
元法(特公昭55−47933号、特開平2−6812
0号公報など)あるいは、光又は放射線により分解する
方法(特開昭63−111927号、特開昭63−11
1929号公報など)などである。これらの方法におい
ては、処理温度が高温であること、通常の燃焼排ガス中
には0.01〜0.15%の硫黄酸化物、5〜20%の
水分、0.5〜100ppmのハロゲン物質が含まれて
おり、これらの物質により触媒が被毒し分解活性が低下
すること、特殊な装置を必要とすることなどの問題点が
多く、実用化に到っていないのが実情である。
Under these circumstances, various methods for decomposing and removing nitrous oxide contained in various exhaust gases have been studied and proposed. Conventionally, the main method proposed as a method for decomposing nitrous oxide in exhaust gas is a catalytic decomposition method of decomposing by contacting with a metal catalyst at a high temperature (Japanese Patent Laid-Open No. Sho 6-62).
No. 3-7826), a catalytic reduction method in which a catalyst is brought into contact with a reducing gas such as ammonia or hydrogen to perform reductive decomposition (Japanese Patent Publication No. 55-47933, JP-A-2-6812).
No. 0) or a method of decomposing by light or radiation (Japanese Patent Laid-Open Nos. 63-111927 and 63-11).
1929 publication). In these methods, the treatment temperature is high, and 0.01 to 0.15% of sulfur oxides, 5 to 20% of water, and 0.5 to 100 ppm of halogen substances are contained in ordinary combustion exhaust gas. Since these substances are contained, there are many problems such as poisoning of the catalyst due to these substances to lower the decomposition activity and the need for a special device, and the fact is that they have not been put into practical use.

【0005】前記の従来技術の中では、接触分解法が最
も簡便で実用的なものと考えられるが、この方法は一般
に高温での処理を必要とする。前記特開昭63−782
6号公報に記載されている方法は、亜酸化窒素を含有す
るガスを元素の周期率表の第Ib族又は第VIII族の
金属又は該金属の酸化物あるいは複合酸化物を含有する
触媒と接触せしめる方法であるが、その実施例から見て
50%以上の脱硝率を得るためには、貴金属触媒を除い
て350℃以上の高温度が必要である。また、本発明者
らの実験によれば、ここに記載されているNiO、Fe
2 3 、CoO、CuOなどの触媒は処理される排ガス
中に水分や硫黄酸化物が含まれていると短時間で失活
し、亜酸化窒素の分解活性が低下するという問題点があ
ることが判明した。
Among the above-mentioned conventional techniques, the catalytic cracking method is considered to be the simplest and most practical, but this method generally requires treatment at a high temperature. JP-A-63-782
In the method described in Japanese Patent No. 6, a nitrous oxide-containing gas is contacted with a catalyst containing a metal of group Ib or VIII of the periodic table of elements or an oxide or complex oxide of the metal. However, in order to obtain a denitrification rate of 50% or more, a high temperature of 350 ° C. or more is required except for the noble metal catalyst. Further, according to the experiments by the present inventors, the NiO and Fe described here are
There is a problem that catalysts such as 2 O 3 , CoO and CuO are deactivated in a short time when the exhaust gas to be treated contains water or sulfur oxides, and the decomposition activity of nitrous oxide is reduced. There was found.

【0006】本発明者らは、前記問題点のない亜酸化窒
素の分解除去方法について鋭意検討の結果、Rh2 3
又はCo2 3 、特にこれらの混合物を有効成分とする
触媒が比較的低温でも亜酸化窒素の分解活性が高く、水
分や硫黄酸化物などの被毒による活性低下が非常に小さ
く、長時間にわたって安定した高い亜酸化窒素の分解性
能を維持することができることを見出し、先に出願した
(特願平3−140629号)。
The present inventors have conducted extensive studies on a method for decomposing and removing nitrous oxide which does not have the above-mentioned problems, and as a result, Rh 2 O 3
Alternatively, Co 2 O 3 , especially a catalyst containing these mixtures as an active ingredient has a high nitrous oxide decomposition activity even at a relatively low temperature, and the activity decrease due to poisoning such as water and sulfur oxides is very small, and the activity is maintained for a long time. It was found that a stable and high decomposition performance of nitrous oxide can be maintained, and the application was filed previously (Japanese Patent Application No. 3-140629).

【0007】[0007]

【発明が解決しようとする課題】ところが、前記Rh2
3 −Co2 3 系触媒は、従来使用されていた触媒に
比較し被毒物質に対する耐性が著しく大きいという特性
を有しているが、水分と硫黄酸化物あるいは塩化水素、
ふっ化水素などのハロゲン物質が共存するような条件下
では触媒活性の低下が大きく、長時間にわたって使用す
るにはなお問題があった。本発明の目的は、従来の接触
分解方法における問題点を解決し、比較的低温度での処
理が可能で、水分と硫黄酸化物やハロゲン物質等の触媒
被毒物質の共存する亜酸化窒素含有排ガスを処理するこ
とができる、亜酸化窒素含有ガスを処理する方法を提供
することにある。
However, the above-mentioned Rh 2
The O 3 -Co 2 O 3 -based catalyst has a characteristic that the resistance to poisoning substances is remarkably large as compared with the conventionally used catalysts.
Under the condition that a halogenated substance such as hydrogen fluoride coexists, the catalytic activity greatly decreases, and there is still a problem in using it for a long time. The object of the present invention is to solve the problems in the conventional catalytic cracking method, to enable treatment at a relatively low temperature, and to contain nitrous oxide containing water and catalyst poisoning substances such as sulfur oxides and halogen substances. An object of the present invention is to provide a method for treating a nitrous oxide-containing gas capable of treating exhaust gas.

【0008】[0008]

【課題を解決するための手段】本発明は、亜酸化窒素含
有ガスを、Rh2 3 若しくはCo2 3 又はこれらの
混合物よりなるA群化合物、セリウム化合物よりなるB
群化合物及びアルカリ金属化合物若しくはアルカリ土類
金属化合物又はこれらの混合物よりなるC群化合物のそ
れぞれ1種以上を有効成分として含有する多元触媒と、
100〜600℃の温度で接触させ、亜酸化窒素を分解
させることを特徴とする亜酸化窒素含有ガスを処理する
方法及び水分、硫黄酸化物及びハロゲン物質の中の1種
以上の触媒比毒物質の共存する亜酸化窒素含有ガスを、
Rh2 3 若しくはCo2 3 又はこれらの混合物より
なるA群化合物、セリウム化合物よりなるB群化合物及
びアルカリ金属化合物若しくはアルカリ土類金属化合物
又はこれらの混合物よりなるC群化合物のそれぞれ1種
以上を有効成分として含有する多元触媒と、100〜6
00℃の温度で接触させ、亜酸化窒素を分解させること
を特徴とする亜酸化窒素含有ガスを処理する方法であ
る。
According to the present invention, a nitrous oxide-containing gas is used as a group A compound composed of Rh 2 O 3 or Co 2 O 3 or a mixture thereof, and a compound B composed of a cerium compound.
A multi-component catalyst containing, as an active ingredient, one or more each of a group C compound and an alkali metal compound, an alkaline earth metal compound, or a mixture thereof, and a group C compound,
Method for treating a nitrous oxide-containing gas, which comprises contacting at a temperature of 100 to 600 ° C. to decompose nitrous oxide, and one or more catalyst poisonous substances among water, sulfur oxides and halogen substances The nitrous oxide-containing gas that coexists with
Rh 2 O 3 or Co 2 O 3 or a group A compound composed of a mixture thereof, a group B compound composed of a cerium compound, and an alkali metal compound or an alkaline earth metal compound, or a group C compound composed of a mixture thereof, respectively, each being one or more kinds. A multi-way catalyst containing as an active ingredient, 100 to 6
A method for treating a nitrous oxide-containing gas, which comprises contacting at a temperature of 00 ° C. to decompose nitrous oxide.

【0009】本発明の方法において使用する触媒は、R
2 3 若しくはCo2 3 又はこれらの混合物よりな
るA群化合物、セリウム化合物よりなるB群化合物及び
アルカリ金属化合物若しくはアルカリ土類金属化合物又
はこれらの混合物よりなるC群化合物のそれぞれ1種以
上の混合物を有効成分として含有する多元触媒である。
これらの触媒は、各有効成分をSiO2 を主成分とする
コロイダルシリカなどのバインダー成分とともに造粒す
るか、チタニア、アルミナ、シリカ/アルミナ、あるい
はマグネシア等の担体に担持させた形で使用するのが好
都合である。また、触媒の形状、大きさ等は使用目的、
使用状況等に応じて適宜選定すればよく、粒状、俵状、
球状、リング状、円柱状、板状、ハニカム状などの形状
が使用できるが、ガスとの接触効率や圧力損失の点など
からハニカム状、板状などが特に好ましい。
The catalyst used in the process of the present invention is R
h 2 O 3 or Co 2 O 3 or a group A compound consisting of a mixture thereof, a group B compound consisting of a cerium compound and an alkali metal compound or an alkaline earth metal compound or a group C compound consisting of a mixture thereof, respectively It is a multi-way catalyst containing a mixture of as an active ingredient.
These catalysts are used by granulating each active ingredient together with a binder component such as colloidal silica having SiO 2 as a main component, or by supporting it on a carrier such as titania, alumina, silica / alumina, or magnesia. Is convenient. In addition, the shape and size of the catalyst depends on the purpose of use,
It may be appropriately selected according to the usage situation, etc.
A spherical shape, a ring shape, a cylindrical shape, a plate shape, a honeycomb shape, or the like can be used, but a honeycomb shape, a plate shape, or the like is particularly preferable in terms of contact efficiency with gas, pressure loss, and the like.

【0010】本発明で使用する多元触媒の製造方法は特
に限定されるものではないが、好ましい方法として次の
ような例があげられる。すなわち、粉末状のRh2 3
又はCo2 3 若しくはこれらを任意の割合で混合した
混合粉末にセリウム化合物を添加し、さらにアルカリ金
属化合物若しくはアルカリ土類金属化合物又はこれらの
混合物を添加したものを原料とし、適当なバインダー成
分とともに水と混練し、必要により担体成分を添加して
混合後適当な大きさに成形して乾燥したものを粉砕して
粒度調整する方法、バインダー成分および担体成分とと
もに水と混練し任意の形状に成形後乾燥する方法、バイ
ンダー成分とともに水と混合してスラリー状とし、任意
の形状の担体に付着させ乾燥する方法などをとることが
できる。ここで、セリウム化合物、アルカリ金属化合物
又はアルカリ土類金属化合物として酸化物以外の化合物
を使用した場合には、酸化雰囲気中で300℃以上、好
ましくは400〜800℃の温度で加熱処理し、大部分
を酸化物の形態に変化させて使用する。なお、使用条件
によっては使用中に徐々に酸化が進行するので、事前の
酸化処理を省略することもできる。このようにして製造
した多元触媒中でセリウム化合物、アルカリ金属化合物
あるいはアルカリ土類金属化合物がどのような形で有効
に作用するのが明らかではないが、大部分は酸化物の形
で存在するものと推定される。
The method for producing the multi-way catalyst used in the present invention is not particularly limited, but the following examples are mentioned as preferred methods. That is, powdered Rh 2 O 3
Alternatively, a cerium compound is added to Co 2 O 3 or a mixed powder obtained by mixing these at an arbitrary ratio, and an alkali metal compound, an alkaline earth metal compound, or a mixture thereof is added as a raw material, together with an appropriate binder component. A method of kneading with water, adding a carrier component as necessary, mixing and molding into an appropriate size, then pulverizing the dried product to adjust the particle size, kneading with water together with a binder component and a carrier component and molding into an arbitrary shape A method of post-drying, a method of mixing with a binder component with water to form a slurry, and adhering it to a carrier having an arbitrary shape and drying can be employed. Here, when a compound other than an oxide is used as the cerium compound, the alkali metal compound or the alkaline earth metal compound, heat treatment is performed in an oxidizing atmosphere at a temperature of 300 ° C. or higher, preferably 400 to 800 ° C. The portion is used by changing it to an oxide form. It should be noted that since the oxidation gradually progresses during use depending on the use conditions, it is possible to omit the previous oxidation treatment. It is not clear in what manner the cerium compound, alkali metal compound or alkaline earth metal compound acts effectively in the thus prepared multi-way catalyst, but most of them exist in the form of oxides. It is estimated to be.

【0011】多元触媒の製造に使用するセリウム化合物
としては、酸化によりCeO2 又はCe2 3 に変化す
るものであれば特に制限はなくCe2 (NO3 ) 3 、C
2(CO3 3 、CeCl3 なども使用できるが、特
にCeO2 あるいはCe(CH3 COO)3 の形で使用
するのが好ましい。また、アルカリ金属化合物若しくは
アルカリ土類金属化合物としてはK2 CO3 、KN
3 、KOH、K2 SO4、Na2 CO3 、MgC
3 、CaCO3 などを使用することができる。Rh2
3 やCo2 3 の粉末にこれらのセリウム化合物やア
ルカリ金属化合物、アルカリ土類金属化合物等を混合す
る方法としては粉末状で混合するか水に溶解させて添加
混合する方法を採ることができる。
The cerium compound used for producing the multi-way catalyst is not particularly limited as long as it can be converted into CeO 2 or Ce 2 O 3 by oxidation, and Ce 2 (NO 3 ) 3 , C
Although e 2 (CO 3 ) 3 and CeCl 3 can be used, it is particularly preferable to use them in the form of CeO 2 or Ce (CH 3 COO) 3 . Further, as the alkali metal compound or the alkaline earth metal compound, K 2 CO 3 , KN
O 3 , KOH, K 2 SO 4 , Na 2 CO 3 , MgC
O 3 , CaCO 3 or the like can be used. Rh 2
As a method for mixing the cerium compound, the alkali metal compound, the alkaline earth metal compound or the like with the powder of O 3 or Co 2 O 3 , a method of mixing in a powder form or a method of dissolving in water and adding and mixing can be adopted. it can.

【0012】触媒中の有効成分の含有比率は、各有効成
分の単体若しくはこれらの混合物を各種担体上に担持さ
せた担持触媒から、少量のバインダー成分とともに成形
した含有率98重量%以上のものまで、処理ガスの性
状、処理装置や処理温度あるいは要求される亜酸化窒素
の分解率などの処理条件に応じて、広い範囲内で任意に
設定することができる。なお、担体上に担持させる場合
には担持量が金属酸化物として0.1〜30重量%の範
囲となるようにするのが好ましい。0.1重量%未満で
は触媒活性が低く、30重量%を超えると担体による補
強効果が小さくなる。
The content ratio of the active ingredient in the catalyst is from a supported catalyst in which individual active ingredients or a mixture thereof are supported on various carriers to a content rate of 98% by weight or more formed with a small amount of a binder component. It can be arbitrarily set within a wide range according to the processing conditions such as the property of the processing gas, the processing apparatus, the processing temperature, or the required decomposition rate of nitrous oxide. When the metal oxide is supported on the carrier, it is preferable that the amount of the metal oxide supported is in the range of 0.1 to 30% by weight. If it is less than 0.1% by weight, the catalytic activity is low, and if it exceeds 30% by weight, the reinforcing effect by the carrier becomes small.

【0013】また、触媒有効成分中に含まれるA、B及
びC群化合物の混合割合は、重量割合でA群化合物10
〜90%、B群化合物5〜45%及びC群化合物5〜4
5%である。
The mixing ratio of the A, B and C group compounds contained in the catalytically active component is 10% by weight.
~ 90%, Group B compounds 5 to 45% and Group C compounds 5 to 4
5%.

【0014】このようにして調製した触媒を反応槽に充
填し、亜酸化窒素含有ガスを通して反応させることによ
り亜酸化窒素を酸素と窒素とに分解することができる。
反応温度及びガスの空間速度(SV)は、ガス中の亜酸
化窒素濃度、触媒の形態や使用量、反応装置の形状等に
より異なるが、反応温度は、100〜600℃の範囲、
特に150〜600℃の範囲が好ましく、空間速度は、
3000〜20000(hr-1)の範囲が好ましい。温
度が100℃未満では亜酸化窒素の分解が進行しにく
く、また、600℃を超えると触媒の劣化が激しくなる
ので好ましくない。空間速度が3000(hr-1)未満
では亜酸化窒素の分解率には変化はないもののガスの処
理能力が小さくなり実用的でなく、また、20000
(hr-1)を超えると亜酸化窒素の分解率が低下するの
で好ましくない。
Nitrogen oxide can be decomposed into oxygen and nitrogen by filling the reaction tank with the catalyst thus prepared and reacting it with a gas containing nitrous oxide.
The reaction temperature and the space velocity (SV) of the gas vary depending on the concentration of nitrous oxide in the gas, the form and amount of the catalyst used, the shape of the reactor, etc., but the reaction temperature is in the range of 100 to 600 ° C.
Particularly, the range of 150 to 600 ° C. is preferable, and the space velocity is
The range of 3000 to 20000 (hr -1 ) is preferable. If the temperature is lower than 100 ° C, the decomposition of nitrous oxide is difficult to proceed, and if it exceeds 600 ° C, the catalyst is severely deteriorated, which is not preferable. When the space velocity is less than 3000 (hr −1 ), there is no change in the decomposition rate of nitrous oxide, but the gas processing capacity becomes small and it is not practical.
When it exceeds (hr −1 ), the decomposition rate of nitrous oxide is lowered, which is not preferable.

【0015】本発明の方法によれば、アンモニアや水素
などの還元剤を必要とすることなく、排ガス中の亜酸化
窒素を酸素と窒素とに分解することができる。しかも本
発明で使用する触媒は、比較的低温でも高活性で、水
分、硫黄酸化物、ハロゲン物質などの被毒による活性低
下が非常に小さく、特に被毒作用の大きい硫黄酸化物や
ハロゲン物質に水分が共存するような条件化においても
長時間にわたって安定した高い脱硝率を維持することが
できる。
According to the method of the present invention, nitrous oxide in exhaust gas can be decomposed into oxygen and nitrogen without using a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention is highly active even at a relatively low temperature, and the activity reduction due to poisoning of water, sulfur oxides, halogen substances, etc. is very small, and especially for sulfur oxides and halogen substances having a large poisoning action. It is possible to maintain a stable and high denitrification rate for a long time even under the condition that water coexists.

【0016】[0016]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製)市販のCo2 3 (純度99.5%)、
Rh2 3 (純度99.0%)、Ce(CH3 COO)
3 (純度99.5%)、KOH(純度99.5%)及び
Na2CO3 (純度99.5%)を使用し、次の操作に
従って触媒を調製した。 (1)Co2 3 又はRh2 3 の単味触媒 Co2 3 又はRh2 3 100重量部に対しバインダ
ー(成形助剤)としてコロイダルシリカをSiO2 とし
て3重量部添加して水練りした。この混練物を直径約3
0mmの球状に成形し、空気雰囲気中で120℃で24
時間乾燥させたものを破砕し、1〜3mmの粒状触媒を
得た。これらの触媒をそれぞれ(Co23 )及び(R
2 3 )と表示する。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. (Preparation of catalyst) Commercially available Co 2 O 3 (purity 99.5%),
Rh 2 O 3 (purity 99.0%), Ce (CH 3 COO)
A catalyst was prepared according to the following procedure using 3 (purity 99.5%), KOH (purity 99.5%) and Na 2 CO 3 (purity 99.5%). (1) Co 2 O 3 or Rh 2 O 3 PLAIN catalyst Co 2 O 3 or Rh 2 O 3 with respect to 100 parts by weight of the binder (a molding aid) colloidal silica was added 3 parts by weight SiO 2 as a water Kneaded This kneaded material has a diameter of about 3
Molded into a 0 mm spherical shape, 24 at 120 ℃ in air atmosphere
What was dried for a period of time was crushed to obtain a granular catalyst of 1 to 3 mm. These catalysts are (Co 2 O 3 ) and (R
h 2 O 3 ) is displayed.

【0017】(2)Co2 3 及びカリウム化合物の混
合触媒 Co2 3 100重量部及びKOH5重量部にコロイダ
ルシリカをSiO2 として3重量部添加し、水練りし
た。この混練物を直径約30mmの球状に成形し、空気
雰囲気中で120℃で24時間乾燥させ、さらに空気雰
囲気下に500℃で1時間加熱処理したものを破砕し、
1〜3mmの粒状触媒を得た。この触媒を(Co2 3
−K)と表示する。 (3)Co2 3 及びセリウム化合物の混合触媒 Co2 3 100重量部及び5重量部のCe(CH3
OO)3 にコロイダルシリカをSiO2 として3重量部
添加し、水練りした。この混練物を直径約30mmの球
状に成形し、空気雰囲気中で120℃で24時間乾燥さ
せ、さらに空気雰囲気下に500℃で1時間加熱処理し
たものを破砕し、1〜3mmの粒状触媒を得た。この触
媒を(Co2 3 −Ce)と表示する。
(2) Mixed catalyst of Co 2 O 3 and potassium compound To 100 parts by weight of Co 2 O 3 and 5 parts by weight of KOH, 3 parts by weight of colloidal silica as SiO 2 was added and kneaded with water. This kneaded material was molded into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further heat-treated in an air atmosphere at 500 ° C. for 1 hour to be crushed,
A granular catalyst of 1 to 3 mm was obtained. This catalyst is (Co 2 O 3
-K) is displayed. (3) Mixed catalyst of Co 2 O 3 and cerium compound Co 2 O 3 100 parts by weight and 5 parts by weight of Ce (CH 3 C
3 parts by weight of colloidal silica as SiO 2 was added to OO) 3 and kneaded with water. This kneaded material was molded into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further heat-treated in an air atmosphere at 500 ° C. for 1 hour to be crushed to obtain a granular catalyst of 1 to 3 mm. Obtained. Show this catalyst and (Co 2 O 3 -Ce).

【0018】(4)Co2 3 及びセリウム化合物の混
合物にカリウム化合物又はナトリウム化合物を添加した
触媒 Co2 3 100重量部及び5重量部のCe(CH3
OO)3 にKOH又はNa2 CO3 を5重量部添加した
混合物に、コロイダルシリカをSiO2 として3重量部
添加し、水練りした。この混練物を直径約30mmの球
状に成形し、空気雰囲気中で120℃で24時間乾燥さ
せ、さらに空気雰囲気下に500℃で1時間加熱処理し
たものを破砕し、1〜3mmの粒状触媒を得た。これら
の触媒を(Co2 3 −Ce−K)及び(Co2 3
Ce−Na)と表示する。 (5)Co2 3 、Rh2 3 及びセリウム化合物の混
合物にカリウム化合物又はナトリウム化合物を添加した
触媒 Co2 3 とRh2 3 とをそれぞれ98/2又は50
/50の割合で混合した混合物100重量部、5重量部
のCe(CH3 COO)3 及びKOH5重量部の混合物
にコロイダルシリカをSiO2 として3重量部添加し水
練りした。この混練物を直径約30mmの球状に成形
し、空気雰囲気中で120℃で24時間乾燥させ、さら
に空気雰囲気下に500℃で1時間加熱処理したものを
破砕し、1〜3mmの粒状触媒を得た。これらの触媒を
(Co2 3 −Rh2 3 −Ce−K−2/98)及び
(Co2 3 −Rh2 3 −Ce−K−50/50)と
表示する。
(4) Catalyst prepared by adding potassium compound or sodium compound to mixture of Co 2 O 3 and cerium compound 100 parts by weight of Co 2 O 3 and 5 parts by weight of Ce (CH 3 C
3 parts by weight of colloidal silica as SiO 2 was added to a mixture obtained by adding 5 parts by weight of KOH or Na 2 CO 3 to OO) 3 and kneaded with water. This kneaded material was molded into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further heat-treated in an air atmosphere at 500 ° C. for 1 hour to be crushed to obtain a granular catalyst of 1 to 3 mm. Obtained. These catalysts (Co 2 O 3 -Ce-K) and (Co 2 O 3-
Ce-Na) is displayed. (5) A catalyst prepared by adding a potassium compound or a sodium compound to a mixture of Co 2 O 3 , Rh 2 O 3 and a cerium compound Co 2 O 3 and Rh 2 O 3 are 98/2 or 50, respectively.
3 parts by weight of colloidal silica as SiO 2 was added to a mixture of 100 parts by weight of a mixture of 100 parts by weight, 5 parts by weight of Ce (CH 3 COO) 3 and 5 parts by weight of KOH, and kneaded with water. This kneaded material was molded into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, and further heat-treated in an air atmosphere at 500 ° C. for 1 hour to be crushed to obtain a granular catalyst of 1 to 3 mm. Obtained. To view these catalysts and (Co 2 O 3 -Rh 2 O 3 -Ce-K-2/98) and (Co 2 O 3 -Rh 2 O 3 -Ce-K-50/50).

【0019】(6)Co2 3 及びRh2 3 を使用し
たチタニア担持触媒 Co2 3 10重量部及びRh2 3 10重量部の混合
物にコロイダルシリカをSiO2 として3重量部添加
し、さらに窒素雰囲気中、500℃で5時間加熱処理し
たγ−チタニア100重量部を加えて水練りした。この
混練物を直径約30mmの球状に成形し、空気雰囲気中
で120℃で24時間乾燥させ、さらに空気雰囲気下に
500℃で1時間加熱処理したものを破砕し、1〜3m
mの粒状触媒を得た。この触媒を(Co2 3 −Rh2
3 /TiO2 )と表示する。
(6) Titania-supported catalyst using Co 2 O 3 and Rh 2 O 3 To a mixture of 10 parts by weight of Co 2 O 3 and 10 parts by weight of Rh 2 O 3 was added 3 parts by weight of colloidal silica as SiO 2. Further, 100 parts by weight of γ-titania heat-treated at 500 ° C. for 5 hours in a nitrogen atmosphere was added and kneaded with water. This kneaded material was molded into a spherical shape having a diameter of about 30 mm, dried in an air atmosphere at 120 ° C. for 24 hours, further heat-treated in an air atmosphere at 500 ° C. for 1 hour, and then crushed to give 1 to 3 m.
m granular catalyst was obtained. This catalyst was converted to (Co 2 O 3 -Rh 2
It is displayed as O 3 / TiO 2 .

【0020】(7)Co2 3 、Rh2 3 及びセリウ
ム化合物の混合物にカリウム化合物を添加したチタニア
担持触媒 窒素雰囲気中、500℃で5時間加熱処理したγ−チタ
ニア100重量部にCo2 3 10重量部、Rh2 3
10重量部、2重量部のCe(CH3 COO) 3 及びK
OH2重量部を添加した混合物にコロイダルシリカをS
iO2 として3重量部添加し水練りした。この混練物を
直径約30mmの球状に成形し、空気雰囲気中で120
℃で24時間乾燥させ、さらに空気雰囲気下に500℃
で1時間加熱処理したものを破砕し、1〜3mmの粒状
触媒を得た。この触媒を(Co23 −Rh2 3 −C
e−K/TiO2 )と表示する。
(7) Co2O3, Rh2O3And Seriu
Titania with the addition of potassium compounds to a mixture of magnesium compounds
Supported catalyst γ-tita heat-treated at 500 ° C. for 5 hours in a nitrogen atmosphere
Near 100 parts by weight Co2O310 parts by weight, Rh2O3
10 parts by weight, 2 parts by weight Ce (CH3COO) 3And K
S colloidal silica was added to the mixture containing 2 parts by weight of OH.
iO2Was mixed with 3 parts by weight and kneaded with water. This kneaded product
Molded into a spherical shape with a diameter of about 30 mm, and 120 in an air atmosphere.
Dry at ℃ for 24 hours, and further in air atmosphere at 500 ℃
What was heat-treated for 1 hour was crushed and granulated into 1 to 3 mm
A catalyst was obtained. This catalyst is2O3-Rh2O3-C
e-K / TiO2) Is displayed.

【0021】(亜酸化窒素分解除去試験)前記のように
調製した触媒それぞれ25mlを、内径20mmの石英
管よりなる試験装置に充填し、所定の温度条件で、所定
の組成に調製したガスを通し、反応管入口と出口におけ
るガス中の亜酸化窒素の濃度を測定した。その値から、
亜酸化窒素の分解率を算出し、触媒の活性度を比較し
た。
(Nitrous oxide decomposition and removal test) 25 ml of each of the catalysts prepared as described above was filled in a test device composed of a quartz tube having an inner diameter of 20 mm, and a gas having a predetermined composition was passed under a predetermined temperature condition. The concentration of nitrous oxide in the gas at the inlet and outlet of the reaction tube was measured. From that value,
The decomposition rate of nitrous oxide was calculated and the activity of the catalyst was compared.

【0022】(実施例1)触媒層の温度を表1に示すよ
うに設定し、150ppmのN2 Oを含有する空気を、
6000hr-1の空間速度で通過させ、N2 Oの分解率
を測定した。結果は、表1に示すとおりである。本発明
で使用する触媒は比較的低温度でも高い亜酸化窒素の分
解活性を示し、特にCo2 3 とRh2 3 とを配合し
た触媒群では著しい相乗効果が認められる。
Example 1 The temperature of the catalyst layer was set as shown in Table 1, and air containing 150 ppm of N 2 O was added to
It was passed through at a space velocity of 6000 hr -1 , and the decomposition rate of N 2 O was measured. The results are shown in Table 1. The catalyst used in the present invention exhibits a high nitrous oxide decomposition activity even at a relatively low temperature, and in particular, a remarkable synergistic effect is recognized in the catalyst group containing Co 2 O 3 and Rh 2 O 3 .

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)触媒層の温度を表2に示すよ
うに設定し、150ppmのN2 O、50ppmのSO
2 及び14%の水分を含有する空気を、5000hr-1
の空間速度で通過させ、反応開始から100時間後のN
2 Oの分解率を測定した。結果は、表2に示す。
Example 2 The temperature of the catalyst layer was set as shown in Table 2, 150 ppm N 2 O and 50 ppm SO were added.
Air containing 2 and 14% water is used for 5000 hr -1
At a space velocity of 100 N after 100 hours from the start of the reaction.
The decomposition rate of 2 O was measured. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3)触媒層の温度を表3に示すよ
うに設定し、150ppmのN2 O、35ppmのHC
l及び14%の水分を含有する空気を、5000hr-1
の空間速度で通過させ、反応開始から100時間後のN
2 Oの分解率を測定した。結果は、表3に示す。
(Example 3) The temperature of the catalyst layer was set as shown in Table 3, and 150 ppm of N 2 O and 35 ppm of HC were set.
1 hr and air containing 14% of water for 5000 hr -1
At a space velocity of 100 N after 100 hours from the start of the reaction.
The decomposition rate of 2 O was measured. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】(実施例4)触媒層の温度を表4に示すよ
うに設定し、150ppmのN2 O、50ppmのSO
2 、35ppmのHCl及び14%の水分を含有する空
気を、5000hr-1の空間速度で通過させ、反応開始
から100時間後のN2 Oの分解率を測定した。結果
は、表4に示す。
Example 4 The temperature of the catalyst layer was set as shown in Table 4, 150 ppm of N 2 O and 50 ppm of SO were added.
Air containing 2 , 35 ppm of HCl and 14% of water was passed through at a space velocity of 5000 hr −1 , and the decomposition rate of N 2 O 100 hours after the start of the reaction was measured. The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】表2〜4の結果から、本発明の触媒を使用
した場合には失活の程度が極めて小さく、比較的低温度
でも高い亜酸化窒素の分解活性を示し、特にCo
2 3 、Rh2 3 、Ce(CH3 COO)3 及びKO
Hを併用した触媒では、200℃で約50%、250℃
では約90%、300〜400℃では99%以上の高い
分解率を維持していることがわかる。
From the results shown in Tables 2 to 4, when the catalyst of the present invention was used, the degree of deactivation was extremely small, and high nitrous oxide decomposition activity was exhibited even at a relatively low temperature.
2 O 3 , Rh 2 O 3 , Ce (CH 3 COO) 3 and KO
With the catalyst that uses H together, about 50% at 200 ° C, 250 ° C
It can be seen that the high decomposition rate is maintained at about 90% and at 300 to 400 ° C. of 99% or more.

【0031】[0031]

【発明の効果】本発明の方法によれば、アンモニアや水
素などの還元剤を必要とすることなく、排ガス中の亜酸
化窒素を効率よく酸素と窒素とに分解することができ
る。しかも本発明で使用する触媒は、比較的低温でも活
性が高く、水分や硫黄酸化物など触媒被毒物質の被毒に
よる活性低下が非常に小さく、長時間にわたって安定し
た高い脱硝率を維持することができるので、水分、硫黄
酸化物あるいはハロゲン物質などの混在することの多い
亜酸化窒素を含有する各種排ガスの処理に極めて効果が
大きい。
According to the method of the present invention, nitrous oxide in exhaust gas can be efficiently decomposed into oxygen and nitrogen without using a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention has a high activity even at a relatively low temperature, has a very small activity reduction due to poisoning of catalyst poisoning substances such as water and sulfur oxides, and can maintain a stable high denitration rate for a long time. Therefore, it is extremely effective in treating various exhaust gases containing nitrous oxide, which often contain water, sulfur oxides, halogen substances and the like.

フロントページの続き (72)発明者 安達 正敏 福岡県北九州市若松区響町1丁目3番地 三井鉱山株式会社九州研究所内Front page continuation (72) Masatoshi Adachi Inventor Masatoshi Adachi 1-3 Kyōchi-cho, Wakamatsu-ku, Kitakyushu, Mitsui Mining Co., Ltd. Kyushu Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜酸化窒素含有ガスを、三二酸化ロジウ
ム(Rh2 3 )若しくは三二酸化コバルト(Co2
3 )又はこれらの混合物よりなるA群化合物、セリウム
化合物よりなるB群化合物及びアルカリ金属化合物若し
くはアルカリ土類金属化合物又はこれらの混合物よりな
るC群化合物のそれぞれ1種以上を有効成分として含有
する多元触媒と、100〜600℃の温度で接触させ、
亜酸化窒素を分解させることを特徴とする亜酸化窒素含
有ガスを処理する方法。
1. A gas containing nitrous oxide is rhodium trioxide (Rh 2 O 3 ) or cobalt trioxide (Co 2 O).
3 ) or a multi-component compound containing, as an active ingredient, one or more each of a group A compound consisting of a mixture thereof, a group B compound consisting of a cerium compound, and an alkali metal compound or an alkaline earth metal compound or a group C compound consisting of a mixture thereof. Contact with a catalyst at a temperature of 100 to 600 ° C.,
A method for treating a nitrous oxide-containing gas, which comprises decomposing nitrous oxide.
【請求項2】 水分、硫黄酸化物及びハロゲン物質の中
の1種以上の触媒被毒物質の共存する亜酸化窒素含有ガ
スを、三二酸化ロジウム(Rh2 3 )若しくは三二酸
化コバルト(Co2 3 )又はこれらの混合物よりなる
A群化合物、セリウム化合物よりなるB群化合物及びア
ルカリ金属化合物若しくはアルカリ土類金属化合物又は
これらの混合物よりなるC群化合物のそれぞれ1種以上
を有効成分として含有する多元触媒と、100〜600
℃の温度で接触させ、亜酸化窒素を分解させることを特
徴とする亜酸化窒素含有ガスを処理する方法。
2. A nitrous oxide-containing gas in which one or more kinds of catalyst poisoning substances among water, sulfur oxides and halogen substances coexist is rhodium sesquioxide (Rh 2 O 3 ) or cobalt sesquioxide (Co 2). O 3 ) or a group A compound consisting of a mixture thereof, a group B compound consisting of a cerium compound, and an alkali metal compound or an alkaline earth metal compound, or a group C compound consisting of a mixture thereof, each as an active ingredient. Multi-way catalyst, 100-600
A method for treating a nitrous oxide-containing gas, which comprises contacting at a temperature of ° C to decompose nitrous oxide.
JP4254622A 1992-09-24 1992-09-24 Treatment of nitrous oxide containing gas Pending JPH06106028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4254622A JPH06106028A (en) 1992-09-24 1992-09-24 Treatment of nitrous oxide containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4254622A JPH06106028A (en) 1992-09-24 1992-09-24 Treatment of nitrous oxide containing gas

Publications (1)

Publication Number Publication Date
JPH06106028A true JPH06106028A (en) 1994-04-19

Family

ID=17267591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4254622A Pending JPH06106028A (en) 1992-09-24 1992-09-24 Treatment of nitrous oxide containing gas

Country Status (1)

Country Link
JP (1) JPH06106028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672930A (en) * 1993-12-21 1997-09-30 Nikon Corporation Vibration motor
US5932952A (en) * 1993-12-14 1999-08-03 Nikon Corporation Vibration motor having a two-phase drive of a longitudinal vibration and a bending vibration mode
US6051912A (en) * 1997-02-24 2000-04-18 Nikon Corporation Vibration actuator
US6252332B1 (en) * 1994-02-28 2001-06-26 Nikon Corporation Ultrasonic motor
US7583008B2 (en) 2004-06-09 2009-09-01 Canon Kabushiki Kaisha Vibration wave driven apparatus and vibrator
JP2014073447A (en) * 2012-10-03 2014-04-24 Nippon Shokubai Co Ltd Nitrous oxide decomposing catalyst and nitrous oxide decomposing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932952A (en) * 1993-12-14 1999-08-03 Nikon Corporation Vibration motor having a two-phase drive of a longitudinal vibration and a bending vibration mode
US5672930A (en) * 1993-12-21 1997-09-30 Nikon Corporation Vibration motor
US6252332B1 (en) * 1994-02-28 2001-06-26 Nikon Corporation Ultrasonic motor
US6051912A (en) * 1997-02-24 2000-04-18 Nikon Corporation Vibration actuator
US7583008B2 (en) 2004-06-09 2009-09-01 Canon Kabushiki Kaisha Vibration wave driven apparatus and vibrator
JP2014073447A (en) * 2012-10-03 2014-04-24 Nippon Shokubai Co Ltd Nitrous oxide decomposing catalyst and nitrous oxide decomposing method

Similar Documents

Publication Publication Date Title
CA1295598C (en) Process for removing nitrogen oxides from exhaust gases
EP1186335B1 (en) Catalyst and method for decomposing nitrous oxide and process for producing the catalyst
RU2237514C1 (en) Nitrogen monoxide decomposition catalyst and a way of carrying out processes including formation of nitrogen oxide
CZ34494A3 (en) Supported catalyst containing silver and process of selective catalytic decomposition of nitrogen monoxide
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
JPH06106028A (en) Treatment of nitrous oxide containing gas
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JPH06246135A (en) Treatment of gaseous nitrous oxide
JPH06190244A (en) Decomposition treatment of nitrous oxide
JP2000015106A (en) Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
CA2045128A1 (en) A catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JP3236031B2 (en) Method for decomposing and removing nitrous oxide
JP3270082B2 (en) Decomposition and removal method of nitrous oxide
US4039622A (en) Catalytic process for NOX reduction under lean conditions
JP3270080B2 (en) Method for decomposing and removing nitrous oxide
JPH067640A (en) Treatment of nitrous oxide containing gas
JP3270092B2 (en) Method for decomposing and removing nitrous oxide
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JPH05220350A (en) Method for decomposing and removing nitrous oxide
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JPH0474536A (en) Catalyst for decomposing nitrogen oxide
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method