JPH10151349A - Ammonia decomposition catalyst and method for using the same - Google Patents

Ammonia decomposition catalyst and method for using the same

Info

Publication number
JPH10151349A
JPH10151349A JP8310917A JP31091796A JPH10151349A JP H10151349 A JPH10151349 A JP H10151349A JP 8310917 A JP8310917 A JP 8310917A JP 31091796 A JP31091796 A JP 31091796A JP H10151349 A JPH10151349 A JP H10151349A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
carrier
decomposition catalyst
ammonia decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8310917A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
博 川越
Toshikatsu Mori
利克 森
Kenji Baba
研二 馬場
Yukio Murai
行男 村井
Akio Tanaka
明雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Ltd
Priority to JP8310917A priority Critical patent/JPH10151349A/en
Publication of JPH10151349A publication Critical patent/JPH10151349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the production of NOx as a by-product as well as to very efficiently decompose high concn. ammonia contained in waste gas even in a high temp. range by using an ammonia decomposition catalyst consisting of an oxide carrier and Ag. SOLUTION: One or more kinds of oxides such as titania, alumina and zeolite are used as an oxide carrier and Ag or Cu and Ag as catalytically active components are disposed preferably in the surface layer of the carrier to obtain the objective catalyst that oxides and decomposes ammonia in waste gas contg. 100-30,000ppm ammonia, an equiv. weight or more of oxygen and steam. This ammonia decomposition catalyst preferably contains Ag and Cu by 0.2-0.01 part by atom each based on 1 part of the oxide carrier. Ammonia-contg. waste gas is brought into contact with the catalyst at 200-600 deg.C, preferably 250-500 deg.C and steam is added to the waste gas by 10-60%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なアンモニア分
解触媒、さらに詳しくは200〜600℃の温度範囲で、例え
ば火力発電設備,下水処理設備,アミン製造設備,食品
製造設備,し尿処理設備の排ガス中に含有する高濃度ア
ンモニアを除去するためのアンモニア分解触媒及びそれ
らの使用方法に関する。
TECHNICAL FIELD The present invention relates to a novel ammonia decomposition catalyst, and more particularly, to an exhaust gas from a thermal power generation facility, a sewage treatment facility, an amine production facility, a food production facility, a human waste treatment facility in a temperature range of 200 to 600 ° C. The present invention relates to an ammonia decomposition catalyst for removing high-concentration ammonia contained therein and a method for using the same.

【0002】[0002]

【従来の技術】火力発電設備,下水処理設備,アミン製
造設備,食品製造設備,し尿処理設備,コークス炉製造
設備等から排出される排ガス中のアンモニアは有害物質
であったり、配管系を腐食するなど悪影響が大きい為、
排ガス中からアンモニアを除去することが研究されてい
る。
2. Description of the Related Art Ammonia in exhaust gas discharged from thermal power generation facilities, sewage treatment facilities, amine production facilities, food production facilities, human waste treatment facilities, coke oven production facilities, etc. is a harmful substance or corrodes piping systems. Because the adverse effects are large,
The removal of ammonia from exhaust gas has been studied.

【0003】排ガス中のアンモニアを除去するための触
媒として例えば特開平7ー328440号公報に記載されたも
ののように、TiO2 にMn,Cu,Cr,Co,F
e,V,Ni,Mo,Zn,Rh,Ruからなる触媒を
300〜430℃の温度でアンモニアに接触させて無害なN2
とH2Oに分解することが提案されている。 2NH3 +3/2O2 →N2+3H2
As a catalyst for removing ammonia in exhaust gas, Mn, Cu, Cr, Co, F is added to TiO 2 as disclosed in, for example, JP-A-7-328440.
e, V, Ni, Mo, Zn, Rh, Ru
Harmless N 2 by contacting ammonia at a temperature of 300-430 ° C
And H 2 O have been proposed. 2NH 3 + 3 / 2O 2 → N 2 + 3H 2 O

【0004】一方、排ガス中のアンモニアを除去するた
めのシステムとして例えば、特開平2-152523号公報に記
載されたもののように、ガスタービン排ガスの窒素酸化
物を脱硝した後、残留する10ppm程度のアンモニアを
TiにCu,Agなどを担持した触媒により分解するこ
とが提案されている。上記のように従来用いられてきた
アンモニア分解触媒はアンモニアを酸化分解する際に窒
素酸化物(NO,NO2,N2O)が発生する。
On the other hand, as a system for removing ammonia in exhaust gas, for example, as disclosed in Japanese Patent Application Laid-Open No. HEI 2-125523, about 10 ppm remaining after denitrification of nitrogen oxides of gas turbine exhaust gas. It has been proposed to decompose ammonia with a catalyst in which Cu, Ag, etc. are supported on Ti. As described above, the conventionally used ammonia decomposition catalyst generates nitrogen oxides (NO, NO 2 , N 2 O) when oxidizing and decomposing ammonia.

【0005】2NH3 +5/2O2→2NO+3HO 2NH3 +7/2O→2NO2+3H2O 2NH3 +2O2→N2O+3H22NH 3 + 5 / 2O 2 → 2NO + 3HO 2NH 3 + 7 / 2O → 2NO 2 + 3H 2 O 2NH 3 + 2O 2 → N 2 O + 3H 2 O

【0006】そして、これら窒素酸化物は大気汚染物質
であることから、その発生を最小限度に抑制することが
強く望まれている。
[0006] Since these nitrogen oxides are air pollutants, it is strongly desired to minimize their generation.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の触媒における問題点を解決し、特に排ガス中
に含有する高濃度アンモニアを200〜600℃の温度範囲で
極めて効率良く分解し、かつ窒素酸化物の副生する恐れ
がない新規なアンモニア分解触媒を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art catalyst, and particularly to decompose highly concentrated ammonia contained in exhaust gas very efficiently in a temperature range of 200 to 600 ° C. Another object of the present invention is to provide a novel catalyst for decomposing ammonia, which has no risk of by-producing nitrogen oxides.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者等は鋭意研究を重ねた結果、Agを含むア
ンモニア分解触媒が上記問題点を解決する触媒であるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は 100〜30,000ppmのアンモニア,当量以上の酸
素,水蒸気を含有する排ガスからアンモニアを酸化分解
する触媒であって、酸化物担体及びAgを含むことを特
徴とするアンモニア分解触媒である。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that an ammonia decomposition catalyst containing Ag is a catalyst which solves the above-mentioned problems. The invention has been completed. That is, the present invention is a catalyst for oxidatively decomposing ammonia from an exhaust gas containing 100 to 30,000 ppm of ammonia, an equivalent amount or more of oxygen and water vapor, and is characterized by containing an oxide carrier and Ag. .

【0009】さらに、本発明は 100〜30,000ppmのア
ンモニア,当量以上の酸素,水蒸気を含有する排ガスか
らアンモニアを酸化分解する触媒であって、酸化物担体
及びCu及びAgを含むことを特徴とするアンモニア分
解触媒である。上記酸化物担体としてはチタニア,シリ
カ,アルミナ,ゼオライト,ジルコニアから選ばれた少
なくとも一種以上のものが挙げられる。上記触媒活性成
分の酸化物担体に対する配合比は、触媒活性成分Ag,
Cuの原子比が酸化物担体1部に対しそれぞれ0.2〜0.0
1である。また、該触媒の形状としては粒状,ハニカム
状,板状,金網状,板状,三次元網目状のいずれかから
なるものが挙げられる。
Further, the present invention is a catalyst for oxidatively decomposing ammonia from an exhaust gas containing 100 to 30,000 ppm of ammonia, an equivalent amount or more of oxygen and water vapor, characterized by containing an oxide carrier and Cu and Ag. It is an ammonia decomposition catalyst. Examples of the oxide carrier include at least one selected from titania, silica, alumina, zeolite, and zirconia. The mixing ratio of the above-mentioned catalytically active component to the oxide carrier is determined by the amount of the catalytically active component Ag,
The atomic ratio of Cu is 0.2 to 0.0
Is one. Further, the shape of the catalyst may be any one of granular, honeycomb, plate, wire mesh, plate, and three-dimensional mesh.

【0010】さらに、本発明はアンモニアを触媒により
酸化分解して除去するアンモニア処理方法であって、上
記のいずれかの触媒を用いることを特徴とするアンモニ
ア処理方法である。さらに、本発明は、上記いずれかの
触媒を具備したアンモニア処理装置である。
Furthermore, the present invention relates to an ammonia treatment method for removing ammonia by oxidative decomposition with a catalyst, characterized by using any one of the above-mentioned catalysts. Further, the present invention is an ammonia treatment apparatus provided with any one of the above catalysts.

【0011】さらに、本発明は、上記アンモニア処理装
置を具備した火力発電設備である。本発明のアンモニア
分解触媒を水蒸気及び当量以上の酸素共存の環境条件で
排ガス中のアンモニアに200〜600℃の温度範囲で接触さ
せることによりアンモニアが効率良く除去され、しかも
該アンモニア分解触媒は熱処理によって触媒活性の回復
がきめて容易に行われる。本発明により除去される排ガ
ス中のアンモニアとしては、火力発電設備,下水処理設
備,アミン製造設備,食品製造設備,コークス炉ガス製
造設備,し尿処理設備の排ガス中に含有するアンモニア
含有ガスでよく、アンモニアの濃度は100〜30,000pp
mの範囲が好ましい。
Further, the present invention is a thermal power plant equipped with the above ammonia treatment apparatus. The ammonia is efficiently removed by bringing the ammonia decomposition catalyst of the present invention into contact with the ammonia in the exhaust gas at a temperature in the range of 200 to 600 ° C. in an environmental condition in which steam and an equivalent or more of oxygen coexist, and the ammonia decomposition catalyst is subjected to heat treatment. Recovery of the catalyst activity is easily determined. The ammonia in the exhaust gas removed by the present invention may be an ammonia-containing gas contained in the exhaust gas of a thermal power generation facility, a sewage treatment facility, an amine production facility, a food production facility, a coke oven gas production facility, a human waste treatment facility, Ammonia concentration is 100 ~ 30,000pp
The range of m is preferred.

【0012】[0012]

【発明の実施の形態】本発明のアンモニア分解触媒の好
ましい態様は、100〜30,000ppmのアンモニア,当量
以上の酸素,水蒸気を含有する排ガスからアンモニアを
酸化分解する触媒であって酸化物担体として一種以上の
チタニア,シリカ,アルミナ,ゼオライト,ジルコニア
を用い、好ましくはその表面層に形成した触媒活性成分
のAg又はCuとAgから構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the ammonia decomposition catalyst of the present invention is a catalyst for oxidatively decomposing ammonia from an exhaust gas containing 100 to 30,000 ppm of ammonia, an equivalent or more of oxygen and water vapor. The above titania, silica, alumina, zeolite, and zirconia are used, and are preferably formed of Ag or Cu and Ag as the catalytically active components formed on the surface layer.

【0013】本発明によるアンモニア分解触媒の好まし
い態様は通常10〜500m2/gの範囲の比表面積を有する
ものである。比表面積の大きいものほどアンモニアの分
解が増大する傾向がみられる。本発明のアンモニア分解
触媒は排ガス中のアンモニアを除去後も、熱処理によっ
て触媒活性が容易に回復し、初期と同等の除去性能が認
められる。
The preferred embodiment of the ammonia cracking catalyst according to the present invention has a specific surface area usually in the range of 10 to 500 m 2 / g. There is a tendency that as the specific surface area increases, the decomposition of ammonia increases. In the ammonia decomposition catalyst of the present invention, even after removing the ammonia in the exhaust gas, the catalyst activity is easily recovered by the heat treatment, and the removal performance equivalent to the initial stage is recognized.

【0014】本発明のアンモニア分解触媒は、酸化物担
体1部に対し、触媒活性成分のAg及びCuの原子比は
それぞれ0.2〜0.01の割合で含有することが好ましい。
そして、この範囲においてアンモニア分解触媒の除去活
性が高くなる。本発明のアンモニア分解触媒の形状とし
ては粒状,ハニカム状,板状,金網状,三次元網目状等
が挙げられるが、これらの何れも使用することができ、
特に限定されない。
The ammonia decomposition catalyst of the present invention preferably contains the catalytically active components of Ag and Cu in an atomic ratio of 0.2 to 0.01 with respect to 1 part of the oxide carrier.
Then, in this range, the activity of removing the ammonia decomposition catalyst is increased. Examples of the shape of the ammonia decomposition catalyst of the present invention include a granular shape, a honeycomb shape, a plate shape, a wire mesh shape, and a three-dimensional mesh shape, and any of these can be used.
There is no particular limitation.

【0015】本発明の方法において、該アンモニアを含
有する排ガスをアンモニア分解触媒に接触させる温度は
200〜600℃の温度範囲、好ましくは250〜500℃の温度範
囲で有り、この範囲以外では排ガス中のアンモニアの除
去性能は低下する。本発明の方法において、排ガス中の
該アンモニアをアンモニア分解触媒に接触させるガス空
間速度は5,000〜50,000h-1の範囲がよく特に限定され
ない。また、排ガス中の該アンモニアをアンモニア分解
触媒に接触させる圧力は大気圧でよく特に限定されな
い。
In the method of the present invention, the temperature at which the exhaust gas containing ammonia is brought into contact with the ammonia decomposition catalyst is as follows:
The temperature is in the temperature range of 200 to 600 ° C, preferably 250 to 500 ° C. Outside this range, the performance of removing ammonia in the exhaust gas deteriorates. In the method of the present invention, the gas space velocity at which the ammonia in the exhaust gas is brought into contact with the ammonia decomposition catalyst is in the range of 5,000 to 50,000 h -1 and is not particularly limited. The pressure at which the ammonia in the exhaust gas is brought into contact with the ammonia decomposition catalyst may be atmospheric pressure and is not particularly limited.

【0016】本発明の方法において、排ガス中に添加さ
れる水蒸気は10〜60の%の範囲が好ましく、この範囲以
外では排ガス中のアンモニアの除去性能は低下する。本
発明のアンモニア分解触媒は、その使用後200〜600℃の
範囲に熱処理することによりきわめて容易に触媒活性を
回復することができる。本発明のアンモニア分解触媒
は、アンモニアの除去に用いられるものであるが、その
反応は酸化分解反応である。したがって、アンモニアは
アンモニア分解触媒上で水蒸気と当量以上の酸素の存在
下において無害なN2とH2Oに変換される。
In the method of the present invention, the amount of water vapor added to the exhaust gas is preferably in the range of 10 to 60%, and outside this range, the performance of removing ammonia from the exhaust gas is reduced. The ammonia decomposition catalyst of the present invention can very easily recover its catalytic activity by heat treatment at a temperature in the range of 200 to 600 ° C. after use. The ammonia decomposition catalyst of the present invention is used for removing ammonia, and the reaction is an oxidative decomposition reaction. Thus, ammonia is converted to harmless N 2 and H 2 O on the ammonia decomposition catalyst in the presence of oxygen in an amount equal to or more than water vapor.

【0017】本発明のアンモニア分解触媒の酸化物担体
として用いられるチタニア,シリカ,アルミナ,ゼオラ
イト,ジルコニアの調製原料は硫酸塩,塩化物,硝酸
塩,酸化物,有機金属化合物等で有り、特に限定されな
い。また、酸化物担体の調製法としては沈澱法,加水分
解法,湿式混練法から得られた酸化物粉末の打錠成型
法,転動造粒法等から調製されてもよく特に限定されな
い。
The raw materials for preparing titania, silica, alumina, zeolite and zirconia used as the oxide carrier of the ammonia decomposition catalyst of the present invention are sulfates, chlorides, nitrates, oxides, organometallic compounds and the like, and are not particularly limited. . The method of preparing the oxide carrier is not particularly limited, and may be prepared by a tableting method, a tumbling granulation method, or the like of an oxide powder obtained by a precipitation method, a hydrolysis method, a wet kneading method, or the like.

【0018】本発明のアンモニア分解触媒の活性成分で
あるAg又はCuとAgの調製原料としてはそれらの硝
酸塩,硫酸塩,塩化物,酸化物,有機金属化合物等が挙
げられ、特に限定されない。本発明のアンモニア分解触
媒を調製する手段としては、触媒活性成分のAg又はC
uとAgを酸化物担体の表面層に担持する通常の混合
法,浸漬法,沈着法又は酸化物担体成分と触媒活性成分
のAg又はCuとAgの混合溶液にアルカリを添加して
沈澱物を生成させる沈殿法があり、特に限定されない。
本発明のアンモニア分解触媒の具体的調製例を説明する
と次のとおりである。すなわち、酸化物担体の粉末を約
500℃に焼成し、この焼成した担体に触媒活性成分の水
溶液を含浸させ、次いでこの含浸物を乾燥、焼成するこ
とにより製造される。
The raw materials for preparing Ag or Cu and Ag, which are the active components of the ammonia decomposition catalyst of the present invention, include, but are not particularly limited to, nitrates, sulfates, chlorides, oxides, and organometallic compounds. As means for preparing the ammonia decomposition catalyst of the present invention, Ag or C as a catalytically active component is used.
The conventional method of mixing u and Ag on the surface layer of the oxide carrier, the dipping method, the deposition method, or adding an alkali to a mixed solution of Ag or Cu and Ag of the oxide carrier component and the catalytically active component to precipitate the precipitate. There is a precipitation method for producing, and there is no particular limitation.
A specific example of the preparation of the ammonia decomposition catalyst of the present invention will be described below. That is, the powder of the oxide carrier is
It is manufactured by calcining at 500 ° C., impregnating the calcined carrier with an aqueous solution of a catalytically active component, and then drying and calcining the impregnated material.

【0019】[0019]

【実施例】以下に本発明の実施例を述べる。ただし、本
発明はこれらの実施例になんら限定されるものではな
い。 実施例1 0.5〜1.0mmに破砕されたチタニア担体の粉末10gを50
0℃で焼成させる。チタニア担体10gに硝酸銀(AgN
3・6H2O)3.6gを7ccの蒸留水に溶解した。次い
で、硝酸銀溶液を10gのチタニア担体に含浸した。含浸
後は120℃で1時間乾燥、500℃で2時間焼成し、完成触媒
とした。この触媒はTi−Agであり、Ti/Ag(原
子比=1/0.1)である。この触媒をAとする。
Embodiments of the present invention will be described below. However, the present invention is not limited to these examples. Example 1 10 g of a titania carrier powder crushed to 0.5 to 1.0 mm
Bake at 0 ° C. Silver nitrate (AgN
The O 3 · 6H 2 O) 3.6g were dissolved in distilled water 7 cc. Next, 10 g of a titania carrier was impregnated with the silver nitrate solution. After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 2 hours to obtain a completed catalyst. This catalyst is Ti-Ag, and is Ti / Ag (atomic ratio = 1 / 0.1). This catalyst is designated as A.

【0020】実施例2 0.5〜1.0mmに破砕されたチタニア担体の粉末10gを50
0℃で焼成させる。チタニア担体10gに硝酸銅(Cu
(NO3 2・3H2 O)5.1gと硝酸銀(AgNO3
6H2O)1.8gを14ccの蒸留水に溶解混合した。混合
溶液を2回に分割して10gのチタニア担体に含浸した。1
回目の含浸後は120℃で1時間乾燥、500℃で1時間焼成し
た。次いで2回目の含浸後は、120℃で1時間乾燥、500℃
で2時間焼成し完成触媒とした。この触媒はTi−Cu
−Agであり、Ti/Cu(原子比=1/0.1),Ti/
Ag(原子比=1/0.05)である。この触媒をBとす
る。
Example 2 10 g of titania carrier powder crushed to 0.5 to 1.0 mm
Bake at 0 ° C. Copper nitrate (Cu
(NO 3) 2 · 3H 2 O) 5.1g and silver nitrate (AgNO 3 ·
1.8 g of 6H 2 O) was dissolved and mixed in 14 cc of distilled water. The mixed solution was impregnated into 10 g of the titania carrier in two divided portions. 1
After the second impregnation, it was dried at 120 ° C. for 1 hour and fired at 500 ° C. for 1 hour. Next, after the second impregnation, dry at 120 ° C for 1 hour, 500 ° C
For 2 hours to obtain a finished catalyst. This catalyst is Ti-Cu
-Ag, Ti / Cu (atomic ratio = 1 / 0.1), Ti /
Ag (atomic ratio = 1 / 0.05). This catalyst is designated as B.

【0021】実施例3 0.5〜1.0mmに破砕されたチタニア担体の粉末10gを50
0℃で焼成させる。チタニア担体10gに硝酸銀(AgN
3 ・6H2O)3.6gを7ccの蒸留水に溶解した。硝酸
銀溶液を10gのチタニア担体に含浸した。含浸後は120
℃で1時間乾燥、500℃で1時間焼成した。
EXAMPLE 3 10 g of a titania carrier powder crushed to 0.5 to 1.0 mm
Bake at 0 ° C. Silver nitrate (AgN
The O 3 · 6H 2 O) 3.6g were dissolved in distilled water 7 cc. The silver nitrate solution was impregnated with 10 g of a titania carrier. 120 after impregnation
C. for 1 hour and calcined at 500.degree. C. for 1 hour.

【0022】Ti/Ag触媒に塩化金酸溶液(HAuC
4,50g/l)0.2gを含浸した.含浸後は120℃で1時
間乾燥、500℃で2時間焼成し、完成触媒とした。この触
媒はTi−Ag−Auであり、Ti/Ag(原子比=1
/0.1),Ti/Au(原子比=1/0.05)である。この
触媒をCとする。
A chloroauric acid solution (HAuC) is used for the Ti / Ag catalyst.
impregnated with l 4, 50g / l) 0.2g . After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 2 hours to obtain a completed catalyst. This catalyst is Ti-Ag-Au, and Ti / Ag (atomic ratio = 1)
/0.1) and Ti / Au (atomic ratio = 1 / 0.05). This catalyst is designated as C.

【0023】実施例4 0.5〜1.0mmに破砕されたチタニア担体の粉末10gを50
0℃で焼成させる。チタニア担体10gに硝酸銅(Cu
(NO3 2・3H2 O)5.1gと硝酸銀(AgNO3
6H2O)1.8gを14ccの蒸留水に溶解混合した。混合
溶液を2回に分割して10gのチタニア担体に含浸した。1
回目の含浸後は120℃で1時間乾燥、500℃で1時間焼成し
た。
Example 4 10 g of titania carrier powder crushed to 0.5 to 1.0 mm
Bake at 0 ° C. Copper nitrate (Cu
(NO 3) 2 · 3H 2 O) 5.1g and silver nitrate (AgNO 3 ·
1.8 g of 6H 2 O) was dissolved and mixed in 14 cc of distilled water. The mixed solution was impregnated into 10 g of the titania carrier in two divided portions. 1
After the second impregnation, it was dried at 120 ° C. for 1 hour and fired at 500 ° C. for 1 hour.

【0024】次いで2回目の含浸後は、120℃で1時間乾
燥、500℃で1時間焼成した。Ti/Cu/Ag触媒に塩
化金酸溶液(HAuCl4,50g/l)0.2gを含浸し
た.含浸後は120℃で1時間乾燥、500℃で2時間焼成し完
成触媒とした。この触媒はTi−Cu−Ag−Auであ
り、Ti/Cu(原子比=1/0.1),Ti/Ag(原子
比=1/0.05),Ti/Au(原子比=1/0.5)であ
る。この触媒をDとする。
Next, after the second impregnation, drying was performed at 120 ° C. for 1 hour and calcination was performed at 500 ° C. for 1 hour. The Ti / Cu / Ag catalyst was impregnated with 0.2 g of a chloroauric acid solution (HAuCl 4 , 50 g / l). After impregnation, it was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 2 hours to obtain a finished catalyst. This catalyst is Ti-Cu-Ag-Au, and has Ti / Cu (atomic ratio = 1 / 0.1), Ti / Ag (atomic ratio = 1 / 0.05), and Ti / Au (atomic ratio = 1 / 0.5). . This catalyst is designated as D.

【0025】比較例1 0.5〜1.0mmに破砕されたチタニア担体の粉末30gを50
0℃で乾燥させる。10%の硝酸クロム(Cr(NO3
3 9H2 O)溶液100g中にチタニア担体30gを浸漬し
た。次いで、120℃で1時間乾燥、600℃で2時間焼成し
た。この触媒はCr−Ti(公知例触媒)である。この
触媒を比較例xとする。
Comparative Example 1 30 g of titania carrier powder crushed to 0.5 to 1.0 mm
Dry at 0 ° C. 10% chromium nitrate (Cr (NO 3 )
I was immersed titania support 30g in 3 9H 2 O) solution 100 g. Next, it was dried at 120 ° C. for 1 hour and fired at 600 ° C. for 2 hours. This catalyst is Cr-Ti (a known example catalyst). This catalyst is referred to as Comparative Example x.

【0026】実施例5 前記実施例で得た触媒A〜D及び比較例触媒Xを、内径
19mm,長さ300mmの石英反応管内の中央部に設置し
た。アンモニアの模擬排ガスとして、空気中にアンモニ
アを混合して希釈したガスを、前記石英反応管内に導入
し、実施例触媒と接触させた。反応前後のアンモニア濃
度変化の測定は、アンモニア模擬排ガスを純水中に吸収
させてNH4 +にした後、イオンクロマト分析計により測
定し、 NH3+H2O→NH4 ++OH アンモニアの除去率を求めた。反応条件は以下の通りで
ある。
Example 5 The catalysts A to D obtained in the above example and the catalyst X of the comparative example were used
It was installed at the center of a quartz reaction tube having a length of 19 mm and a length of 300 mm. As a simulated exhaust gas of ammonia, a gas obtained by mixing and diluting ammonia into air was introduced into the quartz reaction tube, and was brought into contact with the catalyst of the example. The change in the ammonia concentration before and after the reaction is measured by absorbing the simulated exhaust gas of ammonia into pure water to make NH 4 + and then measuring it with an ion chromatograph to remove NH 3 + H 2 O → NH 4 + + OH - ammonia The rate was determined. The reaction conditions are as follows.

【0027】 アンモニア濃度;3,000ppm 水蒸気濃度;12% 残り空気 反応温度;300℃ ガス空間速度;30,000h-1(単位時間当たり,単位触媒
体積当たりのガスの供給量) 触媒量;10cc 実施例5の方法により、図1に触媒A〜Dと比較例1の
X触媒との性能比較を示す。図1からも明らかなように
実施例触媒A〜Dは比較例1のX触媒に比べてアンモニ
アの除去率が高いことが認められた。
Ammonia concentration; 3,000 ppm Water vapor concentration; 12% Residual air Reaction temperature; 300 ° C. Gas hourly space velocity; 30,000 h -1 (amount of gas supplied per unit time per unit catalyst volume) Amount of catalyst: 10 cc FIG. 1 shows a performance comparison between the catalysts A to D and the X catalyst of Comparative Example 1 by the method of No. 5. As is clear from FIG. 1, it was confirmed that the catalysts of Examples A to D had a higher removal rate of ammonia than the catalyst X of Comparative Example 1.

【0028】実施例6 前記、実施例1のA触媒及び実施例1のB触媒におい
て、チタニア担体の変わりにシリカ担体を用いた以外
は、実施例1のA触媒及び実施例2のB触媒と同様にし
て調製した。得られた触媒を以下に示す。 A1 : Si−Ag A2 : Si−Cu−Ag
Example 6 The catalyst A of Example 1 and the catalyst B of Example 2 were the same as those of the catalyst A of Example 1 and the catalyst B of Example 1, except that a silica carrier was used instead of the titania carrier. Prepared similarly. The obtained catalyst is shown below. A1: Si-Ag A2: Si-Cu-Ag

【0029】比較例2 チタニア担体の変わりにシリカ担体を用いた以外は比較
例1と同じである。この触媒を比較例2のX1触媒とす
る。実施例6のA1,A2触媒及び比較例2の触媒X1
を用いて、実施例5と同様の方法によりアンモニアの除
去率を求めた。図2にその結果を示す。図2の結果から
も明らかなようにシリカ担体に変えてもほとんどアンモ
ニア除去性能は変わらないことがわかる。また、比較例
2のX1触媒に比べてアンモニア除去性能が高いことが
確認された。
Comparative Example 2 The same as Comparative Example 1 except that a silica carrier was used instead of the titania carrier. This catalyst is designated as X1 catalyst of Comparative Example 2. A1, A2 catalyst of Example 6 and catalyst X1 of Comparative Example 2
And the removal rate of ammonia was determined in the same manner as in Example 5. FIG. 2 shows the result. As is clear from the results shown in FIG. 2, the ammonia removal performance hardly changes even when the silica carrier is used. Further, it was confirmed that the ammonia removing performance was higher than that of the X1 catalyst of Comparative Example 2.

【0030】実施例7 実施例1のA触媒及び実施例2のB触媒において、チタ
ニア担体の変わりにアルミナ担体を用いた以外は、実施
例1のA触媒及び実施例2のB触媒と同様にして調製し
た。得られた触媒を以下に示す。 A3 : Al−Ag A4 : Al−Cu−Ag
Example 7 The catalyst A of Example 1 and the catalyst B of Example 2 were replaced with the catalyst A of Example 1 and the catalyst B of Example 2 except that an alumina carrier was used instead of the titania carrier. Prepared. The obtained catalyst is shown below. A3: Al-Ag A4: Al-Cu-Ag

【0031】比較例3 チタニア担体の変わりにアルミナ担体を用いた以外は比
較例1と同じである。この触媒を比較例3のX2触媒と
する。実施例7のA3,A4触媒及び比較例3のX2触
媒を用いて、実施例5と同様の方法によりアンモニアの
除去率を求めた。図3にその結果を示す。図3の結果か
らも明らかなようにアルミナ担体に変えてもほとんどア
ンモニア除去性能は変わらないことがわかる。また、比
較例3のX2触媒に比べてアンモニア除去性能が高いこ
とが確認された。
Comparative Example 3 The same as Comparative Example 1 except that an alumina carrier was used instead of the titania carrier. This catalyst is designated as X2 catalyst of Comparative Example 3. Using the A3 and A4 catalysts of Example 7 and the X2 catalyst of Comparative Example 3, the removal rate of ammonia was determined in the same manner as in Example 5. FIG. 3 shows the result. As is clear from the results of FIG. 3, even if the alumina carrier is changed, the ammonia removing performance hardly changes. Further, it was confirmed that the ammonia removing performance was higher than that of the X2 catalyst of Comparative Example 3.

【0032】実施例8 前記、実施例1のA触媒及び実施例2のB触媒におい
て、チタニア担体の変わりにゼオライト担体を用いた以
外は、実施例1のA触媒及び実施例2のB触媒と同様に
して調製した。得られた触媒を以下に示す。 A5 : ゼオライト−Ag A6 : ゼオライト−Cu−Ag
Example 8 The catalyst A of Example 1 and the catalyst B of Example 2 were the same as the catalyst A of Example 1 and the catalyst B of Example 2 except that a zeolite carrier was used instead of the titania carrier. Prepared similarly. The obtained catalyst is shown below. A5: Zeolite-Ag A6: Zeolite-Cu-Ag

【0033】比較例4 チタニア担体の変わりにゼオライト担体を用いた以外は
比較例1と同じである。この触媒を比較例のX3触媒と
する。実施例6のA5,A6触媒及び比較例4のX3触
媒を用いて、実施例5と同様の方法によりアンモニアの
除去率を求めた。図4にその結果を示す。図4の結果か
らも明らかなようにゼオライト担体に変えてもほとんど
アンモニア除去性能は変わらないことがわかる。また、
比較例4のX3触媒1に比べてアンモニア除去性能が高
いことが確認された。
Comparative Example 4 The same as Comparative Example 1 except that a zeolite carrier was used instead of the titania carrier. This catalyst is referred to as a comparative X3 catalyst. Using the A5 and A6 catalysts of Example 6 and the X3 catalyst of Comparative Example 4, the removal rate of ammonia was determined in the same manner as in Example 5. FIG. 4 shows the result. As is clear from the results shown in FIG. 4, even if the zeolite carrier is changed, the ammonia removing performance hardly changes. Also,
It was confirmed that the ammonia removing performance was higher than that of the X3 catalyst 1 of Comparative Example 4.

【0034】実施例9 前記、実施例1のA触媒及び実施例2のB触媒におい
て、チタニア担体の変わりにコージェライト担体を用い
た以外は、実施例1のA触媒及び実施例2のB触媒と同
様にして調製した。得られた触媒を以下に示す。 A6 : コージェライト−Ag A7 : コージェライトト−Cu−Ag
Example 9 The catalyst A of Example 1 and the catalyst B of Example 2 were the same as those of the catalyst A of Example 1 and the catalyst B of Example 2 except that a cordierite carrier was used instead of the titania carrier. It was prepared in the same manner as described above. The obtained catalyst is shown below. A6: Cordierite-Ag A7: Cordierite-Cu-Ag

【0035】比較例4 チタニア担体の変わりにコージェライト担体を用いた以
外は比較例1と同じである。この触媒を比較例4のX4
触媒とする。実施例8のA7,A8触媒及び比較例4の
X4触媒を用いて、実施例5と同様の方法によりアンモ
ニアの除去率を求めた。図5にその結果を示す。図5の
結果からも明らかなように実施例9のA7、A8触媒は
比較例触媒に比べてアンモニア除去性能は高いことが確
認された。
Comparative Example 4 The same as Comparative Example 1 except that a cordierite carrier was used instead of the titania carrier. This catalyst was used in Comparative Example 4 for X4
Catalyst. Using the A7 and A8 catalysts of Example 8 and the X4 catalyst of Comparative Example 4, the removal rate of ammonia was determined in the same manner as in Example 5. FIG. 5 shows the result. As is clear from the results of FIG. 5, it was confirmed that the A7 and A8 catalysts of Example 9 had higher ammonia removal performance than the comparative example catalyst.

【0036】実施例10 実施例触媒として以下の触媒を調製した。 a. Ti(1)−Ag(0.005) b. Ti(1)−Ag(0.01) c. Ti(1)−Ag(0.1) e. Ti(1)−Cu(0.05)−Ag(0.05) f. Ti(1)−Cu(0.1)−Ag(0.05) g. Ti(1)−Cu(0.5)−Ag(0.1) このa〜g触媒と比較例1のX触媒の性能比較を実施例
5に準拠して行い、その結果を図6に示す。図6からも
明らかなように、a〜g触媒は比較例1のX触媒に比べ
てアンモニアの除去性能が高いことが認められた。
Example 10 The following catalyst was prepared as an example catalyst. a. Ti (1) -Ag (0.005) b. Ti (1) -Ag (0.01) c. Ti (1) -Ag (0.1) e. Ti (1) -Cu (0.05) -Ag (0.05) f Ti (1) -Cu (0.1) -Ag (0.05) g. Ti (1) -Cu (0.5) -Ag (0.1) Example 5 compares the performance of the a-g catalyst with the X catalyst of Comparative Example 1. The results are shown in FIG. As is clear from FIG. 6, it was recognized that the a to g catalysts had higher ammonia removal performance than the X catalyst of Comparative Example 1.

【0037】実施例11 実施例1のA触媒及び実施例2のB触媒を用いて、実施
例5の実験方法によりアンモニア濃度を100,1000,500
0,10000ppmに変化させてアンモニアの除去率を求め
た。その結果を図7に示す。図7の結果からも明らかな
ように実施例1のA触媒及び実施例2のB触媒は反応温
度を変えても、比較例1の触媒Xに比べてアンモニアの
除去性能が高いことが確認された
Example 11 Using the A catalyst of Example 1 and the B catalyst of Example 2, the ammonia concentration was adjusted to 100, 1000, 500 according to the experimental method of Example 5.
The removal rate of ammonia was determined by changing to 0,10000 ppm. FIG. 7 shows the result. As is clear from the results of FIG. 7, it was confirmed that the catalyst A of Example 1 and the catalyst B of Example 2 had higher ammonia removal performance than the catalyst X of Comparative Example 1 even when the reaction temperature was changed. Was

【0038】実施例12 実施例1のA触媒及び実施例2のB触媒を用いて、第1
活性成分と第2活性成分の原子割合をTi/Ag=1/
0.1及びTi/Cu/Ag=1/0.1/0.05となるよう
に混合溶液を調製した。混合溶液にアルミナハニカム担
体(縦30mm×横30mm×長さ200mm,セル数400 )
を浸漬した。得られた触媒を以下に示す。 B1 : AlーAg B2 : Al−Cu−Ag
Example 12 Using the catalyst A of Example 1 and the catalyst B of Example 2,
The atomic ratio of the active ingredient and the second active ingredient is expressed as Ti / Ag = 1 /
A mixed solution was prepared so that 0.1 and Ti / Cu / Ag = 1 / 0.1 / 0.05. Alumina honeycomb carrier (30 mm long x 30 mm wide x 200 mm long, 400 cells) in the mixed solution
Was immersed. The obtained catalyst is shown below. B1: Al-Ag B2: Al-Cu-Ag

【0039】比較例5 10%硝酸クロム溶液にアルミナハニカム担体((縦30m
m×横30mm×長さ200mm,セル数400 )を浸漬し
た。120℃で1時間乾燥し、500℃で2時間焼成して比較例
5のY触媒とした。
Comparative Example 5 A 10% chromium nitrate solution was added to an alumina honeycomb carrier ((30 m long)
mx 30 mm wide x 200 mm long, 400 cells). It was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 2 hours to obtain a Y catalyst of Comparative Example 5.

【0040】実施例13 ハニカム触媒を充填する反応管の内径を35mm及びSV
を5000h-1に変えた以外は実施例5と同様な方法により
触媒の性能試験を行った。実施例12のB1及びB2触
媒及び比較例5のY触媒の性能評価を上記試験方法によ
り検討し、アンモニアの除去率を求めた。その結果を図
8に示す。図8の結果からも明らかなように実施例12
のB1及びB2触媒は、比較例5の触媒Yに比べてアン
モニアの除去性能が高いことが確認された
Example 13 An inner diameter of a reaction tube filled with a honeycomb catalyst was 35 mm and SV
The performance test of the catalyst was performed in the same manner as in Example 5 except that was changed to 5000 h -1 . The performance evaluations of the B1 and B2 catalysts of Example 12 and the Y catalyst of Comparative Example 5 were examined by the above test method, and the removal rate of ammonia was determined. FIG. 8 shows the result. As is clear from the results of FIG.
It was confirmed that the B1 and B2 catalysts had higher ammonia removal performance than the catalyst Y of Comparative Example 5.

【0041】実施例14 実施例1のA触媒を用いて、Ti/Ag=1/0.1の
原子割合となるように混合溶液を調製した。混合溶液に
アルミナ板状担体(縦20mm×横35mm×厚さ1mm)
を浸漬した。得られた触媒を以下に示す。 B3: Al−Ti−Ag
Example 14 Using the catalyst A of Example 1, a mixed solution was prepared so that the atomic ratio of Ti / Ag was 1 / 0.1. Alumina plate carrier (20mm x 35mm x 1mm thickness)
Was immersed. The obtained catalyst is shown below. B3: Al-Ti-Ag

【0042】比較例6 10%硝酸クロム溶液にアルミナ板状担体((縦20mm×
横35mm×厚さ1mm)を浸漬した。120℃で1時間乾燥
し、500℃で2時間焼成して比較例6のZ1触媒とした。
Comparative Example 6 A 10% chromium nitrate solution was added to an alumina plate-like carrier ((length 20 mm ×
35 mm wide x 1 mm thick). It was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 2 hours to obtain a Z1 catalyst of Comparative Example 6.

【0043】実施例15 板状触媒を縦23mm,横25mm,長さ40mmのステンレ
ス製箱型反応器に5枚間隔をおいて並べた。ステンレス
製箱型反応器の外部から加熱した。実験方法はSVを50
00h-1に変えた以外は実施例5と同様な方法により触媒
の性能試験を行った。
Example 15 Plate-like catalysts were arranged in a stainless steel box reactor having a length of 23 mm, a width of 25 mm and a length of 40 mm at an interval of 5 sheets. It was heated from outside the stainless steel box reactor. The test method was SV 50.
A catalyst performance test was performed in the same manner as in Example 5 except that the catalyst was changed to 00h- 1 .

【0044】実施例14のB3触媒及び比較例6のZ触
媒の性能評価を上記実験方法により検討し、アンモニア
の除去率を求めた。その結果を図9に示す。図9の結果
からも明らかなように板状担体に変えても、粒状触媒と
ほとんど変わらない。また、比較例6のZ触媒に比べて
アンモニアの除去性能が高いことが確認された。
The performance of the B3 catalyst of Example 14 and the Z catalyst of Comparative Example 6 were evaluated by the above-described experimental method, and the removal rate of ammonia was determined. FIG. 9 shows the result. As is clear from the results shown in FIG. 9, even if the plate-like carrier is used, it is almost the same as the granular catalyst. In addition, it was confirmed that the performance of removing ammonia was higher than that of the Z catalyst of Comparative Example 6.

【0045】実施例16 実施例1のA触媒及び実施例2のB触媒を用いて、実施
例5の実験方法により、アンモニアを酸化分解したとき
の反応生成ガス中の窒素酸化物濃度を求めた。その結果
を図10に示す。図10の結果からも明らかなように窒
素酸化物濃度は少ないことが確認された。
Example 16 Using the catalyst A of Example 1 and the catalyst B of Example 2, the concentration of nitrogen oxide in the reaction product gas when ammonia was oxidized and decomposed was determined by the experimental method of Example 5. . The result is shown in FIG. As is clear from the results in FIG. 10, it was confirmed that the nitrogen oxide concentration was low.

【0046】実施例17 実プラント用触媒として粒径5mmのチタニア粒状担体
にTi/Ag=1/0.1となるように硝酸銀溶液を含
浸した。120℃で1時間乾燥し、500℃で2時間焼成した。
得られた触媒を以下に示す。 P1: Ti(1)−Ag(0.1)
Example 17 As a catalyst for an actual plant, a titania granular carrier having a particle size of 5 mm was impregnated with a silver nitrate solution so that Ti / Ag = 1 / 0.1. It was dried at 120 ° C. for 1 hour and fired at 500 ° C. for 2 hours.
The obtained catalyst is shown below. P1: Ti (1) -Ag (0.1)

【0047】実施例18 該実施例17のP1触媒を火力発電所廃水処理設備のアン
モニア酸化分解塔に充填して使用した例を示す。1000M
Wの石炭火力発電所のエアーヒータ、集塵器、復水器等
から排出された2g/リットルのアンモニア態窒素を含
有するpH1.36の廃液を貯槽から84t/dで連続的にp
H調整槽に導き,濃度10%の水酸化ナトリウム溶液を20
0kg/hで添加してアンモニアを発生させた。アンモ
ニアを発生させた後の廃液はシックナに導き、重金属類
のスラッジを回収した。シックナからのオーバフロー液
を棚段方式のアンモニアストリッパの塔頂に導き塔底か
ら空気を3500m3N/hで供給してアンモニアをストリ
ッピングした。ストリッピングされたアンモニア含有ガ
スは熱交換器で約350℃まで加熱されてアンモニア分解
触媒塔に送られ、アンモニアを分解する。この一連の工
程を備えた火力発電所廃水処理設備において、アンモニ
ア分解触媒塔に実施例17のP1触媒を使用した。運転条
件は以下の通りである。
Example 18 An example is shown in which the P1 catalyst of Example 17 is used by filling it in an ammonia oxidative decomposition tower of a thermal power plant wastewater treatment facility. 1000M
The wastewater of pH 1.36 containing 2 g / l of ammonia nitrogen discharged from the air heater, dust collector, condenser, etc. of the coal-fired power plant of W is continuously discharged from the storage tank at 84 t / d.
H-adjustment tank, 20% sodium hydroxide solution of 10% concentration
Ammonia was generated by addition at 0 kg / h. The waste liquid after the generation of ammonia was guided to thickener to recover sludge of heavy metals. The overflow liquid from the thickener was led to the top of an ammonia stripper of a tray type, and air was supplied from the bottom at 3500 m 3 N / h to strip ammonia. The stripped ammonia-containing gas is heated to about 350 ° C. in a heat exchanger and sent to an ammonia decomposition catalyst tower to decompose ammonia. In the thermal power plant wastewater treatment facility equipped with this series of steps, the P1 catalyst of Example 17 was used in the ammonia decomposition catalyst tower. The operating conditions are as follows.

【0048】排ガス処理量:3,000m3 /h,触媒形
状:5mm,触媒充填量:0.3m3,ガス空間速度:10,000
/h-1,反応温度:350℃, その結果、1000時間後におけるアンモニア分解触媒
塔出口のアンモニアの除去率は99.9%であり、アンモ
ニア除去性能がきわめて高いことが確認された。
Exhaust gas treatment amount: 3,000 m 3 / h, catalyst shape: 5 mm, catalyst filling amount: 0.3 m 3 , gas space velocity: 10,000
/ H −1 , reaction temperature: 350 ° C. As a result, the removal rate of ammonia at the outlet of the ammonia decomposition catalyst tower after 1000 hours was 99.9%, confirming that the ammonia removal performance was extremely high.

【0049】[0049]

【発明の効果】本発明のアンモニア分解触媒は200〜600
℃の温度範囲で水蒸気及び理論空気酸素量以上の空気共
存環境下で有効に除去作用を行ないうることから、排ガ
ス処理に必要な諸設備を簡素化することが可能になり、
また下水道設備,し尿設備等の排ガス処理装置の様に主
設備に対する付加設備においても、アンモニアを除去す
るアンモニア分解触媒として容易に用いることができ
る。
The ammonia decomposition catalyst of the present invention has a
In the temperature range of ℃, it is possible to effectively perform the removal action under the coexistence environment of water vapor and the air above the theoretical air oxygen amount, it is possible to simplify the various equipment required for exhaust gas treatment,
In addition, additional equipment for the main equipment, such as an exhaust gas treatment device such as a sewage equipment and human waste equipment, can be easily used as an ammonia decomposition catalyst for removing ammonia.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンモニア分解触媒性能結果を示す図。FIG. 1 is a graph showing results of ammonia decomposition catalyst performance.

【図2】アンモニア分解触媒性能結果を示す図。FIG. 2 is a graph showing results of ammonia decomposition catalyst performance.

【図3】アンモニア分解触媒性能結果を示す図。FIG. 3 is a diagram showing the results of ammonia decomposition catalyst performance.

【図4】アンモニア分解触媒性能結果を示す図。FIG. 4 is a graph showing results of ammonia decomposition catalyst performance.

【図5】アンモニア分解触媒性能結果を示す図。FIG. 5 is a diagram showing the results of ammonia decomposition catalyst performance.

【図6】アンモニア分解触媒性能結果を示す図。FIG. 6 is a graph showing the results of ammonia decomposition catalyst performance.

【図7】アンモニア分解触媒性能結果を示す図。FIG. 7 is a graph showing results of ammonia decomposition catalyst performance.

【図8】アンモニア分解触媒性能結果を示す図。FIG. 8 is a view showing the results of ammonia decomposition catalyst performance.

【図9】アンモニア分解触媒性能結果を示す図。FIG. 9 is a view showing the results of ammonia decomposition catalyst performance.

【図10】アンモニア分解触媒性能結果を示す図。FIG. 10 is a graph showing results of ammonia decomposition catalyst performance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 29/072 B01D 53/36 ZABE (72)発明者 馬場 研二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村井 行男 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 (72)発明者 田中 明雄 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01J 29/072 B01D 53/36 ZABE (72) Inventor Kenji Baba 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Inside Hitachi Research Laboratory (72) Inventor Yukio Murai 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd. (72) Akio Tanaka 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Hitachi Plant Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 100〜30,000ppmのアンモニア,当量
以上の酸素,水蒸気を含有する排ガスからアンモニアを
酸化分解する触媒であって、酸化物担体及びAgを含む
ことを特徴とするアンモニア分解触媒。
1. A catalyst for oxidatively decomposing ammonia from an exhaust gas containing 100 to 30,000 ppm of ammonia, an equivalent or more of oxygen and water vapor, comprising an oxide carrier and Ag.
【請求項2】 100〜30,000ppmのアンモニア,当量
以上の酸素,水蒸気を含有する排ガスからアンモニアを
酸化分解する触媒であって、酸化物担体及びCu及びA
gを含むことを特徴とするアンモニア分解触媒。
2. A catalyst for oxidatively decomposing ammonia from an exhaust gas containing 100 to 30,000 ppm of ammonia, equivalents or more of oxygen and water vapor, comprising an oxide carrier and Cu and A
An ammonia decomposition catalyst comprising g.
【請求項3】 酸化物担体がチタニア,シリカ,アルミ
ナ,ゼオライト,ジルコニアから選ばれた少なくとも一
種以上であることを特徴とする請求項1または2記載の
アンモニア分解触媒。
3. The ammonia decomposition catalyst according to claim 1, wherein the oxide carrier is at least one selected from titania, silica, alumina, zeolite, and zirconia.
【請求項4】 触媒活性成分のAg,Cuの原子比が酸
化物担体に対しそれぞれ0.2〜0.01の割合であることを
特徴とする請求項1乃至3のいずれかの項記載のアンモ
ニア分解触媒。
4. The ammonia decomposition catalyst according to claim 1, wherein the atomic ratio of Ag and Cu of the catalytically active component is 0.2 to 0.01, respectively, relative to the oxide carrier.
【請求項5】 アンモニアを触媒により酸化分解して除
去するアンモニア処理方法であって、請求項1乃至4の
いずれかの項記載の触媒を用いることを特徴とするアン
モニア処理方法。
5. An ammonia treatment method for removing ammonia by oxidative decomposition with a catalyst, wherein the catalyst according to any one of claims 1 to 4 is used.
JP8310917A 1996-11-21 1996-11-21 Ammonia decomposition catalyst and method for using the same Pending JPH10151349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8310917A JPH10151349A (en) 1996-11-21 1996-11-21 Ammonia decomposition catalyst and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8310917A JPH10151349A (en) 1996-11-21 1996-11-21 Ammonia decomposition catalyst and method for using the same

Publications (1)

Publication Number Publication Date
JPH10151349A true JPH10151349A (en) 1998-06-09

Family

ID=18010945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8310917A Pending JPH10151349A (en) 1996-11-21 1996-11-21 Ammonia decomposition catalyst and method for using the same

Country Status (1)

Country Link
JP (1) JPH10151349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188386A (en) * 2005-01-05 2006-07-20 Nippon Shokubai Co Ltd Particulate metal oxide and use of the same
JP2009061353A (en) * 2007-09-04 2009-03-26 Shizuokaken Koritsu Daigaku Hojin Composite metal catalyst
WO2009075311A1 (en) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. Ammonia-decomposing catalyst, and method for treatment of ammonia-containing exhaust gas with the catalyst
CN113209991A (en) * 2021-05-20 2021-08-06 山西恒投环保节能科技有限公司 Ammonia low-temperature selective catalytic oxidation catalyst composition and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188386A (en) * 2005-01-05 2006-07-20 Nippon Shokubai Co Ltd Particulate metal oxide and use of the same
JP2009061353A (en) * 2007-09-04 2009-03-26 Shizuokaken Koritsu Daigaku Hojin Composite metal catalyst
WO2009075311A1 (en) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. Ammonia-decomposing catalyst, and method for treatment of ammonia-containing exhaust gas with the catalyst
JP5384368B2 (en) * 2007-12-12 2014-01-08 日揮ユニバーサル株式会社 Ammonia decomposition catalyst and method for treating ammonia-containing exhaust gas using the catalyst
CN113209991A (en) * 2021-05-20 2021-08-06 山西恒投环保节能科技有限公司 Ammonia low-temperature selective catalytic oxidation catalyst composition and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0686423B1 (en) Use of ammonia decomposition catalysts
US4010238A (en) Proces for selective removal of nitrogen oxides from waste gases
EP0275620B1 (en) Method and catalyst for purification of gas
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
EP0362966B1 (en) Catalysts and methods for denitrization
JPH0889807A (en) Decomposition method for hcn in catalyst and gas
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JPH10151349A (en) Ammonia decomposition catalyst and method for using the same
JPH07328440A (en) Catalyst for decomposition of ammonia
JP3132959B2 (en) Ammonia decomposition catalyst
JP3132960B2 (en) Ammonia decomposition catalyst
JP2000015106A (en) Catalyst for treatment of waste gas, treatment of waste gas and treating apparatus
JPH0290923A (en) Deodorizing method
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
CA1073637A (en) Method for catalytically reducing nitrogen oxides
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it
JP3229136B2 (en) Ammonia decomposition method
JP3254040B2 (en) DeNOx treatment method
JPH0741146B2 (en) Deodorization method
JPH09276700A (en) Ammonia decomposing catalyst and ammonia treatment method
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3332652B2 (en) Ammonia decomposition removal method
JPH038447A (en) Catalyst for decomposition of ozone
JP3495542B2 (en) Sulfur trioxide reduction method
JPH10235195A (en) Ammonia decomposition catalyst and its use

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104