JPH06142514A - Catalyst for decomposing nitrous oxide - Google Patents

Catalyst for decomposing nitrous oxide

Info

Publication number
JPH06142514A
JPH06142514A JP4350070A JP35007092A JPH06142514A JP H06142514 A JPH06142514 A JP H06142514A JP 4350070 A JP4350070 A JP 4350070A JP 35007092 A JP35007092 A JP 35007092A JP H06142514 A JPH06142514 A JP H06142514A
Authority
JP
Japan
Prior art keywords
catalyst
aqueous solution
hydrophobic carrier
nitrous oxide
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4350070A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
雅文 吉本
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
一彦 永野
Kenji Nakahira
健二 中平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP4350070A priority Critical patent/JPH06142514A/en
Publication of JPH06142514A publication Critical patent/JPH06142514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance decomposition efficiency and durability in the catalyst for exhaust gas of an automobile by making at least one kind of ruthenium and rhodium and at least one kind selected from among La2O3, CeO2, Pr2O3, Nd2O3, Sm2O3, Tb2O3 and Y2O3 carried on a hydrophobic carrier. CONSTITUTION:At least one kind of noble metal selected from ruthenium and rhodium and at least one kind selected from among La2O3, CeO2, Pr2O3, Nd2O3, Sm2O3, Tb2O3 and Y2O3 are carried on a hydrophobic carrier such as silica gel and activated alumina. The catalyst is produced as followes. The hydrophobic carrier is immersed in the aqueous solution of ruthenium and rhodium chlorides and impregnated with noble metal. The hydrophobic carrier is dried and immersed in the aqueous solution of nitrates selected from among La, Ce, Pr, Nd, Sm, Tb and Y nitrates and impregnated with the precursor of oxide thereof and dried and thereafter burned. Then reducing treatment is performed in H2 flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、排ガス中の窒素酸化
物、とりわけ亜酸化窒素(NO)の分解除去用触媒に
係わり、詳しくは工場、自動車、ゴミ焼却炉、下水汚泥
焼却炉などの廃棄物処理設備などから排出される排気ガ
ス中に含まれる亜酸化窒素を分解除去する際に用いる好
適な窒素酸化物分解用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing and removing nitrogen oxides in exhaust gas, particularly nitrous oxide (N 2 O), and more specifically, factories, automobiles, refuse incinerators, sewage sludge incinerators, etc. The present invention relates to a suitable catalyst for decomposing nitrogen oxides, which is used when decomposing and removing nitrous oxide contained in exhaust gas discharged from the waste treatment facility.

【従来の技術及び発明が解決しようとする課題】多種の
排ガス中の窒素酸化物(以下、NOx)は、健康に有害
であり、かつ光化学スモッグや酸性雨の発生原因ともな
りうるため、その排出は厳しく制限されており、その効
果的な除去手段の開発が望まれている。ところで、従来
排出規制が義務づけられている窒素酸化物は主として一
酸化窒素(NO)及び二酸化窒素(NO)である。こ
れらNOxの除去方法としては、触媒を用いて排ガス中
のNOxを低減する方法が既にいくつか実用化されてい
る。例えば(イ)ガソリン自動車における三元触媒法
や、(ロ)ボイラー等の大型設備排出源からの排ガスに
ついて、アンモニアを用いる選択的接触還元法が挙げら
れる。また、最近では(ハ)炭化水素を用いた排ガス中
のNOx除去方法として、銅等の金属を担持したゼオラ
イト、あるいはアルミナ等の金属酸化物を触媒として炭
化水素の共存下でNOを含むガスと接触させる方法など
が提案されるている。ところが、こうした方法ではいず
れも、排ガス中のNOの処理は不可能ではないが十分
ではなく、従来これらは、前述した脱硝設備の後流に未
処理のまま排出されてきた。これは、これまでNOに
対する法的な規制値がなく、又、JISのような公的な
測定方法も定められてなかったことなどとも関連してお
り、実質的にはこれらの処理は、脱硝の対象としては黙
視されてきたというのが現実であった。ところが、前述
した脱硝方法においては、その運転条件によってN
が生成することが認められており、又、最近ではゴミ焼
却炉や下水汚泥焼却炉などからも比較的高濃度のN
が生成することも報告されている。加えて近年、N
は、CO、フロン、CH等とともに、成層圏でのオ
ゾ層の破壊、ないしは温室効果による温度上昇などもた
らす地球規模的汚染物質として特に注目されてきてい
る。こうした事情からNOの処理方法、とりわけその
分解触媒についての関心が高まっており、いくつかの方
法が提案されてきた。それらは例えば、ゼオライト系の
担体に各種の遷移金属を担持させたものあるいは又、酸
化マグネシウムや酸化亜鉛などの塩基性担体に各種の遷
移金属を担持させたものである。しかしながらこれらは
いずれも活性を示す温度が高く、低温では充分なる性能
が得られず、又処理ガス中に水分があるとその影響を強
く受けて失活するなどの弱点を有していた。こうした問
題を解決するため、既に本発明者らは、疎水性担体にル
テニウムあるいはロジウムをはじめとする種々の貴金属
を担持するなどの方法を出願している(平成4年5月2
6日)。しかしながら、こうした方法によっても、貴金
属のうちでRuやRhは、初期的には非常に高活性を示
すものの反応中に経時的変化し、活性の低下をもたらす
などの弱点を有することも明らかになった。本発明はこ
うした状況に鑑みてなされたものであり、その目的とす
るところは、排ガス中のNOを効率よく分解すること
が出来ると同時耐久性の優れたNO分解用触媒を提供
することにある。
2. Description of the Related Art Nitrogen oxides (hereinafter referred to as NOx) in various kinds of exhaust gas are harmful to health and may cause photochemical smog and acid rain, so their emission Is severely limited, and the development of effective removal means is desired. By the way, the nitrogen oxides conventionally required to be emission regulated are mainly nitric oxide (NO) and nitrogen dioxide (NO 2 ). As methods for removing these NOx, some methods for reducing NOx in exhaust gas using a catalyst have already been put into practical use. For example, (a) a three-way catalyst method in a gasoline automobile, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility emission source such as a boiler. Recently, as a method for removing NOx in exhaust gas using (c) hydrocarbons, zeolite containing a metal such as copper, or a gas containing NO in the presence of hydrocarbons using a metal oxide such as alumina as a catalyst is used. Methods such as contacting have been proposed. However, none of these methods is not sufficient, but not sufficient, to treat N 2 O in the exhaust gas, and conventionally, these have been discharged untreated in the downstream of the above-mentioned denitration equipment. This is related to the fact that there is no legal regulation value for N 2 O and no official measurement method such as JIS has been established so far. However, the reality is that they have been ignored as targets for denitration. However, in the above-described denitration method, N 2 O may be added depending on the operating conditions.
It has been confirmed that methane is generated, and recently, a relatively high concentration of N 2 O has been obtained from garbage incinerators and sewage sludge incinerators.
Are also reported to be generated. In addition, in recent years, N 2 O
Has attracted particular attention as a global pollutant that causes destruction of the Ozo layer in the stratosphere, or temperature rise due to the greenhouse effect, together with CO 2 , chlorofluorocarbon, CH 4, and the like. Under such circumstances, there has been increasing interest in N 2 O treatment methods, particularly decomposition catalysts thereof, and several methods have been proposed. They are, for example, a zeolite-based carrier on which various transition metals are supported, or a basic carrier such as magnesium oxide or zinc oxide on which various transition metals are supported. However, all of them have a high temperature at which they are active, and they do not provide sufficient performance at low temperatures, and have a weak point that they are strongly affected by the presence of water in the process gas and are deactivated. In order to solve such problems, the present inventors have already applied for a method of supporting various noble metals such as ruthenium or rhodium on a hydrophobic carrier (May 2, 1992).
6th). However, even by such a method, it was revealed that among the noble metals, Ru and Rh have extremely weak activities in the initial stage, but change over time during the reaction, resulting in a decrease in activity. It was The present invention has been made in view of these circumstances, and an object of the present invention is to provide a catalyst for decomposing N 2 O that can decompose N 2 O in exhaust gas efficiently and has excellent simultaneous durability. To do.

