JP3254742B2 - Catalyst for decomposition of nitrous oxide - Google Patents

Catalyst for decomposition of nitrous oxide

Info

Publication number
JP3254742B2
JP3254742B2 JP21538092A JP21538092A JP3254742B2 JP 3254742 B2 JP3254742 B2 JP 3254742B2 JP 21538092 A JP21538092 A JP 21538092A JP 21538092 A JP21538092 A JP 21538092A JP 3254742 B2 JP3254742 B2 JP 3254742B2
Authority
JP
Japan
Prior art keywords
catalyst
same manner
nitrous oxide
aqueous solution
except
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21538092A
Other languages
Japanese (ja)
Other versions
JPH06154611A (en
Inventor
忠夫 仲辻
一彦 永野
健二 中平
雅文 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP21538092A priority Critical patent/JP3254742B2/en
Publication of JPH06154611A publication Critical patent/JPH06154611A/en
Application granted granted Critical
Publication of JP3254742B2 publication Critical patent/JP3254742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(N2O)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing and removing nitrogen oxides, particularly nitrous oxide (N2O), in exhaust gas, and more particularly to disposal of factories, automobiles, garbage incinerators, sewage sludge incinerators and the like. The present invention relates to a nitrogen oxide decomposition catalyst suitable for use in decomposing and removing nitrous oxide contained in exhaust gas discharged from a waste treatment facility.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO2)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。
2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain. Is severely restricted, and it is desired to develop an effective means of removing the same. By the way, nitrogen oxides to which emission control is conventionally required are mainly nitric oxide (NO) and nitrogen dioxide (NO2). As a method for removing these NOx, several methods for reducing NOx in exhaust gas using a catalyst have already been put to practical use. For example, (a) a three-way catalytic method in gasoline vehicles, and (b) a selective catalytic reduction method using ammonia for exhaust gas from large equipment discharge sources such as boilers.

【0003】また、最近では(ハ)炭化水素を用いた排
ガス中のNOx除去方法として、銅等の金属を担持した
ゼオライト、あるいはアルミナ等の金属酸化物を触媒と
して炭化水素の共存下でNOを含むガスと接触させる方
法などが提案されるている。ところが、こうした方法で
はいずれも、排ガス中のN2Oの処理は不可能ではない
が十分ではなく、従来これらは、前述した脱硝設備の後
流に未処理のまま排出されてきた。これは、これまでN
2Oに対する法的な規制値がなく、又、JISのような
公的な測定方法も定められてなかったことなどとも関連
しており、実質的にはこれらの処理は、脱硝の対象とし
ては黙視されてきたというのが現実であった。ところ
が、前述した脱硝方法においては、その運転条件によっ
てN2Oが生成することが認められており、又、最近で
はゴミ焼却炉や下水汚泥焼却炉などからも比較的高濃度
のN2Oが生成することも報告されている。加えて近
年、N2Oは、CO2、フロン、CH4等とともに、成
層圏でのオゾ層の破壊、ないしは温室効果による温度
上昇などもたらす地球規模的汚染物質として特に注目さ
れてきている。
Recently, (c) as a method for removing NOx in exhaust gas using hydrocarbons, a catalyst such as zeolite supporting a metal such as copper or a metal oxide such as alumina is used to remove NO in the presence of hydrocarbons. A method of contacting with a contained gas has been proposed. However, in any of these methods, the treatment of N2O in the exhaust gas is not sufficient, if not impossible, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is N
This is related to the fact that there are no legally regulated values for 2O and that no official measurement method such as JIS has been established. It was a reality that it had been done. However, in the above-described denitration method, it has been recognized that N2O is generated depending on the operating conditions, and recently, a relatively high concentration of N2O may be generated from a garbage incinerator or a sewage sludge incinerator. It has been reported. Additionally in recent years, N2O is, CO2, fluorocarbons, with CH4 and the like, destroy the ozone layer in the stratosphere, or have been of particular interest as a global contaminants to bring such temperature rise due to the greenhouse effect.

【0004】こうした事情からN2Oの処理方法、とり
わけその分解触媒についての関心が高まっており、いく
つかの方法が提案されてきた。それらは例えば、ゼオラ
イト系の担体に各種の遷移金属を担持させたものあるい
は又、酸化マグネシウムや酸化亜鉛などの塩基性担体に
各種の遷移金属を担持させたものである。しかしながら
これらはいずれも活性を示す温度が高く、低温では充分
なる性能が得られず、又処理ガス中に水分があるとその
影響を強く受けて失活するなどの弱点を有していた。本
発明はこうした状況に鑑みてなされたものであり、その
目的とするところは、排ガス中のN2Oを効率よく分解
することが出来るN2O分解用触媒を提供することにあ
る。
[0004] Under these circumstances, there has been an increasing interest in N2O treatment methods, particularly for its decomposition catalysts, and several methods have been proposed. These are, for example, those in which various transition metals are supported on a zeolite-based carrier, or those in which various transition metals are supported on a basic carrier such as magnesium oxide or zinc oxide. However, all of these have high temperatures at which the activity is high, and low performance cannot be obtained at low temperatures. Further, if moisture is present in the processing gas, they have the disadvantage that they are strongly affected by the effect and are deactivated. The present invention has been made in view of such circumstances, and an object of the present invention is to provide an N2O decomposition catalyst capable of efficiently decomposing N2O in exhaust gas.

【0005】[0005]

【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、ゼオライト、
アルミナ、チタニア、ジルコニア、シリカ−アルミナな
どの酸性担体に、第1成分として、銅(Cu)、鉄(F
e)、ニッケル(Ni)から選ばれた少なくとも1種以
上の金属又は金属酸化物、及び第2成分として、ルテニ
ウム(Ru)、レニウム(Re)、オスミウム(O
s)、イリジウム(Ir)から選ばれた少なくとも1種
以上の貴金属を担持させてなる。本発明に係る酸性担体
は(I)ゼオライト、(II)酸化物系に大別される。
Means for Solving the Problems To achieve the above object, a catalyst for decomposing nitrous oxide according to the present invention comprises a zeolite,
On an acidic carrier such as alumina, titania, zirconia, or silica-alumina, copper (Cu), iron (F)
e), at least one metal or metal oxide selected from nickel (Ni), and ruthenium (Ru), rhenium (Re), osmium (O
s) and at least one noble metal selected from iridium (Ir). The acidic carrier according to the present invention is roughly classified into (I) zeolite and (II) oxide.

【0006】(I)ゼオライト系は、Na−モルデナイ
ト、Na−ZSM・5、Na−USYなど耐熱性に優れ
たゼオライトを硫安などのアンモニウム塩水溶液、ある
いは硫酸などの酸で処理し、ゼオライト中のアルカリ金
属の一部あるいは全部をNH4あるいはH でイオン交
換処理し、NH4 イオン交換の場合更に焼成処理する
ことによって酸型ゼオライトが得られる。例えば、Si
O2/Al2O3のモル比が、13〜20どあって、か
つSiO2/Na2Oのモル比が10〜200であるも
のや、特願平3−164094として出願しているT
i、Zr置換もしくは担体ゼオライトなどを挙げること
ができる。(II)酸化物系は、本発明者らが平成3年
1月8日付に出願しているAl2O3、TiO2、Ti
O2/SO4、ZrO2、ZrO4/SO4 などの単
一金属酸化物や、SiO2−Al2O3、TiO2−A
l2O3、TiO2−ZrO2などの複合酸化物などで
ある。
(I) The zeolite is obtained by treating a heat-resistant zeolite such as Na-mordenite, Na-ZSM.5 or Na-USY with an aqueous solution of ammonium salt such as ammonium sulfate or an acid such as sulfuric acid. Part of or all of the alkali metal is subjected to an ion exchange treatment with NH4 or H 2, and in the case of NH4 ion exchange, further calcination treatment is performed to obtain an acid zeolite. For example, Si
O2 / Al2O3 having a molar ratio of 13 to 20 and SiO2 / Na2O having a molar ratio of 10 to 200;
i, Zr substitution or carrier zeolite can be mentioned. (II) The oxide system is composed of Al2O3, TiO2, and Ti, filed on January 8, 1991 by the present inventors.
Single metal oxides such as O2 / SO4, ZrO2, ZrO4 / SO4, SiO2-Al2O3, TiO2-A
Complex oxides such as l2O3 and TiO2-ZrO2.

【0007】本発明にかかる触媒粉は、種々の方法によ
り調製することが出来る。前述した酸性担体を、水にリ
パルブし、これに第1成分から選択されるCu、Fe、
Niなどの硝酸塩水溶液、および第2成分から選択され
る、Ru、Re、Os、Irなどの貴金属の塩化物を所
定量加え、一定時間撹拌した後、NH4OH水を用いて
pH7になるように中和し、沈殿を形成させ、これらを
ろ別、水洗、乾燥した後、5%ヒドラジン水溶液中に一
定時間浸漬させ還元する。これらをろ別後、乾燥し、5
00℃〜600℃で3〜5時間焼成する。触媒の調製は
又、イオン交換法によっても可能である。すなわち、先
ず第1に、第1成分の硝酸塩等の水溶液中に、酸性担体
をリパルブし、加熱しながら、一定時間撹拌し、イオン
交換した後、ろ別、水洗し、乾燥する。
The catalyst powder according to the present invention can be prepared by various methods. The above acidic carrier is re-pulped in water, and Cu, Fe selected from the first component is added thereto.
A predetermined amount of a chloride of a noble metal such as Ru, Re, Os, and Ir selected from an aqueous nitrate solution such as Ni and the second component is added, and the mixture is stirred for a certain period of time. The precipitates are collected by filtration, washed with water and dried, and then immersed in a 5% hydrazine aqueous solution for a certain period of time to reduce. These are filtered, dried and dried.
Bake at 00 ° C to 600 ° C for 3 to 5 hours. Preparation of the catalyst is also possible by the ion exchange method. That is, first, the acidic carrier is re-pulped in an aqueous solution of the first component such as nitrate, stirred for a certain period of time while heating, ion-exchanged, filtered, washed with water, and dried.

【0008】次に更にこのものを、第2成分の塩化物水
溶液中にリパルブし、同じく加熱しながら一定時間撹拌
し、イオン交換した後、ろ別、水洗、乾燥した後、50
0℃〜600℃で3〜5時間焼成する。本発明におい
て、イオン交換の方法は、特に限定されるものではな
く、従来より知られている通常の方法によって行うこと
ができる。例えば、前記酸性担体を水に分散させ、十分
な撹拌下に、イオン交換する遷移金属等の陽イオン又は
錯陽イオンを加えればよい。このように、イオン交換に
おいて、イオン交換する遷移金属の陽イオン又は錯陽イ
オンが沈殿を生じず、且つ、できるだけ高いpHに保こ
とによって、水酸基の有する水素イオンとイオン交換す
るイオンの交換容量を増加させることができる。かかる
イオン交換の進行に伴って、交換された水素イオンによ
って液のpHが低下するので、アンモニア等の中和剤を
加え、pHを前述したように高く維持しながら、イオン
交換するのがよい。
Next, this was further re-pulped in an aqueous chloride solution of the second component, stirred for a certain period of time while heating, ion-exchanged, filtered, washed with water and dried, and then dried.
Bake at 0 ° C to 600 ° C for 3 to 5 hours. In the present invention, the method of ion exchange is not particularly limited, and can be performed by a conventionally known ordinary method. For example, the acidic carrier may be dispersed in water, and a cation or complex cation such as a transition metal to be ion-exchanged may be added with sufficient stirring. As described above, in the ion exchange, the cation or complex cation of the transition metal to be ion-exchanged does not cause precipitation, and by maintaining the pH as high as possible, the exchange capacity of the ion for ion exchange with the hydrogen ion having a hydroxyl group can be increased. Can be increased. Since the pH of the liquid decreases due to the exchanged hydrogen ions with the progress of the ion exchange, it is preferable to perform ion exchange while adding a neutralizing agent such as ammonia and maintaining the pH high as described above.

【0009】また、交換する金属イオンが銅、ニッケル
等の場合のように、加熱によって加水分解しないとき
は、イオン交換速度を速めるために、温度を上昇させた
条件下にイオン交換を行ってもよい。以上のようにし
て、本発明に係る触媒粉が得られるが、これら金属の好
適な担持量は、第1成分の遷移金属としては、金属換算
で1〜10wt%であり、又、第2成分の貴金属として
は、金属換算で0.01〜1.0wt%である。第1成
分の担持量が上記範囲以上では、それに見合うだけの活
性の向上は見られなかった。又第2成分の担持量は、上
記範囲以下ではその効果は十分に発揮されないが、上記
範囲以上では、活性が発現する温度をより低くすること
は可能であるが、これら貴金属の使用量を増すことは経
済的に不利である。
When the metal ions to be exchanged are not hydrolyzed by heating as in the case of copper, nickel or the like, in order to increase the ion exchange rate, the ion exchange may be carried out under the condition that the temperature is increased. Good. As described above, the catalyst powder according to the present invention is obtained, and the preferable loading amount of these metals is 1 to 10% by weight in terms of metal as the transition metal of the first component. Is 0.01 to 1.0% by weight in terms of metal. When the amount of the first component supported is more than the above range, no corresponding improvement in activity was observed. When the amount of the second component is not more than the above range, the effect is not sufficiently exhibited, but when the amount is more than the above range, it is possible to lower the temperature at which the activity is exhibited, but it is necessary to increase the use amount of these noble metals. That is an economic disadvantage.

【0010】結局、本発明が提起している温度領域にお
いては、第2成分としてはその担持量が上記範囲以上に
ある必要はない。これらの触媒粉のうちでより好ましい
のは、ゼオライト系担体に、銅およびルテニウムを担持
したものである。本発明に係る亜酸化窒素分解用触媒
は、従来公知の成形方法により、ハニカム状球状等の種
々の形状に成形することが出来る。さらに又、前述した
酸性担体のみを成形し、第1成分および第2成分を成形
後に含浸させてもよい。さらに又、別に成形したセラミ
ックス担体あるいはセラミックファイバー製基材、コー
ジエライト製ハニカム等の上に前述した触媒粉をウォッ
シュコートしてもよい。
After all, in the temperature range proposed by the present invention, the amount of the second component to be carried does not need to be higher than the above range. Among these catalyst powders, more preferred are those in which copper and ruthenium are supported on a zeolite-based carrier. The nitrous oxide decomposition catalyst according to the present invention can be formed into various shapes such as honeycomb spheres by a conventionally known forming method. Furthermore, only the above-mentioned acidic carrier may be molded, and the first component and the second component may be impregnated after molding. Further, the above-described catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like.

【0011】又、成形の際には、成形助剤、無機繊維、
有機バインダー等を適宜配合してもよい。本発明に係る
亜酸化窒素分解用触媒が、N2Oに対して活性を示す最
適な温度は、触媒種によって異なるが通常300℃〜6
00℃であり、この温度領域においては、空間速度(S
V)500〜500000程度で排ガスを通流させるこ
とが好ましい。なお、より好適な使用温度領域は400
℃〜500℃である。
In the molding, a molding aid, inorganic fibers,
An organic binder or the like may be appropriately blended. The optimum temperature at which the catalyst for decomposing nitrous oxide according to the present invention exhibits activity against N 2 O varies depending on the type of catalyst, but is usually from 300 ° C.
00 ° C., and in this temperature range, the space velocity (S
V) It is preferable to flow exhaust gas at about 500 to 500,000. The more preferable operating temperature range is 400
C. to 500C.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0013】(I)、触媒の調製 実施例1 SiO2/Al2O3モル比が19.5、SiO2/N
a2Oモル比が165の日本化学製H型モルデナイト
(HM−23)200gを2lの水に浸漬し、CuSO
4水溶液をCuOとして10gとなるように、又RuC
l3水溶液をRuとして0.2gとなるように添加し、
30分間撹拌した。次いで、(1+1)NH4OHを用
いてpHが7になるまで中和した。このスラリーをろ別
し、十分に水洗し、100℃で8時間乾燥した。得られ
た粉末を軽く粉砕し5%のヒドラジン溶液に10分間浸
漬し、還元した。このスラリーをろ別、水洗後100℃
で8時間乾燥し、さらに500℃で4時間焼成して、C
uOおよびRuをそれぞれ4.91%、0.095%含
有するモルデナイト粉末を得た。尚、これらの分析は原
子吸光法によった。次に、この粉末100gに水100
gを加え、ボールミルにて10分間粉砕し、さらに水に
て粘度調節し、ウォッシュコート用スラリーを得た。こ
のスラリーを用いて7mmピッチのコージェライト製ハ
ニカムに触媒粉を担持した。このときのコート量は0.
12g/ccであった。
(I) Preparation of catalyst Example 1 SiO2 / Al2O3 molar ratio is 19.5, SiO2 / N
200 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku having an a2O molar ratio of 165 was immersed in 2 l of water, and CuSO
4 so that the aqueous solution becomes 10 g as CuO and RuC
13 aqueous solution was added to be 0.2 g as Ru,
Stir for 30 minutes. Then, the mixture was neutralized with (1 + 1) NH4OH until the pH reached 7. This slurry was separated by filtration, sufficiently washed with water, and dried at 100 ° C. for 8 hours. The obtained powder was lightly pulverized, immersed in a 5% hydrazine solution for 10 minutes, and reduced. This slurry is filtered and washed with water at 100 ° C.
For 8 hours, and calcined at 500 ° C. for 4 hours.
Mordenite powders containing 4.91% and 0.095% of uO and Ru, respectively, were obtained. In addition, these analyzes were based on the atomic absorption method. Next, 100 g of this powder was added to 100 g of water.
g was added, and the mixture was pulverized with a ball mill for 10 minutes, and the viscosity was adjusted with water to obtain a slurry for washcoat. Using this slurry, catalyst powder was supported on a cordierite honeycomb having a pitch of 7 mm. The coating amount at this time is 0.
It was 12 g / cc.

【0014】実施例2 実施例1において、CuSO4水溶液にかえて、Fe
(NO3)3溶液とする以外は実施例1と同様にして、
Fe2O3およびRuをそれぞれ4.93%、0.09
1%含有するモルデナイト粉末を得た。以下、実施例1
と同様にしてハニカム触媒を得たが、このときのコート
量は0.122g/ccであった。
Example 2 In Example 1, FeFe was used instead of the CuSO4 aqueous solution.
(NO3) In the same manner as in Example 1 except that 3 solutions were used,
4.93% and 0.09% Fe2O3 and Ru respectively
A mordenite powder containing 1% was obtained. Hereinafter, Example 1
A honeycomb catalyst was obtained in the same manner as described above, but the coating amount at this time was 0.122 g / cc.

【0015】実施例3 実施例1において、CuSO4水溶液にかえて、Ni
(NO3)2溶液とする以外は実施例1と同様にして、
NiOおよびRuをそれぞれ4.91%、0.091%
含有するモルデナイト粉末を得た。以下、実施例1と同
様にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。
Example 3 In Example 1, NiNi solution was used instead of CuSO4 aqueous solution.
(NO3) In the same manner as in Example 1 except that the solution was prepared as 2 solution,
4.91% and 0.091% of NiO and Ru, respectively
The resulting mordenite powder was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc.

【0016】実施例4 実施例1において、RuCl3水溶液にかえて、ReC
l3水溶液とする以外は実施例1と同様にして、CuO
およびReをそれぞれ4.95%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
23g/ccであった。
Example 4 The procedure of Example 1 was repeated, except that the aqueous solution of RuCl3 was replaced with ReC
CuO was prepared in the same manner as in Example 1 except that an aqueous solution of CuO was used.
And Re containing 4.9% and 0.095%, respectively, of mordenite powder. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, except that the coating amount was 0.1%.
It was 23 g / cc.

【0017】実施例5 実施例1において、RuCl3水溶液にかえて、OsC
l3水溶液とする以外は実施例1と同様にして、CuO
およびOsをそれぞれ4.96%、0.095%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
21g/ccであった。
Example 5 In Example 1, OsC was used instead of the RuCl 3 aqueous solution.
CuO was prepared in the same manner as in Example 1 except that an aqueous solution of CuO was used.
And mordenite powder containing 4.96% and 0.095% of Os, respectively. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, except that the coating amount was 0.1%.
It was 21 g / cc.

【0018】実施例6 実施例1において、RuCl3水溶液にかえて、IrC
l4水溶液とする以外は実施例1と同様にして、CuO
およびIrをそれぞれ4.95%、0.089%含有す
るモルデナイト粉末を得た。以下、実施例1と同様にし
てハニカム触媒を得たが、このときのコート量は0.1
33g/ccであった。
Example 6 In Example 1, IrC3 aqueous solution was used instead of RuCl3 aqueous solution.
In the same manner as in Example 1 except that an aqueous solution of CuO
And mordenite powders containing 4.95% and 0.089% of Ir, respectively. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1, except that the coating amount was 0.1%.
It was 33 g / cc.

【0019】実施例7 実施例1において、HM23にかえて、比表面積110
m2/gのアナターゼ型TiO2とする以外は実施例1
と同様にして、CuOおよびRuそれぞれ4.96%、
0.093%含有するTiO2粉末を得た。実施例1と
同様にしてハニカム触媒を得たがこのときのコート量は
0.122g/ccであった。
Example 7 In Example 1, a specific surface area of 110 was used instead of the HM23.
Example 1 except that m2 / g of anatase TiO2 was used.
4.96% each of CuO and Ru,
A TiO2 powder containing 0.093% was obtained. A honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc.

【0020】実施例8 実施例1において、CuSO4水溶液をCuOとして6
gとなるようにする以外は実施例1と同様にして、Cu
OおよびRuをそれぞれ2.95%、0.094%含有
するモルデナイト粉末を得た。以下、実施例1と同様に
してハニカム触媒を得たが、このときのコート量は0.
126g/ccであった。
Example 8 The same procedure as in Example 1 was repeated except that the aqueous CuSO4
g in the same manner as in Example 1 except that
A mordenite powder containing 2.95% and 0.094% of O and Ru, respectively, was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.1.
It was 126 g / cc.

【0021】実施例9 実施例1において、CuSO4水溶液をCuOとして2
0gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ9.92%、0.095%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。
Example 9 In Example 1, the CuSO4 aqueous solution was changed to CuO
Cg in the same manner as in Example 1 except that the weight was set to 0 g.
Mordenite powders containing 9.92% and 0.095% of uO and Ru, respectively, were obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc.

【0022】実施例10 実施例1において、RuCl3水溶液をRuとして0.
4gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.193%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.126g/ccであった。
Example 10 In Example 1, the RuCl 3 aqueous solution was used as the Ru solution.
C in the same manner as in Example 1 except that the weight was 4 g.
Mordenite powders containing 4.95% and 0.193% of uO and Ru, respectively, were obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.126 g / cc.

【0023】実施例11 実施例1において、RuCl3水溶液をRuとして0.
1gとなるようにする以外は実施例1と同様にして、C
uOおよびRuをそれぞれ4.95%、0.048%含
有するモルデナイト粉末を得た。以下、実施例1と同様
にしてハニカム触媒を得たが、このときのコート量は
0.122g/ccであった。
Embodiment 11 In the embodiment 1, the RuCl 3 aqueous solution is used as 0.1% as Ru.
The same procedure as in Example 1 was carried out except that the weight was 1 g.
A mordenite powder containing 4.95% and 0.048% of uO and Ru, respectively, was obtained. Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.122 g / cc.

【0024】比較例1 実施例1において、RuCl3水溶液を添加せずして、
CuOを4.96%含有するモルデナイト粉末を得た。
以下実施例1と同様にしてハニカム触媒を得たが、この
ときのコート量は0.123g/ccであった。
COMPARATIVE EXAMPLE 1 In Example 1, without adding an aqueous RuCl 3 solution,
A mordenite powder containing 4.96% of CuO was obtained.
Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 1, but the coating amount at this time was 0.123 g / cc.

【0025】比較例2 実施例13において、RuCl3水溶液を添加せずし
て、CuOを2.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。
Comparative Example 2 In Example 13, a mordenite powder containing 2.95% of CuO was obtained without adding an aqueous RuCl 3 solution. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1.
The coating amount at this time was 0.131 g / cc.

【0026】比較例3 実施例14において、RuCl3水溶液を添加せずし
て、CuOを9.95%含有するモルデナイト粉末を得
た。以下実施例1と同様にしてハニカム触媒を得たが、
このときのコート量は0.131g/ccであった。
Comparative Example 3 In Example 14, a mordenite powder containing 9.95% of CuO was obtained without adding an aqueous RuCl 3 solution. Hereinafter, a honeycomb catalyst was obtained in the same manner as in Example 1.
The coating amount at this time was 0.131 g / cc.

【0027】比較例4 実施例12において、RuCl3水溶液を添加せずし
て、CuOを4.95%含有するTiO2粉末を得た。
以下実施例12と同様にしてハニカム触媒を得たが、こ
のときのコート量は0.133g/ccであった。
Comparative Example 4 In Example 12, a TiO2 powder containing 4.95% CuO was obtained without adding an aqueous RuCl3 solution.
Thereafter, a honeycomb catalyst was obtained in the same manner as in Example 12, but the coating amount at this time was 0.133 g / cc.

【0028】(II)、評価試験実施例1〜11、比較
例1〜4で得た触媒について、下記の試験条件により、
常圧流通式反応装置を用い、亜酸化窒素含有ガスの接触
分解を行い、亜酸化窒素のN2への転換率をガスクロマ
トグラフ法によりN2を定量して算出した。 空間速度 5000Hr 反応温度 300℃、400℃、500℃ 結果を表1に示す。
(II) Evaluation Test The catalysts obtained in Examples 1 to 11 and Comparative Examples 1 to 4 were tested under the following test conditions.
Nitrous oxide-containing gas was subjected to catalytic cracking using an atmospheric pressure flow reactor, and the conversion rate of nitrous oxide to N2 was calculated by quantifying N2 by gas chromatography. Space velocity 5000Hr 1 Reaction temperature 300 ° C, 400 ° C, 500 ° C The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【発明の効果】以上詳細したように、本発明に係る亜酸
化窒素分解用触媒は、排ガス中の亜酸化窒素を、比較的
低温度においても効率よく接触分解することが出来、又
排ガスが存在してもその影響を受けにくいなど、優れた
特有を有する。
As described above, the catalyst for decomposing nitrous oxide according to the present invention can efficiently decompose nitrous oxide in exhaust gas even at a relatively low temperature, and the exhaust gas does not exist. It has excellent characteristics such as being hardly affected by the influence.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−106027(JP,A) 特開 平4−363144(JP,A) 特開 平5−208138(JP,A) 特開 平5−317722(JP,A) 特開 昭52−52192(JP,A) 特開 平5−305219(JP,A) 特開 昭57−159544(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-106027 (JP, A) JP-A-4-363144 (JP, A) JP-A-5-208138 (JP, A) JP-A-5-208138 317722 (JP, A) JP-A-52-52192 (JP, A) JP-A-5-305219 (JP, A) JP-A-57-159544 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-37/36 B01D 53/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸性担体に、第1成分として、銅(C
u)、鉄(Fe)、ニッケル(Ni)から選ばれた少な
くとも1種以上の金属又は金属酸化物、および第2成分
として、ルテニウム(Ru)、レニウム(Re)、オス
ミウム(Os)、イリジウム(Ir)、から選ばれた少
なくとも1種以上の貴金属を担持することを特徴とする
亜酸化窒素分解用触媒。
1. An acidic carrier containing copper (C) as a first component.
u), at least one metal or metal oxide selected from iron (Fe) and nickel (Ni), and as the second component, ruthenium (Ru), rhenium (Re), osmium (Os), iridium ( Ir), a catalyst for decomposing nitrous oxide, which carries at least one noble metal selected from the group consisting of:
JP21538092A 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide Expired - Fee Related JP3254742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21538092A JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21538092A JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Publications (2)

Publication Number Publication Date
JPH06154611A JPH06154611A (en) 1994-06-03
JP3254742B2 true JP3254742B2 (en) 2002-02-12

Family

ID=16671345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21538092A Expired - Fee Related JP3254742B2 (en) 1992-07-03 1992-07-03 Catalyst for decomposition of nitrous oxide

Country Status (1)

Country Link
JP (1) JP3254742B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
NL1026207C2 (en) * 2004-05-17 2005-11-21 Stichting Energie Process for the decomposition of N2O, catalyst for it and preparation of this catalyst.
EP1872852A1 (en) * 2005-03-30 2008-01-02 Sued-Chemie Catalysts Japan, Inc. Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
KR100847739B1 (en) * 2006-08-01 2008-07-23 고등기술연구원연구조합 Catalyzer for cleaning nitrous oxide, production method thereof, and cleaning method of nitrous oxide using it
NL2001788C2 (en) * 2008-07-11 2010-01-12 Stichting Energie Process for the decomposition of N2O, catalyst for it and preparation of this catalyst.
JP2011056347A (en) * 2009-09-07 2011-03-24 Toshiba Corp Catalytic filter and catalytic device
JP2011106999A (en) * 2009-11-18 2011-06-02 Horiba Ltd Dilution air refining method and dilution air refining device
JP2014089216A (en) * 2014-02-17 2014-05-15 Sumitomo Metal Mining Engineering Co Ltd Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system
US11219884B2 (en) * 2015-12-28 2022-01-11 Toyota Jidosha Kabushiki Kaisha Cluster supported catalyst and production method therefor
JP2023167677A (en) * 2022-05-12 2023-11-24 住友化学株式会社 Catalyst, catalyst precursor, method for manufacturing catalyst, catalyst packing reaction tube, and method for decomposing nitrous oxide

Also Published As

Publication number Publication date
JPH06154611A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
EP0544282B1 (en) Catalyst for purifying exhaust gas
EP0547226B1 (en) Method of oxidative decomposition of organic halogen compound
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JP2598717B2 (en) Nitrogen oxide removal treatment method
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JP3221071B2 (en) Catalyst for decomposition of nitrous oxide
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3970093B2 (en) Ammonia decomposition removal method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH05317650A (en) Catalyst for catalytic reduction of nitrogen oxide
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP3221110B2 (en) Catalyst for decomposition of nitrous oxide
JPH1066869A (en) Nitrogen oxide decomposing catalyst
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH06154604A (en) Catalyst for decomposition of nitrous oxide
JPH06154603A (en) Catalyst for decomposition of nitrous oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees