JP3221071B2 - Catalyst for decomposition of nitrous oxide - Google Patents
Catalyst for decomposition of nitrous oxideInfo
- Publication number
- JP3221071B2 JP3221071B2 JP17882592A JP17882592A JP3221071B2 JP 3221071 B2 JP3221071 B2 JP 3221071B2 JP 17882592 A JP17882592 A JP 17882592A JP 17882592 A JP17882592 A JP 17882592A JP 3221071 B2 JP3221071 B2 JP 3221071B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nitrous oxide
- present
- water
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(N2O)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。BACKGROUND OF THE INVENTION This invention, nitrogen oxides in the exhaust gas, especially relates to a decomposition catalyst for removing nitrous oxide (N 2 O), details plants, automobiles, garbage incinerators, sewage sludge incinerators, etc. The present invention relates to a nitrogen oxide decomposition catalyst suitable for use in decomposing and removing nitrous oxide contained in exhaust gas discharged from waste treatment facilities.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO2)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下てNOを含むガスと接触させる方法など
が提案されるている。2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain. Is severely restricted, and it is desired to develop an effective means of removing the same. By the way, nitrogen oxides to which emission regulations are conventionally required are mainly nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ). As a method for removing these NOx, several methods for reducing NOx in exhaust gas using a catalyst have already been put to practical use. For example, (a) a three-way catalytic method in gasoline vehicles, and (b) a selective catalytic reduction method using ammonia for exhaust gas from large equipment discharge sources such as boilers. Recently, (c) as a method for removing NOx from exhaust gas using hydrocarbons, zeolite supporting a metal such as copper, or a metal oxide such as alumina as a catalyst and a gas containing NO in the coexistence of hydrocarbons are used. A method of contacting has been proposed.
【0003】ところが、こうした方法ではいずれも、排
ガス中のN2Oの処理は不可能ではないが十分ではな
く、従来これらは、前述した脱硝設備の後流に未処理の
まま排出されてきた。これは、これまでN2Oに対する
法的な規制値がなく、又、JISのような公的な測定方
法も定められてなかったことなどとも関連しており、実
質的にはこれらの処理は、脱硝の対象としては黙視され
てきたというのが現実であった。[0003] In any of these methods, however, the treatment of N 2 O in exhaust gas is not impossible, but not sufficient. Conventionally, these have been discharged without treatment in the downstream of the aforementioned denitration equipment. This is related to the fact that there have been no legally regulated values for N 2 O and that no official measurement method such as JIS has been established so far. However, it was a reality that the subject of denitration had been ignored.
【0004】ところが、前述した脱硝方法においては、
その運転条件によってN2Oが生成することが認められ
ており、又、最近ではゴミ焼却炉や下水汚泥焼却炉など
からも比較的高濃度のN2生成することも報告されてい
る。加えて近年、N2Oは、CO2、フロン、CH4等
とともに、成層圏でのオゾ層の破壊、ないしは温室効果
による温度上昇などもたらす地球規模的汚染物質として
特に注目されてきている。However, in the above-described denitration method,
It has been recognized that N 2 O is produced depending on the operating conditions, and it has recently been reported that relatively high concentrations of N 2 are produced from garbage incinerators, sewage sludge incinerators and the like. In addition, in recent years, N 2 O, together with CO 2 , CFCs, CH 4, and the like, has been particularly attracting attention as a global pollutant that causes the destruction of the ozone layer in the stratosphere or a temperature increase due to the greenhouse effect.
【0005】こうした事情からN2Oの処理方法、とり
わけその分解触媒についての関心が高まっており、いく
つかの方法が提案されてきた。それらは例えば、ゼオラ
イト系の担体に各種の遷移金属を担持させたものあるい
は又、酸化マグネシウムや酸化亜鉛などの塩基性担体に
各種の遷移金属を担持させたものである。しかしながら
これらはいずれも活性を示す温度が高く、低温では充分
なる性能が得られず、又処理ガス中に水分があるとその
影響を強く受けて失活するなどの弱点を有していた。[0005] Under these circumstances, there has been increasing interest in a method of treating N 2 O, particularly a decomposition catalyst thereof, and several methods have been proposed. These are, for example, those in which various transition metals are supported on a zeolite-based carrier, or those in which various transition metals are supported on a basic carrier such as magnesium oxide or zinc oxide. However, all of these have high temperatures at which the activity is high, and low performance cannot be obtained at low temperatures. Further, if moisture is present in the processing gas, they have the disadvantage that they are strongly affected by the effect and are deactivated.
【0006】本発明はこうした状況に鑑みてなされたも
のであり、その目的とするところは、排ガス中のN2O
を効率よく分解することが出来るN2O分解用触媒を提
供することにある。[0006] The present invention has been made in view of such a situation, and an object of the present invention is to provide N 2 O in exhaust gas.
It is an object of the present invention to provide an N 2 O decomposition catalyst capable of efficiently decomposing N 2 O.
【0007】[0007]
【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、シリカゲル、
活性アルミナあるいはシリカ−アルミナなどの疎水性担
体に、ルテニウム(Ru)、パラジウム(Pd)、レニ
ウム(Re)、オスミウム(Os)、イリジウム(I
r)、白金(Pt)から選ばれた少なくとも1種以上の
貴金属を担持させてなる。Means for Solving the Problems To achieve the above object, the catalyst for decomposing nitrous oxide according to the present invention comprises silica gel,
On a hydrophobic carrier such as activated alumina or silica-alumina, ruthenium (Ru), palladium (Pd), rhenium (Re), osmium (Os), iridium (I
r) and at least one noble metal selected from platinum (Pt).
【0008】本発明に係る亜酸化窒素分解用触媒は、例
えば次のようにして調製される。すなわち、本発明にお
ける疎水性担体とは、使用される温度領域において水分
の吸着能を示さないか、あるいは又、その吸着量が極め
て小さいものである。この水吸着能は、常温にて水を飽
和吸着量させた試料のTG−DTA曲線を解析すること
などによって見つもることが出来るものである。こうし
た疎水性担体としては、富士デヴィソン化学製の微粉末
合成シリカ、SYLOID978、同308、同25
5、同じく富士デブィソン化学製の球状シリカゲルCA
RIACT10、同15、同30、同50及び住友化学
製の球状活性アルミナKHD−24(−46)、同NK
HD−24(−46)などを挙げることが出来る。ある
いは又、ソーダ塩などの水溶性塩やアルコキシドのアル
コール溶液を均質に混合した溶液を中和あるいは加水分
解させる方法などによって沈殿を生成させ、さらにろ過
・水洗・リパルブを繰り返した後乾燥、焼成することに
よって、それぞれ、シリカゲル、アルミナあるいは又、
シリカーアルミナなどの微粉末を調製することも可能で
ある。The catalyst for decomposing nitrous oxide according to the present invention is prepared, for example, as follows. That is, the hydrophobic carrier in the present invention does not exhibit the ability to adsorb moisture in the temperature range in which it is used, or has a very small amount of adsorption. This water adsorption capacity can be determined by analyzing a TG-DTA curve of a sample in which water is saturated and adsorbed at room temperature. Examples of such a hydrophobic carrier include fine powder synthetic silica manufactured by Fuji Devison Chemical, SYLOID 978, 308, and 25.
5. Spherical silica gel CA also manufactured by Fuji Devison Chemical
RIACT10, 15, 15, 30, 50, and spherical activated alumina KHD-24 (-46) and NK manufactured by Sumitomo Chemical Co., Ltd.
HD-24 (-46) and the like. Alternatively, a precipitate is formed by a method of neutralizing or hydrolyzing a solution obtained by homogeneously mixing a water-soluble salt such as a soda salt or an alcohol solution of an alkoxide, and then drying, firing after repeating filtration, washing, and reparbing. By that, respectively, silica gel, alumina or also
It is also possible to prepare a fine powder such as silica-alumina.
【0009】本発明に係る触媒は、例えば以下の方法に
より調製することが出来る。前述した疎水性担体を、R
u、Pd、Re、Os、Ir、Ptなどの貴金属の塩化
物の水溶液中に一定時間浸漬させ、貴金属を含浸し、乾
燥した後、ヒトラジンで還元し乾燥後、400℃〜50
0℃で3〜5時間焼成する。以上のようにして本発明に
係る触媒が得られるが、これら貴金属の好適な担持量
は、金属として0.3〜2wt%である。0.3wt%
以下では、これらの効果が十分に発揮されず、又2wt
%を超えてもそれに見合うだけの活性の向上は得られな
かった。これらの貴金属のうちでより好ましいのはRu
であった。The catalyst according to the present invention can be prepared, for example, by the following method. The above-mentioned hydrophobic carrier is represented by R
u, Pd, Re, Os, Ir, Pt, etc., immersed in an aqueous solution of a chloride of a noble metal for a certain period of time, impregnated with the noble metal, dried, reduced with humanrazine, dried, and dried at 400 ° C. to 50 ° C.
Bake at 0 ° C for 3-5 hours. As described above, the catalyst according to the present invention is obtained, and the preferable amount of the noble metal to be supported is 0.3 to 2% by weight as the metal. 0.3wt%
Below, these effects are not fully exhibited, and 2 wt.
%, The activity was not sufficiently improved. Of these noble metals, more preferred is Ru
Met.
【0010】本発明に係る亜酸化窒素分解用触媒は、従
来公知の成形方法により、ハニカム状球状等の種々の形
状に成形することが出来る。さらに又、前述した疎水性
担体のみを成形し、貴金属を成形後に含浸させてもよ
い。さらに又、別に成形したセラミックス担体あるいは
セラミックファイバー製基材、コージエライト製ハニカ
ム等の上に前述した触媒粉をウォッシュコートしてもよ
い。又、成形の際には、成形助剤、無機繊維、有機バイ
ンダー等を適宜配合してもよい。The catalyst for decomposing nitrous oxide according to the present invention can be formed into various shapes such as a honeycomb spherical shape by a conventionally known forming method. Furthermore, only the above-mentioned hydrophobic carrier may be molded, and the precious metal may be impregnated after molding. Further, the above-described catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. Further, at the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately compounded.
【0011】本発明に係る亜酸化窒素分解用触媒が、N
2Oに対して活性を示す最適な温度は、触媒種によって
異なるが通常200℃〜600℃であり、この温度領域
においては、空間速度(SV)500〜500000程
度で排ガスを通流させることが好ましい。なお、より好
適な使用温度領域は300℃〜500℃である。The catalyst for decomposing nitrous oxide according to the present invention comprises N
The optimum temperature at which activity is exhibited with respect to 2 O varies depending on the type of catalyst, but is usually 200 ° C to 600 ° C. In this temperature range, exhaust gas can be passed at a space velocity (SV) of about 500 to 500,000. preferable. Note that a more preferable use temperature range is 300 ° C to 500 ° C.
【0012】[0012]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible. (I), preparation of catalyst
【0013】実施例1 粒径が2mm〜4mm、細孔容積1.05ml/g、平
均細孔径500Å、吸水率111%の富士デヴィソン化
学製の球状シリカCARIACT50を、RuCl3水
溶液中に浸漬し、Ruとして0.5wt%となるよう含
浸した。余分な水分を吹きとばした後、100℃で2時
間乾燥した。次にこのものを5%のヒドラジン溶液にて
気泡が出なくなるまで浸漬し、還元し、余分な水分を吹
きとばしした後100℃で2時間乾燥し、さらに500
℃で4時間焼成してRuを0.5wt%担持した球状触
媒を得た。Example 1 A spherical silica CARIACT50 manufactured by Fuji Devison Chemical Co., Ltd., having a particle size of 2 mm to 4 mm, a pore volume of 1.05 ml / g, an average pore diameter of 500 °, and a water absorption of 111%, was immersed in an aqueous RuCl 3 solution. Impregnation was performed so that Ru was 0.5 wt%. After blowing off excess water, the resultant was dried at 100 ° C. for 2 hours. Next, this was immersed in a 5% hydrazine solution until no air bubbles appeared, reduced, blown off excess water, dried at 100 ° C. for 2 hours, and further dried at 500 ° C.
Calcination was carried out at 4 ° C. for 4 hours to obtain a spherical catalyst carrying 0.5 wt% of Ru.
【0014】実施例2 実施例1において、RuCl3水溶液にかえて、PdC
l3水溶液とする以外は実施例1と同様にして、Pdを
0.5wt%担持した球状触媒を得た。Example 2 In Example 1, PdC was used instead of the RuCl 3 aqueous solution.
except that the l 3 aqueous solution in the same manner as in Example 1 to obtain a 0.5 wt% loaded with spherical catalyst the Pd.
【0015】実施例3 実施例1において、RuCl3水溶液にかえて、ReC
l3水溶液とする以外は実施例1と同様にして、Reを
0.5wt%担持した球状触媒を得た。Example 3 The procedure of Example 1 was repeated, except that the aqueous solution of RuCl 3 was replaced with ReC
except that the l 3 aqueous solution in the same manner as in Example 1 to obtain a 0.5 wt% loaded with spherical catalyst with Re.
【0016】実施例4 実施例1において、RuCl3水溶液にかえて、OsC
l3水溶液とする以外は実施例1と同様にして、Osを
0.5wt%担持した球状触媒を得た。Example 4 In Example 1, OsC was used instead of the RuCl 3 aqueous solution.
except that the l 3 aqueous solution in the same manner as in Example 1 to obtain a 0.5 wt% loaded with spherical catalyst with Os.
【0017】実施例5 実施例1において、RuCl3水溶液にかえて、IrC
l4水溶液とする以外は実施例1と同様にして、Irを
0.5wt%担持した球状触媒を得た。Example 5 In Example 1, an IrC 3 aqueous solution was used in place of the RuCl 3 aqueous solution.
except that the l 4 solution in the same manner as in Example 1 to obtain a 0.5 wt% loaded with spherical catalyst with Ir.
【0018】実施例6 実施例1において、RuCl3水溶液にかえて、H2P
tCl6水溶液とする以外は実施例1と同様にして、P
tを0.5wt%担持した球状触媒を得た。Example 6 In Example 1, H 2 P was used instead of the RuCl 3 aqueous solution.
Except that the aqueous solution of tCl 6 was used, P
A spherical catalyst carrying 0.5 wt% of t was obtained.
【0019】比較例1 SiO2/Al2O3モル比が19.5、SiO2/N
a2Oモル比が165の日本化学製H型モルデナイト
(HM−23)を水にリパルブした。このスラリーに、
CuOとしてHM23に対して5wt%となるようにC
uSO4溶液を添加し30分間撹拌した。次いで(1+
1)NH4OHを用いてpHが8になるまで中和した。
このスラリーをろ別水洗、乾燥した後、500℃で4時
間焼成し、銅担持モルデナイトパウダーを得た。以下、
実施例13と同様にして、CuOが5wt%担持され
た、粒径が2mm〜4mmの球状触媒を得た。Comparative Example 1 SiO 2 / Al 2 O 3 molar ratio was 19.5, SiO 2 / N
The H-type mordenite (HM-23) manufactured by Nippon Chemical Co., Ltd. having an a 2 O molar ratio of 165 was reparved in water. In this slurry,
C so that the content of CuO is 5 wt% with respect to HM23.
The uSO 4 solution was added and stirred for 30 minutes. Then (1+
1) Neutralized to pH 8 with NH 4 OH.
The slurry was filtered, washed with water, dried, and calcined at 500 ° C. for 4 hours to obtain a copper-supported mordenite powder. Less than,
In the same manner as in Example 13, a spherical catalyst having a particle size of 2 mm to 4 mm and supporting 5 wt% of CuO was obtained.
【0020】比較例2 比較例1で用いた日本化学製のH型モルデナイト(HM
−23)を水にリパルブし、50℃〜60℃に加熱し
た。このスラリーに、RhとしてHM−23に対して
1.0wt%となるようにRhC13水溶液を添加し2
時間撹拌した。次に5%ヒドラジン溶液を、N2H4/
Ru≒10を目安に添加し更に1時間撹拌した。このス
ラリーをろ別水洗、乾燥した後500℃で4時間焼成
し、Rh担持モルデナイトパウダーを得た。以下、実施
例13と同様にしてRhが1.0wt%担持された、粒
径が2mm〜4mmの球状触媒を得た。Comparative Example 2 H-type mordenite (HM) manufactured by Nippon Chemical Co., Ltd.
-23) was re-pulped in water and heated to 50-60 ° C. Adding to the slurry a RhC1 3 aqueous solution so as to be 1.0 wt% with respect to HM-23 as Rh 2
Stirred for hours. Next, a 5% hydrazine solution was added to N 2 H 4 /
Ru ≒ 10 was added as a guide, and the mixture was further stirred for 1 hour. The slurry was filtered, washed with water, dried and calcined at 500 ° C. for 4 hours to obtain a Rh-supported mordenite powder. Hereinafter, a spherical catalyst having a particle diameter of 2 mm to 4 mm and carrying 1.0 wt% of Rh was obtained in the same manner as in Example 13.
【0021】(II)、水吸着量の測定 実施例1〜6、比較例1〜2で得た触媒を軽く粉砕し
て、50℃の温水槽におかれた水をはったデシケーター
の中に入れ一昼夜放置し触媒に水を吸着させた。この試
料をセイコー電子工業(株)製SSC−5200型熱分
析システムを用いN2気流中で常温から500℃迄、5
℃/minで昇温操作し、TG−DTA分析を行い、3
00℃における水分吸着量を測定した。(II), Measurement of water adsorption amount The catalysts obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were lightly pulverized and placed in a desiccator filled with water placed in a 50 ° C. hot water tank. And left overnight for one day to adsorb water on the catalyst. This sample was taken from room temperature to 500 ° C. in a N 2 gas flow using a SSC-5200 type thermal analysis system manufactured by Seiko Denshi Kogyo Co., Ltd.
The temperature was raised at a rate of ° C / min, and TG-DTA analysis was performed.
The amount of water adsorption at 00 ° C. was measured.
【0022】(III)、評価試験 実施例1〜6、比較例1〜2で得た触媒について、下記
の試験条件により、常圧流通式反応装置を用い、亜酸化
窒素含有ガスの接触分解を行い、亜酸化窒素のN2への
転換率をガスクロマトグラフ法によりN2を定量して算
出した。試験条件 、ガス組成 N2O 50ppm O2 5% H2O 0%、2% He 残部 、空間速度 5000Hr1 、反応温度 250℃、350℃、450℃、550℃ 結果を表1に示す。(III) Evaluation Test The catalysts obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were subjected to catalytic cracking of a nitrous oxide-containing gas using a normal pressure flow reactor under the following test conditions. performed, the conversion to N 2 of nitrous oxide was calculated by quantifying the N 2 by gas chromatography. Test conditions , gas composition N 2 O 50 ppm O 2 5% H 2 O 0%, 2% He balance, space velocity 5000 Hr 1 , reaction temperature 250 ° C., 350 ° C., 450 ° C., 550 ° C. The results are shown in Table 1.
【0023】 [0023]
【0024】[0024]
【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を低
温度においても効率よく接触分解することが出来、又、
排ガスに水分が存在してもその影響を受けにくいなど、
優れた特有の効果を有する。As described above in detail, the catalyst for decomposing nitrous oxide according to the present invention can efficiently decompose nitrous oxide in exhaust gas even at a low temperature.
Even if moisture is present in the exhaust gas, it is not easily affected.
Has an excellent specific effect.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−194818(JP,A) 特開 昭55−31463(JP,A) 特開 平3−16641(JP,A) 特開 平4−341324(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-194818 (JP, A) JP-A-55-31463 (JP, A) JP-A-3-16641 (JP, A) JP-A-4-194 341324 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86 B01D 53/94
Claims (1)
ジウム(Pd)、レニウム(Re)、オスミウム(O
s)、イリジウム(Ir)、白金(Pt)から選ばれた
少なくとも1種以上の貴金属を0.3〜2Wt%(重量
%)担時し酸素共存下で使用することを特徴とする亜酸
化窒素分解用触媒。To 1. A hydrophobic carrier, ruthenium (Ru), palladium (Pd), Les two um (Re), male Mi um (O
nitrous oxide characterized in that at least one noble metal selected from s), iridium (Ir) and platinum (Pt) is used in the presence of oxygen at 0.3 to 2 Wt% (wt%). Decomposition catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17882592A JP3221071B2 (en) | 1992-05-26 | 1992-05-26 | Catalyst for decomposition of nitrous oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17882592A JP3221071B2 (en) | 1992-05-26 | 1992-05-26 | Catalyst for decomposition of nitrous oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05317648A JPH05317648A (en) | 1993-12-03 |
JP3221071B2 true JP3221071B2 (en) | 2001-10-22 |
Family
ID=16055326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17882592A Expired - Lifetime JP3221071B2 (en) | 1992-05-26 | 1992-05-26 | Catalyst for decomposition of nitrous oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3221071B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2500376B2 (en) * | 1993-12-24 | 1996-05-29 | 工業技術院長 | Method for purifying exhaust gas from methanol mixed fuel vehicles |
JP2007185574A (en) * | 2006-01-12 | 2007-07-26 | Mitsui Zosen Plant Engineering Inc | Catalyst for decomposing nitrous oxide |
JP2014089216A (en) * | 2014-02-17 | 2014-05-15 | Sumitomo Metal Mining Engineering Co Ltd | Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system |
-
1992
- 1992-05-26 JP JP17882592A patent/JP3221071B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05317648A (en) | 1993-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1105240A (en) | Method for purification of air containing carbon monoxide | |
US6096277A (en) | Pollutant removal from air in closed spaces | |
EP1040870A2 (en) | Noble metal based catalyst functioning at ordinary temperature and method for destroying noxious gaseous compounds using the same | |
US5068217A (en) | Carrier catalysts for oxidizing carbon monoxide and process for their production | |
US5002920A (en) | Catalyst for ozone decomposition | |
JP3221116B2 (en) | Catalyst for decomposition of nitrous oxide | |
JP3404739B2 (en) | Filter, and air cleaner and air conditioner using the same | |
JP2001187343A (en) | Cleaning catalyst at normal temperature and utilization thereof | |
JP3254742B2 (en) | Catalyst for decomposition of nitrous oxide | |
KR20010037883A (en) | A process for preparing honeycomb type monolithic catalyst | |
JP3221071B2 (en) | Catalyst for decomposition of nitrous oxide | |
JPH074528B2 (en) | Method for producing catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel | |
JPH06198187A (en) | Catalyst for decomposition of nitrous oxide | |
JP3221115B2 (en) | Catalyst for decomposition of nitrous oxide | |
JP3604740B2 (en) | Ozone decomposition catalyst and ozone decomposition method | |
JP3221110B2 (en) | Catalyst for decomposition of nitrous oxide | |
JPH06182203A (en) | Catalyst for decomposition of nitrous oxide | |
JPH06154604A (en) | Catalyst for decomposition of nitrous oxide | |
JPH06218232A (en) | Purifying method for nitrous oxide containing waste gas | |
JPH06154603A (en) | Catalyst for decomposition of nitrous oxide | |
JPH06218233A (en) | Purifying method for waste gas containing nitrous oxide | |
JPH06142514A (en) | Catalyst for decomposing nitrous oxide | |
JPH06142510A (en) | Catalyst for decomposing nitrous oxide | |
JPH06142515A (en) | Catalyst for decomposing nitrous oxide | |
JPH10174886A (en) | Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method |