【問題を解決するための手段】上記目的を達成するため
の本発明に係る亜酸化窒素分解用触媒は、シリカゲル、
活性アルミナあるいはシリカ−アルミナなどの疎水性担
体に、(a)ルテニウム(Ru)、ロジウム(Rh)か
ら選ばれる少なくとも1種以上の貴金属、及び(b)L
、CeO、Pr、Nd、Sm
、Tb、Yから選ばれる少なくとも1
種以上の酸化物を担持させてなる。本発明に係る亜酸化
窒素分解用触媒は、例えば次のようにして調製される。
すなわち、本発明における疎水性担体とは、使用される
温度領域において水分の吸着能を示さないか、あるいは
又、その吸着量が極めて小さいものである。この水吸着
能は、常温にて水を飽和吸着量させた試料のTG−DT
A曲線を解析することなどによって見つもることが出来
るものである。こうした疎水性担体としては、富士デヴ
ィソン化学製の微粉末合成シリカ、SYLOID97
8、同308、同255、同じく富士デヴィソン化学製
の球状シリカゲルCARIACT10、同15、同3
0、同50及び住友化学製の球状活性アルミナKHD−
24(−46)、同NKHD−24(−46)などを挙
げることが出来る。あるいは又、ソーダ塩などの水溶性
塩やアルコキシドのアルコール溶液を均質に混合した溶
液を中和あるいは加水分解させる方法などによって沈殿
を生成させ、さらにろ過・水洗・リパルブを繰り返した
後乾燥、焼成することによって、それぞれ、シリカゲ
ル、アルミナあるいは又、シリカ−アルミナなどの微粉
末を調製することも可能である。本発明に係る触媒は、
例えば以下の方法により調製することが出来る。前述し
た疎水性担体を、RuあるいはRhなどの塩化物の水溶
液中に一定時間浸漬させ、これら貴金属を含浸し、乾燥
した後更に、硝酸ランタン、硝酸第一セリウム、硝酸プ
ラセオジウム、硝酸ネオジウム、硝酸サマリウム、硝酸
テルビウム、硝酸イットリウムなどの水溶液中に一定時
間浸漬させ、これら酸化物の前駆体を含浸し、乾燥後、
300℃〜500℃で3〜5時間焼成し、更にH気流
中で400℃〜500で3〜5時間還元処理をする。以
上のようにして、本発明に係る触媒が得られるが、これ
ら貴金属の好適な担持量は、金属として0.3〜2wt
%である。0.3wt%以下では、これらの効果が十分
に発揮されず、又2wt%を超えてもそれに見合うだけ
の活性の向上は得られなかった。 又、La、C
eO、Pr、Nd、Sm、Tb
、Yなどの酸化物の好適な担持量は、酸化物
として5〜20wt%である。5wt%以下では、これ
らの効果が十分に発揮されず、又20wt%を越えると
担体の疎水性の低下をもたらし好ましくない。本発明に
係る亜酸化窒素分解用触媒は、従来公知の成形方法によ
り、ハニカム状球状等の種々の形状に成形することが出
来る。さらに又、前述した疎水性担体のみを成形し、貴
金属などを成形後に含浸させてもよい。さらに又、別に
成形したセラミックス担体あるいはセラミックファイバ
ー製基材、コージエライト製ハニカム等の上に前述した
触媒粉をウオッシュコートしてもよい。又、成形の際に
は、成形助剤、無機繊維、有機バインダー等を適宜配合
してもよい。本発明に係る亜酸化窒素分解用触媒が、N
Oに対して活性を示す最適な温度は、触媒種によって
異なるが通常200℃〜600℃であり、この温度領域
においては、空間速度(SV)500〜500000程
度で排ガスを通流させることが好ましい。なお、より好
適な使用温度領域は300℃〜500℃である。
[Means for Solving the Problems] A catalyst for decomposing nitrous oxide according to the present invention for achieving the above object is silica gel,
(A) at least one or more noble metals selected from ruthenium (Ru) and rhodium (Rh), and (b) L on a hydrophobic carrier such as activated alumina or silica-alumina.
a 2 O 3, CeO 2, Pr 2 O 3, Nd 2 O 3, Sm 2
At least 1 selected from O 3 , Tb 2 O 3 , and Y 2 O 3.
It is formed by supporting at least one kind of oxide. The catalyst for decomposing nitrous oxide according to the present invention is prepared, for example, as follows.
That is, the hydrophobic carrier in the present invention does not exhibit a water adsorption capacity in the temperature range used, or has a very small adsorption amount. This water adsorption capacity is TG-DT of a sample in which water is saturated and adsorbed at room temperature.
It can be found by analyzing the A curve. As such a hydrophobic carrier, SYLOID97, a fine powder synthetic silica manufactured by Fuji Devison Chemical Co., Ltd.
8, the same 308, the same 255, the spherical silica gel CARIACT10, the same 15, the same 3 made by Fuji Davison Kagaku
0, 50 and Sumitomo Chemical spherical activated alumina KHD-
24 (-46), the same NKHD-24 (-46) and the like. Alternatively, a precipitate is formed by a method of neutralizing or hydrolyzing a solution in which a water-soluble salt such as a soda salt or an alcohol solution of an alkoxide is homogeneously mixed, and then filtration, washing with water, and repulsion are repeated, followed by drying and baking. Thus, it is also possible to prepare fine powders of silica gel, alumina, or silica-alumina, respectively. The catalyst according to the present invention is
For example, it can be prepared by the following method. The above-mentioned hydrophobic carrier is immersed in an aqueous solution of a chloride such as Ru or Rh for a certain period of time, impregnated with these noble metals, dried, and then further lanthanum nitrate, cerous nitrate, praseodymium nitrate, neodymium nitrate, samarium nitrate. , Terbium nitrate, yttrium nitrate, etc., soaked in an aqueous solution for a certain period of time to impregnate these oxide precursors, and after drying,
Baking is performed at 300 ° C to 500 ° C for 3 to 5 hours, and further reduction treatment is performed at 400 ° C to 500 for 3 to 5 hours in an H 2 gas stream. As described above, the catalyst according to the present invention can be obtained, and the preferable loading amount of these precious metals is 0.3 to 2 wt.
%. When the amount is 0.3 wt% or less, these effects are not sufficiently exhibited, and even when the amount exceeds 2 wt%, the activity improvement corresponding to the effect cannot be obtained. Also, La 2 O 3 , C
eO 2 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Tb 2
A preferable loading amount of oxides such as O 3 and Y 2 O 3 is 5 to 20 wt% as oxides. If it is 5 wt% or less, these effects are not sufficiently exhibited, and if it exceeds 20 wt%, the hydrophobicity of the carrier is lowered, which is not preferable. The catalyst for decomposing nitrous oxide according to the present invention can be molded into various shapes such as a spherical shape by a conventionally known molding method. Furthermore, only the above-mentioned hydrophobic carrier may be molded and a noble metal or the like may be impregnated after molding. Furthermore, the above-mentioned catalyst powder may be wash-coated on a separately formed ceramic carrier, ceramic fiber base material, cordierite honeycomb, or the like. Further, at the time of molding, a molding aid, an inorganic fiber, an organic binder and the like may be appropriately mixed. The catalyst for decomposing nitrous oxide according to the present invention is N
The optimum temperature at which it exhibits activity with respect to 2 O varies depending on the catalyst species, but is usually 200 ° C to 600 ° C, and in this temperature range, exhaust gas can be passed at a space velocity (SV) of about 500 to 500,000. preferable. A more suitable operating temperature range is 300 ° C to 500 ° C.

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (I)、触媒の調製 実施例1 粒径が2mm〜4mm、細孔容積0.65ml/g、吸
水率78%の住友化学製の球状活性アルミナNKHD−
24をRhCl水溶液中に浸漬し、Rhとして1.5
wt%となるよう含浸した。余分な水分を吹きとばした
後、100℃で2時間乾燥した。次にこのものを硝酸ラ
ンタン水溶液(La(NO・6HO)に浸漬
し、Laとして5wt%となるように含浸した。
余分な水分を吹きとばしした後、100℃で2時間乾燥
し、さらに400℃で2時間焼成した。次にこれらをH
気流中で400℃で2時間還元処理して、球状アルミ
ナ担体にRhを1.5wt%、Laを5wt%担
持した触媒を得た。 媒施例2 実施例1において、RhCl水溶液にかえて、RuC
水溶液とする以外は実施例1と同様にして、球状ア
ルミナ担体にRuを1.5wt%、Laを5wt
%担持した触媒を得た。 実施例3 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
.6HO)にかえて、硝酸第一セリウム水溶液(C
e(NO・nHO)とする以外は実施例1と同
様にして、球状アルミナ担体にRuを1.5wt%、C
eOを5wt%担持した触媒を得た。 実施例4 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
・6HO)にかえて、硝酸プラセオジウム水溶液
(Pr(NO・6HO)とする以外は実施例1
と同様にして、球状アルミナ担体にRuを1.5wt
%、Prを5wt%担持した触媒を得た。 実施例5 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
・6HO)にかえて、硝酸ネオジウム水溶液(Nd
(NO・6HO)とする以外は実施例1と同様
にして、球状アルミナ担体にRuを1.5wt%、Nd
を5wt%担持した触媒を得た。 実施例6 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
・6HO)にかえて、硝酸サマリウム水溶液(Sm
(NO・6HO)とする以外は実施例1と同様
にして、球状アルミナ担体にRuを1.5wt%、Sm
を5wt%担持した触媒を得た。 実施例7 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
・6HO)にかえて、硝酸テルビウム水溶液(Tb
(NO・6HO)とする以外は実施例1と同様
にして、球状アルミナ担体にRuを1.5wt%、Tb
を5wt%担持した触媒を得た。 実施例8 実施例1において、RhCl水溶液にかえて、RuC
水溶液とし、硝酸ランタン水溶液(La(NO
・6HO)にかえて、硝酸イットリウム水溶液(Y
(NO・6HO)とする以外は実施例1と同様
にして、球状アルミナ担体にRuを1.5wt%、Y
を5wt%担持した触媒を得た。 実施例9 実施例3において、硝酸第一セリウム水溶液(Ce(N
・nHO)の濃度を2倍とする以外は、実施
例3と同様にして、球状アルミナ担体にRuを1.5w
t%、CeOを10wt%担持した触媒を得た。 実施例10 実施例3において、硝酸第一セリウム水溶液(Ce(N
・nHO)の濃度を3倍とする以外は、実施
例3と同様にして、球状アルミナ担体にRuを1.5w
t%、CeOを15wt%担持した触媒を得た。 実施例11 実施例3において、球状活性アルミナNKHD−24に
かえて、粒径が2mm〜4mm、細孔容積1.05ml
/g、平均細孔径500Å、吸水率111%の富士デヴ
ィソン化学製の球状シリカCARIACT−50とする
以外は、実施例3と同様にして、球状シリカ担体にRu
1.5wt%、CeOを5wt%担持した触媒を得
た。 実施例12 平均粒子径が2.5μ、細孔容積1.25ml/gの富
士デヴィソン化学製の微粉末状合成シリカSYLOID
978を水にリパルブした。このスラリーにCeO
してSYLOID978に対して5wt%とするよう
に、硝酸第一セリウム(Ce(NO・nHO)
水溶液を添加し、30分間撹拌した。次いで(1+1)
NHOHを用いてpHが8になるまで中和した。この
スラリーをろ別水洗、乾燥した後、500℃で4時間焼
成し、CeO担持合成シリカパウダーを得た。次にこ
のパウダーの1部をシリカゾルをバインダーとして、顆
粒機にかけ篩を通して約1mmの顆粒状物とした。さら
にこれを核として、残りのパウダーを同じくシリカゾル
をバインダーとし転動造粒機にかけ、篩を通して粒径が
2mm〜4mmの球状造粒物を得た。これら造粒物は1
00℃で5時間乾燥後さらに500℃で4時間焼成し
た。次いで、これをRuCl水溶液中に浸漬し、Ru
として1.5wt%となるように含浸した。余分な水分
を吹きとばした後、100℃で2時間焼成した。次い
で。これらをH気流中で400℃で2時間還元処理を
し、球状シリカ担体にRuを1.5wt%、CeO
を5wt%担持した触媒を得た。 比較例1 実施例1において、Laを含浸担持せずして、H
気流中、400℃で2時間還元処理して、球状アルミ
ナ担体にRhのみを1.5wt%担持した触媒を得た。 比較例2 実施例2において、Laを含浸担持せずして、H
気流中、400℃で2時間還元処理して、球状アルミ
ナ担体にRuのみを1.5wt%担持した触媒を得た。 (II)、水吸着量の測定 実施例1〜12、比較例1〜2で得た触媒を軽く粉砕し
て、50℃の温水槽におかれた水をはったデシケーター
の中に入れ一昼夜放置し触媒に水を吸着させた。この試
料をセイコー電子工業(株)製SSC−5200型熱分
析システムを用いN気流中で常温から500℃迄、5
℃/minで昇温操作し、TG−DTA分析を行い、3
00℃における水分吸着量を測定した。 (III)、評価試験 実施例1〜12、比較例1〜2で得た触媒について、下
記の試験条件により、常圧流通式反応装置を用い、亜酸
化窒素含有ガスの接触分解を行い、反応開始1時間後、
10時間後及び100時間後の亜酸化窒素分解率を測定
した。尚、亜硝酸窒素分解率は、亜酸化窒素のNへの
転換率をガスクロマトグラフ法によりNを定量して算
出した。試験条件 、ガス組成 NO 50ppm O 5% HO 2% He 残部 、空間速度 5000Hr 、反応温度 350℃ 結果を表1に示す。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. (I) Preparation of catalyst Example 1 Spherical activated alumina NKHD- manufactured by Sumitomo Chemical Co., Ltd. having a particle size of 2 mm to 4 mm, a pore volume of 0.65 ml / g and a water absorption rate of 78%.
24 was immersed in an aqueous solution of RhCl 3 to obtain Rh of 1.5.
It was impregnated so that it would be wt%. After blowing off excess water, it was dried at 100 ° C. for 2 hours. Next, this was immersed in an aqueous solution of lanthanum nitrate (La (NO 3 ) 3 .6H 2 O) and impregnated with La 2 O 3 in an amount of 5 wt%.
After blowing off excess water, it was dried at 100 ° C. for 2 hours and then baked at 400 ° C. for 2 hours. Then these are H
A reduction treatment was performed at 400 ° C. for 2 hours in two air streams to obtain a catalyst in which 1.5 wt% of Rh and 5 wt% of La 2 O 3 were supported on a spherical alumina carrier. Medium Example 2 In Example 1, instead of RhCl 3 aqueous solution, RuC
A spherical alumina carrier containing 1.5 wt% of Ru and 5 wt% of La 2 O 3 was prepared in the same manner as in Example 1 except that the aqueous solution was 1 3 aqueous solution.
% Supported catalyst was obtained. Example 3 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 . 6H 2 O) instead of a ceric nitrate aqueous solution (C
e (NO 3 ) 3 · nH 2 O), except that the spherical alumina carrier contains 1.5 wt% Ru and C in the same manner as in Example 1.
A catalyst supporting 5 wt% of eO 2 was obtained. Example 4 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 · 6H 2 O) in place, the embodiment except that the praseodymium nitrate aqueous solution (Pr (NO 3) 3 · 6H 2 O) 1
In the same manner as above, 1.5 wt% of Ru was added to the spherical alumina carrier.
%, Pr 2 O 3 of 5 wt% was obtained. Example 5 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 · 6H 2 O) in place, neodymium nitrate aqueous solution (Nd
(NO 3) 3 · 6H 2 O) except that as in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina carrier, Nd
A catalyst supporting 5% by weight of 2 O 3 was obtained. Example 6 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 · 6H 2 O) in place, samarium nitrate solution (Sm
(NO 3) 3 · 6H 2 O) except that as in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina carrier, Sm
A catalyst supporting 5% by weight of 2 O 3 was obtained. Example 7 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 · 6H 2 O) in place, terbium nitrate aqueous solution (Tb
(NO 3) 3 · 6H 2 O) except that as in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina support, Tb
A catalyst supporting 5% by weight of 2 O 3 was obtained. Example 8 In Example 1, instead of the RhCl 3 aqueous solution, RuC was used.
and l 3 aqueous lanthanum nitrate solution (La (NO 3)
3 · 6H 2 O) in place, yttrium nitrate solution (Y
(NO 3) 3 · 6H 2 O) except that as in the same manner as in Example 1, 1.5 wt% of Ru in spherical alumina support, Y 2
A catalyst supporting 5 wt% of O 3 was obtained. Example 9 In Example 3, a cerium nitrate aqueous solution (Ce (N
O 3 ) 3 · nH 2 O) was added to the spherical alumina support in an amount of 1.5 w in the same manner as in Example 3 except that the concentration was doubled.
A catalyst supporting t% and 10 wt% CeO 2 was obtained. Example 10 In Example 3, a ceric nitrate aqueous solution (Ce (N
O 3 ) 3 · nH 2 O) was added to the spherical alumina carrier in an amount of 1.5 w in the same manner as in Example 3 except that the concentration was tripled.
A catalyst supporting t% and CeO 2 at 15 wt% was obtained. Example 11 In Example 3, the spherical activated alumina NKHD-24 was replaced with a particle size of 2 mm to 4 mm and a pore volume of 1.05 ml.
/ G, average pore size 500Å, water absorption rate 111% spherical silica CARIACT-50 manufactured by Fuji Davisson Chemical Co., Ltd.
A catalyst supporting 1.5 wt% and 5 wt% CeO 2 was obtained. Example 12 SYLOID, a fine powdery synthetic silica manufactured by Fuji Devison Chemical Co., Ltd., having an average particle diameter of 2.5 μm and a pore volume of 1.25 ml / g.
978 was repulsed in water. CeO 2 is added to this slurry in an amount of 5 wt% with respect to SYLOID 978, and cerium nitrate (Ce (NO 3 ) 3 · nH 2 O) is added.
Aqueous solution was added and stirred for 30 minutes. Then (1 + 1)
Neutralized with NH 4 OH until pH = 8. The slurry was filtered, washed with water, dried, and then calcined at 500 ° C. for 4 hours to obtain a CeO 2 -supported synthetic silica powder. Next, a part of this powder was passed through a granulator using silica sol as a binder and passed through a sieve to give a granular material of about 1 mm. Using this as a core, the remaining powder was also subjected to a tumbling granulator using silica sol as a binder and passed through a sieve to obtain a spherical granule having a particle diameter of 2 mm to 4 mm. 1 of these granules
After drying at 00 ° C. for 5 hours, it was further baked at 500 ° C. for 4 hours. Then, this is immersed in an aqueous RuCl 3 solution to remove Ru
As 1.5 wt%. After blowing off excess water, it was baked at 100 ° C. for 2 hours. Then. These were subjected to reduction treatment in a H 2 stream at 400 ° C. for 2 hours, and a spherical silica carrier with 1.5 wt% Ru and CeO 2 2
To obtain a catalyst supporting 5 wt%. Comparative Example 1 In Example 1, without supporting La 2 O 3 by impregnation, H 2
A reduction treatment was performed at 400 ° C. for 2 hours in two air streams to obtain a catalyst in which only 1.5 wt% of Rh was supported on the spherical alumina carrier. Comparative Example 2 In Example 2, without impregnating and supporting La 2 O 3 , H 2
A reduction treatment was carried out at 400 ° C. for 2 hours in two air streams to obtain a catalyst in which 1.5 wt% of only Ru was supported on the spherical alumina carrier. (II), Measurement of water adsorption amount The catalysts obtained in Examples 1 to 12 and Comparative Examples 1 to 2 were lightly crushed and put in a desiccator filled with water placed in a warm water tank at 50 ° C for one day. The catalyst was left to stand and water was adsorbed on the catalyst. Seiko Denshi Kogyo Co., Ltd. SSC-5200 model thermal analysis system was used in N 2 gas flow from room temperature to 500 ° C.
The temperature is raised at ℃ / min, TG-DTA analysis is performed, and 3
The water adsorption amount at 00 ° C was measured. (III), Evaluation Test For the catalysts obtained in Examples 1 to 12 and Comparative Examples 1 to 2, the nitrous oxide-containing gas was catalytically decomposed by using a normal pressure flow reactor under the following test conditions. 1 hour after the start
The nitrous oxide decomposition rate after 10 hours and 100 hours was measured. Incidentally, nitrite nitrogen decomposition rate was calculated by quantifying the N 2 by gas chromatography a conversion to N 2 of nitrous oxide. Test conditions , gas composition N 2 O 50 ppm O 2 5% H 2 O 2% He balance, space velocity 5000 Hr 1 , reaction temperature 350 ° C. The results are shown in Table 1.

【発明の効果】以上詳細に説明したように、本発明に係
る亜酸化窒素分解用触媒は、排ガス中の亜酸化窒素を効
率よく接触分解することが出来ると同時に、経時変化を
しにくいなど、優れた特有の効果を有する。
As described in detail above, the catalyst for decomposing nitrous oxide according to the present invention is capable of efficiently catalytically decomposing nitrous oxide in exhaust gas and, at the same time, is unlikely to change with time. It has an excellent unique effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中平 健二 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Nakahira 5-1, Ebishimacho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】疎水性担体に、(a)ルテニウム(R
u)、ロジウム(Rh)から選ばれる少なくとも1種、
及び(b)La、CeO、Pr、Nd
、Sm、Tb、Yから選ばれる
少なくとも1種を担持することを特徴とする亜酸化窒素
分解用触媒。
1. A hydrophobic carrier comprising (a) ruthenium (R)
u), at least one selected from rhodium (Rh),
And (b) La 2 O 3, CeO 2, Pr 2 O 3, Nd 2
A catalyst for decomposing nitrous oxide, which carries at least one selected from O 3 , Sm 2 O 3 , Tb 2 O 3 , and Y 2 O 3 .
JP4350070A 1992-11-12 1992-11-12 Catalyst for decomposing nitrous oxide Pending JPH06142514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350070A JPH06142514A (en) 1992-11-12 1992-11-12 Catalyst for decomposing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350070A JPH06142514A (en) 1992-11-12 1992-11-12 Catalyst for decomposing nitrous oxide

Publications (1)

Publication Number Publication Date
JPH06142514A true JPH06142514A (en) 1994-05-24

Family

ID=18408027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350070A Pending JPH06142514A (en) 1992-11-12 1992-11-12 Catalyst for decomposing nitrous oxide

Country Status (1)

Country Link
JP (1) JPH06142514A (en)

Similar Documents

Publication Publication Date Title
US5068217A (en) Carrier catalysts for oxidizing carbon monoxide and process for their production
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JP2004074069A (en) Formaldehyde oxidation removal method
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JPH074528B2 (en) Method for producing catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel
JP3251009B2 (en) Exhaust gas purification catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3221071B2 (en) Catalyst for decomposition of nitrous oxide
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JPH06154604A (en) Catalyst for decomposition of nitrous oxide
JP3027219B2 (en) How to remove nitrogen oxides
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JPH06142514A (en) Catalyst for decomposing nitrous oxide
JP3221110B2 (en) Catalyst for decomposition of nitrous oxide
JPH06142515A (en) Catalyst for decomposing nitrous oxide
JPH06154603A (en) Catalyst for decomposition of nitrous oxide
JPH06142510A (en) Catalyst for decomposing nitrous oxide
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it
JPH06218232A (en) Purifying method for nitrous oxide containing waste gas
JPH06142511A (en) Catalyst for decomposing nitrous oxide
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JPH0490852A (en) Waste gas cleaning catalyst
JPH06154602A (en) Catalyst for removal of nitrogen oxide