JP3221110B2 - Catalyst for decomposition of nitrous oxide - Google Patents

Catalyst for decomposition of nitrous oxide

Info

Publication number
JP3221110B2
JP3221110B2 JP32717492A JP32717492A JP3221110B2 JP 3221110 B2 JP3221110 B2 JP 3221110B2 JP 32717492 A JP32717492 A JP 32717492A JP 32717492 A JP32717492 A JP 32717492A JP 3221110 B2 JP3221110 B2 JP 3221110B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrous oxide
decomposition
hours
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32717492A
Other languages
Japanese (ja)
Other versions
JPH06134309A (en
Inventor
忠夫 仲辻
一彦 永野
健二 中平
雅文 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP32717492A priority Critical patent/JP3221110B2/en
Publication of JPH06134309A publication Critical patent/JPH06134309A/en
Application granted granted Critical
Publication of JP3221110B2 publication Critical patent/JP3221110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(NO)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。
BACKGROUND OF THE INVENTION This invention, nitrogen oxides in the exhaust gas, especially relates to a decomposition catalyst for removing nitrous oxide (N 2 O), details plants, automobiles, garbage incinerators, sewage sludge incinerators, etc. The present invention relates to a nitrogen oxide decomposition catalyst suitable for use in decomposing and removing nitrous oxide contained in exhaust gas discharged from waste treatment facilities.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下でNOを含むガスと接触させる方法など
が提案されるている。ところが、こうした方法ではいず
れも、排ガス中のNOの処理は不可能ではないが十分
ではなく、従来これらは、前述した脱硝設備の後流に未
処理のまま排出されてきた。これは、これまでNOに
対する法的な規制値がなく、又、JISのような公的な
測定方法も定められてなかったことなどとも関連してお
り、実質的にはこれらの処理は、脱硝の対象としては黙
視されてきたというのが現実であった。
2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain. Is severely restricted, and it is desired to develop an effective means of removing the same. By the way, nitrogen oxides to which emission regulations are conventionally required are mainly nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ). As a method for removing these NOx, several methods for reducing NOx in exhaust gas using a catalyst have already been put to practical use. For example, (a) a three-way catalytic method in gasoline vehicles, and (b) a selective catalytic reduction method using ammonia for exhaust gas from large equipment discharge sources such as boilers. Recently, (c) as a method for removing NOx in exhaust gas using hydrocarbons, zeolite supporting a metal such as copper, or a metal oxide such as alumina as a catalyst and a gas containing NO in the coexistence of hydrocarbons are used. A method of contacting has been proposed. However, in all of these methods, treatment of N 2 O in exhaust gas is not sufficient, if not impossible, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is related to the fact that there have been no legally regulated values for N 2 O and that no official measurement method such as JIS has been established so far. However, it was a reality that the subject of denitration had been ignored.

【0003】ところが、前述した脱硝方法においては、
その運転条件によつてNOが生成することが認められ
ており、又、最近ではゴミ焼却炉や下水汚泥焼却炉など
からも比較的高濃度のNOが生成することも報告され
ている。加えて近年、NOは、CO、フロン、CH
等とともに、成層圏でのオゾ層の破壊、ないしは温室
効果による温度上昇などもたらす地球規模的汚染物質と
して特に注目されてきている。
However, in the aforementioned denitration method,
It has been recognized that N 2 O is produced depending on the operating conditions, and it has recently been reported that a relatively high concentration of N 2 O is produced from a garbage incinerator or a sewage sludge incinerator. I have. In addition, in recent years, N 2 O has become CO 2 , Freon, CH
Along with 4, etc., it has been particularly noted as a global pollutant that causes the destruction of the ozone layer in the stratosphere or a temperature increase due to the greenhouse effect.

【0004】こうした事情からNOの処理方法、とり
わけその分解触媒についての関心が高まっており、いく
つかの方法が提案されてきた。それらは例えば、ゼオラ
イト系の担体に各種の遷移金属を担持させたものあるい
は又、酸化マグネシウムや酸化亜鉛などの塩基性担体に
各種の遷移金属を担持させたものである。しかしながら
これらはいずれも活性を示す温度が高く、低温では充分
なる性能が得られず、又処理ガス中に水分があるとその
影響を強く受けて失活するなどの弱点を有していた。こ
うした問題を解決するため、既に本発明者らは、疎水性
担体にルテニウムあるいはロジウムをはじめとする種々
の貴金属を担持するなどの方法を出願している(平成4
年5月26日)。しかしながら、こうした方法によって
も、貴金属のうちでRuやRhは、初期的には非常に高
活性を示すものの反応中に経時的変化し、活性の低下を
もたらすなどの弱点を有することも明らかになった。
[0004] Under these circumstances, there has been increasing interest in a method of treating N 2 O, particularly a decomposition catalyst thereof, and several methods have been proposed. These are, for example, those in which various transition metals are supported on a zeolite-based carrier, or those in which various transition metals are supported on a basic carrier such as magnesium oxide or zinc oxide. However, all of these have high temperatures at which the activity is high, and low performance cannot be obtained at low temperatures. Further, if moisture is present in the processing gas, they have the disadvantage that they are strongly affected by the effect and are deactivated. In order to solve such problems, the present inventors have already applied for a method of supporting various noble metals such as ruthenium or rhodium on a hydrophobic carrier (Heisei 4).
May 26). However, even with such a method, among the noble metals, Ru and Rh have an extremely high activity at first, but have a weak point such that they change over time during the reaction, resulting in a decrease in activity. Was.

【0005】本発明はこうした状況に鑑みてなされたも
のであり、その目的とするところは、排ガス中のN
を効率よく分解することが出来ると同時耐久性の優れた
O分解用触媒を提供することにある。
The present invention has been made in view of such a situation, and an object of the present invention is to provide N 2 O in exhaust gas.
It is an object of the present invention to provide an N 2 O decomposition catalyst which can efficiently decompose N 2 O and has excellent simultaneous durability.

【0006】[0006]

【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、シリカゲル、
活性アルミナあるいはシリカ−アルミナなどの疎水性担
体に、(a)ルテニウム(Ru)、ロジウム(Rh)か
ら選ばれる少なくとも1種以上の貴金属、及び(b)N
、TiO、ZrOから選ばれる少なくとも
1種以上の酸化物を担持させてなる。
Means for Solving the Problems To achieve the above object, the catalyst for decomposing nitrous oxide according to the present invention comprises silica gel,
(A) at least one or more noble metals selected from ruthenium (Ru) and rhodium (Rh), and (b) N
b 2 O 5, TiO 2, made by supporting the at least one oxide selected from ZrO 2.

【0007】本発明に係る亜酸化窒素分解用触媒は、例
えば次のようにして調製される。すなわち、本発明にお
ける疎水性担体とは、使用される温度領域において水分
の吸着能を示さないか、あるいは又、その吸着量が極め
て小さいものである。この水吸着能は、常温にて水を飽
和吸着量させた試料のTG−DTA曲線を解析すること
などによって見つもることが出来るものである。こうし
た疎水性担体としては、富士デヴィソン化学製の微粉末
合成シリカ、SYLOID978、同308、同25
5、同じく富士デヴィソン化学製の球状シリカゲルCA
RIACT10、同15、同30、同50及び住友化学
製の球状活性アルミナKHD−24(−46)、同NK
HD−24(−46)などを挙げることが出来る。ある
いは又、ソーダ塩などの水溶性塩やアルコキシドのアル
コール溶液を均質に混合した溶液を中和あるいは加水分
解させる方法などによって沈殿を生成させ、さらにろ過
・水洗・リパルブを繰り返した後乾燥、焼成することに
よって、それぞれ、シリカゲル、アルミナあるいは又、
シリカ−アルミナなどの微粉末を調製することも可能で
ある。
The nitrous oxide decomposition catalyst according to the present invention is prepared, for example, as follows. That is, the hydrophobic carrier in the present invention does not exhibit the ability to adsorb moisture in the temperature range in which it is used, or has a very small amount of adsorption. This water adsorption capacity can be determined by analyzing a TG-DTA curve of a sample in which water is saturated and adsorbed at room temperature. Examples of such a hydrophobic carrier include fine powder synthetic silica manufactured by Fuji Devison Chemical, SYLOID 978, 308, and 25.
5. Spherical silica gel CA also manufactured by Fuji Devison Chemical
RIACT10, 15, 15, 30, 50, and spherical activated alumina KHD-24 (-46) and NK manufactured by Sumitomo Chemical Co., Ltd.
HD-24 (-46) and the like. Alternatively, a precipitate is formed by a method of neutralizing or hydrolyzing a solution obtained by homogeneously mixing a water-soluble salt such as a soda salt or an alcohol solution of an alkoxide, and then drying, firing after repeating filtration, washing, and reparbing. By that, respectively, silica gel, alumina or also
It is also possible to prepare fine powders such as silica-alumina.

【0008】本発明に係る触媒は、例えば以下の方法に
より調製することが出来る。前述した疎水性担体を、R
uあるいはRhなどの塩化物の水溶液中に一定時間浸漬
させ、これら貴金属を含浸し、乾燥した後更に、塩化ニ
オブ、硫酸チタンあるいは硝酸ジルコニルなどの水溶液
中に一定時間浸漬させ、これら酸化物の前駆体を含浸
し、乾燥後、300℃〜500℃で3〜5時間焼成し、
更にH気流中で400℃〜500で3〜5時間還元処
理をする。以上のようにして、本発明に係る触媒が得ら
れるが、これら貴金属の好適な担持量は、金属として
0.3〜2wt%である。0.3wt%以下では、これ
らの効果が十分に発揮されず、又2wt%を超えてもそ
れに見合うだけの活性の向上は得られなかった。 又、
TiO、Nb、ZrOなどの酸化物の好適な
担持量は、酸化物として5〜20wt%である。5wt
%以下では、これらの効果が十分に発揮されず、又20
wt%を越えると担体の疎水性の低下をもたらし好まし
くない。
The catalyst according to the present invention can be prepared, for example, by the following method. The above-mentioned hydrophobic carrier is represented by R
u or Rh, etc. for a certain period of time, impregnated with these noble metals, dried and then further dipped in an aqueous solution, such as niobium chloride, titanium sulfate or zirconyl nitrate, for a certain period of time. After impregnating the body and drying, firing at 300-500 ° C. for 3-5 hours,
Further, a reduction treatment is performed at 400 ° C. to 500 ° C. for 3 to 5 hours in a stream of H 2 . As described above, the catalyst according to the present invention is obtained, and the preferable amount of the noble metal to be supported is 0.3 to 2% by weight as the metal. If the content is less than 0.3 wt%, these effects are not sufficiently exhibited, and even if the content exceeds 2 wt%, the activity corresponding to the improvement cannot be obtained. or,
Preferred loading amount of TiO 2, Nb 2 O 5, an oxide such as ZrO 2 is 5 to 20 wt% as oxide. 5wt
%, These effects are not sufficiently exerted, and the effect of 20%
Exceeding the wt% is not preferred because the hydrophobicity of the carrier is reduced.

【0009】本発明に係る亜酸化窒素分解用触媒は、従
来公知の成形方法により、ハニカム状球状等の種々の形
状に成形することが出来る。さらに又、前述した疎水性
担体のみを成形し、貴金属などを成形後に含浸させても
よい。さらに又、別に成形したセラミックス担体あるい
はセラミックファイバー製基材、コージエライト製ハニ
カム等の上に前述した触媒粉をウォッシュコートしても
よい。又、成形の際には、成形助剤、無機繊維、有機バ
インダー等を適宜配合してもよい。
The catalyst for decomposing nitrous oxide according to the present invention can be formed into various shapes such as a honeycomb spherical shape by a conventionally known forming method. Further, only the above-described hydrophobic carrier may be molded, and a precious metal or the like may be impregnated after molding. Further, the above-described catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. Further, at the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately compounded.

【0010】本発明に係る亜酸化窒素分解用触媒が、N
Oに対して活性を示す最適な温度は、触媒種によって
異なるが通常200℃〜600℃であり、この温度領域
においては、空間速度(SV)500〜500000程
度で排ガスを通流させることが好ましい。なお、より好
適な使用温度領域は300℃〜500℃である。
The catalyst for decomposing nitrous oxide according to the present invention comprises N
The optimum temperature at which activity is exhibited with respect to 2 O varies depending on the type of catalyst, but is usually 200 ° C to 600 ° C. In this temperature range, exhaust gas can be passed at a space velocity (SV) of about 500 to 500,000. preferable. Note that a more preferable use temperature range is 300 ° C to 500 ° C.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible. (I), preparation of catalyst

【0012】実施例1 粒径が2mm〜4mm、細孔容積0.65ml/g、吸
水率78%の住友化学製の球状活性アルミナNKHD−
24をRhCl水溶液中に浸漬し、Rhとして1.5
wt%となるよう含浸した。余分な水分を吹きとばした
後、100℃で2時間乾燥した。次にこのものを塩化ニ
オブ(NbCl)の塩酸水溶液に浸漬し、Nb
として5wt%となるように含浸した。余分な水分を吹
きとばしした後、100℃で2時間乾燥し、さらに40
0℃で2時間焼成した。次にこれらをH気流中で40
0℃で2時間還元処理して、球状アルミナ担体にRhを
1.5wt%、Nbを5wt%担持した触媒を得
た。
Example 1 Spherical activated alumina NKHD- manufactured by Sumitomo Chemical having a particle size of 2 mm to 4 mm, a pore volume of 0.65 ml / g, and a water absorption of 78%.
24 was immersed in an aqueous RhCl 3 solution, and Rh was 1.5
It was impregnated so as to be wt%. After blowing off excess water, the resultant was dried at 100 ° C. for 2 hours. Next, this is immersed in an aqueous solution of niobium chloride (NbCl 5 ) in hydrochloric acid, and Nb 2 O 6
5 wt%. After blowing off excess water, dry at 100 ° C for 2 hours,
It was baked at 0 ° C. for 2 hours. Next, they are placed in a stream of H 2 for 40 minutes.
Reduction treatment was performed at 0 ° C. for 2 hours to obtain a catalyst in which 1.5 wt% of Rh and 5 wt% of Nb 2 O 5 were supported on a spherical alumina carrier.

【0013】実施例2 実施例1において、RhCl水溶液にかえて、RuC
水溶液とする以外は実施例1と同様にして、球状ア
ルミナ担体にRuを1.5wt%、Nbを5wt
%担持した触媒を得た。
Example 2 In Example 1, RuC3 aqueous solution was used instead of RuCl 3 aqueous solution.
except that the l 3 aqueous solution in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina carrier, a Nb 2 O 5 5 wt
% Supported catalyst was obtained.

【0014】実施例3 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、塩化ニオブ(NbCl)の塩酸水溶
液にかえて、硝酸酸化ジルコニウム水溶液(ZrO(N
・2HO)とする以外は実施例1と同様にし
て、球状アルミナ担体にRuを1.5wt%、ZrO
を5wt%担持した触媒を得た。
Example 3 In Example 1, a RuC 3 aqueous solution was used instead of RuCl 3 aqueous solution.
and l 3 aqueous solution, instead of the aqueous solution of hydrochloric acid niobium chloride (NbCl 5), nitric oxide aqueous solution of zirconium (ZrO (N
O 3) except that the 2 · 2H 2 O) in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina support, ZrO 2
Was obtained at 5 wt%.

【0015】実施例4 実施例3 おいて、硝酸酸化ジルコニウム(ZrO(N
・2HO)水溶液の濃度を2倍とする以外
は、実施例3と同様にして、球状アルミナ担体にRuを
1.5wt%、ZrOを10wt%担持した触媒を得
た。
Example 4 In Example 3, zirconium nitrate oxide (ZrO (N
O 3) 2 · 2H 2 O ) except that twice the concentration of the aqueous solution, in the same manner as in Example 3, 1.5 wt% of Ru spherical alumina support, to obtain a catalyst of ZrO 2 carrying 10 wt% .

【0016】実施例5 実施例3において、硝酸酸化ジルコニウム(ZrO(N
・2HO)水溶液の濃度を3倍とする以外
は、実施例3と同様にして、球状アルミナ担体にRuを
1.5%、ZrOを5wt%担持した触媒を得た。
Example 5 In Example 3, zirconium nitrate oxide (ZrO (N
O 3) 2 · 2H 2 O ) except that the 3-fold the concentration of the aqueous solution, in the same manner as in Example 3, 1.5% Ru spherical alumina support, to obtain a catalyst of ZrO 2 carrying 5 wt% .

【0017】実施例6 実施例3において、球状活性アルミナNKHD−24に
かえて、粒径が2mm〜4mm、細孔容積1.05ml
/g、平均細孔径500Å、吸水率111%の富士デヴ
ィソン化学製の球状シリカCARIACT−50とする
以外は、実施例3と同様にして、球状シリカ担体にRu
1.5wt%、ZrOを5wt%担持した触媒を得
た。
Example 6 The procedure of Example 3 was repeated, except that the spherical activated alumina NKHD-24 was replaced with a particle size of 2 mm to 4 mm and a pore volume of 1.05 ml.
/ G, an average pore diameter of 500 °, and a water absorption of 111%, except that a spherical silica carrier CARIACT-50 manufactured by Fuji Devison Chemical Co., Ltd. was used.
A catalyst supporting 1.5 wt% and 5 wt% of ZrO 2 was obtained.

【0018】実施例7 平均粒子径が2.5μ、細孔容積1.25ml/gの富
士デヴィソン化学製の微粉末状合成シリカSYLOID
978を水にリパルブした。このスラリーにZrO
してSYLOID−978I対して5wt%とするよう
に、硝酸酸化ジルコニウム(ZrO(NO・2H
O)水溶液を添加し、30分間撹拌した。次いで(1
+1)NHOHを用いてpHが8になるまで中和し
た。このスラリーをろ別水洗、乾燥した後、500℃で
4時間焼成し、ZrO担持合成シリカパウダーを得
た。次にこのパウダーの1部をシリカゾルをバインダー
として、顆粒機にかけ篩を通して約1mmの顆粒状物と
した。さらにこれを核として、残りのパウダーを同じく
シリカゾルをバインダーとし転動造粒機にかけ、篩を通
して粒径が2mm〜4mmの球状造粒物を得た。これら
造粒物は100℃で5時間乾燥後さらに500℃で4時
間焼成した。次いで、これをRuCl水溶液中に浸漬
し、Ruとして1.5wt%となるように含浸した。余
分な水分を吹きとばした後、100℃で2時間焼成し
た。次いで。これらをH気流中で400℃で2時間還
元処理をし、球状シリカ担体にRuを1.5wt%、Z
rOを5wt%担持した触媒を得た。
Example 7 Fine powdery synthetic silica SYLOID manufactured by Fuji Devison Chemical having an average particle size of 2.5 μm and a pore volume of 1.25 ml / g
978 was re-pulped in water. Zirconium nitrate (ZrO (NO 3 ) 2 .2H) is added to the slurry so that ZrO 2 becomes 5 wt% with respect to SYLOID-978I.
It was added 2 O) aqueous solution, and stirred for 30 minutes. Then (1
+1) Neutralized to pH 8 with NH 4 OH. The slurry was filtered, washed with water, dried and calcined at 500 ° C. for 4 hours to obtain a ZrO 2 -supported synthetic silica powder. Next, one part of this powder was passed through a granulator using a silica sol as a binder and passed through a sieve to obtain a granular material of about 1 mm. Using this as a nucleus, the remaining powder was passed through a tumbling granulator using the same silica sol as a binder, and passed through a sieve to obtain a spherical granulated product having a particle size of 2 mm to 4 mm. These granules were dried at 100 ° C. for 5 hours and fired at 500 ° C. for 4 hours. Next, this was immersed in an aqueous RuCl 3 solution, and impregnated so as to be 1.5 wt% as Ru. After blowing off the excess water, firing was performed at 100 ° C. for 2 hours. Then. These were subjected to a reduction treatment at 400 ° C. for 2 hours in a stream of H 2 , and 1.5% by weight of Ru was added to the spherical silica support.
A catalyst supporting 5 wt% of rO 2 was obtained.

【0019】比較例1 実施例1において、Nbを含浸担持せずして、H
気流中、400℃で2時間還元処理して、球状アルミ
ナ担体にRhのみを1.5wt%担持した触媒を得た。
Comparative Example 1 In Example 1, Nb 2 O 5 was not impregnated and supported,
A reduction treatment was carried out at 400 ° C. for 2 hours in two air streams to obtain a catalyst in which 1.5 wt% of Rh alone was supported on a spherical alumina carrier.

【0020】比較例2 実施例2において、Nbを含浸担持せずして、H
気流中、400℃で2時間還元処理して、球状アルミ
ナ担体にRuのみを1.5wt%担持した触媒を得た。
Comparative Example 2 In Example 2, Nb 2 O 5 was not impregnated and supported,
The catalyst was reduced at 400 ° C. for 2 hours in two air streams to obtain a catalyst in which 1.5 wt% of Ru alone was supported on a spherical alumina carrier.

【0021】(II)、水吸着量の測定 実施例1〜7、比較例1〜2で得た触媒を軽く粉砕し
て、50℃の温水槽におかれた水をはったデシケーター
の中に入れ一昼夜放置し触媒に水を吸着させた。この試
料をセイコー電子工業(株)製SSC−5200型熱分
析システムを用いN気流中で常温から500℃迄、5
℃/minで昇温操作し、TG−DTA分析を行い、3
00℃における水分吸着量を測定した。
(II) Measurement of water adsorption amount The catalysts obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were lightly pulverized and placed in a desiccator filled with water placed in a 50 ° C hot water tank. And left overnight for one day to adsorb water on the catalyst. This sample was taken from room temperature to 500 ° C. in a N 2 gas flow using a SSC-5200 type thermal analysis system manufactured by Seiko Denshi Kogyo Co., Ltd.
The temperature was raised at a rate of ° C / min, and TG-DTA analysis was performed.
The amount of water adsorption at 00 ° C. was measured.

【0022】(III)、評価試験 実施例1〜7、比較例1〜2で得た触媒について、下記
の試験条件により、常圧流通式反応装置を用い、亜酸化
窒素含有ガスの接触分解を行い、反応開始1時間後、1
0時間後及び100時間後の亜酸化窒素分解率を測定し
た。尚、亜硝酸窒素分解率は、亜酸化窒素のNへの転
換率をガスクロマトグラフ法によりNを定量して算出
した。
(III) Evaluation Test The catalysts obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were subjected to catalytic cracking of a nitrous oxide-containing gas using a normal pressure flow reactor under the following test conditions. 1 hour after the start of the reaction,
The nitrous oxide decomposition rates after 0 hour and 100 hours were measured. Incidentally, nitrite nitrogen decomposition rate was calculated by quantifying the N 2 by gas chromatography a conversion to N 2 of nitrous oxide.

【0023】試験条件 結果を表1に示す。 Test conditions Table 1 shows the results.

【0024】 [0024]

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を効
率よく接触分解することが出来ると同時に、経時変化を
しにくいなど、優れた特有の効果を有する。
As described in detail above, the nitrous oxide decomposing catalyst according to the present invention can efficiently decompose nitrous oxide in exhaust gas, and at the same time, it hardly changes over time. Has an excellent specific effect.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−144147(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-144147 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53 / 86 B01D 53/94

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】疎水性担体に、(a)ルテニウム(R
u)、ロジウム(Rh)から選ばれる少なくとも1種を
0.3〜2Wt%(重量%)、及び(b)Nb
ZrOから選ばれる少なくとも1種を5〜20Wt%
(重量%)担持することを特徴とする亜酸化窒素分解用
触媒。
1. The method of claim 1, wherein the hydrophobic carrier comprises (a) ruthenium (R)
u), at least one selected from rhodium (Rh)
0.3 to 2 Wt% (% by weight) , and (b) Nb 2 O 5 ,
At least one selected from ZrO 2 5 to 20 wt%
(Wt%) A catalyst for decomposing nitrous oxide, which is supported.
JP32717492A 1992-10-22 1992-10-22 Catalyst for decomposition of nitrous oxide Expired - Fee Related JP3221110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32717492A JP3221110B2 (en) 1992-10-22 1992-10-22 Catalyst for decomposition of nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32717492A JP3221110B2 (en) 1992-10-22 1992-10-22 Catalyst for decomposition of nitrous oxide

Publications (2)

Publication Number Publication Date
JPH06134309A JPH06134309A (en) 1994-05-17
JP3221110B2 true JP3221110B2 (en) 2001-10-22

Family

ID=18196138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32717492A Expired - Fee Related JP3221110B2 (en) 1992-10-22 1992-10-22 Catalyst for decomposition of nitrous oxide

Country Status (1)

Country Link
JP (1) JP3221110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205999B2 (en) * 2008-02-07 2013-06-05 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH06134309A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
EP0544282B1 (en) Catalyst for purifying exhaust gas
JPH0817939B2 (en) Flue gas denitration catalyst
US5068217A (en) Carrier catalysts for oxidizing carbon monoxide and process for their production
CZ168898A3 (en) NOx REDUCTION PROCESS OF WASTE GASES
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
US6068824A (en) Adsorbent for nitrogen oxides and method for removal of nitrogen oxides by use thereof
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JP3221110B2 (en) Catalyst for decomposition of nitrous oxide
JP3221071B2 (en) Catalyst for decomposition of nitrous oxide
JPH074528B2 (en) Method for producing catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JP3321423B2 (en) Exhaust gas purification method
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP3027219B2 (en) How to remove nitrogen oxides
JPH06154603A (en) Catalyst for decomposition of nitrous oxide
JPH06154604A (en) Catalyst for decomposition of nitrous oxide
JP2952676B2 (en) Deodorant carrying metal and method for producing the same
JPH0788363A (en) Adsorbent for nitrogen oxide and removing method of nitrogen oxide using this adsorbent
JPH06142514A (en) Catalyst for decomposing nitrous oxide
JP3236031B2 (en) Method for decomposing and removing nitrous oxide
JPH06142515A (en) Catalyst for decomposing nitrous oxide
JP3509286B2 (en) Decomposition method of chlorinated organic compounds
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JPH08332384A (en) Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees