JPH08309188A - Ammonia decomposition catalyst and ammonia decomposition method - Google Patents

Ammonia decomposition catalyst and ammonia decomposition method

Info

Publication number
JPH08309188A
JPH08309188A JP7120999A JP12099995A JPH08309188A JP H08309188 A JPH08309188 A JP H08309188A JP 7120999 A JP7120999 A JP 7120999A JP 12099995 A JP12099995 A JP 12099995A JP H08309188 A JPH08309188 A JP H08309188A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
parts
powder catalyst
ammonia decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7120999A
Other languages
Japanese (ja)
Inventor
Shigeru Nojima
野島  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7120999A priority Critical patent/JPH08309188A/en
Publication of JPH08309188A publication Critical patent/JPH08309188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To suppress the by-production of a byproduct nitrogen oxide as an atmospheric pollutant to the utmost allowable extent and remove ammonia by decomposition at high recovery rate by allowing a titanium oxide carrier to bear at least, one type of element oxide selected from a group of vanadium, tungsten and molybdenum and tellurium. CONSTITUTION: Each 10% of ammonium metavanadate and ammonium paratungstate are dissolved in an aqueous methylamine solution, and 4wt.% of V2 O5 and 8wt.% of WO3 are allowed to be borne by a titania carrier using an impregnation method. Further, these components are subjected to baking at 500 deg.C for 6 hours after evaporation and dry solidification to obtain a powder catalyst. Next, this powder catalyst is impregnated with an aqueous solution of ruthenium chloride of hydrochloric acid and is allowed to carry 0.5wt.% of Ru. After that, these components are baked at 500 deg.C for 6 hours following evaporation and dry solidification to obtain a powder catalyst. Then 10 parts of titania sol as a binder and 200 parts of water are added to 100 parts of the obtained powder catalyst. Thus a honeycomb catalyst is obtained by applying a wash coat to a specified cordierite honeycomb base material as slurry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種排ガス等に含まれる
アンモニアを無害な窒素に分解する触媒及び同触媒を使
用してアンモニアを分解する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing ammonia contained in various exhaust gases into harmless nitrogen and a method for decomposing ammonia using the catalyst.

【0002】[0002]

【従来の技術】アンモニアは肥料や硝酸の製造原料、冷
媒、排ガス中の窒素酸化物除去用還元剤等幅広い分野で
使用されている。したがって、各種化学品製造工場、冷
凍機等の廃棄物処理工場あるいは燃焼排ガス処理施設等
からは多量のアンモニアが排出される。アンモニアは特
異な刺激臭を有する気体であり大気中への放出は極力抑
える必要がある。しかし、生物の腐敗によるアンモニア
の生成や廃棄物中の冷媒からのアンモニアの放散、さら
に煙道排ガス中の窒素酸化物の還元に用いられるアンモ
ニアが未反応のまま大気放出される等、多くの場所でア
ンモニアが大気放出されているのが現状である。
Ammonia is used in a wide range of fields such as a raw material for producing fertilizer and nitric acid, a refrigerant, and a reducing agent for removing nitrogen oxides in exhaust gas. Therefore, a large amount of ammonia is emitted from various chemical product manufacturing plants, waste treatment plants such as refrigerators, and combustion exhaust gas treatment facilities. Ammonia is a gas with a unique irritating odor, and its release into the atmosphere must be suppressed as much as possible. However, in many places, such as the generation of ammonia due to the decay of living organisms, the emission of ammonia from the refrigerant in waste, and the ammonia used for the reduction of nitrogen oxides in flue gas, is released into the atmosphere without reaction. At present, ammonia is released into the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】アンモニアの大気放出
を防ぐ方法の一つとしてシリカ系担体に酸化鉄や酸化ニ
ッケルを担持させた触媒を利用して次の反応式によりア
ンモニアを無害な窒素に分解する方法が知られている。
As one of the methods for preventing atmospheric release of ammonia, a catalyst in which iron oxide or nickel oxide is supported on a silica-based carrier is used to decompose ammonia into harmless nitrogen according to the following reaction formula. It is known how to do it.

【化1】2NH3 +3/2O2 →N2 +3H2 O ところが、従来の触媒では400℃以下の低温での反応
活性が乏しく、さらに前記反応以外に次のような副反応
によりNO,NO2 ,N2 O等の生成が認められ、新た
に大気汚染を生じる恐れがあった。
## STR1 ## 2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O However, the conventional catalyst has poor reaction activity at a low temperature of 400 ° C. or lower, and in addition to the above reaction, the following side reactions cause NO and NO 2 , N 2 O, etc. were recognized, and there was a possibility that air pollution would be newly generated.

【化2】2NH3 +5/2O2 →2NO+3H2 O 2NH3 +7/2O2 →2NO2 +3H2 O 2NH3 + 2O2 →N2 O+3H2 Embedded image 2NH 3 + 5 / 2O 2 → 2NO + 3H 2 O 2NH 3 + 7 / 2O 2 → 2NO 2 + 3H 2 O 2NH 3 + 2O 2 → N 2 O + 3H 2 O

【0004】本発明の目的は前記従来技術の問題点を解
決し、大気汚染のもととなる窒素酸化物の副生を極力抑
え、高い収率でアンモニアを分解除去することのできる
アンモニア分解触媒及び同触媒を使用したアンモニア分
解方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, to suppress by-products of nitrogen oxides that cause air pollution as much as possible, and to decompose and remove ammonia with high yield. And to provide a method for decomposing ammonia using the same catalyst.

【0005】[0005]

【課題を解決するための手段】本発明は(1)チタン酸
化物担体上に、バナジウム、タングステン及びモリブデ
ンよりなる群から選ばれた元素の酸化物の少なくとも1
種以上とルテニウムを担持させてなることを特徴とする
アンモニア分解触媒、(2)チタン酸化物担体:(バナ
ジウム、タングステン及びモリブデンよりなる群から選
ばれた元素の酸化物の少なくとも1種以上):ルテニウ
ムの重量比が100:0.1〜50:0.01〜20で
あることを特徴とする上記(1)記載のアンモニア分解
触媒、(3)上記(1)又は(2)記載のアンモニア分
解触媒にアンモニア含有ガスを接触させることを特徴と
するアンモニア含有ガスのアンモニアの分解方法及び
(4)アンモニア分解触媒に100〜600℃の温度で
アンモニア含有ガスを接触させることを特徴とする上記
(3)記載のアンモニア含有ガスのアンモニアの分解方
法である。
The present invention provides (1) at least one oxide of an element selected from the group consisting of vanadium, tungsten and molybdenum on a titanium oxide support.
Ammonia decomposition catalyst, characterized in that at least one species and ruthenium are supported, (2) titanium oxide carrier: (at least one species of oxide of an element selected from the group consisting of vanadium, tungsten and molybdenum): The weight ratio of ruthenium is 100: 0.1 to 50: 0.01 to 20, and the ammonia decomposition catalyst according to (1) above, (3) the ammonia decomposition according to (1) or (2) above. A method for decomposing ammonia of an ammonia-containing gas, which comprises contacting the catalyst with an ammonia-containing gas, and (4) contacting the ammonia-decomposing catalyst with the ammonia-containing gas at a temperature of 100 to 600 ° C. ) The method for decomposing ammonia of the ammonia-containing gas described above.

【0006】[0006]

【作用】本発明の触媒はチタン酸化物担体上にアンモニ
アの分解活性に優れたルテニウム(TiO2 :100重
量部に対してRu:0.01〜20重量部が好ましい)
と、アンモニアを還元剤としたときに脱硝活性に優れた
バナジウム、タングステン及びモリブデンよりなる群か
ら選ばれた少なくとも1種類(TiO2 :100重量部
に対し、これら酸化物:0.1〜50重量部が好まし
い)の元素の酸化物より構成される。各々の反応式は下
記のとおりである。
The catalyst of the present invention has a ruthenium excellent in activity of decomposing ammonia on a titanium oxide support (Ru: 0.01 to 20 parts by weight is preferable with respect to 100 parts by weight of TiO 2 ).
And at least one kind selected from the group consisting of vanadium, tungsten and molybdenum having excellent denitration activity when ammonia is used as a reducing agent (TiO 2 : 100 parts by weight of these oxides: 0.1 to 50 parts by weight). Part is preferred). Each reaction formula is as follows.

【化3】 2NH3 +5/2O2 →2NO+3H2 O ・・・・ 4NH3 +4NO+O2 →4N2 +6H2 O ・・・・Embedded image 2NH 3 + 5 / 2O 2 → 2NO + 3H 2 O ... 4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O ...

【0007】すなわち、式はルテニウムが300℃付
近の低温域にて高活性を有し、式は担体であるチタン
酸化物及びバナジウム、タングステン及びモリブデンよ
りなる群から選ばれた少なくとも1種類以上の元素の酸
化物が高活性を有する。すなわち、式と式の反応を
逐次的に進行することができれば、アンモニアを選択的
にN2 に分解することが可能である。
That is, the formula is that ruthenium has a high activity in a low temperature range around 300 ° C., and the formula is at least one element selected from the group consisting of titanium oxide and vanadium, tungsten and molybdenum, which are carriers. The oxides of are highly active. That is, ammonia can be selectively decomposed into N 2 if the reactions of the formulas can be successively progressed.

【0008】ルテニウムは種々の担体にて含浸法等によ
り調製し、高いNH3 分解活性を示し、とりわけ脱硝触
媒として使用されているチタニア(TiO2 )担体上で
十分な活性を示す。また、バナジウム、タングステン及
びモリブデンよりなる群から選ばれた1種以上の元素の
酸化物は通常脱硝触媒として使用されており、チタニア
担体上にV2 5 、WO3 、MoO3 のうち1種以上が
含浸法又は共沈法により担持される。前記触媒は必要に
よりチタニアゾル、アルミナゾル、シリカゾルなどのバ
インダ成分やコージェライト等の基材を使用し、ウォッ
シュコート法又はソリット法によりハニカム化して使用
するのが好ましい。
Ruthenium, which is prepared by various methods such as impregnation method, exhibits a high NH 3 decomposition activity and, in particular, a sufficient activity on a titania (TiO 2 ) carrier used as a denitration catalyst. Further, an oxide of one or more elements selected from the group consisting of vanadium, tungsten and molybdenum is usually used as a denitration catalyst, and one of V 2 O 5 , WO 3 and MoO 3 on a titania carrier is used. The above is supported by the impregnation method or the coprecipitation method. As the catalyst, if necessary, a binder component such as titania sol, alumina sol, silica sol or a base material such as cordierite is used, and it is preferable to use it by forming it into a honeycomb by a wash coat method or a solit method.

【0009】アンモニアを含有するガスを、好ましくは
100〜600℃の温度で前記触媒に接触させることに
より、ガス中のアンモニアは主に窒素に分解される。こ
の分解反応は選択的に進行し、NO、NO2 、N2 O等
の有害ガスの副生は少ない。さらに、本発明の触媒はS
2 が共存する排ガスにおいても、アンモニア分解活性
が低下することなく安定なアンモニア分解性能を保つ。
また、SO2 をSO3へ酸化させる極力は低いため酸性
硫酸アンモニウム生成の不具合も見られない。さらに、
また本発明の触媒はアンモニア含有ガス中にCOや炭化
水素が共存にもアンモニア分解活性、N 2選択性に変化
をもたらすことはない。なお、N2 選択性とは分解した
NH3 のうちN2 へ転化した割合を示すもので、(減少
NH3 量−生成NOX 量)/減少NH3 量と定義され
る。
By contacting a gas containing ammonia with the catalyst at a temperature of preferably 100 to 600 ° C., the ammonia in the gas is mainly decomposed into nitrogen. This decomposition reaction progresses selectively, and there are few by-products of harmful gases such as NO, NO 2 and N 2 O. Further, the catalyst of the present invention is S
Even in exhaust gas in which O 2 coexists, the ammonia decomposing activity does not decrease, and stable ammonia decomposing performance is maintained.
Further, since the amount of oxidizing SO 2 to SO 3 is as low as possible, no problem of formation of ammonium acid sulfate is observed. further,
Further, the catalyst of the present invention does not cause a change in ammonia decomposition activity and N 2 selectivity even when CO and hydrocarbon coexist in the ammonia-containing gas. The N 2 selectivity refers to the ratio of decomposed NH 3 converted to N 2 , and is defined as (reduced NH 3 amount-generated NO X amount) / reduced NH 3 amount.

【0010】[0010]

【実施例】以下、実施例により本発明の触媒及びアンモ
ニアの分解除去方法を具体的に説明する。
EXAMPLES The catalyst and the method for decomposing and removing ammonia according to the present invention will be specifically described below with reference to examples.

【0011】(例1)(触媒の実施例) チタニア(TiO2 )担体にメタバナジン酸アンモニウ
ム(NH4 VO3 )、パラタングステン酸アンモニウム
{(NH4 10101246・6H2 O}を各々10%
メチルアミン水溶液で溶かし、V2 5 で4wt%、W
3 で8wt%を含浸法により担持させ、蒸発・乾固し
て500℃×6時間焼成して粉末触媒を得た。さらに、
この粉末触媒に塩化ルテニウム(RuCl3 )塩酸水溶
液を含浸させRuを0.5wt%担持させ、蒸発・乾固
後、500℃、6時間焼成して粉末触媒1を得た。
[0011] (Example 1) (Example of catalyst) titania (TiO 2) carrier ammonium metavanadate (NH 4 VO 3), ammonium paratungstate {(NH 4) 10 H 10 W 12 O 46 · 6H 2 O } Each 10%
Dissolve in an aqueous solution of methylamine, add 2 wt% of V 2 O 5 , W
8 wt% of O 3 was supported by an impregnation method, evaporated to dryness, and calcined at 500 ° C. for 6 hours to obtain a powder catalyst. further,
This powder catalyst was impregnated with a ruthenium chloride (RuCl 3 ) hydrochloric acid aqueous solution to support 0.5 wt% of Ru, evaporated and dried, and then calcined at 500 ° C. for 6 hours to obtain powder catalyst 1.

【0012】得られた粉末触媒100部に対してバイン
ダとしてチタニアゾル10部(TiO2 :20wt%)
及び水200部を加え、スラリとして7.6mmピッ
チ、壁厚1mmのコージェライトハニカム基材にウォッ
シュコートして、基材表面積当り200g/m2 のコー
ト量を担持した。得られた触媒をハニカム触媒1とす
る。
With respect to 100 parts of the obtained powder catalyst, 10 parts of titania sol as a binder (TiO 2 : 20 wt%)
And 200 parts of water were added, and as a slurry, a cordierite honeycomb base material having a 7.6 mm pitch and a wall thickness of 1 mm was wash-coated to carry a coating amount of 200 g / m 2 per surface area of the base material. The obtained catalyst is called honeycomb catalyst 1.

【0013】(例2)(触媒の実施例) 上記ハニカム触媒1の調製法でV2 5 の担持量を5w
t%、WO3 の担持量を9wt%として他は例1と同様
な方法で調製してハニカム触媒2を得た。また、上記ハ
ニカム触媒1の調製法でパラタングステン酸アンモニウ
ムの代わりにモリブデン酸アンモニウム{(NH4 2
MoO4 }を用いてMoO3 で8wt%担持させた他は
例1と同様な方法で調製してハニカム触媒3を得た。加
えて、上記ハニカム触媒1の調製法でパラタングステン
酸アンモニウムを使用しない他は例1と同様な方法で調
製してハニカム触媒4を得た。さらに、上記例1の粉末
触媒1に水及びグラスファイバを添加して混練を行い、
7.6mmピッチ、壁厚1.5mmの押し出しハニカム
成形品を製造した。この触媒をハニカム触媒5とする。
(Example 2) (Catalyst example) In the method for preparing the above-mentioned honeycomb catalyst 1, the supported amount of V 2 O 5 was 5 w.
Honeycomb catalyst 2 was obtained by the same method as in Example 1 except that t% and the amount of WO 3 supported were 9 wt%. In addition, in the method for preparing the honeycomb catalyst 1, ammonium molybdate {(NH 4 ) 2 is used instead of ammonium paratungstate.
A honeycomb catalyst 3 was obtained by the same method as in Example 1 except that 8% by weight of MoO 3 was supported by using MoO 4 }. In addition, a honeycomb catalyst 4 was obtained by the same method as in Example 1 except that ammonium paratungstate was not used in the method for preparing the honeycomb catalyst 1. Further, water and glass fiber were added to the powder catalyst 1 of Example 1 and kneaded,
An extruded honeycomb molded product having a 7.6 mm pitch and a wall thickness of 1.5 mm was manufactured. This catalyst is referred to as a honeycomb catalyst 5.

【0014】(例3)(触媒の実施例) 上記ハニカム触媒1の調製法においてチタニア担体上に
メタバナジン酸アンモニウム、パラタングステン酸アン
モニウム、塩化ルテニウムを同時にメチルアミン水溶液
に溶かし、V2 5 、WO3 、Ru2 3 を共含浸さ
せ、例1と同様の組成にて、焼成処理を行い粉末触媒6
及びハニカム触媒6を得た。
(Example 3) (Example of catalyst) In the method for preparing the above-mentioned honeycomb catalyst 1, ammonium metavanadate, ammonium paratungstate, and ruthenium chloride were simultaneously dissolved in a methylamine aqueous solution on a titania carrier, and V 2 O 5 , WO 3 and Ru 2 O 3 were co-impregnated, and the same composition as in Example 1 was used for the calcination treatment to obtain powder catalyst 6
And the honeycomb catalyst 6 was obtained.

【0015】(例4)(アンモニア分解の実施例) 40mm×50mm×150mmLのアンモニア分解触
媒3本を直列に設置し、反応試験を実施した。実験条件
は下記の表1のとおりである。
Example 4 Example of Ammonia Decomposition A reaction test was carried out by placing three 40 mm × 50 mm × 150 mmL ammonia decomposition catalysts in series. The experimental conditions are as shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】性能評価は反応初期状態におけるアンモニ
ア分解率及びNOX (NO、NO2、N2 O)生成率及
びSO2 酸化率を測定することによって行なった。
[0017] Performance evaluation was performed by measuring the ammonia decomposition ratio at the initial reaction conditions and NO X (NO, NO 2, N 2 O) production rates and SO 2 oxidation rate.

【0018】なお、アンモニア分解率及びNOX 生成率
は次の式により求めた。
[0018] Incidentally, the ammonia decomposition ratio and NO X generation rate was determined by the following equation.

【数1】○アンモニア分解率(%)=〔(入口NH3
出口NH3 )/入口NH3 〕×100 ○NOX 生成率(%)=〔出口(N2 O×2+NO+N
2 )/入口NH3 〕×100 ○SO2 酸化率(%)=〔出口SO3 /入口SO2 〕×
100
[Formula 1] ○ Ammonia decomposition rate (%) = [(inlet NH 3
Outlet NH 3 ) / Inlet NH 3 ] × 100 ○ NO x production rate (%) = [Outlet (N 2 O × 2 + NO + N
O 2 ) / inlet NH 3 ] × 100 ○ SO 2 oxidation rate (%) = [outlet SO 3 / inlet SO 2 ] ×
100

【0019】結果を下記表2に示した。本発明脱硝触媒
を用いたアンモニア分解方法においては、アンモニア分
解率は約90%、NOX 生成率は2〜4%、SO2 酸化
率は約1%と何れも高性能を有することを確認した。
The results are shown in Table 2 below. In the ammonia decomposition method using the present invention denitration catalyst, the ammonia decomposition rate is about 90%, NO X generation rate 2 to 4%, SO 2 oxidation rate was confirmed to have about 1% and both high .

【0020】[0020]

【表2】 [Table 2]

【0021】(例5)(アンモニア分解の実施例) ハニカム触媒1〜5を使用し例4と同一の条件にて30
00時間通ガスすることにより耐久性評価試験を実施し
た。その結果を表3に示す。前記ガス条件にて3000
時間供給後においてもほぼ表2と同様のアンモニア分解
率、NOX 生成率及びSO2 酸化率を維持しており、耐
久性に優れた触媒であることが確認された。
(Example 5) (Example of decomposition of ammonia) Using honeycomb catalysts 1 to 5 under the same conditions as in Example 4
A durability evaluation test was carried out by passing gas for 00 hours. Table 3 shows the results. 3000 under the above gas conditions
Almost Table 2 the same ammonia decomposition rate even after time supply, maintains the NO X generation rate and SO 2 oxidation rate, it was confirmed that excellent catalysts in durability.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明によれば、SO2 の酸化やNOX
等の副生成物を極力抑制して、アンモニアを無害な窒素
に分解することができる。このような分解処理方法は従
来なかったものであり、その産業上の利用価値は極めて
大きいものがある。
According to the present invention, SO 2 oxidation and NO x
It is possible to decompose ammonia into harmless nitrogen by suppressing by-products such as. Such a decomposition treatment method has never been used before, and its industrial utility value is extremely high.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸化物担体上に、バナジウム、タ
ングステン及びモリブデンよりなる群から選ばれた元素
の酸化物の少なくとも1種以上とルテニウムを担持させ
てなることを特徴とするアンモニア分解触媒。
1. An ammonia decomposing catalyst, which comprises ruthenium and at least one oxide of an element selected from the group consisting of vanadium, tungsten, and molybdenum, supported on a titanium oxide carrier.
【請求項2】 チタン酸化物担体:(バナジウム、タン
グステン及びモリブデンよりなる群から選ばれた元素の
酸化物の少なくとも1種以上):ルテニウムの重量比が
100:0.1〜50:0.01〜20であることを特
徴とする請求項1記載のアンモニア分解触媒。
2. A titanium oxide carrier: (at least one kind of oxide of an element selected from the group consisting of vanadium, tungsten and molybdenum): ruthenium in a weight ratio of 100: 0.1 to 50: 0.01. The ammonia decomposition catalyst according to claim 1, wherein
【請求項3】 請求項1又は2記載のアンモニア分解触
媒にアンモニア含有ガスを接触させることを特徴とする
アンモニア含有ガスのアンモニアの分解方法。
3. A method for decomposing ammonia of an ammonia-containing gas, which comprises bringing the ammonia-containing gas into contact with the ammonia decomposition catalyst according to claim 1.
【請求項4】 アンモニア分解触媒に100〜600℃
の温度でアンモニア含有ガスを接触させることを特徴と
する請求項3記載のアンモニア含有ガスのアンモニアの
分解方法。
4. An ammonia decomposition catalyst having a temperature of 100 to 600 ° C.
The method for decomposing ammonia of an ammonia-containing gas according to claim 3, wherein the ammonia-containing gas is contacted at the temperature of.
JP7120999A 1995-05-19 1995-05-19 Ammonia decomposition catalyst and ammonia decomposition method Pending JPH08309188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7120999A JPH08309188A (en) 1995-05-19 1995-05-19 Ammonia decomposition catalyst and ammonia decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7120999A JPH08309188A (en) 1995-05-19 1995-05-19 Ammonia decomposition catalyst and ammonia decomposition method

Publications (1)

Publication Number Publication Date
JPH08309188A true JPH08309188A (en) 1996-11-26

Family

ID=14800281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7120999A Pending JPH08309188A (en) 1995-05-19 1995-05-19 Ammonia decomposition catalyst and ammonia decomposition method

Country Status (1)

Country Link
JP (1) JPH08309188A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545437A (en) * 2006-08-01 2009-12-24 コーメテック, インコーポレイテッド Compositions and methods for exhaust gas treatment
KR101329828B1 (en) * 2011-05-16 2013-11-14 주식회사 씨비비 A tungsten/titania-based catalyst and a method of preparing the same
JP2016531736A (en) * 2013-07-26 2016-10-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Tungsten / titania oxidation catalyst
KR20200033024A (en) * 2018-09-19 2020-03-27 주식회사 씨비비 Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
CN116586077A (en) * 2023-06-19 2023-08-15 福大紫金氢能科技股份有限公司 Monolithic catalyst and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545437A (en) * 2006-08-01 2009-12-24 コーメテック, インコーポレイテッド Compositions and methods for exhaust gas treatment
KR101329828B1 (en) * 2011-05-16 2013-11-14 주식회사 씨비비 A tungsten/titania-based catalyst and a method of preparing the same
JP2016531736A (en) * 2013-07-26 2016-10-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Tungsten / titania oxidation catalyst
KR20200033024A (en) * 2018-09-19 2020-03-27 주식회사 씨비비 Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
CN116586077A (en) * 2023-06-19 2023-08-15 福大紫金氢能科技股份有限公司 Monolithic catalyst and preparation method and application thereof
CN116586077B (en) * 2023-06-19 2023-11-17 福大紫金氢能科技股份有限公司 Monolithic catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
JPH05261283A (en) Catalyst for selective reduction of nitrogen oxide contained in gas stream and its application
JPH0638915B2 (en) New catalysts for selective reduction of nitrogen oxides
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3132959B2 (en) Ammonia decomposition catalyst
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3132960B2 (en) Ammonia decomposition catalyst
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP3815813B2 (en) Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same
JP3970093B2 (en) Ammonia decomposition removal method
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP2003093881A (en) Catalyst for removing nitrogen oxide and manufacturing method therefor
JPH0833842A (en) Catalyst for deodorization and dinitrification of exhaust gas and deodorization and denitrification method using the same
JP3229136B2 (en) Ammonia decomposition method
JPH08141398A (en) Catalyst for decomposing ammonia
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
KR20100064926A (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3254040B2 (en) DeNOx treatment method
JPH08299761A (en) Decomposing and removing method of ammonia
JP3388941B2 (en) Exhaust gas purification method
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806