JP3236031B2 - Method for decomposing and removing nitrous oxide - Google Patents
Method for decomposing and removing nitrous oxideInfo
- Publication number
- JP3236031B2 JP3236031B2 JP14062991A JP14062991A JP3236031B2 JP 3236031 B2 JP3236031 B2 JP 3236031B2 JP 14062991 A JP14062991 A JP 14062991A JP 14062991 A JP14062991 A JP 14062991A JP 3236031 B2 JP3236031 B2 JP 3236031B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nitrous oxide
- decomposing
- temperature
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種産業排ガス等に含
まれる亜酸化窒素を分解除去する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing and removing nitrous oxide contained in various industrial exhaust gases.
【0002】[0002]
【従来の技術】燃焼排ガスや化学工場の排ガスなど各種
産業排ガスの大気中の放出については、公害防止、環境
保全の観点から種々の規制措置がとられている。特に窒
素酸化物については、光化学スモッグ、酸性雨等の原因
物質として大気中への排出が厳しく規制されている。従
来、排出規制の対象とされてきた窒素酸化物は一酸化窒
素(NO)及び二酸化窒素(NO2 )であり、脱硝技術
もこれらの物質を対象に研究され、アンモニア等の還元
性物質を用いた接触還元法や金属触媒等の触媒を用いて
窒素と酸素とに分解する方法などが開発されてきた。と
ころが、近年、これらの排ガス中に微量含まれてはいる
が、他の窒素酸化物に比較して安定で無害といわれてい
た亜酸化窒素が、成層圏で分解し一酸化窒素を生成する
ことが明らかになり、また、高い温室効果を示し、その
半減期も約150年と長いことから地球温暖化への影響
も示唆されるなど、問題になってきている。しかしなが
ら、前記の脱硝方法では亜酸化窒素は全く分解、除去す
ることはできず、さらに、アンモニアを還元剤とする脱
硝方法においては、脱硝装置の運転条件によっては一酸
化窒素、二酸化窒素及びアンモニア等の反応により亜酸
化窒素が比較的高濃度で生成する場合があることさえも
明らかとなってきた。2. Description of the Related Art Various control measures have been taken with respect to emission of various industrial exhaust gases such as combustion exhaust gases and exhaust gases from chemical factories into the atmosphere from the viewpoints of pollution prevention and environmental conservation. In particular, emission of nitrogen oxides into the atmosphere as a causative substance such as photochemical smog and acid rain is strictly regulated. Conventionally, nitrogen oxides that have been subject to emission control are nitric oxide (NO) and nitrogen dioxide (NO 2 ), and denitrification technology has also been studied for these substances, and reducing substances such as ammonia have been used. A catalytic reduction method and a method of decomposing into nitrogen and oxygen using a catalyst such as a metal catalyst have been developed. However, in recent years, nitrous oxide, which is contained in trace amounts in these exhaust gases but is said to be stable and harmless compared to other nitrogen oxides, can decompose in the stratosphere to produce nitric oxide. It has become a problem, for example, showing a high greenhouse effect and a long half-life of about 150 years, suggesting an effect on global warming. However, nitrous oxide cannot be decomposed and removed at all by the above-mentioned denitration method. Further, in the denitration method using ammonia as a reducing agent, depending on the operating conditions of the denitration apparatus, nitric oxide, nitrogen dioxide, ammonia, etc. It has even become clear that nitrous oxide may be produced in relatively high concentrations by the reaction of
【0003】そのため、各種排ガス中に含まれる亜酸化
窒素を分解除去する方法が種々検討され、提案されてい
る。従来、排ガス中の亜酸化窒素を分解する方法として
提案されている方法の主なものは、高温下において金属
触媒と接触させて分解する接触分解法(特開昭63−7
826号など)、アンモニアや水素などの還元性ガスと
ともに触媒に接触させて還元分解する接触還元法(特公
昭55−47933号、特開平2−68120号など)
あるいは、光又は放射線により分解する方法(特開昭6
3−111927号、特開昭63−111929号な
ど)などであるが、これらの方法においては、処理温度
が高温であること、排ガス中に存在する酸素、硫黄酸化
物、水分などにより触媒が被毒し分解活性が低下する、
特殊な装置を必要とするなどの問題点が多く、実用化に
到っていないのが実情である。Therefore, various methods for decomposing and removing nitrous oxide contained in various exhaust gases have been studied and proposed. Conventionally, a major method proposed as a method for decomposing nitrous oxide in exhaust gas is a catalytic cracking method in which a catalyst is decomposed by contact with a metal catalyst at a high temperature (JP-A-63-763).
No. 826, etc.), and a catalytic reduction method in which the catalyst is brought into contact with a catalyst together with a reducing gas such as ammonia or hydrogen to undergo reductive decomposition (JP-B-55-47933, JP-A-2-68120, etc.)
Alternatively, a method of decomposing by light or radiation (Japanese Unexamined Patent Publication No.
In these methods, the catalyst is covered by the high processing temperature, oxygen, sulfur oxides, moisture, etc. present in the exhaust gas. Poisons and decomposes,
There are many problems such as the necessity of a special device, and the fact is that it has not yet been put to practical use.
【0004】[0004]
【発明が解決しようとする課題】前記の従来技術の中で
は、接触分解法が最も簡便で実用的なものと考えられる
が、この方法は一般に高温での処理を必要とする。前記
特開昭63−7826号に記載されている方法は、亜酸
化窒素を含有するガスを元素の周期率表の第Ib族又は
第VIII族の金属又は該金属の酸化物あるいは複合酸化物
を含有する触媒と接触せしめる方法であるが、その実施
例から見て50%以上の脱硝率を得るためには、貴金属
触媒を除いて350℃以上の高温度が必要である。ま
た、本発明者らの実験によれば、ここに記載されている
NiO、Fe2 O3 、CoO、CuOなどの触媒は処理
される排ガス中に水分や硫黄酸化物が含まれていると短
時間で失活し、亜酸化窒素の分解活性が低下するという
問題点があることが判明した。本発明の目的は、従来の
接触分解方法における問題点を解決し、比較的低温度で
の処理が可能で、水分や硫黄酸化物の共存する亜酸化窒
素含有排ガスを処理することができる、亜酸化窒素の分
解除去方法を提供することにある。Among the above prior arts, the catalytic cracking method is considered to be the simplest and practical one, but this method generally requires a treatment at a high temperature. The method described in JP-A-63-7826 discloses that a gas containing nitrous oxide is treated with a metal of Group Ib or Group VIII of the periodic table of the element or an oxide or composite oxide of the metal. In this method, a high temperature of 350 ° C. or more is required except for the noble metal catalyst, in order to obtain a denitration rate of 50% or more in view of Examples. In addition, according to experiments performed by the present inventors, catalysts such as NiO, Fe 2 O 3 , CoO, and CuO described here are short if the exhaust gas to be treated contains moisture or sulfur oxides. It has been found that there is a problem that it is deactivated in a short time and the decomposition activity of nitrous oxide is reduced. An object of the present invention is to solve the problems of the conventional catalytic cracking method, to perform treatment at a relatively low temperature, and to treat a nitrous oxide-containing exhaust gas in which moisture and sulfur oxides coexist. An object of the present invention is to provide a method for decomposing and removing nitric oxide.
【0005】[0005]
【課題を解決するための手段】本発明者らは、亜酸化窒
素の分解触媒について探索の結果、Rh2 O3 及びCo
2 O3 を活性成分とする金属酸化物触媒が、排ガス中の
水分や硫黄酸化物の被毒による活性低下が極めて小さ
く、比較的低温においても高活性で亜酸化窒素を酸素と
窒素とに分解できることを見出し、本発明を完成した。
すなわち、本発明は、亜酸化窒素含有ガスを、三二酸化
ロジウム(Rh2 O3 )、三二酸化コバルト(Co2 O
3 )又はこれらの混合物のいずれかを活性成分とする触
媒と100〜600℃の温度で接触させ、亜酸化窒素を
分解させることを特徴とする亜酸化窒素の分解除去方法
及び水分及び/又は硫黄酸化物の共存する亜酸化窒素含
有ガスを、三二酸化ロジウム(Rh2 O3 )、三二酸化
コバルト(Co2 O3 )又はこれらの混合物のいずれか
を活性成分とする触媒と100〜600℃の温度で接触
させ、亜酸化窒素を分解させることを特徴とする亜酸化
窒素の分解除去方法である。DISCLOSURE OF THE INVENTION The present inventors have searched for a catalyst for decomposing nitrous oxide and found that Rh 2 O 3 and Co
A metal oxide catalyst containing 2 O 3 as an active component has a very small activity decrease due to poisoning of moisture and sulfur oxides in exhaust gas, and has a high activity even at a relatively low temperature and decomposes nitrous oxide into oxygen and nitrogen. We have found that we can do this and completed the present invention.
That is, according to the present invention, the nitrous oxide-containing gas is converted to rhodium trioxide (Rh 2 O 3 ), cobalt trioxide (Co 2 O 3 ).
3 ) A method for decomposing and removing nitrous oxide, which comprises contacting a catalyst containing any of these or any of these as an active ingredient at a temperature of 100 to 600 ° C. to decompose nitrous oxide, and water and / or sulfur. A nitrous oxide-containing gas in which an oxide coexists with a catalyst containing rhodium trioxide (Rh 2 O 3 ), cobalt sesquioxide (Co 2 O 3 ) or a mixture thereof as an active component at 100 to 600 ° C. This is a method for decomposing and removing nitrous oxide, which comprises contacting at a temperature to decompose nitrous oxide.
【0006】本発明の方法において使用する触媒は、R
h2 O3、Co2 O3 又はこれらの混合物のいずれかを
活性成分として含有するものである。これらの触媒は、
各活性成分をSiO2 を主成分とするコロイダルシリカ
などのバインダ−成分とともに造粒するか、チタニア、
アルミナ、シリカ/アルミナ、あるいはマグネシア等の
担体に担持させた形で使用するのが好都合である。ま
た、触媒の形状、大きさ等は使用目的、使用状況等に応
じて適宜選定すればよく、粒状、俵状、球状、リング
状、円柱状、板状、ハニカム状などの形状が使用できる
が、ガスとの接触効率や圧力損失の点などからハニカム
状、板状などが特に好ましい。The catalyst used in the process of the present invention is R
one of h 2 O 3, Co 2 O 3 , or mixtures thereof are those containing as an active ingredient. These catalysts
Each active ingredient is granulated together with a binder component such as colloidal silica containing SiO 2 as a main component, or titania,
It is convenient to use it in a form supported on a carrier such as alumina, silica / alumina, or magnesia. Further, the shape, size, etc. of the catalyst may be appropriately selected according to the purpose of use, use conditions, etc., and shapes such as granules, bales, spheres, rings, columns, plates, and honeycombs can be used. In particular, a honeycomb shape, a plate shape, and the like are preferable in terms of gas contact efficiency and pressure loss.
【0007】触媒の製造方法は特に限定されるものでは
ないが、粉末状のRh2 O3 又はCo2 O3 若しくはこ
れらを任意の割合で混合した混合粉末を原料とし、バイ
ンダ−成分とともに水と混練し、必要により担体成分を
添加して混合後適当な大きさに成形して乾燥したものを
粉砕して粒度調整する方法、バインダ−成分および担体
成分とともに水と混練し任意の形状に成形後乾燥する方
法、バインダ−成分とともに水と混合してスラリ−状と
し、任意の形状の担体に付着させ乾燥する方法など任意
の方法をとることができる。触媒中の活性成分の含有比
率は、各活性成分の単体若しくはこれらの混合物を各種
担体上に担持させた担持触媒から、少量のバインダ−成
分とともに成形した含有率98重量%以上のものまで、
処理ガスの性状、処理装置や処理温度あるいは要求され
る亜酸化窒素の分解率などの処理条件に応じて、広い範
囲内で任意に設定することができる。なお、担体上に担
持させる場合には担持量が金属酸化物として0.1〜3
0重量%の範囲となるようにするのが好ましい。0.1
重量%未満では触媒活性が低く、30重量%を超えると
担体による補強効果が小さくなる。The method for producing the catalyst is not particularly limited, but powdered Rh 2 O 3 or Co 2 O 3 or a mixed powder obtained by mixing these at an arbitrary ratio is used as a raw material, and water is added together with a binder component to water. Kneading, if necessary, adding a carrier component, mixing and molding to an appropriate size, and then drying and pulverizing the dried product; adjusting the particle size; kneading with water together with a binder component and a carrier component to form an arbitrary shape; Any method such as a method of drying, a method of mixing with water together with a binder component to form a slurry, and attaching the mixture to a carrier having an arbitrary shape and drying the mixture can be employed. The content ratio of the active ingredient in the catalyst ranges from a supported catalyst in which each active ingredient or a mixture thereof is supported on various supports, to a content of 98% by weight or more molded with a small amount of a binder component.
It can be arbitrarily set within a wide range according to the processing conditions such as the properties of the processing gas, the processing apparatus and the processing temperature, or the required decomposition rate of nitrous oxide. When supported on a carrier, the supported amount is 0.1 to 3 as a metal oxide.
It is preferred that the content be in the range of 0% by weight. 0.1
If it is less than 30% by weight, the catalytic activity is low, and if it exceeds 30% by weight, the reinforcing effect of the carrier is small.
【0008】このようにして調製した触媒を反応槽に充
填し、亜酸化窒素含有ガスを通して反応させることによ
り亜酸化窒素を酸素と窒素とに分解することができる。
反応温度及びガスの空間速度(SV)は、ガス中の亜酸
化窒素濃度、触媒の形態や使用量、反応装置の形状等に
より異なるが、反応温度は、100〜600℃の範囲、
特に150〜600℃の範囲が好ましく、空間速度は、
3000〜20000(hr-1)の範囲が好ましい。温
度が100℃未満では亜酸化窒素の分解が進行しにく
く、また、600℃を超えると触媒の劣化が激しくなる
ので好ましくない。空間速度が3000(hr-1)未満
では亜酸化窒素の分解率には変化はないもののガスの処
理能力が小さくなり実用的でなく、また、20000
(hr-1)を超えると亜酸化窒素の分解率が低下するの
で好ましくない。[0008] The catalyst thus prepared is charged into a reaction tank, and the reaction is performed through a gas containing nitrous oxide, whereby the nitrous oxide can be decomposed into oxygen and nitrogen.
The reaction temperature and the space velocity of the gas (SV) vary depending on the concentration of nitrous oxide in the gas, the form and amount of the catalyst used, the shape of the reactor, and the like.
In particular, the range of 150 to 600 ° C. is preferable, and the space velocity is
The range of 3000 to 20000 (hr -1 ) is preferable. If the temperature is lower than 100 ° C., decomposition of nitrous oxide hardly proceeds, and if it is higher than 600 ° C., deterioration of the catalyst becomes severe, which is not preferable. When the space velocity is less than 3000 (hr -1 ), the decomposition rate of nitrous oxide does not change, but the gas processing capacity is reduced and it is not practical.
If it exceeds (hr -1 ), the decomposition rate of nitrous oxide decreases, which is not preferable.
【0009】本発明の方法によれば、アンモニアや水素
などの還元剤を必要とすることなく、排ガス中の亜酸化
窒素を酸素と窒素とに分解することができる。しかも本
発明で使用する触媒は、比較的低温でも高活性で、水分
や硫黄酸化物などの被毒による活性低下が非常に小さ
く、長時間にわたって安定した高い脱硝率を維持するこ
とができる。すなわち、従来のCoO、RhO系触媒で
は水分や硫黄酸化物の影響が大きく、250℃以下では
全く亜酸化窒素の分解活性は認められないが、本発明の
Co2 O3 、Rh2 O3系触媒、とくに両者の混合触媒
では20容量%以下の水分あるいは10容量%以下の硫
黄酸化物が共存する条件下においても150℃付近の温
度で10%以上の分解率を得ることができる。このよう
な低温において、水分あるいは硫黄酸化物の共存下に亜
酸化窒素の分解活性を示す触媒は従来知られていなかっ
たものである。According to the method of the present invention, nitrous oxide in exhaust gas can be decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention has a high activity even at a relatively low temperature, has a very small decrease in the activity due to poisoning by moisture or sulfur oxides, and can maintain a stable and high denitration rate for a long time. That is, in the conventional CoO and RhO-based catalysts, the influence of moisture and sulfur oxides is great, and no decomposition activity of nitrous oxide is observed at 250 ° C. or lower, but the Co 2 O 3 and Rh 2 O 3 -based catalysts of the present invention are not observed. With a catalyst, especially a mixed catalyst of both, a decomposition rate of 10% or more can be obtained at a temperature around 150 ° C. even under the condition that 20% by volume or less of moisture or 10% by volume or less of sulfur oxides coexist. At such a low temperature, a catalyst showing the activity of decomposing nitrous oxide in the coexistence of moisture or sulfur oxide has not hitherto been known.
【0010】[0010]
【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製)市販のCo2 O3 (純度99.5%)、
Rh2 O3 (純度99.0%)、CoO(純度99.5
%)及びRhO(純度99.0%)を使用し、次の操作
に従って触媒を調製した。 (1)Co2 O3 又はRh2 O3 の単味触媒及びCo2
O3 及びRh2 O3 の混合触媒 Co2 O3 又はRh2 O3 100重量部あるいはCo2
O3 とRh2 O3 とをそれぞれ98/2又は50/50
の割合で混合した混合物100重量部に対しバインダ−
(成形助剤)としてコロイダルシリカをSiO2 として
3重量部添加して水練りした。この混練物を直径約30
mmの球状に成形し、空気雰囲気中で120℃で24時
間乾燥させたものを破砕し、1〜3mmの粒状触媒を得
た。これらの触媒をそれぞれ(Co2 O3 )、(Rh2
O3 )、(Co2 O3 −Rh2 O3 、98/2)及び
(Co2 O3 −Rh2 O3 、50/50)と表示する。 (2)Co2 O3 及びRh2 O3 を使用したアルミナ担
持触媒 窒素雰囲気中で600℃で5時間加熱処理したγ−アル
ミナ100重量部に、Co2 O3 又はRh2 O3 それぞ
れ20重量部にコロイダルシリカをSiO2 として3重
量部混合したものを添加し、水練りした。この混練物を
直径約30mmの球状に成形し、空気雰囲気中で120
℃で24時間乾燥させたものを破砕し、1〜3mmの粒
状触媒を得た。これらの触媒をそれぞれ(Co2 O3 /
Al2 O3 )及び(Rh2 O3 /Al2 O3 )と表示す
る。EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Preparation of catalyst) Commercially available Co 2 O 3 (purity 99.5%),
Rh 2 O 3 (purity 99.0%), CoO (purity 99.5%)
%) And RhO (purity 99.0%), and the catalyst was prepared according to the following operation. (1) Co 2 O 3 or Rh 2 O 3 plain catalyst and Co 2
O 3 and mixed catalyst Co of Rh 2 O 3 2 O 3 or Rh 2 O 3 100 parts by weight or Co 2
O 3 and Rh 2 O 3 and each 98/2 or 50/50
100 parts by weight of the mixture mixed in the ratio of
3 parts by weight of colloidal silica as SiO 2 was added as a (molding aid) and kneaded with water. This kneaded material is about 30
It was formed into a spherical shape having a diameter of 1 mm and dried in an air atmosphere at 120 ° C. for 24 hours, and then crushed to obtain a granular catalyst having a size of 1 to 3 mm. These catalysts are referred to as (Co 2 O 3 ), (Rh 2
O 3), indicated as (Co 2 O 3 -Rh 2 O 3, 98/2) and (Co 2 O 3 -Rh 2 O 3, 50/50). (2) Alumina-supported catalyst using Co 2 O 3 and Rh 2 O 3 20 parts each of Co 2 O 3 or Rh 2 O 3 was added to 100 parts by weight of γ-alumina heated at 600 ° C. for 5 hours in a nitrogen atmosphere. The mixture was mixed with 3 parts by weight of colloidal silica as SiO 2 and kneaded with water. This kneaded material is formed into a sphere having a diameter of about 30 mm,
The product dried at 24 ° C for 24 hours was crushed to obtain a granular catalyst of 1 to 3 mm. Each of these catalysts was (Co 2 O 3 /
Al 2 O 3) and (Rh 2 O 3 / Al 2 O 3) to be displayed.
【0011】(3)Co2 O3 及びRh2 O3 を使用し
たチタニア担持触媒 Co2 O3 50重量部及びRh2 O3 50重量部の混合
物にコロイダルシリカをSiO2 として3重量部添加
し、さらにチタニア(アナタ−ゼ型)100重量部を加
えて水練りした。この混練物を直径約30mmの球状に
成形し、空気雰囲気中で120℃で24時間乾燥させた
ものを破砕し、1〜3mmの粒状触媒を得た。この触媒
を(Co2 O3 −Rh2 O3 /TiO2 )と表示する。 (4)CoO及びRhOを使用したアルミナ担持触媒 窒素雰囲気中で600℃で5時間加熱処理したγ−アル
ミナ100重量部を、硝酸コバルト又は硝酸ロジウムの
水溶液に浸漬し、CoO又はRhOとしてそれぞれ20
重量部を吸着させ、空気雰囲気中、110℃で24時間
乾燥し、さらに窒素雰囲気中、600℃で5時間焼成し
て触媒を調製した。これらの触媒をそれぞれ(CoO/
Al2 O3 )及び(RhO/Al2 O3 )と表示する。 (亜酸化窒素分解除去試験)前記のように調製した触媒
それぞれ25mlを、内径20mmの石英管よりなる試
験装置に充填し、所定の温度条件で、所定の組成に調製
したガスを通し、反応管入口と出口におけるガス中の亜
酸化窒素の濃度を測定した。その値から、亜酸化窒素の
分解率を算出し、触媒の活性度を比較した。[0011] (3) Co 2 O 3 and Rh 2 O 3 colloidal silica 3 parts by weight was added as SiO 2 in the mixture of titania supported catalyst Co 2 O 3 50 parts by weight of Rh 2 O 3 50 parts by weight Using Then, 100 parts by weight of titania (anatase type) was added and water-kneaded. This kneaded product was formed into a spherical shape having a diameter of about 30 mm, and dried at 120 ° C. for 24 hours in an air atmosphere, and crushed to obtain a granular catalyst of 1 to 3 mm. Show this catalyst and (Co 2 O 3 -Rh 2 O 3 / TiO 2). (4) Alumina-supported catalyst using CoO and RhO 100 parts by weight of γ-alumina heat-treated at 600 ° C for 5 hours in a nitrogen atmosphere is immersed in an aqueous solution of cobalt nitrate or rhodium nitrate to form CoO or RhO, respectively.
The catalyst was prepared by adsorbing parts by weight, drying at 110 ° C. for 24 hours in an air atmosphere, and calcining at 600 ° C. for 5 hours in a nitrogen atmosphere. Each of these catalysts (CoO /
Al 2 O 3) and (RhO / Al 2 O 3) to be displayed. (Nitrous oxide decomposition removal test) 25 ml of each of the catalysts prepared as described above were filled in a test apparatus consisting of a quartz tube having an inner diameter of 20 mm, and a gas having a predetermined composition was passed under a predetermined temperature condition, and a reaction tube was passed. The concentration of nitrous oxide in the gas at the inlet and outlet was measured. From the value, the decomposition rate of nitrous oxide was calculated, and the activity of the catalyst was compared.
【0012】(実施例1)触媒層の温度を表1に示すよ
うに設定し、60ppmのN2 Oを含有する空気を、6
000hr-1の空間速度で通過させ、N2 Oの分解率を
測定した。結果は、表1に示すとおりであり、本発明で
使用する触媒は従来のCoO又はRhO系の触媒に比較
して高い亜酸化窒素の分解活性を示し、特にCo2 O3
とRh2 O3 とを配合した触媒では著しい相乗効果が認
められ、150℃の低温においても約20%の分解率が
得られていることがわかる。なお、N2 Oの濃度を変化
させて同様の試験を行ったところN2 O濃度1000p
pm程度まではほぼ同様の分解率が得られた。Example 1 The temperature of the catalyst layer was set as shown in Table 1, and air containing 60 ppm N 2 O
At a space velocity of 000 hr -1 , the decomposition rate of N 2 O was measured. The results are as shown in Table 1, the catalyst for use in the present invention exhibit proteolytic activity higher than the conventional CoO or RhO based catalysts nitrous oxide, in particular Co 2 O 3
A remarkable synergistic effect was recognized in the catalyst in which the catalyst was mixed with Rh 2 O 3, and it was found that a decomposition rate of about 20% was obtained even at a low temperature of 150 ° C. Incidentally, N 2 O concentration 1000p was subjected to the same test by changing the concentration of N 2 O
Approximately the same decomposition rate was obtained up to about pm.
【0013】[0013]
【表1】 [Table 1]
【0014】(実施例2)触媒層の温度を表2に示すよ
うに設定し、150ppmのN2 O及び14%の水分を
含有する空気を、5000hr-1の空間速度で通過さ
せ、反応開始から100時間後のN2 Oの分解率を測定
した。結果は、表2に示すとおりであり、従来のCoO
又はRhO系触媒は失活が激しく400℃においても2
0%程度の分解率しか得られないのに対し、本発明の触
媒を使用した場合には失活が少なく、単味触媒でも30
0℃で約40〜60%、400℃では約75〜80%の
分解率を示し、Co2 O3 とRh2 O3 とを併用した触
媒では、150℃で約10%、200℃で約40%、2
50℃では約80%、300℃で約90%、400℃で
は99%以上の高い分解率を維持していることがわか
る。Example 2 The temperature of the catalyst layer was set as shown in Table 2, and air containing 150 ppm of N 2 O and 14% of moisture was passed at a space velocity of 5000 hr -1 to start the reaction. 100 hours later, the decomposition rate of N 2 O was measured. The results are as shown in Table 2 and show that the conventional CoO
Alternatively, RhO-based catalysts are highly deactivated and even at 400 ° C.
While only a decomposition rate of about 0% can be obtained, when the catalyst of the present invention is used, deactivation is small, and even a simple catalyst has a deactivation rate of 30%.
The catalyst exhibits a decomposition rate of about 40 to 60% at 0 ° C. and about 75 to 80% at 400 ° C. For a catalyst using both Co 2 O 3 and Rh 2 O 3 , about 10% at 150 ° C. and about 200% at 200 ° C. 40%, 2
It can be seen that high decomposition rates of about 80% at 50 ° C., about 90% at 300 ° C., and 99% or more at 400 ° C. are maintained.
【0015】[0015]
【表2】 [Table 2]
【0016】(実施例3)触媒層の温度を表3に示すよ
うに設定し、150ppmのN2 O及び50ppmのS
O2 を含有する空気を、5000hr-1の空間速度で通
過させ、反応開始から100時間後のN2 Oの分解率を
測定した。結果は、表3に示すとおりであり、従来のC
oO又はRhO系触媒は失活が激しく400℃において
も20〜40%程度の分解率しか得られないのに対し、
本発明の触媒を使用した場合には失活が少なく、Co2
O3 単味触媒でも300℃で約40〜45%、400℃
では約90%の分解率を示し、Co2 O3 とRh2 O3
とを併用した触媒では、150℃で約20%、200℃
で約50%、250℃では約90%、300〜400℃
では99%以上の高い分解率を維持していることがわか
る。Example 3 The temperature of the catalyst layer was set as shown in Table 3, and 150 ppm of N 2 O and 50 ppm of S
Air containing O 2 was passed at a space velocity of 5000 hr −1 , and the decomposition rate of N 2 O was measured 100 hours after the start of the reaction. The results are as shown in Table 3 and show that the conventional C
While the oO or RhO-based catalyst is highly deactivated and can only obtain a decomposition rate of about 20 to 40% even at 400 ° C.,
When the catalyst of the present invention was used, the deactivation was small and Co 2
About 40-45% at 300 ° C, 400 ° C even with O 3 plain catalyst
Shows a decomposition rate of about 90%, and Co 2 O 3 and Rh 2 O 3
About 20% at 150 ° C, 200 ° C
About 50% at 250 ° C, about 90% at 300-400 ° C
As a result, it can be seen that a high decomposition rate of 99% or more is maintained.
【0017】[0017]
【表3】 [Table 3]
【0018】[0018]
【発明の効果】本発明の方法によれば、アンモニアや水
素などの還元剤を必要とすることなく、排ガス中の亜酸
化窒素を効率よく酸素と窒素とに分解することができ
る。しかも本発明で使用する触媒は、比較的低温でも活
性が高く、水分や硫黄酸化物などの被毒による活性低下
が非常に小さく、長時間にわたって安定した高い脱硝率
を維持することができるので、水分や硫黄酸化物の混在
することの多い亜酸化窒素を含有する各種排ガスの処理
に極めて効果が大きい。According to the method of the present invention, nitrous oxide in exhaust gas can be efficiently decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. Moreover, the catalyst used in the present invention has a high activity even at a relatively low temperature, a very small decrease in the activity due to poisoning such as moisture and sulfur oxides, and a stable high denitration rate can be maintained over a long period of time. It is extremely effective in treating various exhaust gases containing nitrous oxide, which often contains moisture and sulfur oxides.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 23/74 311A (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/00 B01D 53/94 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI B01J 23/74 311A (58) Field surveyed (Int.Cl. 7 , DB name) B01J 21/00-38/00 B01D 53 / 94
Claims (2)
ム(Rh2 O3 )、三二酸化コバルト(Co2 O3 )又
はこれらの混合物のいずれかを活性成分とする触媒と1
00〜600℃の温度で接触させ、亜酸化窒素を分解さ
せることを特徴とする亜酸化窒素の分解除去方法。1. A catalyst comprising, as an active ingredient, one of rhodium trioxide (Rh 2 O 3 ), cobalt trioxide (Co 2 O 3 ), or a mixture thereof, comprising a nitrous oxide-containing gas.
A method for decomposing and removing nitrous oxide, comprising contacting at a temperature of 00 to 600 ° C. to decompose nitrous oxide.
酸化窒素含有ガスを、三二酸化ロジウム(Rh
2 O3 )、三二酸化コバルト(Co2 O3 )又はこれら
の混合物のいずれかを活性成分とする触媒と100〜6
00℃の温度で接触させ、亜酸化窒素を分解させること
を特徴とする亜酸化窒素の分解除去方法。2. Nitrous oxide-containing gas in which water and / or sulfur oxides coexist is converted to rhodium trioxide (Rh).
A catalyst containing any one of active ingredients, such as 2 O 3 ), cobalt trioxide (Co 2 O 3 ) or a mixture thereof;
A method for decomposing and removing nitrous oxide, comprising contacting at a temperature of 00 ° C. to decompose nitrous oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14062991A JP3236031B2 (en) | 1991-05-17 | 1991-05-17 | Method for decomposing and removing nitrous oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14062991A JP3236031B2 (en) | 1991-05-17 | 1991-05-17 | Method for decomposing and removing nitrous oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04341324A JPH04341324A (en) | 1992-11-27 |
JP3236031B2 true JP3236031B2 (en) | 2001-12-04 |
Family
ID=15273142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14062991A Expired - Fee Related JP3236031B2 (en) | 1991-05-17 | 1991-05-17 | Method for decomposing and removing nitrous oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3236031B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007185574A (en) * | 2006-01-12 | 2007-07-26 | Mitsui Zosen Plant Engineering Inc | Catalyst for decomposing nitrous oxide |
JP5580568B2 (en) * | 2009-10-16 | 2014-08-27 | 出光興産株式会社 | Active alumina catalyst and method for removing nitrous oxide |
-
1991
- 1991-05-17 JP JP14062991A patent/JP3236031B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04341324A (en) | 1992-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0544282B1 (en) | Catalyst for purifying exhaust gas | |
JP2651981B2 (en) | Method for the selective reduction of nitrogen oxides contained in gas streams | |
US7238641B2 (en) | Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide | |
JP2005516767A (en) | Novel catalyst for reducing NO to N2 using hydrogen under NOx oxidation conditions | |
JP3352494B2 (en) | Nitrogen oxide decomposition catalyst and denitration method using the same | |
JP3221116B2 (en) | Catalyst for decomposition of nitrous oxide | |
JP3325041B2 (en) | Decomposition and removal method of nitrous oxide | |
JP3236031B2 (en) | Method for decomposing and removing nitrous oxide | |
JPH06246135A (en) | Treatment of gaseous nitrous oxide | |
JPH06106028A (en) | Treatment of nitrous oxide containing gas | |
JP3027219B2 (en) | How to remove nitrogen oxides | |
JP3270082B2 (en) | Decomposition and removal method of nitrous oxide | |
JP3270080B2 (en) | Method for decomposing and removing nitrous oxide | |
JPH06190244A (en) | Decomposition treatment of nitrous oxide | |
JPH067640A (en) | Treatment of nitrous oxide containing gas | |
JP3270092B2 (en) | Method for decomposing and removing nitrous oxide | |
JPH06198187A (en) | Catalyst for decomposition of nitrous oxide | |
JP4664608B2 (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
JP3221115B2 (en) | Catalyst for decomposition of nitrous oxide | |
JPH06262079A (en) | Catalyst for nitrogen oxide purification and nitrogen oxide purification | |
JPH05220350A (en) | Method for decomposing and removing nitrous oxide | |
JPWO2005018807A1 (en) | Ammonia decomposition catalyst and ammonia decomposition method using the catalyst | |
JPS6344010B2 (en) | ||
RU2156655C2 (en) | Catalyst for removing nitrogen oxides from gas emissions | |
JP2896912B2 (en) | Catalyst regeneration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313118 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |