JP3254040B2 - DeNOx treatment method - Google Patents

DeNOx treatment method

Info

Publication number
JP3254040B2
JP3254040B2 JP11949193A JP11949193A JP3254040B2 JP 3254040 B2 JP3254040 B2 JP 3254040B2 JP 11949193 A JP11949193 A JP 11949193A JP 11949193 A JP11949193 A JP 11949193A JP 3254040 B2 JP3254040 B2 JP 3254040B2
Authority
JP
Japan
Prior art keywords
denitration
catalyst
exhaust gas
ammonia
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11949193A
Other languages
Japanese (ja)
Other versions
JPH06327943A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11949193A priority Critical patent/JP3254040B2/en
Publication of JPH06327943A publication Critical patent/JPH06327943A/en
Application granted granted Critical
Publication of JP3254040B2 publication Critical patent/JP3254040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は排ガス中の窒素酸化物
(以下、NOxと略称する)を高い効率にて除去するこ
とのできる脱硝処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration method capable of removing nitrogen oxides (hereinafter abbreviated as NOx) in exhaust gas with high efficiency.

【0002】[0002]

【従来の技術】排ガス中の窒素酸化物(NOx)を除去
する方法として、NOxとアンモニア(NH3 )とを接
触的に反応させて窒素と水に分解する接触アンモニア還
元法が広く用いられている。この方法には、反応を促進
するための脱硝触媒が必要であり、これまで多くの面か
ら触媒開発の研究がなされてきた。
2. Description of the Related Art As a method for removing nitrogen oxides (NOx) in exhaust gas, a catalytic ammonia reduction method in which NOx and ammonia (NH 3 ) are catalytically reacted to decompose into nitrogen and water is widely used. I have. This method requires a denitration catalyst for accelerating the reaction, and many researches on catalyst development have been made so far.

【0003】[0003]

【発明が解決しようとする課題】最近、NOx排出規制
が厳しくなっており、とりわけ、大都市部においては煙
突からのNOx排出濃度が大気相当の0.06ppm程
度まで低下させる要望が示されている。NH3 を用いた
接触還元による脱硝方法においては反応は次式に従って
進行し、NOxはN2 に分解される。 4NO+4NH3 +O2 → 4N2 +6H2 O 従来の方法では、上式のようにほゞ等量のNH3 を添加
して脱硝を行っていた。しかし、ボイラー排ガスでは、
NOとNH3 の混合度合やNH3 の分解等の影響のた
め、上記反応式通りの100%脱硝はできず、反応率は
80〜90%程度であり、未反応のNOが数ppm〜1
0数ppmそのまま排出されていた。一方、NH3 をN
Oの等量以上に添加し、NOの分解率を向上させるのは
可能であるが、未反応のNH3 が大気中に排出されてし
まう不具合が生じるため、好ましいNOx排出濃度低減
法は存在しなかった。
Recently, NOx emission regulations have become stricter. Particularly in large cities, there has been a demand for reducing the NOx emission concentration from a chimney to about 0.06 ppm corresponding to the atmosphere. . In the denitration method by catalytic reduction using NH 3 , the reaction proceeds according to the following equation, and NOx is decomposed into N 2 . 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O In the conventional method, almost the same amount of NH 3 was added as in the above equation to perform denitration. However, in the boiler exhaust gas,
Due to the influence of the degree of mixing of NO and NH 3 and the decomposition of NH 3 , 100% denitration cannot be carried out according to the above reaction formula, the reaction rate is about 80 to 90%, and the unreacted NO is several ppm to
0 ppm was emitted as it was. On the other hand, NH 3
Although it is possible to increase the decomposition rate of NO by adding more than the same amount of O, there is a problem that unreacted NH 3 is discharged into the atmosphere. Therefore, there is a preferable NOx emission concentration reduction method. Did not.

【0004】本発明は、前記従来技術の問題点を解決
し、未反応のNH3 を大気中に放出することなく、高効
率でNOxを分解することができる脱硝処理方法を提供
することを目的とする。
An object of the present invention is to solve the problems of the prior art and to provide a denitration method capable of decomposing NOx with high efficiency without releasing unreacted NH 3 into the atmosphere. And

【0005】[0005]

【課題を解決するための手段】本発明は、窒素酸化物含
有排ガスを、脱硝触媒を充填した脱硝反応器に導きアン
モニアの存在下に脱硝触媒と接触させて窒素酸化物を除
去する方法において、排ガス流入側に脱硝触媒層を設置
し、排ガス出口側にはアンモニア分解触媒層を有する脱
硝反応器を設置し、前段において窒素酸化物に対し反応
等量以上のアンモニアを添加して窒素酸化物を分解さ
せ、後段において過剰のアンモニアを分解させる排ガス
の脱硝処理方法であって、前記アンモニア分解触媒が、
脱水された状態で(1.0±0.6)R2 O・〔aM2
3 ・bAl2 3 〕・cMeO・ySiO2 (式中、
R:アルカリ金属イオン及び/又は水素イオン、M:周
期率表のVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン及びガリウムからなる
群から選ばれる1種以上の元素、Me:アルカリ土類元
素、a+b=1.0,a≧0,b≧0,c≧0,y/c
>12,y>12)の化学組成を有し、かつ後述の表1
に示されるX線回折パターンを有する結晶性シリケート
に銅、コバルト、ニッケル、鉄、亜鉛、マンガン、クロ
ム、アルカリ土類元素及び希土類元素のうち少なくとも
1種以上を含有させてなる触媒である排ガスの脱硝処理
方法である。
The present invention provides a method for removing nitrogen oxides by introducing a nitrogen oxide-containing exhaust gas into a denitration reactor filled with a denitration catalyst and contacting the exhaust gas with the denitration catalyst in the presence of ammonia. A denitration catalyst layer is installed on the exhaust gas inflow side, and a denitration reactor with an ammonia decomposition catalyst layer is installed on the exhaust gas outlet side. Decomposing, a denitration treatment method of exhaust gas to decompose excess ammonia in the subsequent stage, wherein the ammonia decomposition catalyst,
In the dehydrated state, (1.0 ± 0.6) R 2 O · [aM 2
O 3 · bAl 2 O 3 ] · cMeO · ySiO 2 (wherein,
R: alkali metal ion and / or hydrogen ion; M: at least one element selected from the group consisting of group VIII elements of the periodic table, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium; Me: alkali Earth element, a + b = 1.0, a ≧ 0, b ≧ 0, c ≧ 0, y / c
> 12, y> 12), and Table 1
Exhaust gas which is a catalyst comprising a crystalline silicate having an X-ray diffraction pattern shown in the above, containing at least one or more of copper, cobalt, nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements This is a denitration treatment method.

【0006】本発明の方法においては、脱硝反応器の排
ガス流入側にNH3 の存在下でNOxを分解する選択的
脱硝触媒を配置し、NOxと反応等量以上のNH3 を添
加して十分にNOxを分解させる。一方、排ガス出口側
にはNH3 分解触媒を設置して、未反応のNH3 を下式
により無害なN2 とH2 Oに分解する。 2NH3 + 3/2O2 → N2 +3H2 O 本発明の方法によれば、脱硝触媒とNH3 分解触媒の後
流側にはNOxやNH 3 はほとんど排出されず、高い効
率にて脱硝を行うことが可能である。
[0006] In the method of the present invention, the denitration reactor is discharged.
NH on gas inlet sideThreeSelective decomposition of NOx in the presence of NO
A denitration catalyst is provided, and NH is reacted with NOx or moreThreeWith
To sufficiently decompose NOx. On the other hand, on the exhaust gas outlet side
Has NHThreeBy installing a decomposition catalyst, unreacted NHThreeIs
Harmless NTwoAnd HTwoDecomposes into O. 2NHThree+ 3 / 2OTwo → NTwo+ 3HTwoO According to the method of the present invention, the denitration catalyst and NHThreeAfter cracking catalyst
NOx or NH on the downstream side ThreeIs hardly discharged,
It is possible to perform denitration at a rate.

【0007】前段に用いる脱硝触媒としては、バナジウ
ム、タングステン等を担持させたチタニア触媒が好適で
あり、これをハニカム状に成型して設置するのが好まし
い。
As the denitration catalyst used in the former stage, a titania catalyst supporting vanadium, tungsten, or the like is suitable, and it is preferable to form and install it in a honeycomb shape.

【0008】後段に設置するNH3 分解触媒は、脱水さ
れた状態で(1.0±0.6)R2O・〔aM2 3
bAl2 3 〕・cMeO・ySiO2 (式中、R:ア
ルカリ金属イオン及び/又は水素イオン、M:周期率表
のVIII族元素、希土類元素、チタン、バナジウム、クロ
ム、ニオブ、アンチモン及びガリウムからなる群から選
ばれる1種以上の元素、Me:アルカリ土類元素、a+
b=1.0,a≧0,b≧0,c≧0,y/c>12,
y>12)の化学組成を有し、かつ表1に示されるX線
回折パターンを有する結晶性シリケートに銅、コバル
ト、ニッケル、鉄、亜鉛、マンガン、クロム、アルカリ
土類元素及び希土類元素のうち少なくとも1種以上を含
有させてなる触媒である。
The NH 3 decomposition catalyst installed at the subsequent stage is dehydrated (1.0 ± 0.6) R 2 O. [aM 2 O 3.
bAl 2 O 3 ] .cMeO.ySiO 2 (wherein, R is an alkali metal ion and / or a hydrogen ion, M is a group VIII element in the periodic table, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium. At least one element selected from the group consisting of: Me: alkaline earth element, a +
b = 1.0, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12,
y> 12) and a crystalline silicate having an X-ray diffraction pattern shown in Table 1 among copper, cobalt, nickel, iron, zinc, manganese, chromium, alkaline earth elements and rare earth elements. It is a catalyst containing at least one or more kinds.

【0009】[0009]

【表1】 VS:非常に強い (X線源:Cu) S:強い M:中級 W:弱い[Table 1] VS: Very strong (X-ray source: Cu) S: Strong M: Intermediate W: Weak

【0010】この触媒は100〜600℃の温度範囲
で、長時間にわたって劣化することなく、NH3 をN2
に分解することができる。なお、この触媒はNH3 分解
によるNO,NO2 ,N2 O等の副生成物は全く生成せ
ず、選択的にN2 に変換できる特徴を有している。この
触媒はウォッシュコート法又はソリッド法にてハニカム
化して設置するのが好ましい。特に好ましい形態として
はハニカム状に成型されたコージェライト等の基材上に
コートした形で使用する。
This catalyst converts NH 3 into N 2 at a temperature range of 100 to 600 ° C. without deterioration over a long period of time.
Can be decomposed into This catalyst has a feature that it does not generate any by-products such as NO, NO 2 and N 2 O by decomposition of NH 3 , and can be selectively converted to N 2 . This catalyst is preferably provided in a honeycomb form by a wash coat method or a solid method. As a particularly preferred embodiment, the substrate is used in a form coated on a substrate such as cordierite molded into a honeycomb shape.

【0011】[0011]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製)アンモニア還元脱硝触媒(脱硝触媒)は
チタニア(TiO2 )担体に五酸化バナジウム(V2
5 )を2wt%,三酸化タングステン(WO3 )を8w
t%担持させた粉末触媒を3mm□ピッチ,肉厚1mm
のハニカム形状に成型したものを用いた。このハニカム
触媒を触媒Aとする。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Preparation of catalyst) Ammonia reduction denitration catalyst (denitration catalyst) is prepared by using vanadium pentoxide (V 2 O) on a titania (TiO 2 ) carrier.
5 ) 2 wt%, tungsten trioxide (WO 3 ) 8 w
3mm □ pitch, 1mm wall thickness of powder catalyst loaded with t%
What was shape | molded in the honeycomb shape of this was used. This honeycomb catalyst is referred to as Catalyst A.

【0012】アンモニア分解触媒としては、酸化物のモ
ル比で表2に示す組成を有し、かつ表1に示したX線回
折パターンを有する結晶構造の、結晶性シリケート型触
媒を使用した。これらの触媒の粉末を、前記脱硝触媒と
同様の形状を有するコージェライトハニカム基材に80
g/m2 基材の量となるようにウォッシュコート法によ
りコートした。これらのハニカム触媒を触媒B〜Nとし
た。
As the ammonia decomposition catalyst, a crystalline silicate type catalyst having the composition shown in Table 2 in terms of the molar ratio of oxides and having the crystal structure having the X-ray diffraction pattern shown in Table 1 was used. A powder of these catalysts is applied to a cordierite honeycomb substrate having a shape similar to that of the above-mentioned denitration catalyst.
Coating was carried out by a wash coat method so that the amount was g / m 2 . These honeycomb catalysts were designated as catalysts B to N.

【0013】[0013]

【表2】 [Table 2]

【0014】(NOx除去試験)図1に示すたて型の脱
硝反応試験装置1の排ガス流入側(前段)に脱硝触媒層
2(前記触媒A)を、排ガス出口側(後段)にアンモニ
ア分解触媒層3(前記触媒B〜N)を、それぞれの容量
が27mlとなるように設置した。この試験装置に矢印
X,Xの方向に次の組成の試験ガスをSV=16300
-1(ガス量440 Nl/h) の条件で通し、電気炉
4により加熱して脱硝触媒層及びアンモニア分解触媒層
の温度をそれぞれ300〜400℃及び200〜400
℃の間に保持して脱硝試験を行った。 <試験ガス組成> NO 50 ppm NH3 100 ppm CO2 7 % H2 O 6 % O2 14.7% N2 残 前段の触媒層と後段の触媒層との間(ガスA)及び後段
の触媒層の後流側(ガスB)でガスをサンプリングし、
それぞれの位置でのNOx(NO+NO2 )及びNH3
の含有率を調べた。脱硝触媒Aとアンモニア分解触媒B
を使用し、それぞれの触媒層の温度を変化させて測定し
た結果を表3に示す。また、脱硝触媒層及びアンモニア
分解触媒層の温度をそれぞれ350℃及び300℃と
し、アンモニア分解触媒として前記の触媒C〜Nを使用
して測定した結果を表4に示す。
(NOx removal test) A denitration catalyst layer 2 (catalyst A) is provided on the exhaust gas inflow side (front stage) of the vertical denitration reaction test apparatus 1 shown in FIG. 1, and an ammonia decomposition catalyst is provided on the exhaust gas outlet side (rear stage). The layers 3 (the catalysts B to N) were placed so that each volume became 27 ml. In this test apparatus, a test gas having the following composition was applied in the directions of arrows X and X to SV = 16300.
h -1 (gas amount: 440 Nl / h) and heated by the electric furnace 4 to adjust the temperatures of the denitration catalyst layer and the ammonia decomposition catalyst layer to 300 to 400 ° C. and 200 to 400 ° C., respectively.
A denitration test was carried out while the temperature was kept at a temperature in the range of ° C. <Test gas composition> NO 50 ppm NH 3 100 ppm CO 2 7% H 2 O 6% O 2 14.7% N 2 remaining Between the former catalyst layer and the latter catalyst layer (gas A) and the latter catalyst Sample gas on the downstream side (gas B) of the bed,
NOx (NO + NO 2 ) and NH 3 at each position
Was determined. DeNOx catalyst A and ammonia decomposition catalyst B
Table 3 shows the measurement results obtained by changing the temperature of each catalyst layer. Table 4 shows the results obtained by measuring the temperatures of the denitration catalyst layer and the ammonia decomposition catalyst layer at 350 ° C. and 300 ° C., respectively, and using the catalysts C to N as the ammonia decomposition catalyst.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】表3及び表4の結果から、本発明の方法に
より、前段の脱硝触媒層において約99%という高い脱
硝率が得られ、NOxに対し2モル比のNH3 を使用し
ても、過剰のNH3 は後段のアンモニア分解触媒層にお
いてほとんど完全に分解され、さらに後段の触媒層にお
いてもさらに脱硝が進み、NOx濃度はさらに低下して
いることがわかる。なお、ガスA、BについてNOx
(NO+NO2 )以外にN2 Oの分析も行ったがN2
はほとんど副生していないことが確認された。
[0017] Table 3 and from the results of Table 4, the method of the present invention, a high denitration rate of approximately 99% in the previous stage of the denitration catalyst layer can be obtained, the use of NH 3 in 2 molar ratio with respect to NOx, It can be seen that the excess NH 3 is almost completely decomposed in the subsequent ammonia decomposition catalyst layer, and the denitration is further advanced in the subsequent catalyst layer, and the NOx concentration is further reduced. Note that NOx was used for gases A and B.
(NO + NO 2), but analysis of the N 2 O is also performed other than N 2 O
It was confirmed that there was almost no by-product.

【0018】[0018]

【発明の効果】本発明の方法によれば、NOxを含有す
る排ガスからリークNH3 の恐れがなく、高い効率でN
Oxを分解除去することができる。
According to the method of the present invention, there is no danger of leaking NH 3 from the exhaust gas containing NOx, and the efficiency of N 2 is increased with high efficiency.
Ox can be decomposed and removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法による脱硝処理方法の1実施態様
を示す概略図である。
FIG. 1 is a schematic diagram showing one embodiment of a denitration treatment method according to the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/00 B01D 53/86 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/00 B01D 53/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素酸化物含有排ガスを、脱硝触媒を充
填した脱硝反応器に導きアンモニアの存在下に脱硝触媒
と接触させて窒素酸化物を除去する方法において、排ガ
ス流入側に脱硝触媒層を設置し、排ガス出口側にはアン
モニア分解触媒層を有する脱硝反応器を設置し、前段に
おいて窒素酸化物に対し反応等量以上のアンモニアを添
加して窒素酸化物を分解させ、後段において過剰のアン
モニアを分解させる排ガスの脱硝処理方法であって、前
記アンモニア分解触媒が、脱水された状態で(1.0±
0.6)R2 O・〔aM2 3 ・bAl2 3 〕・cM
eO・ySiO2 (式中、R:アルカリ金属イオン及び
/又は水素イオン、M:周期率表のVIII族元素、希土類
元素、チタン、バナジウム、クロム、ニオブ、アンチモ
ン及びガリウムからなる群から選ばれる1種以上の元
素、Me:アルカリ土類元素、a+b=1.0,a≧
0,b≧0,c≧0,y/c>12,y>12)の化学
組成を有し、かつ発明の詳細な説明の項に記載の表1に
示されるX線回折パターンを有する結晶性シリケートに
銅、コバルト、ニッケル、鉄、亜鉛、マンガン、クロ
ム、アルカリ土類元素及び希土類元素のうち少なくとも
1種以上を含有させてなる触媒である排ガスの脱硝処理
方法。
1. A method for removing a nitrogen oxide by introducing a nitrogen oxide-containing exhaust gas into a denitration reactor filled with a denitration catalyst and bringing the exhaust gas into contact with the denitration catalyst in the presence of ammonia. A denitration reactor having an ammonia decomposition catalyst layer is installed on the exhaust gas outlet side, and ammonia is added to the nitrogen oxides in an earlier stage in a reaction equivalent amount or more to decompose the nitrogen oxides. A method for denitration of exhaust gas, wherein the ammonia decomposition catalyst is dehydrated (1.0 ± 1.0%).
0.6) R 2 O · [aM 2 O 3 · bAl 2 O 3 ] · cM
eO · ySiO 2 (wherein, R is an alkali metal ion and / or a hydrogen ion, M is a member selected from the group consisting of a group VIII element of the periodic table, a rare earth element, titanium, vanadium, chromium, niobium, antimony, and gallium. Or more elements, Me: alkaline earth element, a + b = 1.0, a ≧
0, b ≧ 0, c ≧ 0, y / c> 12, y> 12) and a crystal having an X-ray diffraction pattern shown in Table 1 described in the detailed description of the invention. A method for denitrifying exhaust gas, which is a catalyst comprising at least one of copper, cobalt, nickel, iron, zinc, manganese, chromium, an alkaline earth element and a rare earth element in a crystalline silicate.
JP11949193A 1993-05-21 1993-05-21 DeNOx treatment method Expired - Lifetime JP3254040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11949193A JP3254040B2 (en) 1993-05-21 1993-05-21 DeNOx treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11949193A JP3254040B2 (en) 1993-05-21 1993-05-21 DeNOx treatment method

Publications (2)

Publication Number Publication Date
JPH06327943A JPH06327943A (en) 1994-11-29
JP3254040B2 true JP3254040B2 (en) 2002-02-04

Family

ID=14762589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11949193A Expired - Lifetime JP3254040B2 (en) 1993-05-21 1993-05-21 DeNOx treatment method

Country Status (1)

Country Link
JP (1) JP3254040B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500301A (en) * 1991-03-07 1996-03-19 Kabushiki Kaisha Kobe Seiko Sho A1 alloy films and melting A1 alloy sputtering targets for depositing A1 alloy films
JP2020182898A (en) * 2019-05-07 2020-11-12 株式会社キャタラー Ammonia oxidation catalyst device
JP2021023893A (en) * 2019-08-07 2021-02-22 日立造船株式会社 Reactor

Also Published As

Publication number Publication date
JPH06327943A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
EP0694329B1 (en) Method of denitrating exhaust gases
JP2732614B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
ES2337966T3 (en) METHOD OF DESNITRATION OF EXHAUST GASES.
JP3254040B2 (en) DeNOx treatment method
JP3132960B2 (en) Ammonia decomposition catalyst
JP3132959B2 (en) Ammonia decomposition catalyst
JP3229136B2 (en) Ammonia decomposition method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH09234340A (en) Purification of exhaust gas containing oxidizable nitrogen compound
JP3462580B2 (en) Exhaust gas denitration method
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JP3388941B2 (en) Exhaust gas purification method
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3241216B2 (en) Exhaust gas denitration treatment method
JP3507538B2 (en) Exhaust gas purification catalyst and purification method
JP3453172B2 (en) DeNOx method
JP3241166B2 (en) Ammonia decomposition method
JPH08266870A (en) Denitrifying method
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JPH10151349A (en) Ammonia decomposition catalyst and method for using the same
JPH0563222B2 (en)
JP3229117B2 (en) Ammonia decomposition method
KR930004501B1 (en) Catalyst for removing nitrogen dioxide and nitric oxide
JPH08299761A (en) Decomposing and removing method of ammonia

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

EXPY Cancellation because of completion of term