JP2005081189A - Catalyst for denitrifying high temperature waste gas - Google Patents

Catalyst for denitrifying high temperature waste gas Download PDF

Info

Publication number
JP2005081189A
JP2005081189A JP2003313655A JP2003313655A JP2005081189A JP 2005081189 A JP2005081189 A JP 2005081189A JP 2003313655 A JP2003313655 A JP 2003313655A JP 2003313655 A JP2003313655 A JP 2003313655A JP 2005081189 A JP2005081189 A JP 2005081189A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
tio
oxide
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313655A
Other languages
Japanese (ja)
Other versions
JP4508584B2 (en
Inventor
Katsumi Noji
勝己 野地
Masanao Yonemura
将直 米村
Kozo Iida
耕三 飯田
Yoshiaki Obayashi
良昭 尾林
Shigeru Nojima
繁 野島
Osamu Naito
治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003313655A priority Critical patent/JP4508584B2/en
Publication of JP2005081189A publication Critical patent/JP2005081189A/en
Application granted granted Critical
Publication of JP4508584B2 publication Critical patent/JP4508584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for denitrifying high temperature waste gas, which is suitable for reducing/removing nitrogen oxides contained in the high temperature gas discharged from a thermal power station, a high temperature boiler, or the like. <P>SOLUTION: This catalyst for denitrifying the nitrogen oxide-containing high temperature waste gas is obtained by depositing an oxide or a multiple oxide of at least one or more metals selected from the group consisting of vanadium, tungsten, molybdenum, iron, chromium, copper, manganese and cobalt on a carrier having ≤-11.35 acid strength Ho or ≥0.2 mmol/g solid acid content. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温排ガス用脱硝触媒および排ガス脱硝方法に関し、さらに詳しくは、火力発電所や高温ボイラ等から排出される高温のガス中に含まれる窒素酸化物を還元除去するのに好適な高温排ガス用脱硝触媒に関するものである。   The present invention relates to a denitration catalyst for high temperature exhaust gas and an exhaust gas denitration method. The present invention relates to a denitration catalyst.

火力発電所やガスタービンから排出される高温の燃焼排ガスは窒素酸化物を含むガスであり、放出するには排ガス中の窒素酸化物を除去する必要がある。よって、燃焼機関の後流に脱硝装置を設置して、注入ノズルから燃焼排ガス中へ還元剤を噴射して、窒素酸化物(NO,NO2)と還元的に反応させ、無害な窒素(N2)と水(H2O)に分解処理する。この際、脱硝触媒を用いて排ガス中から窒素酸化物を除去する方法では、十分な脱硝反応を起こさせる必要から通常アンモニア(NH3)又は尿素等を添加している。 High-temperature combustion exhaust gas discharged from thermal power plants and gas turbines is a gas containing nitrogen oxides, and it is necessary to remove nitrogen oxides in the exhaust gas to release it. Therefore, a denitration device is installed downstream of the combustion engine, a reducing agent is injected from the injection nozzle into the combustion exhaust gas, and is reacted reductively with nitrogen oxides (NO, NO 2 ), harmless nitrogen (N 2 ) Decompose into water (H 2 O). At this time, in the method of removing nitrogen oxides from exhaust gas using a denitration catalyst, ammonia (NH 3 ) or urea is usually added because it is necessary to cause a sufficient denitration reaction.

従来、排ガス中の窒素酸化物を低減する場合、還元剤としてアンモニアを添加して脱硝触媒を用いる際には、通常400℃以上の高温域で処理を行っていた。脱硝反応は下記式(1)に従って進行し、NOが1モルとNH3が1モルの反応でN2とH2Oに分解される。
4NH3 + 4NO + O2 → 4N2 + 6H2O ・・・ (1 )
Conventionally, when nitrogen oxides in exhaust gas are reduced, when ammonia is added as a reducing agent and a denitration catalyst is used, the treatment is usually performed in a high temperature range of 400 ° C. or higher. The denitration reaction proceeds according to the following formula (1), and is decomposed into N 2 and H 2 O by a reaction of 1 mol of NO and 1 mol of NH 3 .
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (1)

しかしながら、従来用いられていた触媒は、450℃以上の高温になると上記式(1)以外に、下記式(2)によるNH3自体の酸化反応が進行してしまう。
2NH3 + 5/2O2 → 2NO + 3H2O ・・・ (2 )
上記式(2)の反応によって、NH3がNOの還元に有効に使用されず、温度の上昇に伴って脱硝性能は低下してしまっていた。このようなことから、例えばガスタービン出口の500℃以上の排ガスには、従来のアンモニア添加を伴う還元処理は適用できなかった。
However, a catalyst which has been used conventionally, in addition to the above expression becomes a high temperature of at least 450 ° C. (1), oxidation of NH 3 itself by the following formula (2) will progress.
2NH 3 + 5 / 2O 2 → 2NO + 3H 2 O (2)
Due to the reaction of the above formula (2), NH 3 was not effectively used for the reduction of NO, and the denitration performance was lowered as the temperature increased. For this reason, for example, the conventional reduction treatment with addition of ammonia cannot be applied to the exhaust gas at 500 ° C. or more at the gas turbine outlet.

一方、高温における窒素酸化物の除去方法として、耐熱性無機繊維を含有する酸化チタンを担体に用いる技術が報告されている(特許文献1参照)。しかしながら、タングステンを活性成分として、担体である酸化チタン上に単に担持させた触媒では、無機繊維等の物理的強度による最適化を図っても触媒活性としては限界があり、効率的に脱硝反応を促進することが困難であった。
そして、従来のタングステン−チタン系脱硝触媒を用いる場合、450℃以上では還元剤であるアンモニアの分解が起こるため、アンモニア分解を抑制するタングステン酸化物を多量(20重量%程度)に添加する必要があった。このように多量のタングステン酸化物を使用するのは、高価なタングステンを多量に添加するため、触媒原料コストが高価になる欠点があった。また、この方法では還元剤であるアンモニアを多量に添加する必要から、ランニングコストも高くなる問題があった。
On the other hand, as a method for removing nitrogen oxides at a high temperature, a technique using titanium oxide containing heat-resistant inorganic fibers as a carrier has been reported (see Patent Document 1). However, a catalyst that simply supports tungsten on the support titanium oxide as an active ingredient has limitations in catalytic activity even if it is optimized based on the physical strength of inorganic fibers, etc. It was difficult to promote.
When a conventional tungsten-titanium-based denitration catalyst is used, ammonia as a reducing agent is decomposed at 450 ° C. or higher, so it is necessary to add a large amount (about 20% by weight) of tungsten oxide that suppresses ammonia decomposition. there were. The use of such a large amount of tungsten oxide has the disadvantage that the cost of the catalyst raw material is high because a large amount of expensive tungsten is added. In addition, this method has a problem that the running cost is increased because a large amount of ammonia as a reducing agent needs to be added.

特開平6−327944号公報JP-A-6-327944

本発明者らは、上記問題点に鑑み、高温の燃焼排ガスをアンモニア等の還元剤を用いて脱硝する方法において、添加される還元剤を効率的に作用させて脱硝反応を促進することにより、排ガス中の窒素酸化物を低減する排ガス処理方法を開発すべく、鋭意検討した。
その結果、本発明者らは、少量のバナジウム,タングステン,モリブデン等卑金属酸化物もしくはセリウム等希土類酸化物又はそれらの複合酸化物を、酸強度が強い担体あるいは酸量が多い担体上に担持した脱硝触媒上で、排ガス処理を実施することによって、かかる問題点が解決されることを見出した。本発明は、かかる見地より完成されたものである。
In view of the above problems, the present inventors, in a method of denitrating high-temperature combustion exhaust gas using a reducing agent such as ammonia, efficiently act the reducing agent added to promote the denitration reaction, In order to develop an exhaust gas treatment method that reduces nitrogen oxides in exhaust gas, we have intensively studied.
As a result, the present inventors denitrated a small amount of a base metal oxide such as vanadium, tungsten, molybdenum or a rare earth oxide such as cerium or a composite oxide thereof supported on a carrier having a high acid strength or a carrier having a high acid amount. It has been found that such problems can be solved by performing exhaust gas treatment on the catalyst. The present invention has been completed from such a viewpoint.

すなわち、本発明は、窒素酸化物を含む高温排ガス用脱硝触媒であって、酸強度がHo≦-11.35の担体、又は、固体酸量が0.2mmol/g以上の担体上に、活性成分としてバナジウム、タングステン、モリブデン、鉄、クロム、銅、マンガンおよびコバルトからなる群より選ばれる少なくとも1種以上の酸化物又はそれらの複合酸化物が担持されている高温排ガス用脱硝触媒を提供するものである。
前記酸強度がHo≦-11.35の担体としては、SO4/TiO2, SO4/ZrO2, SO4/Al2O3, SO4/TiO2-ZrO2およびSO4/TiO2-Al2O3からなる群より選ばれる少なくとも1種以上の化合物を用いることができる。ちなみに、現在知られている酸強度を有するものでは例えばHo=-16.04の担体が知られているが、本発明における「酸強度がHo≦-11.35の担体」とはこれに限定されるものではなく、-11.35以下の酸強度の担体全てを包含することを意味するものである。また、前記固体酸量が0.2mmol/g以上の担体としては、TiO2-SiO2, TiO2-ZrO2, SiO2-Al2O3, TiO2-P2O5, TiO2-Al2O3, TiO2-WO3およびTiO2-CeO2からなる群より選ばれる少なくとも1種以上の化合物を用いることができる。
That is, the present invention is a denitration catalyst for high-temperature exhaust gas containing nitrogen oxides, and has vanadium as an active ingredient on a carrier having an acid strength of Ho ≦ -11.35 or a carrier having a solid acid amount of 0.2 mmol / g or more. The present invention provides a denitration catalyst for high-temperature exhaust gas in which at least one oxide selected from the group consisting of tungsten, molybdenum, iron, chromium, copper, manganese and cobalt or a composite oxide thereof is supported.
As the support having the acid strength Ho ≦ -11.35, SO 4 / TiO 2 , SO 4 / ZrO 2 , SO 4 / Al 2 O 3 , SO 4 / TiO 2 -ZrO 2 and SO 4 / TiO 2 -Al 2 At least one compound selected from the group consisting of O 3 can be used. Incidentally, for example, a carrier having a currently known acid strength is known as a carrier having Ho = -16.04. However, the “carrier having an acid strength of Ho ≦ -11.35” in the present invention is not limited to this. It is meant to include all carriers with an acid strength of -11.35 or less. Examples of the carrier having a solid acid amount of 0.2 mmol / g or more include TiO 2 -SiO 2 , TiO 2 -ZrO 2 , SiO 2 -Al 2 O 3 , TiO 2 -P 2 O 5 , TiO 2 -Al 2 At least one compound selected from the group consisting of O 3 , TiO 2 —WO 3 and TiO 2 —CeO 2 can be used.

本発明では、酸化物としてタングステン酸化物が担持される場合、タングステン酸化物濃度が、担体を含む触媒全体の重量比で通常1.0重量%以上20重量%未満、好ましくは2.0重量%以上15重量%未満である。また、酸化物としてバナジウム、モリブデン、鉄、クロム、銅、マンガンおよびコバルトからなる群より選ばれる少なくとも1種以上の酸化物が担持される場合、当該酸化物濃度が、担体を含む触媒全体の重量比で通常0.1重量%以上1.0重量%以下、好ましくは0.15重量%以上0.75重量%以下である。また、活性成分として、複合酸化物が担持される場合には、例えばバナジウム-タングステン、バナジウム−モリブデンおよびタングステン-セリウムからなる群より選ばれる少なくとも1種以上の複合酸化物であることが好ましい。   In the present invention, when tungsten oxide is supported as an oxide, the tungsten oxide concentration is usually 1.0% by weight or more and less than 20% by weight, preferably 2.0% by weight or more and 15% by weight, based on the total weight ratio of the catalyst including the support. Is less than. Further, when at least one oxide selected from the group consisting of vanadium, molybdenum, iron, chromium, copper, manganese and cobalt is supported as an oxide, the oxide concentration is the weight of the entire catalyst including the support. The ratio is usually 0.1% by weight or more and 1.0% by weight or less, preferably 0.15% by weight or more and 0.75% by weight or less. Further, when a composite oxide is supported as the active component, it is preferably at least one composite oxide selected from the group consisting of vanadium-tungsten, vanadium-molybdenum, and tungsten-cerium, for example.

上記のような高温排ガス用脱硝触媒は、400℃以上の排ガスを流通させることで、該排ガス中の窒素酸化物を極めて効果的に分解除去することができる。温度域は、通常400℃以上650℃以下であることが好ましい。400℃未満では、S分等の排ガス含有成分による触媒劣化が生じる場合がある。650℃を越える使用では、高温による触媒劣化が生じやすい。還元剤としては、例えばアンモニア又は尿素が挙げられる。   The denitration catalyst for high-temperature exhaust gas as described above can decompose and remove nitrogen oxides in the exhaust gas very effectively by circulating the exhaust gas at 400 ° C. or higher. The temperature range is usually preferably 400 ° C. or higher and 650 ° C. or lower. If it is less than 400 ° C., catalyst deterioration due to exhaust gas-containing components such as S may occur. When the temperature exceeds 650 ° C, catalyst deterioration is likely to occur due to high temperature. Examples of the reducing agent include ammonia and urea.

本発明の排ガス処理方法によれば、450℃以上の高温の排ガスを還元剤添加により触媒を用いて脱硝処理する際に、担体酸量又は酸強度の増大により、還元剤であるアンモニアの分解を高温度領域まで抑制して、添加した量の還元剤を触媒上で有効に作用させることができる。よって、排ガスの脱硝反応を促進することにより、排ガス中の窒素酸化物を効果的に低減することが可能となる。また、アンモニア分解反応を考慮して高価な触媒成分を多量に用いる必要がないので、触媒自体の製造コストが安価になる。さらに、脱硝反応の還元剤として添加するアンモニアの量も少なくて足りるため、ランニングコストも低く抑えることができる。   According to the exhaust gas treatment method of the present invention, when a high temperature exhaust gas at 450 ° C. or higher is denitrated using a catalyst by the addition of a reducing agent, ammonia as a reducing agent is decomposed by increasing the amount of carrier acid or acid strength. The amount of the reducing agent added can be effectively acted on the catalyst while suppressing to a high temperature range. Therefore, it is possible to effectively reduce nitrogen oxides in the exhaust gas by promoting the denitration reaction of the exhaust gas. Moreover, since it is not necessary to use a large amount of expensive catalyst components in consideration of the ammonia decomposition reaction, the manufacturing cost of the catalyst itself is reduced. Furthermore, since the amount of ammonia added as a reducing agent for the denitration reaction is small, the running cost can be kept low.

本発明に係る高温排ガス用脱硝触媒の具体的な形態について説明する。なお、本発明は以下に説明する実施の形態に何ら限定されるものではない。   A specific form of the denitration catalyst for high temperature exhaust gas according to the present invention will be described. The present invention is not limited to the embodiments described below.

本発明の脱硝触媒は、窒素酸化物を含む高温排ガス用脱硝触媒であり、酸強度がHo≦-11.35の担体、又は、固体酸量が0.2mmol/g以上の担体上に活性成分を担持させる。酸強度がHo≦-11.35の担体では、強い酸強度により還元剤の自己酸化分解反応が抑制される。また、固体酸量が0.2mmol/g以上の担体では、多量に存在する酸点により、還元剤の自己酸化分解反応が抑制される。
酸強度がHo≦-11.35の担体としては、具体的には、例えばSO4/TiO2, SO4/ZrO2, SO4/Al2O3, SO4/TiO2-ZrO2、SO4/TiO2-Al2O3などが挙げられ、これらの化合物の中から単独であるいは任意に組み合わせて担体として用いることができる。ちなみに、現在知られている酸強度を有するものでは例えばHo=-16.04の担体が知られているが、本発明における「酸強度がHo≦-11.35の担体」とはこれに限定されるものではなく、-11.35以下の酸強度の担体全てを包含することを意味するものである。
固体酸量が0.2mmol/g以上の担体として、具体的には、例えばTiO2-SiO2, TiO2-ZrO2, SiO2-Al2O3, TiO2-P2O5, TiO2-Al2O3, TiO2-WO3、TiO2-CeO2などが挙げられ、これらの化合物の中から単独であるいは任意に組み合わせて担体として用いることができる。
このような担体の固体酸量又は酸強度の増大により、還元剤であるアンモニアの分解反応を高温度領域まで抑制することができる。
The denitration catalyst of the present invention is a denitration catalyst for high-temperature exhaust gas containing nitrogen oxides, and an active ingredient is supported on a carrier having an acid strength of Ho ≦ -11.35 or a carrier having a solid acid amount of 0.2 mmol / g or more. . In a carrier having an acid strength of Ho ≦ −11.35, the strong acid strength suppresses the auto-oxidative decomposition reaction of the reducing agent. On the other hand, when the amount of the solid acid is 0.2 mmol / g or more, the autooxidative decomposition reaction of the reducing agent is suppressed due to the acid sites present in large quantities.
Specific examples of the carrier having an acid strength of Ho ≦ −11.35 include, for example, SO 4 / TiO 2 , SO 4 / ZrO 2 , SO 4 / Al 2 O 3 , SO 4 / TiO 2 —ZrO 2 , SO 4 / TiO 2 —Al 2 O 3 and the like can be mentioned, and these compounds can be used alone or in any combination as a carrier. Incidentally, for example, a carrier having a currently known acid strength is known as a carrier having Ho = -16.04. However, the “carrier having an acid strength of Ho ≦ -11.35” in the present invention is not limited to this. It is meant to include all carriers with an acid strength of -11.35 or less.
As a carrier having a solid acid amount of 0.2 mmol / g or more, specifically, for example, TiO 2 -SiO 2 , TiO 2 -ZrO 2 , SiO 2 -Al 2 O 3 , TiO 2 -P 2 O 5 , TiO 2- Al 2 O 3 , TiO 2 —WO 3 , TiO 2 —CeO 2 and the like can be mentioned, and these compounds can be used alone or in any combination as a support.
By such an increase in the amount of solid acid or acid strength of the carrier, the decomposition reaction of ammonia as a reducing agent can be suppressed to a high temperature range.

本発明の脱硝触媒は、上記いずれかの担体上に活性成分として、バナジウム、タングステン、モリブデン、鉄、クロム、銅、マンガンもしくはコバルト等の酸化物又はそれらの複合酸化物が担持されている。
上記酸化物としてタングステン酸化物が担持される場合には、酸化物濃度が担体を含む触媒全体の重量比で通常1.0重量%以上20重量%未満、好ましくは2.0重量%以上15重量%未満、特に好ましくは3.0重量%以上10重量%未満である。タングステン酸化物の量が20重量%を越えても、脱硝性能に対する効果は増大せずにコスト的に不利になるので、20重量%未満、好ましくは15重量%未満、特に好ましくは10重量%未満が良い。
In the denitration catalyst of the present invention, an oxide such as vanadium, tungsten, molybdenum, iron, chromium, copper, manganese, or cobalt or a composite oxide thereof is supported as an active component on any of the above carriers.
When tungsten oxide is supported as the oxide, the oxide concentration is usually 1.0% by weight or more and less than 20% by weight, preferably 2.0% by weight or more and less than 15% by weight, based on the total weight ratio of the catalyst including the support, particularly Preferably it is 3.0 weight% or more and less than 10 weight%. Even if the amount of tungsten oxide exceeds 20% by weight, the effect on the denitration performance is not increased and the cost is disadvantageous. Therefore, it is less than 20% by weight, preferably less than 15% by weight, particularly preferably less than 10% by weight. Is good.

上記酸化物としてバナジウム、モリブデン、鉄、クロム、銅、マンガンおよびコバルトからなる群より選ばれる少なくとも1種以上の酸化物が担持される場合、酸化物濃度が担体を含む触媒全体の重量比で通常0.1重量%以上1.0重量%以下、好ましくは0.15重量%以上0.75重量%以下である。これらの酸化物の量を1.0重量%以下、好ましくは0.75重量%以下に抑えることで、還元剤の自己分解反応を抑制しつつ、脱硝性能を促進することができる。酸化物の量が0.1重量%未満では、脱硝反応が十分促進しない場合があるので好ましくない。   When at least one oxide selected from the group consisting of vanadium, molybdenum, iron, chromium, copper, manganese, and cobalt is supported as the oxide, the oxide concentration is usually the weight ratio of the entire catalyst including the support. It is 0.1 to 1.0% by weight, preferably 0.15 to 0.75% by weight. By suppressing the amount of these oxides to 1.0% by weight or less, preferably 0.75% by weight or less, the denitration performance can be promoted while suppressing the self-decomposition reaction of the reducing agent. If the amount of oxide is less than 0.1% by weight, the denitration reaction may not be sufficiently promoted, which is not preferable.

また、活性成分として複合酸化物を用いることも可能であり、例えばバナジウム-タングステン(A成分/B成分)、バナジウム−モリブデン、又は、セリウム−タングステンなどが好適に挙げられる。この場合、活性金属量としては、前者A成分/後者B成分が、好ましくは0.5〜1:5〜10の範囲であることが良い。A成分が多すぎると、還元剤の自己分解反応が進行してしまうためである。   Moreover, it is also possible to use complex oxide as an active component, for example, vanadium-tungsten (A component / B component), vanadium-molybdenum, cerium-tungsten, etc. are mentioned suitably. In this case, as the amount of active metal, the former A component / the latter B component is preferably in the range of 0.5 to 1: 5 to 10. This is because when the amount of component A is too large, the self-decomposition reaction of the reducing agent proceeds.

本発明では、400℃以上の排ガスを上記脱硝触媒に流通させて、排ガス中の窒素酸化物を分解除去する。脱硝触媒の形状は特に限定されるものではなく、例えばハニカム形状、又はこれを積み重ねたものや、粒状の触媒を充填させたもの等を用いることができるが、特にハニカム形状からなる触媒であることが好ましい。
図1に、本発明の排ガス処理方法に用いられるハニカム形状の脱硝触媒の一例を示す。このハニカム形状触媒の大きさは排ガス性状や流量等によって任意に定めることが可能であり、特に限定されるものではないが、例えば排ガス流入口の外形は50〜200mm角、長さLは100〜1000mmのものを用いることができる。
In the present invention, exhaust gas at 400 ° C. or higher is passed through the denitration catalyst to decompose and remove nitrogen oxides in the exhaust gas. The shape of the denitration catalyst is not particularly limited. For example, a honeycomb shape, or a stack of these or a catalyst filled with a granular catalyst can be used. Is preferred.
FIG. 1 shows an example of a honeycomb-shaped denitration catalyst used in the exhaust gas treatment method of the present invention. The size of the honeycomb-shaped catalyst can be arbitrarily determined depending on the exhaust gas properties, the flow rate, etc., and is not particularly limited. For example, the outer shape of the exhaust gas inlet is 50 to 200 mm square, and the length L is 100 to 100 mm. 1000mm ones can be used.

本発明の触媒を用いた脱硝処理の工程では、上記脱硝触媒により、下記式(1)により窒素酸化物を除去する。
4NH3+4NO+O2→ 4N2+6H2O ・・・ (1)
各種燃焼装置から排出される排ガスの処理方法では、排出された排ガスが脱硝触媒に送られ脱硝工程が行われるが、脱硝触媒の前流にてアンモニア又は尿素等を還元剤として添加する。
In the step of denitration treatment using the catalyst of the present invention, nitrogen oxides are removed by the following formula (1) using the denitration catalyst.
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (1)
In the method for treating exhaust gas discharged from various combustion apparatuses, the exhaust gas discharged is sent to a denitration catalyst and a denitration process is performed. Ammonia or urea or the like is added as a reducing agent upstream of the denitration catalyst.

本発明で処理できる排ガスは特に限定されず、窒素酸化物を含む排ガスの処理に適用できるが、例えば石炭、重質油等の燃料を燃焼する火力発電所、工場等のボイラ排ガス、あるいは、金属工場、石油精製所、石油化学工場等の加熱炉排ガスであり、特に、火力発電所やガスタービンから排出されるガスの処理に好適に用いられる。
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。
The exhaust gas that can be treated in the present invention is not particularly limited and can be applied to the treatment of exhaust gas containing nitrogen oxides. For example, boiler exhaust gas from a thermal power plant or factory that burns fuel such as coal or heavy oil, or metal Heating furnace exhaust gas from factories, oil refineries, petrochemical factories, etc., and particularly suitable for the treatment of gas discharged from thermal power plants and gas turbines.
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited at all by these Examples.

〔触媒の調製〕
実施例1
メタチタン酸スラリー(TiO2含有量:30重量%) 60kgに、オキシ塩化ジルコニウム2.6kgを混合し、アンモニア水で中和後、1N硫酸に30分浸漬させた。
浸漬させた粉を硝酸セリウム280g及び成型助剤と混合後、加熱ニーダを用いて水を蒸発させながら混練し、触媒ペーストを得た。これを押出成型機にて、外形75mm角、長さ500mmのハニカム状に成型した。次に、80℃で乾燥した後、600℃で5時間空気雰囲気中にて焼成して触媒(実施例1)を得た。
(Preparation of catalyst)
Example 1
60 kg of metatitanic acid slurry (TiO 2 content: 30% by weight) was mixed with 2.6 kg of zirconium oxychloride, neutralized with ammonia water, and then immersed in 1N sulfuric acid for 30 minutes.
The soaked powder was mixed with 280 g of cerium nitrate and a molding aid, and then kneaded while evaporating water using a heating kneader to obtain a catalyst paste. This was molded into a honeycomb shape having an outer shape of 75 mm square and a length of 500 mm with an extrusion molding machine. Next, after drying at 80 ° C., the catalyst (Example 1) was obtained by calcination at 600 ° C. in an air atmosphere for 5 hours.

実施例2〜8
実施例1において、硝酸セリウム280gに代えて、メタバナジン酸アンモニウム191g(実施例2)、モリブデン酸アンモニウム181g(実施例3)、硝酸鉄450g(実施例4)、硝酸クロム465g(実施例5)、塩化銅250g(実施例6)、硝酸マンガン374g(実施例7)、又は、硝酸コバルト362g(実施例8)、とした以外は、実施例1と同様にして混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例2〜8)を得た。
Examples 2-8
In Example 1, instead of 280 g of cerium nitrate, 191 g of ammonium metavanadate (Example 2), 181 g of ammonium molybdate (Example 3), 450 g of iron nitrate (Example 4), 465 g of chromium nitrate (Example 5), The catalyst paste was mixed and kneaded in the same manner as in Example 1 except that 250 g of copper chloride (Example 6), 374 g of manganese nitrate (Example 7), or 362 g of cobalt nitrate (Example 8). Obtained and formed into a honeycomb, and then fired to obtain catalysts (Examples 2 to 8).

実施例9〜15
実施例1において、硝酸セリウム280gに代えて、メタバナジン酸アンモニウム51g(実施例9)、モリブデン酸アンモニウム49g(実施例10)、硝酸鉄120g(実施例11)、硝酸クロム124g(実施例12)、塩化銅67g(実施例13)、硝酸マンガン100g(実施例14)、又は、硝酸コバルト97g(実施例15)、とした以外は、実施例1と同様にして混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例9〜15)を得た。
Examples 9-15
In Example 1, instead of 280 g of cerium nitrate, 51 g of ammonium metavanadate (Example 9), 49 g of ammonium molybdate (Example 10), 120 g of iron nitrate (Example 11), 124 g of chromium nitrate (Example 12), The catalyst paste was mixed and kneaded in the same manner as in Example 1 except that 67 g of copper chloride (Example 13), 100 g of manganese nitrate (Example 14), or 97 g of cobalt nitrate (Example 15). Obtained and formed into a honeycomb, and then fired to obtain catalysts (Examples 9 to 15).

実施例16〜19
実施例1において、硝酸セリウム280gに代えて、パラタングステン酸アンモニウム0.9kg(実施例16)、1.8kg(実施例17)、2.1kg(実施例18)、2.7kg(実施例19)、とした以外は、実施例1と同様にして混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例16〜19)を得た。
Examples 16-19
In Example 1, instead of 280 g of cerium nitrate, 0.9 kg of ammonium paratungstate (Example 16), 1.8 kg (Example 17), 2.1 kg (Example 18), and 2.7 kg (Example 19) were used. Except for the above, mixing and kneading were carried out in the same manner as in Example 1 to obtain a catalyst paste, which was molded into a honeycomb shape and then fired to obtain catalysts (Examples 16 to 19).

実施例20
メタチタン酸スラリー(TiO2含有量:30重量%)60kgを、1N硫酸に30分浸漬させた。浸漬させた粉をパラタングステン酸アンモニウム1.8kgおよび成型助剤と混合後、加熱ニーダを用いて水を蒸発させながら混練し、触媒ペーストを得、押出成型機にて実施例1と同様にハニカム状に成型した。次に、80℃で乾燥した後、600℃で5時間空気雰囲気中にて焼成して触媒(実施例20)を得た。
Example 20
60 kg of metatitanic acid slurry (TiO 2 content: 30% by weight) was immersed in 1N sulfuric acid for 30 minutes. The soaked powder was mixed with 1.8 kg of ammonium paratungstate and a molding aid, and then kneaded while evaporating water using a heating kneader to obtain a catalyst paste. Molded into. Next, after drying at 80 degreeC, it baked in the air atmosphere at 600 degreeC for 5 hours, and obtained the catalyst (Example 20).

実施例21〜23
実施例20において、メタチタン酸スラリー60kgに代えて、水酸化ジルコニウムスラリー18kg(実施例21)、水酸化アルミニウムスラリー18kg(実施例22)、又は、メタチタン酸/水酸化アルミニウムスラリー18kg(実施例23)、とした以外は、実施例20と同様にして浸漬、混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例21〜23)を得た。
Examples 21-23
In Example 20, instead of 60 kg of metatitanic acid slurry, 18 kg of zirconium hydroxide slurry (Example 21), 18 kg of aluminum hydroxide slurry (Example 22), or 18 kg of metatitanic acid / aluminum hydroxide slurry (Example 23) Except for the above, immersion, mixing, and kneading were performed in the same manner as in Example 20 to obtain a catalyst paste, which was molded into a honeycomb shape and then fired to obtain catalysts (Examples 21 to 23).

実施例24
メタチタン酸スラリー(TiO2含有量:30重量%)60kgとシリカゾル(SiO2含有量:20重量%)22.5kgとを混合し、アンモニア水で中和して担体を得た。
上記担体の粉をパラタングステン酸アンモニウム1.8kgおよび成型助剤と混合後、加熱ニーダを用いて水を蒸発させながら混練し、触媒ペーストを得、押出成型機にて実施例1と同様にハニカム状に成型した。次に、80℃で乾燥した後、500℃で5時間空気雰囲気中にて焼成して触媒(実施例24)を得た。
Example 24
A support was obtained by mixing 60 kg of a metatitanic acid slurry (TiO 2 content: 30% by weight) and 22.5 kg of silica sol (SiO 2 content: 20% by weight) and neutralizing with ammonia water.
The carrier powder was mixed with 1.8 kg of ammonium paratungstate and a molding aid, and then kneaded while evaporating water using a heating kneader to obtain a catalyst paste. Molded into. Next, after drying at 80 degreeC, it baked in the air atmosphere at 500 degreeC for 5 hours, and obtained the catalyst (Example 24).

実施例25〜29
実施例24において、メタチタン酸スラリー60kgとシリカゾル22.5kgに代えて、
メタチタン酸スラリー60kgとオキシ塩化ジルコニウム2.6kg(実施例25)、
シリカゾル22.5kgと硝酸アルミニウム 75kg(実施例26)、
メタチタン酸スラリー60kgとリン酸5.2 kg(実施例27)、
メタチタン酸スラリー60kgと硝酸アルミニウム19kg(実施例28)、又は
メタチタン酸スラリー60kgと硝酸セリウム8.6kg(実施例29)、
とした以外は、実施例24と同様にして担体を調製後、混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例25〜29)を得た。
Examples 25-29
In Example 24, instead of 60 kg of metatitanic acid slurry and 22.5 kg of silica sol,
60 kg of metatitanic acid slurry and 2.6 kg of zirconium oxychloride (Example 25),
22.5 kg of silica sol and 75 kg of aluminum nitrate (Example 26),
60 kg of metatitanic acid slurry and 5.2 kg of phosphoric acid (Example 27),
60 kg of metatitanic acid slurry and 19 kg of aluminum nitrate (Example 28), or 60 kg of metatitanic acid slurry and 8.6 kg of cerium nitrate (Example 29),
Except for the above, a carrier was prepared in the same manner as in Example 24, mixed and kneaded to obtain a catalyst paste, molded into a honeycomb shape, and calcined to obtain catalysts (Examples 25 to 29).

比較例1
実施例24において、メタチタン酸スラリー60kgとシリカゾル22.5kgに代えて、
メタチタン酸スラリー75kgとして担体を調製した以外は、実施例24と同様にして担体を調製後、混合、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(比較例1)を得た。
Comparative Example 1
In Example 24, instead of 60 kg of metatitanic acid slurry and 22.5 kg of silica sol,
Except that the carrier was prepared as 75 kg of metatitanic acid slurry, the carrier was prepared in the same manner as in Example 24, then mixed and kneaded to obtain a catalyst paste, molded into a honeycomb, and then fired to obtain a catalyst (Comparative Example 1 )

実施例30
メタチタン酸スラリー(TiO2含有量:30重量%) 60kgに、オキシ塩化ジルコニウム2.6kgを混合し、アンモニア水で中和後、1N硫酸に30分浸漬させた。
その後、浸漬させた粉に、メタバナジン酸アンモニウム0.2kgとパラタングステン酸アンモニウム1.8kgとを混合し、成型助剤と混合後、加熱ニーダを用いて水を蒸発させながら混練し、触媒ペーストを得、押出成型機にて実施例1と同様にハニカム状に成型した。次に、80℃で乾燥した後、600℃で5時間空気雰囲気中にて焼成して触媒(実施例30)を得た。
Example 30
60 kg of metatitanic acid slurry (TiO 2 content: 30% by weight) was mixed with 2.6 kg of zirconium oxychloride, neutralized with ammonia water, and then immersed in 1N sulfuric acid for 30 minutes.
Thereafter, 0.2 kg of ammonium metavanadate and 1.8 kg of ammonium paratungstate were mixed in the soaked powder, mixed with a molding aid, and then kneaded while evaporating water using a heating kneader to obtain a catalyst paste, It was molded into a honeycomb shape in the same manner as in Example 1 with an extruder. Next, after drying at 80 degreeC, it baked in the air atmosphere at 600 degreeC for 5 hours, and obtained the catalyst (Example 30).

実施例31〜32
実施例30において、パラタングステン酸アンモニウム1.8kgに代えて、
モリブデン酸アンモニウム1.9kg(実施例31)、又は、
モリブデン酸アンモニウム1.9kgと硝酸セリウム280g(実施例32)、
とした以外は、実施例30と同様にして担体粉末とともに混合後、混練を行い、触媒ペーストを得、ハニカム状に成型した後、焼成して触媒(実施例31〜32)を得た。
Examples 31-32
In Example 30, instead of 1.8 kg ammonium paratungstate,
1.9 kg of ammonium molybdate (Example 31), or
1.9 kg of ammonium molybdate and 280 g of cerium nitrate (Example 32),
The mixture was mixed with the carrier powder in the same manner as in Example 30 and then kneaded to obtain a catalyst paste, molded into a honeycomb shape, and then fired to obtain catalysts (Examples 31 to 32).

〔固体酸量測定方法〕
触媒の固体酸量の測定には、ピリジン吸着昇温脱離(TPD)法を用いた。表1に、固体酸量の測定条件を示す。この測定条件でピリジンを飽和吸着させ、脱離するピリジン量を酸量とした。
[Solid acid content measurement method]
A pyridine adsorption temperature programmed desorption (TPD) method was used to measure the solid acid amount of the catalyst. Table 1 shows the measurement conditions for the amount of solid acid. Under these measurement conditions, pyridine was saturated and adsorbed, and the amount of pyridine desorbed was defined as the acid amount.

Figure 2005081189
Figure 2005081189

〔酸強度測定方法〕
触媒の酸強度は、pKaが既知のp-ニトロトルエンを指示薬に用いて、色変化するか否か(○:変化有り、×:変化なし)により測定した。表2に、酸強度の測定条件を示す。
[Acid strength measurement method]
The acid strength of the catalyst was measured by using p-nitrotoluene having a known pKa as an indicator to determine whether or not the color changed (O: changed, X: not changed). Table 2 shows the measurement conditions for acid strength.

Figure 2005081189
Figure 2005081189

〔排ガス処理試験〕
脱硝活性の評価条件は、以下の通りである。
NOx:65ppm
2:15%、CO2:5%、H2O:7%、N2:バランス、GHSV:24,000h-1
ガス量 220NL/h、
触媒層温度:400, 500℃
なお、脱硝率は下記式にて表される。
脱硝率(%)=(1−出口NOx濃度/入口NOx濃度)×100
[Exhaust gas treatment test]
The evaluation conditions for the denitration activity are as follows.
NOx: 65ppm
O 2 : 15%, CO 2 : 5%, H 2 O: 7%, N 2 : balance, GHSV: 24,000h −1 ,
Gas amount 220NL / h,
Catalyst layer temperature: 400, 500 ℃
The denitration rate is expressed by the following formula.
Denitration rate (%) = (1−Outlet NOx concentration / Inlet NOx concentration) × 100

実施例1〜23、実施例30〜32および比較例1においては、調製された上記各触媒について、酸強度を測定した。その結果を表3および表4に示す。次いで、約400℃および約500℃の窒素酸化物を含む各排ガスを流通させて、脱硝率(%)をそれぞれ測定した。還元剤としては、アンモニアを連続的に供給した。得られた結果を、表3および表4に示す。   In Examples 1 to 23, Examples 30 to 32, and Comparative Example 1, acid strength was measured for each of the prepared catalysts. The results are shown in Tables 3 and 4. Subsequently, each exhaust gas containing nitrogen oxides at about 400 ° C. and about 500 ° C. was circulated, and the denitration rate (%) was measured. As a reducing agent, ammonia was continuously supplied. The obtained results are shown in Tables 3 and 4.

実施例24〜29および比較例1においては、調製された上記各触媒について、固体酸量を測定した。結果を表3に示す。次いで、上記と同様に約400℃および約500℃の排ガスを流通させて、脱硝率(%)をそれぞれ測定した。得られた結果を、表3に示す。   In Examples 24-29 and Comparative Example 1, the amount of solid acid was measured for each of the prepared catalysts. The results are shown in Table 3. Next, exhaust gases at about 400 ° C. and about 500 ° C. were circulated in the same manner as described above, and the denitration rate (%) was measured. The results obtained are shown in Table 3.

Figure 2005081189
Figure 2005081189

Figure 2005081189
Figure 2005081189

比較例1の触媒では、本発明の酸強度を有さず、かつ、本発明の固体酸量も有さず、各温度での脱硝率はいずれも低かった。これに対して、本発明の酸強度を有する実施例1〜23の各活性金属を担持させた触媒、および、実施例30〜33の各複合酸化物を担持させた触媒は、いずれも高い脱硝率を有することがわかった。また、本発明の固体酸量を有する実施例24〜29の各触媒についても、いずれも高い脱硝率を有することがわかった。   The catalyst of Comparative Example 1 did not have the acid strength of the present invention and did not have the solid acid amount of the present invention, and the denitration rate at each temperature was low. On the other hand, the catalyst supporting each active metal of Examples 1 to 23 having the acid strength of the present invention and the catalyst supporting each composite oxide of Examples 30 to 33 are both high in denitration. It was found to have a rate. It was also found that all the catalysts of Examples 24 to 29 having a solid acid amount of the present invention have a high denitration rate.

本発明の脱硝触媒は、高温の燃焼排ガスをアンモニア等の還元剤を用いて脱硝する方法において、添加される還元剤を効率的に作用させて脱硝反応を促進することができる。よって、アンモニア分解反応を考慮して高価な触媒成分を多量に用いる必要がなく、触媒自体の製造コストが安価になる。また、脱硝反応の還元剤として添加するアンモニアの量も少なくて足りるため、ランニングコストも低く抑えることができるので、特に火力発電所やガスタービンから排出されるガスの処理に好適に用いられ、産業上の意義は極めて大きい。   The denitration catalyst of the present invention can promote a denitration reaction by efficiently acting a reducing agent added in a method of denitrating high-temperature combustion exhaust gas using a reducing agent such as ammonia. Therefore, it is not necessary to use a large amount of expensive catalyst components in consideration of the ammonia decomposition reaction, and the production cost of the catalyst itself is reduced. In addition, since the amount of ammonia added as a reducing agent for the denitration reaction is small, the running cost can be kept low, so it is particularly suitable for the treatment of gas discharged from thermal power plants and gas turbines. The above significance is extremely large.

本発明の排ガス処理に用いられるハニカム形状脱硝触媒の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the honeycomb-shaped denitration catalyst used for the waste gas treatment of this invention.

符号の説明Explanation of symbols

1 ハニカム形状脱硝触媒   1 Honeycomb-shaped denitration catalyst

Claims (7)

窒素酸化物を含む高温排ガス用脱硝触媒であって、
酸強度がHo≦-11.35の担体、又は、固体酸量が0.2mmol/g以上の担体上に、
バナジウム、タングステン、モリブデン、鉄、クロム、銅、マンガンおよびコバルトからなる群より選ばれる少なくとも1種以上の酸化物又はそれらの複合酸化物が担持されていることを特徴とする高温排ガス用脱硝触媒。
A denitration catalyst for high temperature exhaust gas containing nitrogen oxides,
On a carrier having an acid strength of Ho ≦ −11.35, or a carrier having a solid acid amount of 0.2 mmol / g or more,
A denitration catalyst for high-temperature exhaust gas, comprising at least one oxide selected from the group consisting of vanadium, tungsten, molybdenum, iron, chromium, copper, manganese and cobalt, or a composite oxide thereof.
前記酸強度がHo≦-11.35の担体として、SO4/TiO2, SO4/ZrO2, SO4/Al2O3, SO4/TiO2-ZrO2およびSO4/TiO2-Al2O3からなる群より選ばれる少なくとも1種以上の化合物が用いられることを特徴とする請求項1に記載の高温排ガス用脱硝触媒。 SO 4 / TiO 2 , SO 4 / ZrO 2 , SO 4 / Al 2 O 3 , SO 4 / TiO 2 -ZrO 2 and SO 4 / TiO 2 -Al 2 O as the support having the acid strength Ho ≦ -11.35 2. The denitration catalyst for high temperature exhaust gas according to claim 1, wherein at least one compound selected from the group consisting of 3 is used. 前記固体酸量が0.2mmol/g以上の担体として、TiO2-SiO2, TiO2-ZrO2, SiO2-Al2O3, TiO2-P2O5, TiO2-Al2O3, TiO2-WO3およびTiO2-CeO2からなる群より選ばれる少なくとも1種以上の化合物が用いられることを特徴とする請求項1に記載の高温排ガス用脱硝触媒。 As a support having a solid acid amount of 0.2 mmol / g or more, TiO 2 --SiO 2 , TiO 2 --ZrO 2 , SiO 2 --Al 2 O 3 , TiO 2 --P 2 O 5 , TiO 2 --Al 2 O 3 , hot exhaust gas denitration catalyst according to claim 1, characterized in that at least one compound selected from the group consisting of TiO 2 -WO 3 and TiO 2 -CeO 2 is used. 前記酸化物としてタングステン酸化物が担体上に担持され、該酸化物濃度が、担体を含む触媒全体の重量比で1.0重量%以上20重量%未満であることを特徴とする請求項1〜3のいずれか1項に記載の高温排ガス用脱硝触媒。 The tungsten oxide is supported on the support as the oxide, and the oxide concentration is 1.0 wt% or more and less than 20 wt% in the weight ratio of the entire catalyst including the support. The denitration catalyst for high temperature exhaust gas according to any one of the above items. 前記酸化物としてバナジウム、モリブデン、鉄、クロム、銅、マンガンおよびコバルトからなる群より選ばれる少なくとも1種以上の酸化物が担体上に担持され、該酸化物濃度が、担体を含む触媒全体の重量比で0.1重量%以上1.0重量%以下であることを特徴とする請求項1〜3のいずれか1項に記載の高温排ガス用脱硝触媒。 As the oxide, at least one oxide selected from the group consisting of vanadium, molybdenum, iron, chromium, copper, manganese and cobalt is supported on a support, and the oxide concentration is the weight of the entire catalyst including the support. The denitration catalyst for high temperature exhaust gas according to any one of claims 1 to 3, wherein the ratio is 0.1 wt% or more and 1.0 wt% or less. 前記複合酸化物がバナジウム-タングステン、バナジウム−モリブデンおよびセリウム−タングステンからなる群より選ばれる少なくとも1種以上の複合酸化物であることを特徴とする請求項1〜3のいずれか1項に記載の高温排ガス用脱硝触媒。 4. The composite oxide according to claim 1, wherein the composite oxide is at least one composite oxide selected from the group consisting of vanadium-tungsten, vanadium-molybdenum, and cerium-tungsten. 5. Denitration catalyst for high temperature exhaust gas. 請求項1〜6のいずれか1項に記載の高温排ガス用脱硝触媒に、400℃以上の排ガスを流通させて、該排ガス中の窒素酸化物を分解除去することを特徴とする排ガス脱硝方法。 An exhaust gas denitration method, wherein exhaust gas at 400 ° C or higher is circulated through the denitration catalyst for high temperature exhaust gas according to any one of claims 1 to 6 to decompose and remove nitrogen oxides in the exhaust gas.
JP2003313655A 2003-09-05 2003-09-05 Denitration catalyst for high temperature exhaust gas Expired - Fee Related JP4508584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313655A JP4508584B2 (en) 2003-09-05 2003-09-05 Denitration catalyst for high temperature exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313655A JP4508584B2 (en) 2003-09-05 2003-09-05 Denitration catalyst for high temperature exhaust gas

Publications (2)

Publication Number Publication Date
JP2005081189A true JP2005081189A (en) 2005-03-31
JP4508584B2 JP4508584B2 (en) 2010-07-21

Family

ID=34414519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313655A Expired - Fee Related JP4508584B2 (en) 2003-09-05 2003-09-05 Denitration catalyst for high temperature exhaust gas

Country Status (1)

Country Link
JP (1) JP4508584B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246163A (en) * 2004-03-02 2005-09-15 Osaka Gas Co Ltd Catalyst for decomposing ammonia and decomposition method for ammonia
JP2010142688A (en) * 2008-12-16 2010-07-01 Tayca Corp Catalyst for selective catalytic reduction of nitrogen oxide
WO2011042953A1 (en) * 2009-10-06 2011-04-14 三菱重工業株式会社 Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
JP2013078768A (en) * 2013-02-04 2013-05-02 Mitsubishi Heavy Ind Ltd Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
WO2014006697A1 (en) * 2012-07-04 2014-01-09 三菱重工業株式会社 Process for producing denitration catalyst for high-temperature exhaust gas
CN103831096A (en) * 2014-03-13 2014-06-04 重庆大学 MnOOH nanorod denitration catalyst and preparation method thereof
JP2016500786A (en) * 2012-10-18 2016-01-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Proximal coupled SCR system
CN105664978A (en) * 2015-12-15 2016-06-15 哈尔滨工业大学深圳研究生院 Moulding preparation method for composite-carrier-supported acidified Mn-Co-Ce sulfur-tolerant catalyst for low temperature flue gas denitration
CN108246309A (en) * 2017-12-29 2018-07-06 湖北神雾热能技术有限公司 A kind of transition metal denitrating catalyst powder and preparation method thereof
CN108380225A (en) * 2018-02-07 2018-08-10 齐齐哈尔大学 A kind of synthetic method of the anti-inactivation denitrating catalyst of efficient cryogenic
CN114602488A (en) * 2022-01-14 2022-06-10 南昌大学 Denitration catalyst and preparation method and application thereof
WO2023020579A1 (en) * 2021-08-19 2023-02-23 Basf Corporation Metal oxide catalyst for selective catalytic reduction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513094B (en) * 2011-12-29 2013-10-16 中国科学院过程工程研究所 Preparation method of sulphur-resisting low temperature selectivity catalytic reduction nitric oxide catalysts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226049A (en) * 1991-08-24 1994-08-16 Agency Of Ind Science & Technol Method for removing nox
JPH06327944A (en) * 1993-05-19 1994-11-29 Catalysts & Chem Ind Co Ltd Removing method of nitrogen oxide
JPH11207179A (en) * 1998-01-28 1999-08-03 Mitsubishi Heavy Ind Ltd Production of denitration catalyst
JPH11300213A (en) * 1998-04-22 1999-11-02 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2000093750A (en) * 1998-04-16 2000-04-04 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment process and treatment device thereof
JP2003326167A (en) * 2002-05-13 2003-11-18 Hitachi Zosen Corp High-temperature denitration catalyst and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226049A (en) * 1991-08-24 1994-08-16 Agency Of Ind Science & Technol Method for removing nox
JPH06327944A (en) * 1993-05-19 1994-11-29 Catalysts & Chem Ind Co Ltd Removing method of nitrogen oxide
JPH11207179A (en) * 1998-01-28 1999-08-03 Mitsubishi Heavy Ind Ltd Production of denitration catalyst
JP2000093750A (en) * 1998-04-16 2000-04-04 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst, exhaust gas treatment process and treatment device thereof
JPH11300213A (en) * 1998-04-22 1999-11-02 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2003326167A (en) * 2002-05-13 2003-11-18 Hitachi Zosen Corp High-temperature denitration catalyst and manufacturing method therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246163A (en) * 2004-03-02 2005-09-15 Osaka Gas Co Ltd Catalyst for decomposing ammonia and decomposition method for ammonia
JP4664608B2 (en) * 2004-03-02 2011-04-06 大阪瓦斯株式会社 Ammonia decomposition catalyst and ammonia decomposition method
JP2010142688A (en) * 2008-12-16 2010-07-01 Tayca Corp Catalyst for selective catalytic reduction of nitrogen oxide
US8815194B2 (en) 2009-10-06 2014-08-26 Mitsubishi Heavy Industries, Ltd. NOx removal catalyst for high-temperature flue gas, manufacturing method thereof, and NOx removal method for high-temperature flue gas
US9302251B2 (en) 2009-10-06 2016-04-05 Mitsubishi Heavy Industries, Ltd. NOx removal catalyst for high-temperature flue gas, manufacturing method thereof, and NOx removal method for high-temperature flue gas
JPWO2011042953A1 (en) * 2009-10-06 2013-02-28 三菱重工業株式会社 Denitration catalyst for high temperature exhaust gas and method for producing the same, high temperature exhaust gas denitration method
RU2476258C2 (en) * 2009-10-06 2013-02-27 Мицубиси Хеви Индастриз, Лтд. CATALYST OF NOx REMOVAL FROM HIGH-TEMPERATURE SMOKE GAS, METHOD OF ITS OBTAINING AND METHOD OF NOx REMOVAL FROM HIGH-TEMPERATURE SMOKE GAS
WO2011042953A1 (en) * 2009-10-06 2011-04-14 三菱重工業株式会社 Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
KR101362606B1 (en) * 2009-10-06 2014-02-12 미츠비시 쥬고교 가부시키가이샤 NOx REMOVAL CATALYST FOR HIGH-TEMPERATURE FLUE GAS, MANUFACTURING METHOD THEREOF, AND NOx REMOVAL METHOD FOR HIGH-TEMPERATURE FLUE GAS
WO2014006697A1 (en) * 2012-07-04 2014-01-09 三菱重工業株式会社 Process for producing denitration catalyst for high-temperature exhaust gas
JPWO2014006697A1 (en) * 2012-07-04 2016-06-02 三菱日立パワーシステムズ株式会社 Manufacturing method of denitration catalyst for high temperature exhaust gas
US9463453B2 (en) 2012-07-04 2016-10-11 Mitsubishi Hitachi Power Systems, Ltd. Method for producing NOx removal catalyst for high-temperature exhaust gas
JP2016500786A (en) * 2012-10-18 2016-01-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Proximal coupled SCR system
JP2013078768A (en) * 2013-02-04 2013-05-02 Mitsubishi Heavy Ind Ltd Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
CN103831096A (en) * 2014-03-13 2014-06-04 重庆大学 MnOOH nanorod denitration catalyst and preparation method thereof
CN105664978A (en) * 2015-12-15 2016-06-15 哈尔滨工业大学深圳研究生院 Moulding preparation method for composite-carrier-supported acidified Mn-Co-Ce sulfur-tolerant catalyst for low temperature flue gas denitration
CN108246309A (en) * 2017-12-29 2018-07-06 湖北神雾热能技术有限公司 A kind of transition metal denitrating catalyst powder and preparation method thereof
CN108380225A (en) * 2018-02-07 2018-08-10 齐齐哈尔大学 A kind of synthetic method of the anti-inactivation denitrating catalyst of efficient cryogenic
CN108380225B (en) * 2018-02-07 2022-11-29 齐齐哈尔大学 Synthetic method of low-temperature efficient deactivation-resistant denitration catalyst
WO2023020579A1 (en) * 2021-08-19 2023-02-23 Basf Corporation Metal oxide catalyst for selective catalytic reduction
CN114602488A (en) * 2022-01-14 2022-06-10 南昌大学 Denitration catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP4508584B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JP4745968B2 (en) Denitration catalyst with excellent low temperature characteristics
KR101950670B1 (en) Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic remediation of nitrogen oxides
DK1874441T3 (en) Catalyst for the oxidation of ammonia for coal-fired public works
US7749938B2 (en) Catalyst for nitrogen oxide removal and exhaust gas treatment method
JPWO2018047356A1 (en) NOx removal catalyst and method for producing the same
KR101798713B1 (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
WO2008016627A9 (en) Compositions and methods for treating exhaust gases
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
EP2484441B1 (en) Mercury oxidation catalyst and method for producing the same
EP2384807B1 (en) Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
JP2004330179A (en) Catalyst for removing nitrogen oxide, catalyst formed product, method for treating exhaust gas and composite power facility
TW201016303A (en) Method for purifying exhaust gas containing mercury metal, oxidation catalyst for mercury metal in exhaust gas and method for producing the same
JP2005087815A (en) Exhaust gas treatment method
JP5386096B2 (en) Exhaust gas treatment catalyst
JP6339729B2 (en) Exhaust gas treatment device and method for producing exhaust gas treatment catalyst
KR20100064926A (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JP2013193938A (en) Denitration catalyst, method of preparing the same, and method of denitration
JPH09150039A (en) Apparatus and method for purifying exhaust gas
KR20200033024A (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees