JP4664608B2 - Ammonia decomposition catalyst and ammonia decomposition method - Google Patents

Ammonia decomposition catalyst and ammonia decomposition method Download PDF

Info

Publication number
JP4664608B2
JP4664608B2 JP2004057423A JP2004057423A JP4664608B2 JP 4664608 B2 JP4664608 B2 JP 4664608B2 JP 2004057423 A JP2004057423 A JP 2004057423A JP 2004057423 A JP2004057423 A JP 2004057423A JP 4664608 B2 JP4664608 B2 JP 4664608B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
iron
zirconia
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004057423A
Other languages
Japanese (ja)
Other versions
JP2005246163A (en
Inventor
浩文 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004057423A priority Critical patent/JP4664608B2/en
Publication of JP2005246163A publication Critical patent/JP2005246163A/en
Application granted granted Critical
Publication of JP4664608B2 publication Critical patent/JP4664608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、アンモニア(例えば、各種産業排ガスやアンモニア脱硝法により窒素酸化物を還元除去(還元浄化)した後の排ガスなどに含まれるアンモニア)を分解(浄化)するために有用な分解用触媒(又は浄化触媒)およびアンモニアの分解方法(又は浄化方法)に関する。   The present invention is a decomposition catalyst useful for decomposing (purifying) ammonia (for example, ammonia contained in various industrial exhaust gas or exhaust gas after reducing and removing (reducing and purifying) nitrogen oxides by ammonia denitration). Or a purification catalyst) and an ammonia decomposition method (or purification method).

アンモニアは、特有の臭気から著しい不快感を与え、悪臭防止法の特定悪臭物質にも指定されているため、排出を抑制する必要がある。アンモニアは、液体アンモニアとして広く溶媒に用いられるほか、冷凍機などの冷媒としても用いられる。また、硫安、硝安、尿素などの化学肥料の原料、硝酸などの工業用原料として重要である。従って、各種化学工場や、冷凍機などの廃棄物処理工場などの排ガス中にはアンモニアが含まれる。さらに、アンモニアは生物の腐敗によっても発生するため、清掃施設、浄水施設、汚泥処理施設などからも、アンモニアが排出される。   Ammonia gives significant discomfort due to its unique odor and is specified as a specific malodorous substance in the Malodor Control Law, so it is necessary to suppress emissions. Ammonia is widely used as a liquid ammonia as a solvent and also as a refrigerant for refrigerators. It is also important as a raw material for chemical fertilizers such as ammonium sulfate, ammonium nitrate, urea, and industrial raw materials such as nitric acid. Therefore, ammonia is contained in exhaust gas from various chemical factories and waste processing factories such as refrigerators. Furthermore, since ammonia is also generated by the decay of organisms, ammonia is also discharged from cleaning facilities, water purification facilities, sludge treatment facilities, and the like.

また、アンモニアは、燃焼系排ガス中に含まれる窒素酸化物(NOx:x=1または2)を除去するため、排ガスに添加される場合がある。すなわち、ボイラーやディーゼルエンジンなどから排出される排ガスは、酸素を過剰に含むとともに、有害な窒素酸化物を含んでいる。この窒素酸化物は、通常、還元剤としてアンモニアを添加し、酸化チタン−酸化バナジウム−酸化タングステンなどで構成される触媒に接触させ、窒素酸化物を無害な窒素に還元して脱硝する選択還元法(アンモニア選択還元法)により除去されている。この選択接触還元法は、排ガス中の窒素酸化物と、添加するアンモニアのモル比を厳密に制御すれば、ほぼ100%に近い脱硝率が得られる特徴がある。しかし、排ガス中の窒素酸化物の濃度が時間的に変動する場合、アンモニア量を過不足なく注入することは極めて難しい。そして、過剰量のアンモニアを添加すると、処理ガス中にアンモニアが残存し、アンモニアのリーク(漏出)が生じる。一方、アンモニアの添加量が少ないと、脱硝率が低下する。   Ammonia may be added to the exhaust gas to remove nitrogen oxides (NOx: x = 1 or 2) contained in the combustion exhaust gas. That is, exhaust gas discharged from boilers, diesel engines, etc. contains excess oxygen and harmful nitrogen oxides. This nitrogen oxide is usually a selective reduction method in which ammonia is added as a reducing agent, brought into contact with a catalyst composed of titanium oxide-vanadium oxide-tungsten oxide, etc., and the nitrogen oxide is reduced to harmless nitrogen for denitration. It has been removed by (ammonia selective reduction method). This selective catalytic reduction method is characterized in that a denitration rate close to 100% can be obtained if the molar ratio of nitrogen oxide in exhaust gas and ammonia to be added is strictly controlled. However, when the concentration of nitrogen oxides in the exhaust gas varies with time, it is extremely difficult to inject the ammonia amount without excess or deficiency. When an excessive amount of ammonia is added, ammonia remains in the processing gas, and ammonia leakage (leakage) occurs. On the other hand, when the amount of ammonia added is small, the denitration rate decreases.

他の脱硝方法として、排ガス中の窒素酸化物量に対してやや過剰量のアンモニアを添加し、触媒で処理した排ガスを引き続いてアンモニア分解触媒と接触させ、未反応のアンモニアを除去する方法も知られている。   As another denitration method, there is also known a method in which a slight excess of ammonia is added to the amount of nitrogen oxides in exhaust gas, and the exhaust gas treated with the catalyst is subsequently brought into contact with an ammonia decomposition catalyst to remove unreacted ammonia. ing.

アンモニア分解触媒に関し、例えば、日本化学会誌第5号612〜618頁(1977年)(非特許文献1)には、Fe、Co、Cuなどの幅広い金属又は金属酸化物がアンモニアの酸化活性を示すことが開示されている。しかし、このような金属または金属酸化物によるアンモニアの酸化反応では、下記式で示されるように、窒素を生成する反応(1)だけでなく、窒素酸化物の生成反応(2)も進行する。   Regarding the ammonia decomposition catalyst, for example, in the Journal of Chemical Society of Japan, No. 5, pages 612-618 (1977) (Non-Patent Document 1), a wide range of metals or metal oxides such as Fe, Co, Cu, etc. show the oxidation activity of ammonia. It is disclosed. However, in the oxidation reaction of ammonia by such a metal or metal oxide, not only the reaction (1) for generating nitrogen but also the reaction for generating nitrogen oxide (2) proceeds as shown by the following formula.

4NH3+3O2 → 2N2+6H2O (1)
4NH3+5O2 → 4NO+6H2O (2)
そのため、前記触媒を用いてアンモニア(例えば、前記選択接触還元法により窒素酸化物を除去した排ガス中の未反応のアンモニア)を処理すると、脱硝により窒素化合物を除去(浄化)したにもかかわらず、アンモニアの除去過程で再び窒素酸化物が生成する。また、アンモニアを含む他の被処理ガスの場合も、上記と同様にアンモニアの分解処理に伴って窒素酸化物が生成する。
4NH 3 + 3O 2 → 2N 2 + 6H 2 O (1)
4NH 3 + 5O 2 → 4NO + 6H 2 O (2)
Therefore, when ammonia (for example, unreacted ammonia in exhaust gas from which nitrogen oxides have been removed by the selective catalytic reduction method) is treated using the catalyst, the nitrogen compound is removed (purified) by denitration, Nitrogen oxides are formed again in the process of removing ammonia. Further, in the case of other gases to be treated containing ammonia, nitrogen oxides are generated with the decomposition treatment of ammonia in the same manner as described above.

アンモニア含有ガスの処理において、窒素酸化物の副生を抑制するため、種々の提案がなされている。例えば、特開平7−289897号公報(特許文献1)には、TiおよびSiを含有する二元系複合酸化物;TiおよびZrを含有する二元系複合酸化物;Ti、SiおよびZrを含有する三元系複合酸化物からなる群から選ばれた少なくとも1種の複合酸化物である触媒A成分と、バナジウム、タングステンおよびモリブデンよりなる群から選ばれた少なくとも1種の金属の酸化物である触媒B成分と、白金、パラジウム、ロジウム、ルテニウムおよびイリジウムよりなる群から選ばれた少なくとも1種の貴金属又はその化合物である触媒C成分とを含有することを特徴とするアンモニア分解用触媒が開示されている。   In the treatment of ammonia-containing gas, various proposals have been made to suppress the by-production of nitrogen oxides. For example, in JP-A-7-289897 (Patent Document 1), a binary composite oxide containing Ti and Si; a binary composite oxide containing Ti and Zr; containing Ti, Si and Zr A catalyst A component which is at least one complex oxide selected from the group consisting of ternary complex oxides, and an oxide of at least one metal selected from the group consisting of vanadium, tungsten and molybdenum Disclosed is an ammonia decomposition catalyst comprising a catalyst B component and at least one noble metal selected from the group consisting of platinum, palladium, rhodium, ruthenium and iridium or a catalyst C component which is a compound thereof. ing.

特開平10−151349号公報(特許文献2)には、酸化物担体およびAgを含むアンモニア分解触媒が開示され、具体的には酸化チタン担体に銀を担持した触媒などが例示されている。   Japanese Patent Application Laid-Open No. 10-151349 (Patent Document 2) discloses an ammonia decomposition catalyst containing an oxide carrier and Ag. Specifically, a catalyst having silver supported on a titanium oxide carrier is exemplified.

特開2001−9281号公報(特許文献3)には、A成分としてTiおよびSiからなる二元系複合酸化物、TiおよびZrからなる二元系複合酸化物、並びにTi、SiおよびZrからなる三元系複合酸化物のいずれか1種以上を含有し、B成分としてV、WおよびMoよりなる群から選択される1種以上の元素を含む酸化物を含有し、C成分としてCe、La、NdおよびPrよりなる群から選択される1種以上の希土類元素を含む酸化物を含有し、更にD成分としてPdおよびRuの少なくともいずれかの貴金属元素を含有するアンモニア分解用触媒が開示されている。   Japanese Patent Laid-Open No. 2001-9281 (Patent Document 3) includes a binary complex oxide composed of Ti and Si as a component A, a binary complex oxide composed of Ti and Zr, and Ti, Si and Zr. Contains any one or more of ternary complex oxides, contains an oxide containing one or more elements selected from the group consisting of V, W and Mo as the B component, and Ce, La as the C component A catalyst for ammonia decomposition containing an oxide containing one or more rare earth elements selected from the group consisting of Nd and Pr, and further containing at least one noble metal element of Pd and Ru as a D component is disclosed. Yes.

特開2002−336699号公報(特許文献4)には、アンモニア分解触媒として、γ−Al23 、θ−Al23 、ZrO2 、TiO2 、TiO2 ・ZrO2 、SiO2・Al23 、Al23 ・TiO2 、SO4/ZrO2 、SO4/ZrO2・TiO2 、Y型ゼオライト、X型ゼオライト、フェリエライト、モルデナイトおよびゼオライトβよりなる群から選ばれた少なくとも1種以上の多孔質物質よりなる担体に活性金属としてルテニウムを担持した触媒を使用するアンモニア分解除去方法が開示されている。 JP-A-2002-336699 (Patent Document 4) discloses γ-Al 2 O 3 , θ-Al 2 O 3 , ZrO 2 , TiO 2 , TiO 2 .ZrO 2 , SiO 2 .Al as ammonia decomposition catalysts. 2 O 3 , Al 2 O 3 .TiO 2 , SO 4 / ZrO 2 , SO 4 / ZrO 2 .TiO 2 , Y-type zeolite, X-type zeolite, ferrierite, mordenite, and zeolite β A method for decomposing and removing ammonia using a catalyst in which ruthenium is supported as an active metal on a support made of one or more porous materials is disclosed.

特開2003−24784号公報(特許文献5)には、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)およびロジウム(Rh)から選ばれた1種以上の貴金属を担持したシリカおよびまたはゼオライトである第1成分と、チタン(Ti)、タングステン(W)およびバナジウム(V)から選ばれた1種以上の元素の酸化物からなる組成物である第2成分とからなり、第1成分の担体面積当たりの担持量が0.1〜11g/m2、第2成分の担体面積当たりの担持量が50〜300g/m2 であるアンモニア分解触媒が開示されている。 JP-A-2003-24 78 4 (Patent Document 5), platinum (Pt), palladium (Pd), iridium (Ir) and rhodium silica carrying one or more noble metals selected from (Rh) and Or a first component which is a zeolite and a second component which is a composition comprising an oxide of one or more elements selected from titanium (Ti), tungsten (W) and vanadium (V), support amount 0.1~11g / m 2 per carrier area of the component, the ammonia decomposition catalyst is disclosed carried per carrier area of the second component is 50 to 300 g / m 2.

これらの触媒は、所定の条件下では実用的な性能を発揮するものの、いずれも貴金属を含有するため高価であるとともに、貴金属は一般に高い酸化活性を有するため、排ガス中に共存する可燃性成分(一酸化炭素や炭化水素など)の濃度やアンモニアの濃度によっては、爆発的な反応を引き起こし、触媒が損傷し、活性が著しく低下する虞がある。なかでも高温条件、特に450℃以上の高温では、窒素酸化物や亜酸化窒素(N2O)が多量に副生する虞がある。 Although these catalysts exhibit practical performance under predetermined conditions, they are expensive because they contain noble metals, and since noble metals generally have high oxidation activity, combustible components ( Depending on the concentration of carbon monoxide, hydrocarbon, etc.) and ammonia concentration, an explosive reaction may be caused, the catalyst may be damaged, and the activity may be significantly reduced. In particular, a large amount of nitrogen oxide or nitrous oxide (N 2 O) may be produced as a by-product under high temperature conditions, particularly at a high temperature of 450 ° C. or higher.

特開平8−215573号公報(特許文献6)には、酸化チタンを主成分とする担体に活性金属成分を担持したアンモニア分解触媒であって、該触媒が硫黄化合物をSO4換算で0.7重量%以上含有する硫黄化合物含有アンモニア分解触媒が開示され、具体的な活性金属成分としては貴金属(Ru、Pt、Pdなど)の他、卑金属(Cu、Wなど)が例示されている。この触媒では、活性金属成分として貴金属を用いると、前記と同様の問題が生じる。また、活性金属成分として卑金属を用いると、窒素酸化物や亜酸化窒素の副生を低減できる。しかし、副反応を完全に抑制することはできず、特に亜酸化窒素の副生を有効に防止できない。 Japanese Patent Application Laid-Open No. 8-215573 (Patent Document 6) discloses an ammonia decomposition catalyst in which an active metal component is supported on a support mainly composed of titanium oxide, and the catalyst converts a sulfur compound to 0.74 in terms of SO 4. A sulfur compound-containing ammonia decomposition catalyst containing at least wt% is disclosed, and examples of specific active metal components include noble metals (Ru, Pt, Pd, etc.) and base metals (Cu, W, etc.). In this catalyst, when a noble metal is used as an active metal component, the same problem as described above occurs. Moreover, when a base metal is used as an active metal component, the by-product of nitrogen oxides or nitrous oxide can be reduced. However, side reactions cannot be completely suppressed, and in particular, nitrous oxide by-products cannot be effectively prevented.

特開平8−332388号公報(特許文献7)には、1種以上の担体に、周期律表第Ib、IIb、IIIa、IIIb、IVa、IVb、Va、VIa、VIIa又はVIII族の元素の酸化物から選ばれる少なくとも1種以上の活性種および硝酸根(NO)を担持させてなるアンモニア分解剤が開示され、具体的には酸化チタン担体に、硝酸根と、酸化バナジウム、酸化鉄、酸化マンガン等とを担持した触媒などが例示されている。この触媒は、担体に活性種および硝酸根を担持させる構成であるため、排ガス中の硫黄酸化物により大きな被毒作用を受けて著しい性能低下を引き起こす虞がある。さらに、300℃を越える温度では、担持したHNOが飛散し、触媒活性が低下する虞がある。
特開平7−289897号公報(請求項1) 特開平10−151349号公報(特許請求の範囲) 特開2001−9281号公報(請求項1) 特開2002−336699号公報(請求項1) 特開2003−24784号公報 特開平8−215573号公報(請求項1、段落番号[0011]) 特開平8−332388号公報(請求項1、段落番号[0012]〜[0014]) 日本化学会誌第5号612〜618ページ(1977年)
In JP-A-8-332388 (Patent Document 7), oxidation of an element of Group Ib, IIb, IIIa, IIIb, IVa, IVb, Va, VIa, VIIa or VIII group on one or more carriers is performed. An ammonia decomposing agent comprising at least one active species selected from a product and a nitrate radical (NO 3 ) is disclosed. Specifically, a nitrate radical, vanadium oxide, iron oxide, oxidation are supported on a titanium oxide support. Examples include catalysts carrying manganese or the like. Since this catalyst has a configuration in which active species and nitrate radicals are supported on a carrier, there is a possibility that the catalyst may be significantly poisoned by sulfur oxides in the exhaust gas and cause a significant decrease in performance. Furthermore, when the temperature exceeds 300 ° C., the supported HNO 3 is scattered and the catalytic activity may be reduced.
JP-A-7-289897 (Claim 1) JP-A-10-151349 (Claims) JP 2001-9281 A (Claim 1) JP 2002-336699 A (Claim 1) JP 2003-24784 A JP-A-8-215573 (Claim 1, paragraph number [0011]) JP-A-8-332388 (Claim 1, paragraph numbers [0012] to [0014]) The Chemical Society of Japan No.5, pages 612-618 (1977)

従って、本発明の目的は、高温条件でも、有害な窒素酸化物や亜酸化窒素の生成を抑制しつつ、高いアンモニア分解能を維持できるアンモニア分解(又は浄化)触媒およびアンモニア分解方法を提供することにある。   Accordingly, an object of the present invention is to provide an ammonia decomposition (or purification) catalyst and an ammonia decomposition method capable of maintaining high ammonia resolution while suppressing generation of harmful nitrogen oxides and nitrous oxides even under high temperature conditions. is there.

本発明の他の目的は、被処理ガスが炭化水素や硫黄酸化物を含んでいても、高い触媒活性を保持できるアンモニア分解(又は浄化)触媒およびアンモニア分解方法を提供することにある。   Another object of the present invention is to provide an ammonia decomposition (or purification) catalyst and an ammonia decomposition method that can maintain high catalytic activity even if the gas to be treated contains hydrocarbons or sulfur oxides.

本発明のさらに他の目的は、貴金属を必要とせず、アンモニアを窒素に有効に変換できる安価なアンモニア分解(又は浄化)触媒およびアンモニア分解方法を提供することにある。   Still another object of the present invention is to provide an inexpensive ammonia decomposition (or purification) catalyst and ammonia decomposition method which do not require a noble metal and can effectively convert ammonia into nitrogen.

本発明者は前記課題を達成するため鋭意検討した結果、鉄成分と硫酸根ジルコニアとを組み合わせて接触酸化触媒を構成すると、高温条件(例えば、500℃以上)でも、高い触媒活性を示し、窒素酸化物および亜酸化窒素の副生を有効に抑制しつつ、アンモニアを窒素に効率よく分解できることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has shown that when a catalytic oxidation catalyst is formed by combining an iron component and sulfate zirconia, it exhibits high catalytic activity even under high temperature conditions (for example, 500 ° C. or higher), and nitrogen. It has been found that ammonia can be efficiently decomposed into nitrogen while effectively suppressing by-products of oxide and nitrous oxide, and the present invention has been completed.

すなわち、本発明のアンモニア分解用触媒は、鉄(活性成分としての鉄成分)を含有する硫酸根ジルコニアで構成されている。この触媒において、活性成分(鉄)の割合は、ジルコニア100重量部に対して1〜20重量部程度であってもよい。また、硫酸根の割合は、SO4 2-換算(又は硫黄換算)で、ジルコニア100重量部に対して1〜25重量部程度であってもよい。 That is, the ammonia decomposition catalyst of the present invention is composed of sulfate zirconia containing iron (an iron component as an active component). In this catalyst, the ratio of the active component (iron) may be about 1 to 20 parts by weight with respect to 100 parts by weight of zirconia. The ratio of sulfate radicals may be about 1 to 25 parts by weight with respect to 100 parts by weight of zirconia in terms of SO 4 2− (or sulfur).

本発明には、アンモニアを含む被処理ガス(又は排ガス)を、鉄を含有する硫酸根ジルコニアを含む触媒(前記アンモニア分解用触媒)に接触させるアンモニアの分解方法(又は除去方法)も含まれる。この方法において、アンモニアを含む被処理ガス(又は排ガス)を、温度400〜600℃程度で触媒と接触させてもよい。被処理ガスを、本発明の触媒に接触させると、窒素酸化物や亜酸化窒素の副生を抑制しつつ、被処理ガス中のアンモニアを効率よく分解除去することができる。さらに、硫黄酸化物およびアンモニアを含む被処理ガス(又は排ガス)を触媒と接触させても、高いアンモニア分解能を維持できる。   The present invention also includes an ammonia decomposition method (or removal method) in which a gas to be treated (or exhaust gas) containing ammonia is brought into contact with a catalyst containing iron-containing sulfate radical zirconia (the ammonia decomposition catalyst). In this method, a gas to be treated (or exhaust gas) containing ammonia may be brought into contact with the catalyst at a temperature of about 400 to 600 ° C. When the gas to be treated is brought into contact with the catalyst of the present invention, ammonia in the gas to be treated can be efficiently decomposed and removed while suppressing by-production of nitrogen oxides and nitrous oxide. Furthermore, even when a gas to be treated (or exhaust gas) containing sulfur oxide and ammonia is brought into contact with the catalyst, high ammonia resolution can be maintained.

本発明では、特定の触媒を用いるため、高温(例えば、500℃以上)の条件でも、窒素酸化物や地球環境上問題のある亜酸化窒素を副生することなく、高いアンモニア分解能を維持しつつ、アンモニアを窒素に効率的に分解することができる。また、被処理ガスが可燃性成分(一酸化炭素や炭化水素など)や硫黄酸化物などを含んでいても、高い触媒活性を維持できる。さらに、貴金属を必要としないため安価であるだけでなく、アンモニアを窒素に有効に変換できる。   In the present invention, since a specific catalyst is used, high ammonia resolving power is maintained without generating nitrogen oxides or nitrous oxide having a problem on the global environment even under high temperature conditions (for example, 500 ° C. or higher). Ammonia can be efficiently decomposed into nitrogen. Further, even if the gas to be treated contains a combustible component (such as carbon monoxide or hydrocarbon) or sulfur oxide, high catalytic activity can be maintained. Furthermore, since no precious metal is required, not only is it inexpensive, but ammonia can be effectively converted into nitrogen.

本発明の触媒は、鉄(鉄成分)を含有する硫酸根ジルコニアで構成されている。   The catalyst of the present invention is composed of sulfate zirconia containing iron (iron component).

触媒を構成する鉄(鉄成分)は、少なくとも硫酸根ジルコニアに含まれていればよく、硫酸根ジルコニアに担持されていてもよく、硫酸根ジルコニア内に均一に又は分散して含有されていてもよい。また、触媒活性に影響を与えない範囲で、鉄は金属単体Feとして含有されていてもよく化合物の形態で含有されていてもよい。例えば、酸化鉄、水酸化鉄、塩(硫酸塩などの無機酸塩、有機酸塩、錯塩など)などの形態で含まれていてもよい。鉄成分は、通常、少なくとも酸化鉄の形態である場合が多い。さらに、鉄の価数は特に制限されず、二価の鉄Fe(II)であってもよく、三価の鉄Fe(III)であってもよい。   The iron (iron component) constituting the catalyst may be contained in at least sulfate radical zirconia, may be supported on sulfate radical zirconia, and may be contained uniformly or dispersed in sulfate radical zirconia. Good. Moreover, in the range which does not affect catalyst activity, iron may be contained as a metal simple substance Fe, and may be contained with the form of the compound. For example, it may be contained in the form of iron oxide, iron hydroxide, salt (inorganic acid salt such as sulfate, organic acid salt, complex salt). The iron component is usually at least in the form of iron oxide. Furthermore, the valence of iron is not particularly limited, and may be divalent iron Fe (II) or trivalent iron Fe (III).

触媒を構成する硫酸根ジルコニアは、硫酸根とジルコニア(ZrO2)とで構成されている。硫酸根ジルコニアは、配位や塩などの形態で硫酸根を含んでいてもよい。 The sulfate radical zirconia constituting the catalyst is composed of a sulfate radical and zirconia (ZrO 2 ). The sulfate radical zirconia may contain a sulfate radical in the form of coordination or salt.

硫酸根ジルコニアの構成成分であるジルコニア(ZrO2)は、酸化物(ジルコニア)の形態で存在するものの、触媒活性を損なわない範囲で、ジルコニア化合物(例えば、水酸化物、ハロゲン化物、酸素酸塩、有機酸塩)を含んでいてもよい。 Zirconia (ZrO 2 ), which is a component of sulfate radical zirconia, exists in the form of an oxide (zirconia), but is within a range not impairing the catalytic activity, such as a zirconia compound (for example, hydroxide, halide, oxyacid salt). , Organic acid salt).

さらに、触媒は、触媒活性を損なわない範囲で、他の金属成分(例えば、チタンやハフニウム、ケイ素、希土類など)を含んでいてもよい。これらの金属成分も化合物(例えば、TiO2などの酸化物)の形態で含まれていてもよい。 Furthermore, the catalyst may contain other metal components (for example, titanium, hafnium, silicon, rare earth, etc.) as long as the catalytic activity is not impaired. These metal components may also be included in the form of a compound (for example, an oxide such as TiO 2 ).

硫酸根とジルコニアとの割合は、触媒活性及び安定性などを損なわない範囲であればよく、例えば、硫酸根(SO4 2-として換算)の割合は、ジルコニア(ZrO2)100重量部に対して、0.5〜30重量部程度の範囲から選択でき、例えば、1〜25重量部、好ましくは5〜20重量部(例えば10〜20重量部)程度であってもよい。 The ratio of sulfate radical to zirconia may be in a range that does not impair the catalytic activity and stability. For example, the ratio of sulfate radical (converted as SO 4 2− ) is 100 parts by weight of zirconia (ZrO 2 ). It can be selected from the range of about 0.5 to 30 parts by weight, and may be, for example, about 1 to 25 parts by weight, preferably about 5 to 20 parts by weight (for example, 10 to 20 parts by weight).

鉄(又は鉄成分)の割合(担持量)は、鉄元素Fe換算で、ジルコニア(ZrO2)100重量部に対して、例えば、0.5〜20重量部(例えば、1〜20重量部)、好ましくは1〜15重量部、さらに好ましくは1〜10重量部(例えば、2〜8重量部)程度であり、通常、1〜7重量部(例えば、2〜5重量部)程度である。鉄の割合が少なすぎると、触媒活性が低下する虞があり、鉄の割合が多すぎると、アンモニアに対する酸化活性が上昇し、窒素酸化物が多量に生成する虞がある。 The ratio (supported amount) of iron (or iron component) is, for example, 0.5 to 20 parts by weight (for example, 1 to 20 parts by weight) with respect to 100 parts by weight of zirconia (ZrO 2 ) in terms of iron element Fe. The amount is preferably about 1 to 15 parts by weight, more preferably about 1 to 10 parts by weight (for example, 2 to 8 parts by weight), and usually about 1 to 7 parts by weight (for example, 2 to 5 parts by weight). If the ratio of iron is too small, the catalytic activity may decrease, and if the ratio of iron is excessive, the oxidation activity for ammonia increases, and a large amount of nitrogen oxide may be generated.

触媒は、非多孔質であってもよく多孔質であってもよい。触媒のBET比表面積は、5m2/g以上(例えば、5〜500m2/g程度)であってもよく、通常、10〜300m2/g、(例えば、50〜300m2/g)、好ましくは60〜250m2/g(例えば、60〜200m2/g)、さらに好ましくは80〜250m2/g(例えば、90〜150m2/g)程度であってもよい。触媒の形状としては、例えば、粉粒状、粒状、ペレット状、ハニカム状などが挙げられる。これらの形状のうち、圧力損失を低減する観点からハニカム状が好ましい。ハニカムのセル数は、圧力損失の増大を抑制できる範囲で選択でき、例えば、1〜250個/cm2、好ましくは5〜150個/cm2 、さらに好ましくは10〜100個/cm2 程度であってもよい。ハニカムの開口率は、例えば、30〜80%(例えば、50〜80%)、好ましくは50〜75%程度であってもよい。 The catalyst may be non-porous or porous. BET specific surface area of the catalyst, 5 m 2 / g or more (e.g., 5 to 500 m approximately 2 / g) may be, usually, 10 to 300 m 2 / g, (e.g., 50 to 300 m 2 / g), preferably May be about 60 to 250 m 2 / g (for example, 60 to 200 m 2 / g), more preferably about 80 to 250 m 2 / g (for example, 90 to 150 m 2 / g). Examples of the shape of the catalyst include powder, granule, pellet, and honeycomb. Of these shapes, a honeycomb shape is preferable from the viewpoint of reducing pressure loss. The number of cells of the honeycomb can be selected within a range in which an increase in pressure loss can be suppressed. For example, the number of cells is 1 to 250 cells / cm 2 , preferably 5 to 150 cells / cm 2 , and more preferably about 10 to 100 cells / cm 2 . There may be. The aperture ratio of the honeycomb may be, for example, 30 to 80% (for example, 50 to 80%), preferably about 50 to 75%.

なお、触媒には、必要であれば、触媒の活性を損なわない範囲で、慣用の各種添加剤が配合されていてもよい。   In addition, if necessary, various conventional additives may be blended in the catalyst as long as the activity of the catalyst is not impaired.

本発明の触媒は、触媒機能の三要素である(1)活性、(2)選択性、および(3)耐久性に優れた極めて有用な触媒である。すなわち、高温条件でも、高いアンモニア分解率を実現できるとともに、窒素酸化物および亜酸化窒素の副生を抑制できる。また、大量の他の成分ガスが共存し、かつ低い濃度(例えば、1〜300ppm)のアンモニアであっても選択的に分解できる。さらに、 可燃性成分(炭化水素や一酸化炭素など)や硫黄酸化物(二酸化硫黄SO2など)が存在しても、触媒毒の蓄積を抑制でき、高い触媒活性を維持できる。 The catalyst of the present invention is a very useful catalyst excellent in (1) activity, (2) selectivity, and (3) durability, which are three elements of the catalyst function. That is, even under high temperature conditions, a high ammonia decomposition rate can be realized, and by-products of nitrogen oxides and nitrous oxide can be suppressed. In addition, a large amount of other component gases coexist, and even ammonia having a low concentration (for example, 1 to 300 ppm) can be selectively decomposed. Furthermore, even if combustible components (such as hydrocarbons and carbon monoxide) and sulfur oxides (such as sulfur dioxide SO 2 ) are present, accumulation of catalyst poisons can be suppressed and high catalytic activity can be maintained.

本発明の触媒は、慣用の方法で製造でき、例えば、(1)担体としての硫酸根ジルコニアに、鉄成分を担持する方法、(2)硫酸成分の存在下、ジルコニウム成分と鉄成分とを共沈させ、この共沈物を乾燥し、焼成したり、固体ジルコニウム成分に硫酸成分と鉄成分とを担持させ、乾燥、焼成する方法などが例示できる。   The catalyst of the present invention can be produced by a conventional method. For example, (1) a method in which an iron component is supported on sulfate zirconia as a support, and (2) a zirconium component and an iron component are coexisting in the presence of the sulfuric acid component. Examples thereof include a method in which the coprecipitate is dried and calcined, or a sulfuric acid component and an iron component are supported on a solid zirconium component and then dried and calcined.

[製造方法(1)]
硫酸根ジルコニアは、慣用の方法で調製でき、例えば、硫酸成分を含むジルコニウム成分を焼成することにより得ることができる。ジルコニウム成分としては、焼成によりジルコニア(酸化ジルコニウム)を生成可能な化合物、例えば、水酸化ジルコニウム、無機酸塩(硫酸ジルコニウム、硝酸ジルコニウムなど)、ハロゲン化物(塩化ジルコニウムなど)、有機酸塩(酢酸ジルコニウムなど)などが例示できる。ジルコニウム成分において、ジルコニウムの価数は、二価Zr(II)、三価Zr(III)であってもよいが、通常、安定な四価Zr(IV)である。これらのジルコニウム成分は単独で又は二種以上組み合わせて使用できる。これらのジルコニウム成分のうち、水酸化ジルコニウムなどが好ましい。
[Production Method (1)]
The sulfate radical zirconia can be prepared by a conventional method, and can be obtained, for example, by firing a zirconium component containing a sulfuric acid component. Zirconium components include compounds capable of producing zirconia (zirconium oxide) upon firing, such as zirconium hydroxide, inorganic acid salts (zirconium sulfate, zirconium nitrate, etc.), halides (zirconium chloride, etc.), organic acid salts (zirconium acetate) Etc.). In the zirconium component, the valence of zirconium may be divalent Zr (II) or trivalent Zr (III), but is usually stable tetravalent Zr (IV). These zirconium components can be used alone or in combination of two or more. Of these zirconium components, zirconium hydroxide and the like are preferable.

硫酸成分(又は硫黄成分)としては、硫酸又は硫酸を生成可能な化合物(硫黄酸化物など)が使用でき、通常、硫酸イオンを含む水溶液の形態で使用できる。硫酸成分としては、例えば、硫酸、種々の硫酸塩(硫酸アンモニウム、硫酸アミン類、硫酸ジルコニウム、硫酸カリウム、硫酸ナトリウムなど)などが例示できる。これらの硫酸成分も単独で又は二種以上組み合わせて使用できる。これらの硫酸成分のうち、焼成による残留性の低い成分、例えば、硫酸アンモニウムなどが好ましい。   As the sulfuric acid component (or sulfur component), sulfuric acid or a compound capable of producing sulfuric acid (such as sulfur oxide) can be used, and it can be usually used in the form of an aqueous solution containing sulfate ions. Examples of the sulfuric acid component include sulfuric acid and various sulfates (such as ammonium sulfate, amine sulfates, zirconium sulfate, potassium sulfate, and sodium sulfate). These sulfuric acid components can also be used alone or in combination of two or more. Of these sulfuric acid components, components having low persistence due to firing, such as ammonium sulfate, are preferred.

硫酸根ジルコニアは、pH調整などによりジルコニウム成分を硫酸成分の存在下で必要により沈殿させ、生成物を乾燥し、焼成することにより調製してもよい。例えば、ジルコニウム成分と硫酸成分(例えば、硫酸アンモニウム)を含む水溶液にアルカリを添加して水酸化ジルコニウムを生成させ、生成物を乾燥し、焼成してもよい。代表的な調製方法では、水酸化ジルコニウムに硫酸成分(例えば、硫酸アンモニウム)を含有する水溶液を含浸させ、乾燥し、焼成することにより硫酸根ジルコニアを生成してもよい。   The sulfate radical zirconia may be prepared by precipitating a zirconium component as necessary in the presence of a sulfuric acid component by adjusting pH or the like, drying the product, and firing. For example, an alkali may be added to an aqueous solution containing a zirconium component and a sulfuric acid component (for example, ammonium sulfate) to produce zirconium hydroxide, and the product may be dried and fired. In a typical preparation method, sulfate radical zirconia may be produced by impregnating zirconium hydroxide with an aqueous solution containing a sulfuric acid component (for example, ammonium sulfate), drying, and firing.

ジルコニウム成分に対する硫酸成分の割合は、前記割合(前記硫酸根とジルコニアとの割合)であってもよく、焼成により揮発消失する硫酸成分を考慮して、焼成温度に応じて、最終触媒での硫酸成分の割合よりも多くの硫酸成分を含有させてもよい。   The ratio of the sulfuric acid component to the zirconium component may be the above ratio (the ratio of the sulfate radical to zirconia), and the sulfuric acid component in the final catalyst depends on the calcination temperature in consideration of the sulfuric acid component that volatilizes and disappears upon calcination. You may contain more sulfuric acid components than the ratio of a component.

硫酸根ジルコニアに鉄成分を担持させる方法は、例えば、硫酸根ジルコニアを、鉄成分を含有する水溶液に含浸し、乾燥、焼成させる方法などが挙げられる。鉄成分を構成する鉄化合物は、特に制限されず、種々の鉄含有化合物(通常、水溶性鉄化合物)が使用できるが、例えば、無機酸塩(例えば、硫酸第一鉄、硫酸第二鉄などの硫酸塩および硫酸複塩、硝酸塩など)、塩化物(塩化第一鉄、塩化第二鉄など)、有機酸塩(例えば、酢酸鉄など)、錯体(例えば、鉄カルボニル化合物など)が例示できる。これらの鉄含有化合物は単独で又は二種以上組み合わせて使用できる。これらの鉄含有化合物のうち、硫酸鉄が好ましい。   Examples of the method of supporting the iron component on sulfate radical zirconia include a method of impregnating sulfate radical zirconia in an aqueous solution containing the iron component, and drying and firing. The iron compound constituting the iron component is not particularly limited, and various iron-containing compounds (usually water-soluble iron compounds) can be used. For example, inorganic acid salts (for example, ferrous sulfate, ferric sulfate, etc.) And sulfates (eg, ferrous chloride, ferric chloride), organic acid salts (eg, iron acetate), complexes (eg, iron carbonyl compounds). . These iron-containing compounds can be used alone or in combination of two or more. Of these iron-containing compounds, iron sulfate is preferred.

ジルコニウム成分に対する鉄成分の含浸は、通常、室温(15〜25℃程度)下で行ってもよく、加温(例えば、30〜80℃、好ましくは50〜80℃程度)下で行ってもよい。乾燥条件は、特に限定されず、常圧又は減圧下であってもよく、加熱により乾燥してもよく、蒸発乾固してもよい。   The impregnation of the iron component with respect to the zirconium component may usually be performed at room temperature (about 15 to 25 ° C.) or may be performed under heating (for example, about 30 to 80 ° C., preferably about 50 to 80 ° C.). . The drying conditions are not particularly limited, and may be normal pressure or reduced pressure, may be dried by heating, or may be evaporated to dryness.

焼成温度は、触媒活性を損なわない限り、300〜700℃程度から選択でき、例えば、400〜650℃(例えば、450〜650℃)、好ましくは500〜600℃程度である。焼成温度が高すぎると硫酸根が揮発し消失する虞があり、低すぎると安定な結晶が形成されない。また、焼成時間は、通常、0.1〜100時間(例えば、1〜80時間)程度の範囲から選択され、例えば、1〜50時間(例えば1〜20時間)、好ましくは3〜10時間程度である。なお、焼成は、不活性ガス雰囲気中で行ってもよく、酸化性雰囲気(空気など)中で行ってもよい。   The calcination temperature can be selected from about 300 to 700 ° C. as long as the catalytic activity is not impaired, and is, for example, 400 to 650 ° C. (for example, 450 to 650 ° C.), preferably about 500 to 600 ° C. If the firing temperature is too high, the sulfate radicals may volatilize and disappear, and if it is too low, stable crystals cannot be formed. The firing time is usually selected from the range of about 0.1 to 100 hours (for example, 1 to 80 hours), for example, 1 to 50 hours (for example, 1 to 20 hours), preferably about 3 to 10 hours. It is. Note that the firing may be performed in an inert gas atmosphere or in an oxidizing atmosphere (such as air).

[製造方法(2)]
この方法では、(2a)硫酸成分の存在下、ジルコニウム成分と鉄成分とを共沈させ、この共沈物を乾燥し、焼成したり、(2b)固体ジルコニウム成分を硫酸成分と鉄成分とで処理(浸漬又は含浸処理など)して担持させ、乾燥、焼成することにより、触媒を得ることができる。
[Production method (2)]
In this method, (2a) the zirconium component and the iron component are coprecipitated in the presence of the sulfuric acid component, and the coprecipitate is dried and fired. (2b) The solid zirconium component is mixed with the sulfuric acid component and the iron component. A catalyst can be obtained by carrying out treatment (immersion or impregnation treatment, etc.), carrying, drying and firing.

前記方法(2a)では、ジルコニウム成分(ジルコニウム化合物)として、水溶性化合物[無機酸塩(硫酸ジルコニウム、硝酸ジルコニウムなど)、ハロゲン化物(塩化ジルコニウムなど)、有機酸塩(酢酸ジルコニウムなど)など]などが使用でき、前記方法(2b)では、水不溶性化合物(水酸化ジルコニウムなど)などが使用できる。前記方法(2a)(2b)で用いるジルコニウム化合物において、ジルコニウムの価数は、二価Zr(II)、三価Zr(III)であってもよいが、通常、安定な四価Zr(IV)である。硫酸成分及び鉄成分としては、前記と同様の成分が使用でき、通常、水溶性であってもよい。   In the method (2a), as a zirconium component (zirconium compound), a water-soluble compound [inorganic acid salt (zirconium sulfate, zirconium nitrate, etc.), halide (zirconium chloride, etc.), organic acid salt (zirconium acetate, etc.), etc.] In the method (2b), a water-insoluble compound (such as zirconium hydroxide) can be used. In the zirconium compound used in the above method (2a) (2b), the valence of zirconium may be divalent Zr (II) or trivalent Zr (III), but is usually stable tetravalent Zr (IV). It is. As the sulfuric acid component and the iron component, the same components as described above can be used, and they may usually be water-soluble.

前記方法(2a)において、共沈は、上記と同様に、アルカリの添加(又はpH調整)により行うことができる。また、前記方法(2b)において、担持処理は、浸漬又は含浸に限らず、噴霧などにより行ってもよい。さらに、乾燥、焼成条件は、前記と同様である。   In the method (2a), the coprecipitation can be performed by addition of alkali (or pH adjustment) in the same manner as described above. In the method (2b), the supporting treatment is not limited to immersion or impregnation, and may be performed by spraying or the like. Furthermore, the drying and firing conditions are the same as described above.

前記方法(1)(2)のうち、工程数が少なく、経済的に有利に製造できる方法(2)が好ましい。   Of the methods (1) and (2), the method (2) that can be produced economically advantageously with a small number of steps is preferable.

また、触媒は、種々の成形方法を利用して所定の形状に成形してもよい。触媒の成形方法としては、例えば、練合機、成形機(押出成形機や圧縮成形機など)、打錠機、造粒機、粉砕機などが例示できる。例えば、ハニカム状触媒は、例えば、ハニカム状耐火材(例えば、セラミック)を触媒成分(硫酸根ジルコニア及び鉄成分)で被覆する方法、触媒成分に必要に応じてバインダーを添加し、ハニカム形状に押出成形する方法などが挙げられる。ハニカム状に成形する方法としては、触媒の性能の点から、押出成形する方法が好ましい。なお、成形された触媒成分(例えば、触媒成分とバインダーを含む成形体)は、前記のように焼成してもよい。   The catalyst may be molded into a predetermined shape using various molding methods. Examples of the catalyst molding method include a kneader, a molding machine (such as an extrusion molding machine and a compression molding machine), a tableting machine, a granulator, and a pulverizer. For example, a honeycomb catalyst is, for example, a method of coating a honeycomb refractory material (for example, ceramic) with a catalyst component (sulfuric acid zirconia and iron component), adding a binder to the catalyst component as necessary, and extruding into a honeycomb shape. Examples of the method include molding. As a method of forming into a honeycomb shape, an extrusion method is preferable from the viewpoint of the performance of the catalyst. The molded catalyst component (for example, a molded product containing the catalyst component and the binder) may be fired as described above.

本発明の触媒を用いて、被処理ガスを処理すると、高い分解率でアンモニアを除去できる。被処理ガスは、少なくともアンモニアを含んでいればよく、アンモニアの濃度は特に制限されず、例えば、体積基準で、3000ppm以下(例えば、1〜3000ppm)であってもよく、通常、5〜3000ppm、好ましくは10〜2000ppm程度であってもよい。   When the gas to be treated is treated using the catalyst of the present invention, ammonia can be removed at a high decomposition rate. The gas to be treated only needs to contain at least ammonia, and the concentration of ammonia is not particularly limited, and may be, for example, 3000 ppm or less (for example, 1 to 3000 ppm) on a volume basis, and usually 5 to 3000 ppm, Preferably, it may be about 10 to 2000 ppm.

被処理ガスは、アンモニアの他に、酸素、水蒸気、二酸化炭素などを含んでいてもよい。酸素の割合は、被処理ガス中、例えば、1〜30体積%、好ましくは1〜20体積%、さらに好ましくは2〜15体積%程度である。なお、被処理ガス中の酸素の割合が少なすぎる(例えば、1体積%未満)場合や、アンモニア濃度に対する酸素濃度の比(O2濃度/NH3濃度)が小さすぎる(例えば、1以下)などである場合には、アンモニアの分解率が低下する虞がある。従って、被処理ガス中の酸素が不足する場合、酸素又は空気を添加して、触媒と接触させてもよい。 The gas to be treated may contain oxygen, water vapor, carbon dioxide and the like in addition to ammonia. The proportion of oxygen in the gas to be treated is, for example, about 1 to 30% by volume, preferably about 1 to 20% by volume, and more preferably about 2 to 15% by volume. In addition, when the ratio of oxygen in the gas to be treated is too small (for example, less than 1% by volume), the ratio of oxygen concentration to ammonia concentration (O 2 concentration / NH 3 concentration) is too small (for example, 1 or less), etc. If this is the case, the decomposition rate of ammonia may decrease. Therefore, when oxygen in the gas to be treated is insufficient, oxygen or air may be added and contacted with the catalyst.

水蒸気の割合は、被処理ガス中、例えば、0.1〜40体積%、好ましくは1〜30体積%、さらに好ましくは2〜20体積%程度である。二酸化炭素の割合は、被処理ガス中、例えば、0.1〜20体積%、好ましくは0.5〜15体積%、さらに好ましくは1〜10体積%程度である。   The ratio of water vapor is, for example, about 0.1 to 40% by volume, preferably 1 to 30% by volume, and more preferably about 2 to 20% by volume in the gas to be treated. The ratio of carbon dioxide is, for example, about 0.1 to 20% by volume, preferably about 0.5 to 15% by volume, and more preferably about 1 to 10% by volume in the gas to be treated.

また、燃焼排ガスには、後続機器を劣化させる硫黄酸化物が含まれることが多いが、本発明の触媒は、硫黄酸化物を含むガスにも適用できる。被処理ガス中の硫黄酸化物の濃度は、0.1〜100ppm(例えば、1〜70ppm)程度であってもよい。   Further, the combustion exhaust gas often contains sulfur oxides that degrade the subsequent equipment, but the catalyst of the present invention can also be applied to gases containing sulfur oxides. The concentration of sulfur oxide in the gas to be treated may be about 0.1 to 100 ppm (for example, 1 to 70 ppm).

さらに、被処理ガスには、炭化水素や一酸化炭素などの可燃性成分が含まれていてもよい。これらの成分の濃度は、特に制限されず、高濃度、例えば、500〜3000ppm(例えば、1000〜2000ppm)程度であっても、本発明では触媒活性の低下を防止できる。   Further, the gas to be treated may contain a combustible component such as hydrocarbon or carbon monoxide. The concentration of these components is not particularly limited, and even in the case of a high concentration, for example, about 500 to 3000 ppm (for example, 1000 to 2000 ppm), a decrease in catalyst activity can be prevented in the present invention.

アンモニアを含む被処理ガスと、前記触媒との接触温度は、アンモニアの分解能を損なわず、窒素酸化物の生成量を抑制できる範囲から選択でき、例えば、400℃以上(400〜600℃)、好ましくは450℃以上(例えば、450〜600℃)、さらに好ましくは500℃以上(例えば、500〜550℃)程度であり、600℃以下の温度で接触させるのが望ましい。温度が低すぎると、アンモニアの分解率が低下し、高すぎると窒素酸化物が多量に生成する虞があり、触媒の耐久性が低下する。   The contact temperature between the gas to be treated containing ammonia and the catalyst can be selected from a range in which the generation amount of nitrogen oxides can be suppressed without impairing ammonia resolution, and is preferably 400 ° C. or higher (400 to 600 ° C.), preferably Is 450 ° C. or higher (for example, 450 to 600 ° C.), more preferably about 500 ° C. or higher (for example, 500 to 550 ° C.), and it is desirable to make contact at a temperature of 600 ° C. or lower. If the temperature is too low, the decomposition rate of ammonia will decrease, and if it is too high, a large amount of nitrogen oxides may be produced, and the durability of the catalyst will decrease.

本発明の触媒を用いたガス処理系において、ガス空間速度(GHSV)は、例えば、500〜200000h-1、好ましくは1000〜150000h-1、さらに好ましくは2000〜100000h-1程度である。なお、触媒の使用量は、前記空間速度に応じて選択できる。 In the catalytic gas processing system using the present invention, a gas hourly space velocity (GHSV) is, for example, 500~200000H -1, preferably 1000~150000H -1, more preferably 2000~100000h about -1. In addition, the usage-amount of a catalyst can be selected according to the said space velocity.

触媒に対する被処理ガスの線速度(LV)は、例えば、0.02〜20m/秒、好ましくは0.05〜5m/秒、さらに好ましくは0.3〜3m/秒程度の範囲から選択できる。   The linear velocity (LV) of the gas to be treated with respect to the catalyst can be selected, for example, from a range of about 0.02 to 20 m / second, preferably 0.05 to 5 m / second, and more preferably about 0.3 to 3 m / second.

触媒層としての長さは、触媒活性を損なわない範囲で選択でき、例えば、0.01〜10m、好ましくは0.05〜5m、さらに好ましくは0.1〜1m程度であってもよい。   The length as a catalyst layer can be selected in the range which does not impair catalyst activity, for example, 0.01-10 m, Preferably it is 0.05-5 m, More preferably, about 0.1-1 m may be sufficient.

本発明は、種々の発生源(例えば、各種化学製品製造工場、冷凍機等の廃棄物処理工場、汚泥処理施設など)からのアンモニアの除去(浄化)に利用できる。本発明の触媒は、窒素酸化物や亜酸化窒素を生成することなくアンモニアを窒素に分解できるので、アンモニアを含む被処理ガスに広く利用できる。例えば、本発明の触媒は、窒素酸化物を含む被処理ガス(又は排ガス)にアンモニアを添加して選択還元して窒素酸化物を除去した後、アンモニアを分解除去(分解浄化)するのに特に有効である。すなわち、ほぼ100%の脱硝率で窒素酸化物を除去するため、窒素酸化物濃度が時間系列的に大きく変動しやすい燃焼系排ガスや化学プロセスなどの排ガスに、窒素酸化物に対して過剰量のアンモニアを添加し、汎用の選択還元触媒により脱硝した後、排ガスに含まれるアンモニアを除去するのに有用である。本発明の触媒は、被処理ガスが一酸化炭素や炭化水素などの可燃成分や硫黄酸化物を含んでいても高い触媒活性を維持できるため、このような成分を含む排ガスに有効に使用できる。さらに、従来の触媒では十分な性能が得られなかった比較的温度の高い条件(400〜600℃)でも、効率よくアンモニアを分解除去できる。そのため、ボイラーやディーゼルエンジン、ガスエンジンなどの燃焼系排ガスや化学プロセスからの排ガスの処理に有利である。   The present invention can be used for removal (purification) of ammonia from various sources (for example, various chemical product manufacturing plants, waste processing plants such as refrigerators, sludge processing facilities, etc.). Since the catalyst of the present invention can decompose ammonia into nitrogen without generating nitrogen oxides or nitrous oxide, it can be widely used as a gas to be treated containing ammonia. For example, the catalyst of the present invention is particularly suitable for decomposing and removing (decomposing and purifying) ammonia after adding ammonia to a gas to be treated (or exhaust gas) containing nitrogen oxide and selectively reducing it to remove nitrogen oxide. It is valid. That is, in order to remove nitrogen oxides at a denitration rate of almost 100%, an excess amount of nitrogen oxides in the exhaust gas of combustion system exhaust gas or chemical process in which the nitrogen oxide concentration tends to fluctuate greatly in time series is excessive. After adding ammonia and denitrating with a general-purpose selective reduction catalyst, it is useful for removing ammonia contained in the exhaust gas. Since the catalyst of the present invention can maintain high catalytic activity even when the gas to be treated contains a combustible component such as carbon monoxide or hydrocarbon, or a sulfur oxide, it can be effectively used for exhaust gas containing such a component. Furthermore, ammonia can be efficiently decomposed and removed even under relatively high temperature conditions (400 to 600 ° C.) where sufficient performance could not be obtained with conventional catalysts. Therefore, it is advantageous for the treatment of exhaust gas from combustion systems and chemical processes such as boilers, diesel engines, and gas engines.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
水酸化ジルコニウム(三津和化学薬品(株)製;ZrO2として79重量%含有)180gを、硫酸アンモニウム2gおよび硫酸第二鉄(Fe2(SO43・15H2O)36gを溶解する150mlの水溶液に15時間浸漬した。蒸発乾固した後、空気中、550℃で6時間焼成して、鉄担持硫酸根ジルコニア触媒を得た。蛍光X線分析の結果、この触媒の鉄含有量は、ジルコニア100重量部に対して4.0重量部であった。また、硫酸根の含有量は、ジルコニア100重量部に対して、硫酸根SO4 2-として12重量部であった。
Example 1
150 ml of zirconium hydroxide (made by Mitsuwa Chemicals Co., Ltd .; containing 79% by weight as ZrO 2 ), 2 g of ammonium sulfate and 36 g of ferric sulfate (Fe 2 (SO 4 ) 3 .15H 2 O) It was immersed in an aqueous solution for 15 hours. After evaporating to dryness, it was calcined in air at 550 ° C. for 6 hours to obtain an iron-supported sulfate radical zirconia catalyst. As a result of fluorescent X-ray analysis, the iron content of this catalyst was 4.0 parts by weight with respect to 100 parts by weight of zirconia. The sulfate radical content was 12 parts by weight as sulfate radical SO 4 2− with respect to 100 parts by weight of zirconia.

上記触媒を打錠成型して粒径1〜2mmの造粒物を調製し、この造粒物4.5mlを石英製反応管(内径14mm)に充填した。触媒の温度を350℃、400℃、450℃、500℃、又は550℃に保ち、被処理ガスを毎分1.2リットル(0℃、1気圧の状態における体積)の流量で流通した。   The catalyst was compression-molded to prepare a granulated product having a particle size of 1 to 2 mm, and 4.5 ml of the granulated product was filled in a quartz reaction tube (inner diameter 14 mm). The temperature of the catalyst was maintained at 350 ° C., 400 ° C., 450 ° C., 500 ° C., or 550 ° C., and the gas to be treated was circulated at a flow rate of 1.2 liters per minute (volume at 0 ° C., 1 atm).

なお、被処理ガスとしては、アンモニアNH3、酸素O2、水H2O、二酸化硫黄SO2、およびヘリウムHeで構成された被処理ガスを使用した。被処理ガスに含まれる各成分の割合について、NH3、O2、H2OおよびSO2の割合は、いずれの被処理ガスも、NH3が240ppm、O2が10体積%、H2Oが10体積%、SO2が3ppmであって、残部はHeであった。 As the gas to be treated, a gas to be treated composed of ammonia NH 3 , oxygen O 2 , water H 2 O, sulfur dioxide SO 2 , and helium He was used. Regarding the ratio of each component contained in the gas to be processed, the ratio of NH 3 , O 2 , H 2 O and SO 2 is as follows: NH 3 is 240 ppm, O 2 is 10% by volume, H 2 O Was 10% by volume, SO 2 was 3 ppm, and the balance was He.

そして、触媒出口ガスの窒素酸化物濃度を化学発光式NOx分析計で測定するとともに、窒素濃度をガスクロマトグラフで測定した。触媒に通過前の被処理ガスのアンモニア含有量と、触媒に通過後の被処理ガスの窒素含有量又は窒素酸化物含有量とを比較することで、窒素生成率および窒素酸化物生成率を得ることができる。具体的には、窒素生成率および窒素酸化物生成率をそれぞれ次式により計算し、各温度で得られた結果を表1に示す。なお、触媒出口ガスに亜酸化窒素が含まれないことはガスクロマトグラフで確認した。 The nitrogen oxide concentration of the catalyst outlet gas was measured with a chemiluminescent NO x analyzer, and the nitrogen concentration was measured with a gas chromatograph. By comparing the ammonia content of the gas to be treated before passing through the catalyst with the nitrogen content or nitrogen oxide content of the gas to be treated after passing through the catalyst, the nitrogen production rate and the nitrogen oxide production rate are obtained. be able to. Specifically, the nitrogen production rate and the nitrogen oxide production rate were calculated by the following equations, and the results obtained at each temperature are shown in Table 1. It was confirmed by gas chromatography that nitrous oxide was not contained in the catalyst outlet gas.

窒素生成率=200×(出口窒素濃度)/(入口アンモニア濃度)
窒素酸化物生成率=100×(出口NOx濃度)/(入口アンモニア濃度)
Nitrogen production rate = 200 × (outlet nitrogen concentration) / (inlet ammonia concentration)
Nitrogen oxide production rate = 100 × (Outlet NO x concentration) / (Inlet ammonia concentration)

Figure 0004664608
Figure 0004664608

表1の結果から明らかなように、450〜550℃の範囲において、高いアンモニア分解率(窒素生成率+窒素酸化物生成率)が得られると共に、窒素酸化物の生成は低く抑制された。特に500℃および550℃においては、高温にも関わらず、窒素生成率98%以上が達成でき、窒素酸化物の生成を抑制できた。   As is apparent from the results in Table 1, in the range of 450 to 550 ° C., a high ammonia decomposition rate (nitrogen production rate + nitrogen oxide production rate) was obtained, and the production of nitrogen oxides was suppressed to a low level. In particular, at 500 ° C. and 550 ° C., a nitrogen production rate of 98% or more was achieved despite the high temperature, and the production of nitrogen oxides could be suppressed.

比較例1
実施例1と同じ水酸化ジルコニウムを、硝酸鉄(III)の水溶液に浸漬し、乾燥、焼成して、鉄ジルコニア触媒を調製した。この触媒の鉄含有量は、ジルコニア100重量部に対して1.6重量部であった。X線回折分析の結果、この触媒の結晶系は主に単斜晶が主成分であることが明らかになった。被処理ガスにSO2を加えることなく、実施例1と同様にこの触媒の性能を評価した。結果を表1に示す。
Comparative Example 1
The same zirconium hydroxide as in Example 1 was immersed in an aqueous solution of iron (III) nitrate, dried and calcined to prepare an iron zirconia catalyst. The iron content of this catalyst was 1.6 parts by weight with respect to 100 parts by weight of zirconia. As a result of X-ray diffraction analysis, it was found that the crystal system of this catalyst is mainly composed of monoclinic crystals. The performance of this catalyst was evaluated in the same manner as in Example 1 without adding SO 2 to the gas to be treated. The results are shown in Table 1.

表1から明らかなように、比較例1で得られた触媒は、アンモニアの分解率は実施例と同程度であったが、多量の窒素酸化物が生成した。   As is clear from Table 1, the catalyst obtained in Comparative Example 1 had the same ammonia decomposition rate as that of the Example, but a large amount of nitrogen oxide was produced.

比較例2
比較例1で得られた触媒を500℃に保ち、酸素O2、水H2O、二酸化硫黄SO2およびヘリウムHeで構成された被処理ガス(O2:10体積%、H2O:10体積%、SO2:3ppm、He:残部)を、10時間にわたり毎分1.2リットルの流量で流通してSOx処理を行った後、実施例1と同様の評価を行った結果を表1に示す。
Comparative Example 2
The catalyst obtained in Comparative Example 1 was kept at 500 ° C. and treated gas composed of oxygen O 2 , water H 2 O, sulfur dioxide SO 2 and helium He (O 2 : 10% by volume, H 2 O: 10 (% By volume, SO 2 : 3 ppm, He: balance) was flown at a flow rate of 1.2 liters per minute for 10 hours and SO x treatment was performed. It is shown in 1.

比較例2で得られた触媒は、窒素生成率は上昇し、窒素酸化物の生成率は低下したが、実施例1の結果には及ばなかった。なお、高温領域(450℃以上)で窒素生成率の増加と、窒素酸化物生成率の低下が生じるのは、被処理ガスを触媒に通過させることで硫酸根が触媒上に生じるためであると考えられる。   The catalyst obtained in Comparative Example 2 increased in nitrogen generation rate and decreased in nitrogen oxide generation rate, but did not reach the result of Example 1. Note that the increase in the nitrogen production rate and the decrease in the nitrogen oxide production rate occur in the high temperature region (450 ° C. or higher) because the sulfate radical is generated on the catalyst by passing the gas to be treated through the catalyst. Conceivable.

比較例3
実施例1と同じ水酸化ジルコニウム180gを、硫酸アンモニウム24gおよび硫酸コバルト(CoSO4・7H2O)6.8gを溶解する150mlの水溶液に15時間浸漬した。蒸発乾固した後、空気中、550℃で6時間焼成して、コバルト担持硫酸根ジルコニア触媒を得た。蛍光X線分析の結果、この触媒のコバルト含有量は、ジルコニア100重量部に対して1.2重量部であった。また、硫酸根の含有量は、ジルコニア100重量部に対して、硫酸根SO4 2-として8.1重量部であった。実施例1と同様にして、この触媒の性能を評価した。結果を表1に示す。
Comparative Example 3
180 g of the same zirconium hydroxide as in Example 1 was immersed for 15 hours in a 150 ml aqueous solution in which 24 g of ammonium sulfate and 6.8 g of cobalt sulfate (CoSO 4 .7H 2 O) were dissolved. After evaporating to dryness, it was calcined in air at 550 ° C. for 6 hours to obtain a cobalt-supported sulfate radical zirconia catalyst. As a result of fluorescent X-ray analysis, the cobalt content of this catalyst was 1.2 parts by weight with respect to 100 parts by weight of zirconia. The content of sulfate radical was 8.1 parts by weight as sulfate radical SO 4 2− with respect to 100 parts by weight of zirconia. The performance of this catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 1.

表1の結果から明らかなように、350〜550℃の範囲にわたって実施例1に比べて窒素生成率が低く、特に400℃以下では、アンモニアはほとんど全量がそのまま排出された。また、窒素酸化物の生成率は低く抑えられているが、実施例1には及ばなかった。   As is clear from the results in Table 1, the nitrogen production rate was lower than that in Example 1 over a range of 350 to 550 ° C, and particularly at 400 ° C or less, almost all ammonia was discharged as it was. Moreover, although the production rate of nitrogen oxides was kept low, it did not reach Example 1.

以上の結果から、有害な窒素酸化物や亜酸化窒素の生成を抑制しつつ、高いアンモニア分解能を維持するために、硫酸根ジルコニアと鉄とで触媒を構成することが必要である。   From the above results, it is necessary to constitute a catalyst with sulfate zirconia and iron in order to maintain high ammonia resolution while suppressing generation of harmful nitrogen oxides and nitrous oxide.

Claims (6)

鉄を含有する硫酸根ジルコニアで構成されているアンモニア分解用触媒(ただし、アンモニアの存在下に窒素酸化物を還元するための触媒であって、鉄を含有する硫酸根ジルコニアで構成され、鉄の割合がジルコニア100重量部に対して1〜2.5重量部である触媒を除く)A catalyst for decomposition of ammonia composed of iron-containing sulfate zirconia (however, a catalyst for reducing nitrogen oxides in the presence of ammonia, composed of iron-containing sulfate zirconia, The catalyst whose ratio is 1 to 2.5 parts by weight with respect to 100 parts by weight of zirconia is excluded) . 鉄の割合がジルコニア100重量部に対して1〜20重量部である請求項1記載の触媒。   The catalyst according to claim 1, wherein the ratio of iron is 1 to 20 parts by weight with respect to 100 parts by weight of zirconia. 硫酸根の割合が、SO 2−換算で、ジルコニア100重量部に対して1〜25重量部である請求項1記載の触媒。 The catalyst according to claim 1, wherein the ratio of sulfate radical is 1 to 25 parts by weight with respect to 100 parts by weight of zirconia in terms of SO 4 2− . アンモニアを含む被処理ガスを、鉄を含有する硫酸根ジルコニアで構成された触媒に接触させるアンモニアの分解方法(ただし、窒素酸化物とアンモニアとを含む被処理ガスを、鉄を含有する硫酸根ジルコニアで構成され、鉄の割合がジルコニア100重量部に対して1〜2.5重量部である触媒に接触させる窒素酸化物の除去方法を除く)A method for decomposing ammonia in which a gas to be treated containing ammonia is brought into contact with a catalyst composed of iron sulfate-containing zirconia (however, a gas to be treated containing nitrogen oxide and ammonia is converted to iron-containing sulfate zirconia containing iron. Except for a method of removing nitrogen oxides in which the catalyst is in contact with a catalyst having an iron content of 1 to 2.5 parts by weight with respect to 100 parts by weight of zirconia) . 被処理ガスを温度400〜600℃で触媒と接触させる請求項4記載の方法。   The process according to claim 4, wherein the gas to be treated is brought into contact with the catalyst at a temperature of 400 to 600C. 硫黄酸化物及びアンモニアを含む排ガスを触媒と接触させる請求項4記載の方法。   The method according to claim 4, wherein an exhaust gas containing sulfur oxide and ammonia is contacted with the catalyst.
JP2004057423A 2004-03-02 2004-03-02 Ammonia decomposition catalyst and ammonia decomposition method Expired - Fee Related JP4664608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057423A JP4664608B2 (en) 2004-03-02 2004-03-02 Ammonia decomposition catalyst and ammonia decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057423A JP4664608B2 (en) 2004-03-02 2004-03-02 Ammonia decomposition catalyst and ammonia decomposition method

Publications (2)

Publication Number Publication Date
JP2005246163A JP2005246163A (en) 2005-09-15
JP4664608B2 true JP4664608B2 (en) 2011-04-06

Family

ID=35027165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057423A Expired - Fee Related JP4664608B2 (en) 2004-03-02 2004-03-02 Ammonia decomposition catalyst and ammonia decomposition method

Country Status (1)

Country Link
JP (1) JP4664608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881226B2 (en) * 2006-06-23 2012-02-22 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353572A (en) * 1976-10-25 1978-05-16 Sumitomo Chem Co Ltd Treating metod for gas cntaining ammonia
JPH0549931A (en) * 1991-08-21 1993-03-02 Sakai Chem Ind Co Ltd Catalyst for catalytic reduction of nitrogen oxide
JPH07328438A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Catalyst for decomposition of ammonia
JPH08299761A (en) * 1995-05-01 1996-11-19 Mitsubishi Heavy Ind Ltd Decomposing and removing method of ammonia
JPH11253751A (en) * 1998-03-10 1999-09-21 Nippon Shokubai Co Ltd Method and device for controlling exhaust gas treatment device for highly concentrated ammonia contained
JP2000061308A (en) * 1998-06-08 2000-02-29 Osaka Gas Co Ltd Catalyst and method for cleaning exhaust gas
JP2004033936A (en) * 2002-07-04 2004-02-05 Mitsui Chemicals Inc Odor component removal catalyst
JP2005081189A (en) * 2003-09-05 2005-03-31 Mitsubishi Heavy Ind Ltd Catalyst for denitrifying high temperature waste gas
JP2005137984A (en) * 2003-11-05 2005-06-02 Osaka Gas Co Ltd Catalyst for reducing nitrogen oxide and method for removing nitrogen oxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353572A (en) * 1976-10-25 1978-05-16 Sumitomo Chem Co Ltd Treating metod for gas cntaining ammonia
JPH0549931A (en) * 1991-08-21 1993-03-02 Sakai Chem Ind Co Ltd Catalyst for catalytic reduction of nitrogen oxide
JPH07328438A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Catalyst for decomposition of ammonia
JPH08299761A (en) * 1995-05-01 1996-11-19 Mitsubishi Heavy Ind Ltd Decomposing and removing method of ammonia
JPH11253751A (en) * 1998-03-10 1999-09-21 Nippon Shokubai Co Ltd Method and device for controlling exhaust gas treatment device for highly concentrated ammonia contained
JP2000061308A (en) * 1998-06-08 2000-02-29 Osaka Gas Co Ltd Catalyst and method for cleaning exhaust gas
JP2004033936A (en) * 2002-07-04 2004-02-05 Mitsui Chemicals Inc Odor component removal catalyst
JP2005081189A (en) * 2003-09-05 2005-03-31 Mitsubishi Heavy Ind Ltd Catalyst for denitrifying high temperature waste gas
JP2005137984A (en) * 2003-11-05 2005-06-02 Osaka Gas Co Ltd Catalyst for reducing nitrogen oxide and method for removing nitrogen oxide
JP4348167B2 (en) * 2003-11-05 2009-10-21 大阪瓦斯株式会社 Nitrogen oxide reduction catalyst and method for removing nitrogen oxide

Also Published As

Publication number Publication date
JP2005246163A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4897669B2 (en) Ammonia decomposition method
US5409681A (en) Catalyst for purifying exhaust gas
US20080233039A1 (en) Catalysts For Co Oxidation,Voc Combustion And Nox Reduction And Methods Of Making And Using The Same
JP2002153734A (en) Nitrous oxide decomposition catalyst, its manufacturing method and decomposition method of nitrous oxide
EP1475149A1 (en) NOVEL CATALYST FOR THE REDUCTION OF NO TO N2 WITH HYDROGEN UNDER NOx OXIDATION CONDITIONS
JP3321190B2 (en) Ammonia decomposition catalyst with denitration function and exhaust gas purification method
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH08141398A (en) Catalyst for decomposing ammonia
JP4348167B2 (en) Nitrogen oxide reduction catalyst and method for removing nitrogen oxide
JP3970093B2 (en) Ammonia decomposition removal method
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
KR0157126B1 (en) Detoxification of ammonia-containing exhaust gas
JP3236031B2 (en) Method for decomposing and removing nitrous oxide
JP2006326578A (en) Catalyst for decomposing ammonia and nitrogen oxide
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JP4881226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4901072B2 (en) Hydrocarbon removal catalyst and hydrocarbon removal method thereof
JPWO2005018807A1 (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JPH06210171A (en) Denitration catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees