JP3388941B2 - Exhaust gas purification method - Google Patents

Exhaust gas purification method

Info

Publication number
JP3388941B2
JP3388941B2 JP12099895A JP12099895A JP3388941B2 JP 3388941 B2 JP3388941 B2 JP 3388941B2 JP 12099895 A JP12099895 A JP 12099895A JP 12099895 A JP12099895 A JP 12099895A JP 3388941 B2 JP3388941 B2 JP 3388941B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
catalyst layer
catalyst
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12099895A
Other languages
Japanese (ja)
Other versions
JPH08309152A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12099895A priority Critical patent/JP3388941B2/en
Publication of JPH08309152A publication Critical patent/JPH08309152A/en
Application granted granted Critical
Publication of JP3388941B2 publication Critical patent/JP3388941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、排ガス中の窒素酸化物
(NOx)、一酸化炭素(CO)を高い効率にて除去す
ることのできる排ガスの浄化方法に関する。 【0002】 【従来の技術】燃焼排ガスに含まれるNOxを除去する
方法としては、NH3 を還元剤とした選択的接触還元法
が火力発電所を中心に広く実用化されている。触媒とし
ては、バナジウム、タングステン、モリブデンを活性成
分とした酸化チタン系の触媒が主に用いられている。 【0003】 【発明が解決しようとする課題】NOx排出規制は近年
益々厳しくなる傾向にあり、とくに大都市部では排出総
量規制が実施されており、都市部に隣接した発電所では
電力需要の増大に伴う発電設備の増設にあたって、より
高効率な脱硝が要求されている。さらに、発電所から排
出される一酸化炭素の排出規制も厳しくなっている。従
来の脱硝法はNH 3 を還元剤とした接触還元法であり、
4NO+4NH3 +O2 →4N2 +6H2Oの反応式に
よってNOxが触媒上でN2 に分解される。この反応式
から考えると、理論的にはNOxと等モルのNH3 を添
加すればNOxが100%除去できることになる。しか
し、実際には、排ガス中でNH3 とNOxを完全に均一
混合することは不可能であり、高効率な脱硝を行うため
にはNH3 をNOxより過剰に添加する必要がある。そ
のため未反応NH3 がかなりな割合で排出される欠点が
あった。 【0004】これまで、本発明者らは未反応NH3 の排
出を防ぐため、アンモニア分解触媒を開発し(特願平5
−127126、特願平6−70486等)、さらに、
後方に仕上げ脱硝触媒を設置し、高効率脱硝を行うプロ
セスを提案した(特願平6−176494)。しかし、
排ガス中に一酸化炭素が共存する場合にアンモニア分解
触媒のNH3 分解率、窒素選択率に変化が生じる不具合
が生じた。 【0005】本発明は上記技術水準に鑑み、従来技術の
欠点を解消し、未反応NH3 の大気への排出を極力抑制
して高効率な脱硝を行うことができ、さらに、一酸化炭
素も除去できる排ガスの浄化方法を提供しようとするも
のである。 【0006】 【課題を解決するための手段】本発明は、窒素酸化物、
一酸化炭素を含有する排ガスを触媒を充填した反応器に
導いて、アンモニアを還元剤として接触的に窒素酸化物
を除去する方法において、アンモニア添加装置の上段側
多孔質耐熱性担体に、活性金属として白金及び/又は
パラジウムを0.001〜10wt%担持した一酸化炭
素除去触媒層を、アンモニア添加装置の下段側には上流
側から第1脱硝触媒層を、その後流にアンモニアを窒素
及び窒素酸化物に酸化分解する機能を有する脱水された
状態で、(1.0±0.6)R 2 O・〔aM 2 3 ・b
Al 2 3 〕・cMeO・ySiO 2 (R:アルカリ金
属イオン及び/又は水素イオン、M:周期律表のVIII族
元素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン及びガリウムからなる群から選ばれる1
種以上の元素、Me:アルカリ土類金属元素、a+b=
1、a≧0、b≧0、c≧0、y/c>12、y>1
2)の化学式を有し、かつ発明の詳細な説明の項に記載
の表1に示されるX線回折パターンを有する結晶性シリ
ケートを担体とし、活性金属として白金及び/又はパラ
ジウムを含有するアンモニア分解触媒層を、さらにその
後流に第2脱硝触媒層を設置し、アンモニア添加装置か
ら添加されるアンモニアを入口排ガス中の窒素酸化物の
反応当量以上に添加することを特徴とする排ガスの浄化
法である。 【0007】 【表1】 VS:非常に強い S:強い M:中級 W:弱い (X線源:Cu) 【0008】 【作用】以下、本発明の一態様を図1によって説明し、
その作用を明らかにする。NH 3 添加装置2の上段側に
一酸化炭素除去触媒層1を設置し、触媒燃焼により一酸
化炭素を燃焼除去する。NH3 添加装置2の下段側には
第1脱硝触媒層3を、その後流にNH3 分解触媒層4
を、さらに、その後流に第2脱硝触媒層5を設置し、第
1脱硝触媒層3の上流にNOxに対して反応等量以上の
NH3 をNH3 添加装置2より添加して、第1脱硝触媒
層3で80%以上の脱硝を行い、第1脱硝触媒層3から
流出する未反応NH3 をNH3 分解触媒層4によって分
解させて下流の第2脱硝触媒層入口のNOx、NH3
度を調整して、第2脱硝触媒層5出口でのNOxを0.
1ppm以下、NH3 を5ppm以下レベルにする。上
流及び下流の第1及び第2脱硝触媒層3,5にはV,
W,Moなどを活性成分としたTiO2 系の従来実用化
されている触媒を用いることができる。 【0009】本発明方法では一酸化炭素を触媒により燃
焼除去するため、NH3 分解触媒の性能に変化をもたら
すことはなく、さらに、有害な一酸化炭素の排出も抑制
できることになる。 【0010】上記本発明の態様において、NH3 分解触
媒層に使用される触媒としては下記に定義する窒素選択
率%が60%以上のものであることが好ましい。 【0011】 【数1】 窒素選択率(%)=〔1−{アンモニア分解触媒出口NOx(ppm) −アンモニア分解触媒入口NOx(ppm)}/ {アンモニア分解触媒入口NH3 (ppm) −アンモニア分解触媒出口NH3 (ppm)}〕 すなわち、上記で定義するアンモニア分解触媒の窒素選
択率が小さいと、NH 3 分解触媒層出口でNH3 >NO
xにコントロールしうるプラントの運転範囲が狭くな
り、幅広い処理ガス量、温度条件でコントロールするこ
とが必要となるため、窒素選択率は少なくとも60%以
上であることが好ましい。 【0012】上記の窒素選択率を有するNH3 分解触媒
としては、脱水された状態で、(1.0±0.6)R2
O・〔aM2 3 ・bAl2 3 〕・cMeO・ySi
2(R:アルカリ金属イオン及び/又は水素イオン、
M:周期律表のVIII族元素、希土類元素、チタン、バナ
ジウム、クロム、ニオブ、アンチモン及びガリウムから
なる群から選ばれる1種以上の元素、Me:アルカリ土
類金属元素、a+b=1、a≧0、b≧0、c≧0、y
/c>12、y>12)の化学式を有し、かつ前記表1
に示されるX線回折パターンを有する結晶性シリケート
を担体とし、活性金属として白金及び/又はパラジウム
を含有する触媒が好ましい。 【0013】またアンモニア添加装置に上段に設置する
一酸化炭素除去触媒は、アルミナ等の多孔質耐熱性担体
に活性金属として白金又はパラジウムを1種含有した触
媒が好ましい。多孔質耐熱性担体としてはγ−Al2
3 、TiO2 、SiO2 、ZrO2 、Fe2 3 、Si
2 ・Al2 3 などを使用することができ、担持され
るPt及び/又はPdの量は0.001〜10wt%の
範囲が好ましい。 【0014】一酸化炭素除去触媒層で一酸化炭素を燃焼
除去した窒素酸化物を含んだ排ガスは過剰のNH3 をN
3 添加装置で供給され、第1脱硝触媒層で脱硝されて
NOx:0〜10ppm、NH3 :10〜30ppmと
なり、この排ガスはNH3 分解触媒層でNH3 が低減さ
れてNOx、NH3 濃度が調整され、第2脱硝触媒層に
て排ガス中のNOx濃度:0.1ppm以下、NH3
度:5ppm以下にすることができる。 【0015】 【実施例】以下、実施例により本発明の方法をさらに具
体的に説明する。 【0016】(例1) (脱硝触媒の調製):チタニア(TiO2 )担体に五酸
化バナジウム(V2 5 )を4wt%、三酸化タングス
テン(WO3 )を8wt%担持させた粉末触媒を、3.
3mmピッチ、壁厚0.5mmの格子状ハニカム形状に
成型し、この触媒を脱硝触媒1とした。 【0017】(NH3 分解触媒の調製):水ガラス1号
(SiO2 :30%):5616gを水:5429gに
溶解し、この溶液を溶液Aとした。一方、水:4175
gに硫酸アルミニウム:718.9g、塩化第二鉄:1
10g、酢酸カルシウム:47.2g、塩化ナトリウ
ム:262g及び濃塩酸:2020gを混合して溶解
し、この溶液を溶液Bとした。溶液Aと溶液Bを一定割
合で供給し、沈殿を生成させ、十分攪拌してpH=8.
0のスラリを得た。このスラリを20リットルのオート
クレーブに仕込み、さらにテトラプロピルアンモニウム
ブロマイドを500g添加し、160℃にて72時間水
熱合成を行い、合成後水洗して乾燥させ、さらに500
℃、3時間焼成させ結晶性シリケート1を得た。この結
晶性シリケート1は酸化物のモル比で(結晶水を省く)
0.5Na2 O・0.5H2 O・〔0.8Al2 3
0.2Fe 2 3 ・0.25CaO〕・25SiO2
組成式で表され、結晶構造はX線回折で前記表1にて表
示されるものであった。上記結晶性シリケート1を4N
のNH4 Cl水溶液40℃に3時間攪拌してNH4 イオ
ン交換を実施した。イオン交換後洗浄して100℃、2
4時間乾燥させた後、400℃、3時間焼成してH型の
結晶性シリケート1を得た。 【0018】このH型結晶性シリケート1に、塩化白金
酸水溶液又は硝酸パラジウム水溶液を含浸し、蒸発乾固
後、500℃×3時間焼成し、粉末触媒を得た。得られ
た粉末:100gに対してバインダとしてアルミナゾ
ル:3g、シリカゾル:55g(SiO2 :20wt
%)及び水:200gを加え、スラリとし、コージェラ
イト用モノリス基材(30セル平方インチ当りの格子
状)にウォッシュコートして、基材表面積当り200g
/m2 のコート量に担持した。得られた触媒をNH3
解触媒1〜4とした。その性状を下記表2に示す。 【0019】 【表2】 【0020】上記NH3 分解触媒の調製法において、塩
化第二鉄の代りに塩化コバルト:112g、塩化チタ
ン:105g、塩化バナジウム:10g、塩化クロム:
107g、塩化ニオブ:135g、塩化アンチモン:1
55g、塩化ガリウム:119gを用いる以外には上記
と同様な方法でH型結晶性シリケート2,3,4,5,
6,7及び8を調製し、これら各H型結晶性シリケート
に塩化白金酸水溶液を用いて、上記調製法と同様な操作
で各H型結晶性シリケートに白金を担持し、上記調製法
と同様に操作してコージェライト用モノリス基材にウォ
ッシュコートして基材表面積当り200g/m2 のコー
ト量に担持した。得られた触媒をNH3 分解触媒5〜1
1とした。その性状を下記表3に示す。 【0021】 【表3】 【0022】(一酸化炭素除去触媒の調製)γ−アルミ
ナ(γ−Al2 3 )担体に塩化白金酸水溶液をPtに
して3wt%含浸法にて担持させ、100℃で乾燥し、
500℃で5時間焼成した粉末触媒:100gに対し
て、バインダとしてシリカゾル:55g(SiO2 :2
0wt%)及び水:200gを加えてスラリとし、コー
ジェライト用モノリス基材(30セル平方インチ当りの
格子状)にウォッシュコートして、基材表面積あたり1
50g/m2 のコート量を担持した。この触媒を一酸化
炭素除去触媒1とした。 【0023】(脱硝反応試験)40mm×50mm×5
0mmLの前記一酸化炭素除去触媒1を1本、40mm
×50mm×400mmLの前記脱硝触媒1本、40m
m×50mm×150mmLの前記NH3 分解触媒1
本、及び前記脱硝触媒3本を直列に配置し、下記表4に
示す条件にてテストした。Run1〜11のテスト結果
を後記表5に示す。 【0024】 【表4】 【0025】(比較例1)例1のRun1のシステムに
おいて一酸化炭素除去触媒を省略したシステム(=Ru
n12)の評価結果を表5に併せて示す。 【0026】表5に示す結果より、一酸化炭素除去触媒
を設置したRun1〜11での第2段脱硝触媒出口で
は、全てNOx<0.1ppm、NH3 <5ppmであ
るのに対して、一酸化炭素除去触媒を省略したRun1
2では、NH3 分解触媒の出口NH3 濃度は低減しNH
3 濃度がNOx濃度より低いため、第2段脱硝触媒出口
にてNOx>0.1ppmとなり目標を満たすことがで
きなかった。 【0027】 【表5】 【0028】なお、一酸化炭素除去触媒の担体として、
γ−Al2 3 に代えTiO2 、SiO2 、ZrO2
Fe2 3 、SiO2 ・Al2 3 を使用しても同様の
効果が得られた。 【0029】 【発明の効果】本発明の排ガスの浄化方法によれば、還
元剤であるNH3 の排出を低いレベルに維持して、極め
て高い効率で窒素酸化物、一酸化窒素を除去できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nitrogen oxides in exhaust gas.
(NOx), removes carbon monoxide (CO) with high efficiency
The present invention relates to a method for purifying exhaust gas that can be performed. [0002] 2. Description of the Related Art Removal of NOx contained in flue gas
The method is NHThreeCatalytic reduction method using urea as reducing agent
Has been widely put to practical use mainly in thermal power plants. As a catalyst
Activated vanadium, tungsten, and molybdenum
A titanium oxide-based catalyst is mainly used. [0003] SUMMARY OF THE INVENTION In recent years, NOx emission regulations have been
It is becoming increasingly severe, especially in metropolitan areas.
Regulations are being implemented, and power plants adjacent to urban areas
When expanding power generation equipment in response to growing power demand,
High efficiency denitration is required. In addition, emissions from power plants
Regulations on the emission of carbon monoxide are also becoming stricter. Obedience
Next denitration method is NH ThreeIs a catalytic reduction method using
4NO + 4NHThree+ OTwo→ 4NTwo+ 6HTwoIn the reaction formula of O
Therefore, NOx becomes N on the catalyst.TwoIs decomposed into This reaction formula
From the viewpoint, it is theoretically possible to make NH4 equimolar to NOx.ThreeWith
If added, NOx can be removed 100%. Only
In practice, NHThreeAnd NOx completely uniform
It is impossible to mix, and to perform highly efficient denitration
Has NHThreeMust be added in excess of NOx. So
Unreacted NHThreeHas the disadvantage that
there were. Heretofore, the inventors have determined that unreacted NHThreeExhaustion
Ammonia decomposition catalyst has been developed to prevent the
-127126, Japanese Patent Application No. 6-70486, etc.)
A finishing denitration catalyst is installed at the back to perform high-efficiency denitration.
Seth was proposed (Japanese Patent Application No. 6-176494). But,
Ammonia decomposition when carbon monoxide coexists in exhaust gas
NH of catalystThreeFailure to change decomposition rate and nitrogen selectivity
Occurred. [0005] In view of the state of the art, the present invention is based on the prior art.
Eliminate the disadvantages and unreacted NHThreeEmissions to the atmosphere as much as possible
To perform high-efficiency denitration.
To provide a method for purifying exhaust gas that can also remove sulfur
It is. [0006] SUMMARY OF THE INVENTION,Elemental oxides,
Exhaust gas containing carbon monoxide in a reactor filled with catalyst
Lead and contact with nitrogen oxides using ammonia as a reducing agent
In the upper stage of the ammonia addition device
ToPlatinum as an active metal and / or a porous heat-resistant carrier
0.001 to 10 wt% of palladium supportedCarbon monoxide
The element removal catalyst layer is located upstream of the lower side of the ammonia addition device.
The first denitration catalyst layer from the side and ammonia
Has the function of oxidatively decomposing into nitrogen oxidesDehydrated
(1.0 ± 0.6) R Two O ・ [aM Two O Three ・ B
Al Two O Three ] ・ CMeO ・ ySiO Two (R: alkali gold
Genus ion and / or hydrogen ion, M: group VIII of the periodic table
Element, rare earth element, titanium, vanadium, chromium, nio
1 selected from the group consisting of copper, antimony and gallium
Or more elements, Me: alkaline earth metal element, a + b =
1, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12, y> 1
It has the chemical formula of 2) and is described in the detailed description of the invention.
Crystalline silicon having an X-ray diffraction pattern shown in Table 1 of FIG.
Kate as a carrier and platinum and / or para as an active metal
Contains indiumThe ammonia decomposition catalyst layer is further
A second denitration catalyst layer is installed in the downstream,
Ammonia added from the inlet exhaust gas
Purification of exhaust gas characterized by adding more than reaction equivalent
OneBy lawis there. [0007] [Table 1]                VS: Very strong                   S: Strong                   M: Intermediate                   W: weak                 (X-ray source: Cu) [0008] Hereinafter, one embodiment of the present invention will be described with reference to FIG.
Clarify the effect. NH ThreeOn the upper side of the addition device 2
A carbon monoxide removal catalyst layer 1 is installed, and the catalyst is burned to produce a monoacid.
Burns and removes carbonized carbon. NHThreeOn the lower side of the addition device 2
The first denitration catalyst layer 3 is supplied with NH 3ThreeCracking catalyst layer 4
Further, a second denitration catalyst layer 5 is installed in the subsequent stream,
(1) A reaction equivalent or more to NOx upstream of the denitration catalyst layer 3
NHThreeTo NHThreeThe first denitration catalyst is added from the addition device 2
The denitration of 80% or more is performed in the layer 3 and the first denitration catalyst layer 3
Unreacted NH flowing outThreeTo NHThreeDecomposition by the decomposition catalyst layer 4
NOx, NH at the inlet of the second denitration catalyst layer downstreamThreeDark
The NOx at the outlet of the second denitration catalyst layer 5 was adjusted to 0.
1 ppm or less, NHThreeTo a level of 5 ppm or less. Up
V and V are applied to the first and second denitration catalyst layers 3 and 5 downstream and downstream, respectively.
TiO containing W, Mo, etc. as active ingredientsTwoConventional practical use of the system
The known catalyst can be used. In the method of the present invention, carbon monoxide is combusted by a catalyst.
NH to burn offThreeChanges in the performance of cracking catalysts
And no harmful carbon monoxide emissions
You can do it. In the above embodiment of the present invention, NHThreeDisassembly
As the catalyst used for the medium layer, select nitrogen as defined below
It is preferable that the rate% is 60% or more. [0011] (Equation 1) Nitrogen selectivity (%) = [1- {NOx at ammonia decomposition catalyst outlet (ppm)                   -NOx (ppm) at the inlet of ammonia decomposition catalyst /                   {Ammonia decomposition catalyst inlet NHThree(Ppm)                   -Ammonia decomposition catalyst outlet NHThree(Ppm)}] That is, the nitrogen selection of the ammonia decomposition catalyst as defined above
If the selectivity is small, NH ThreeNH at the outlet of the cracking catalyst layerThree> NO
The operating range of the plant that can be controlled to x is narrow
Control over a wide range of process gas volumes and temperature conditions.
Nitrogen selectivity should be at least 60% or less.
It is preferably above. NH having the above nitrogen selectivityThreeCracking catalyst
As (1.0 ± 0.6) RTwo
O ・ [aMTwoOThree・ BAlTwoOThree] ・ CMeO ・ ySi
OTwo(R: alkali metal ion and / or hydrogen ion,
M: Group VIII element of the periodic table, rare earth element, titanium, banana
From zium, chromium, niobium, antimony and gallium
At least one element selected from the group consisting of: Me: alkaline earth
A class metal element, a + b = 1, a ≧ 0, b ≧ 0, c ≧ 0, y
/ C> 12, y> 12) and the above Table 1
Crystalline silicate having X-ray diffraction pattern shown in
And platinum and / or palladium as active metals
Are preferred. [0013] Also, it is installed on the upper stage in the ammonia adding apparatus.
Carbon monoxide removal catalyst is a porous heat-resistant carrier such as alumina
Containing platinum or palladium as an active metal
Medium is preferred. Γ-Al as a porous heat-resistant carrierTwoO
Three, TiOTwo, SiOTwo, ZrOTwo, FeTwoOThree, Si
OTwo・ AlTwoOThreeEtc. can be used and carried
The amount of Pt and / or Pd is 0.001 to 10 wt%.
A range is preferred. Combustion of carbon monoxide by the carbon monoxide removal catalyst layer
Exhaust gas containing the removed nitrogen oxides contains excess NHThreeTo N
HThreeSupplied by the addition device and denitrated by the first denitration catalyst layer
NOx: 0 to 10 ppm, NHThree: 10 to 30 ppm
And this exhaust gas is NHThreeNH in the cracking catalyst layerThreeIs reduced
NOx, NHThreeThe concentration is adjusted and the second denitration catalyst layer
NOx concentration in exhaust gas: 0.1 ppm or less, NHThreeDark
Degree: 5 ppm or less. [0015] The following examples further illustrate the method of the present invention.
Explain physically. (Example 1) (Preparation of denitration catalyst): Titania (TiOTwo) Pentic acid as carrier
Vanadium (VTwoOFive4% by weight, tungsten trioxide
Ten (WOThree) Was supported at 8 wt%.
3 mm pitch, 0.5 mm wall thickness in a grid-like honeycomb shape
The catalyst was molded and used as a denitration catalyst 1. (NHThreePreparation of decomposition catalyst): Water glass No. 1
(SiOTwo: 30%): 5616 g to water: 5429 g
After dissolution, this solution was designated as solution A. On the other hand, water: 4175
g of aluminum sulfate: 718.9 g, ferric chloride: 1
10 g, calcium acetate: 47.2 g, sodium chloride
262 g and concentrated hydrochloric acid: 2020 g
This solution was designated as solution B. Solution A and Solution B
And a precipitate is formed, sufficiently stirred, and pH = 8.
A slurry of 0 was obtained. 20 liters of this slurry
Charged in a clave and added tetrapropyl ammonium
Add 500 g of bromide, and add water at 160 ° C for 72 hours.
Perform thermal synthesis, wash with water, dry after synthesis, and further 500
C. for 3 hours to obtain crystalline silicate 1. This result
Crystalline silicate 1 is in the molar ratio of oxides (water of crystallization is omitted)
0.5NaTwoO ・ 0.5HTwoO · [0.8AlTwoOThree
0.2Fe TwoOThree・ 0.25CaO] ・ 25SiOTwoof
It is represented by the composition formula, and the crystal structure is shown in Table 1 by X-ray diffraction.
It was shown. The above crystalline silicate 1 is 4N
NHFourThe mixture was stirred for 3 hours at 40 ° C.FourIo
Exchange was carried out. Wash after ion exchange at 100 ℃, 2
After drying for 4 hours, baking for 3 hours at 400 ° C.
Crystalline silicate 1 was obtained. This H-type crystalline silicate 1 has platinum chloride
Impregnated with an aqueous acid or palladium nitrate solution and evaporated to dryness
Thereafter, the mixture was calcined at 500 ° C. for 3 hours to obtain a powder catalyst. Obtained
Powder: Aluminazo as binder for 100 g
3 g, silica sol: 55 g (SiOTwo: 20wt
%) And water: add 200 g to make a slurry,
Monolith substrate for grids (grating per 30 cell square inch)
Wash coat), 200g per substrate surface area
/ MTwoIn the amount of coating. The resulting catalyst is converted to NHThreeMinute
Catalysts 1 to 4 were used. The properties are shown in Table 2 below. [0019] [Table 2] The above NHThreeIn the method for preparing the cracking catalyst, the salt
Cobalt chloride: 112 g instead of ferric chloride, titanium chloride
: 105 g, vanadium chloride: 10 g, chromium chloride:
107 g, niobium chloride: 135 g, antimony chloride: 1
55g, gallium chloride: 119g
H-type crystalline silicates 2, 3, 4, 5,
6, 7 and 8 were prepared, and each of these H-type crystalline silicates was prepared.
Operation similar to the above preparation method using chloroplatinic acid aqueous solution
The platinum is supported on each H-type crystalline silicate by
Operate in the same manner as in
200g / m per substrate surface areaTwoNo
The amount supported. The resulting catalyst is converted to NHThreeDecomposition catalyst 5-1
It was set to 1. The properties are shown in Table 3 below. [0021] [Table 3] (Preparation of catalyst for removing carbon monoxide) γ-aluminum
(Γ-AlTwoOThree) Platinum solution of chloroplatinic acid solution as carrier
And supported by a 3 wt% impregnation method, dried at 100 ° C.,
Powder catalyst calcined at 500 ° C. for 5 hours: For 100 g
And silica sol: 55 g (SiO 2Two: 2
0 wt%) and water: 200 g to form a slurry.
Monolith substrate for gelite (per 30 cells square inch
Wash-coated in a lattice)
50g / mTwoWas carried. Monoxide
This was designated as carbon removal catalyst 1. (Denitration reaction test) 40 mm x 50 mm x 5
One 0 mmL of the carbon monoxide removal catalyst 1 was 40 mm
1 x 50 mm x 400 mmL denitration catalyst, 40 m
m × 50 mm × 150 mmL of the NHThreeCracking catalyst 1
And the three denitration catalysts are arranged in series.
The test was performed under the following conditions. Run results of Run1-11
Is shown in Table 5 below. [0024] [Table 4] (Comparative Example 1) In the system of Run 1 of Example 1,
(= Ru) in which the catalyst for removing carbon monoxide was omitted
Table 5 also shows the evaluation results of n12). From the results shown in Table 5, the catalyst for removing carbon monoxide was used.
At the outlet of the second stage denitration catalyst in Runs 1 to 11
Are NOx <0.1 ppm, NHThree<5 ppm
On the other hand, Run 1 omitting the carbon monoxide removal catalyst
In 2, NHThreeCracking catalyst outlet NHThreeThe concentration is reduced to NH
ThreeSince the concentration is lower than the NOx concentration, the second stage denitration catalyst outlet
NOx> 0.1 ppm and the target can be met
I didn't come. [0027] [Table 5] As a carrier of the carbon monoxide removal catalyst,
γ-AlTwoOThreeInstead of TiOTwo, SiOTwo, ZrOTwo,
FeTwoOThree, SiOTwo・ AlTwoOThreeUsing the same
The effect was obtained. [0029] According to the method for purifying exhaust gas of the present invention,
NH as base agentThreeMaintaining low levels of emissions
Nitrogen oxide and nitric oxide can be removed with high efficiency.

【図面の簡単な説明】 【図1】本発明の排ガスの浄化方法の説明図。[Brief description of the drawings] FIG. 1 is an explanatory view of a method for purifying exhaust gas of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 29/068 ZAB B01D 53/36 E (56)参考文献 特開 昭52−54670(JP,A) 特開 昭51−63363(JP,A) 特開 昭51−13370(JP,A) 特開 平4−118028(JP,A) 特開 昭63−87521(JP,A) 特開 平2−293022(JP,A) 特開 昭51−84771(JP,A) 特開 平6−327943(JP,A) 特開 昭56−108516(JP,A) 特開 昭53−132465(JP,A) 特開 昭53−108065(JP,A) 特開 昭53−102866(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/86 B01J 21/00 - 38/74 ────────────────────────────────────────────────── 7 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI B01J 29/068 ZAB B01D 53/36 E (56) References JP-A-52-54670 (JP, A) JP-A-51-63363 (JP, A) JP-A-51-13370 (JP, A) JP-A-4-118028 (JP, A) JP-A-63-87521 (JP, A) JP-A-2-293022 (JP, A) JP-A-51-84771 (JP, A) JP-A-6-327943 (JP, A) JP-A-56-108516 (JP, A) JP-A-53-132465 (JP, A) JP-A-53-108065 (JP, A) JP, A) JP-A-53-102866 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/86 B01J 21/00-38/74

Claims (1)

(57)【特許請求の範囲】 【請求項1】 窒素酸化物、一酸化炭素を含有する排ガ
スを触媒を充填した反応器に導いて、アンモニアを還元
剤として接触的に窒素酸化物を除去する方法において、
アンモニア添加装置の上段側に多孔質耐熱性担体に、活
性金属として白金及び/又はパラジウムを0.001〜
10wt%担持した一酸化炭素除去触媒層を、アンモニ
ア添加装置の下段側には上流側から第1脱硝触媒層を、
その後流にアンモニアを窒素及び窒素酸化物に酸化分解
する機能を有する脱水された状態で、(1.0±0.
6)R 2 O・〔aM 2 3 ・bAl 2 3 〕・cMeO
・ySiO 2 (R:アルカリ金属イオン及び/又は水素
イオン、M:周期律表のVIII族元素、希土類元素、チタ
ン、バナジウム、クロム、ニオブ、アンチモン及びガリ
ウムからなる群から選ばれる1種以上の元素、Me:ア
ルカリ土類金属元素、a+b=1、a≧0、b≧0、c
≧0、y/c>12、y>12)の化学式を有し、かつ
発明の詳細な説明の項に記載の表1に示されるX線回折
パターンを有する結晶性シリケートを担体とし、活性金
属として白金及び/又はパラジウムを含有するアンモニ
ア分解触媒層を、さらにその後流に第2脱硝触媒層を設
置し、アンモニア添加装置から添加されるアンモニアを
入口排ガス中の窒素酸化物の反応当量以上に添加するこ
とを特徴とする排ガスの浄化方法。
(57) [Claim 1] An exhaust gas containing nitrogen oxides and carbon monoxide is led to a reactor filled with a catalyst, and the nitrogen oxides are removed catalytically using ammonia as a reducing agent. In the method,
In the upper stage of the ammonia addition device ,
Platinum and / or palladium as a reactive metal
A carbon monoxide removal catalyst layer supporting 10 wt%, a first denitration catalyst layer from the upstream side on the lower side of the ammonia addition device,
The dewatered state having the function of oxidatively decomposing ammonia into nitrogen and nitrogen oxides is added to the subsequent stream (1.0 ± 0.
6) R 2 O · [aM 2 O 3 · bAl 2 O 3 ] · CMeO
• ySiO 2 (R: alkali metal ion and / or hydrogen
Ion, M: Group VIII element of the periodic table, rare earth element, titanium
, Vanadium, chromium, niobium, antimony and gully
One or more elements selected from the group consisting of
Lucari earth metal element, a + b = 1, a ≧ 0, b ≧ 0, c
≧ 0, y / c> 12, y> 12), and
X-ray diffraction shown in Table 1 in the detailed description of the invention
Activated gold using crystalline silicate with pattern as carrier
An ammonia decomposition catalyst layer containing platinum and / or palladium as a genus, and a second denitration catalyst layer provided downstream thereof, and ammonia added from an ammonia addition device is supplied with nitrogen oxides in the inlet exhaust gas. A method for purifying exhaust gas, characterized in that it is added in an amount equal to or more than the reaction equivalent of the above.
JP12099895A 1995-05-19 1995-05-19 Exhaust gas purification method Expired - Lifetime JP3388941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12099895A JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12099895A JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH08309152A JPH08309152A (en) 1996-11-26
JP3388941B2 true JP3388941B2 (en) 2003-03-24

Family

ID=14800256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12099895A Expired - Lifetime JP3388941B2 (en) 1995-05-19 1995-05-19 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3388941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575054B2 (en) * 2004-07-15 2013-11-05 Nikki-Universal Co., Ltd. Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas
US7393511B2 (en) * 2005-02-16 2008-07-01 Basf Catalysts Llc Ammonia oxidation catalyst for the coal fired utilities
US8910468B2 (en) 2009-02-04 2014-12-16 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment catalyst, exhaust gas treatment method, and exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JPH08309152A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
US5728356A (en) Methods of denitrating exhaust gases
JP2732614B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CA2486158C (en) Catalyst for removing nitrogen oxides, method for production the same, and method for removing nitrogen oxides
US6479026B1 (en) Method of denitrating exhaust gas
JP4118077B2 (en) Exhaust gas purification method
JP3388941B2 (en) Exhaust gas purification method
JP3132960B2 (en) Ammonia decomposition catalyst
JP3132959B2 (en) Ammonia decomposition catalyst
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP3462580B2 (en) Exhaust gas denitration method
JP3229136B2 (en) Ammonia decomposition method
JP3332652B2 (en) Ammonia decomposition removal method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JP3241216B2 (en) Exhaust gas denitration treatment method
JP3495542B2 (en) Sulfur trioxide reduction method
JP3034981B2 (en) Exhaust gas purification method
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3229117B2 (en) Ammonia decomposition method
JP3254040B2 (en) DeNOx treatment method
JPH11267458A (en) Reduction treatment of so3 in waste gas
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH08266870A (en) Denitrifying method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term