JPH04341324A - Method for decomposing and removing nitrous oxide - Google Patents

Method for decomposing and removing nitrous oxide

Info

Publication number
JPH04341324A
JPH04341324A JP3140629A JP14062991A JPH04341324A JP H04341324 A JPH04341324 A JP H04341324A JP 3140629 A JP3140629 A JP 3140629A JP 14062991 A JP14062991 A JP 14062991A JP H04341324 A JPH04341324 A JP H04341324A
Authority
JP
Japan
Prior art keywords
nitrous oxide
catalyst
oxide
decomposing
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3140629A
Other languages
Japanese (ja)
Other versions
JP3236031B2 (en
Inventor
Nobuhide Ikeyama
池山 信秀
Yutaka Iwanaga
岩永 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP14062991A priority Critical patent/JP3236031B2/en
Publication of JPH04341324A publication Critical patent/JPH04341324A/en
Application granted granted Critical
Publication of JP3236031B2 publication Critical patent/JP3236031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effectively decompose and remove nitrous oxide at relatively low temp. while reducing the effect of moisture or sulfur oxide. CONSTITUTION:Nitrous oxide-containing gas is brought into contact with a catalyst containing rhodium sesquioxide, cobalt sesquioxide or a mixture of them as an active component at 100-600 deg.C to decompose nitrous oxide. Nitrous oxide in exhaust gas can be efficiently decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. This catalyst has high activity at relatively low temp. and is extremely reduced in the lowering of activity due to the poisoning caused by moisture or sulfur oxide and can keep a stable high denitration rate over a long time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種産業排ガス等に含
まれる亜酸化窒素を分解除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing and removing nitrous oxide contained in various industrial exhaust gases.

【0002】0002

【従来の技術】燃焼排ガスや化学工場の排ガスなど各種
産業排ガスの大気中の放出については、公害防止、環境
保全の観点から種々の規制措置がとられている。特に窒
素酸化物については、光化学スモッグ、酸性雨等の原因
物質として大気中への排出が厳しく規制されている。従
来、排出規制の対象とされてきた窒素酸化物は一酸化窒
素(NO)及び二酸化窒素(NO2 )であり、脱硝技
術もこれらの物質を対象に研究され、アンモニア等の還
元性物質を用いた接触還元法や金属触媒等の触媒を用い
て窒素と酸素とに分解する方法などが開発されてきた。 ところが、近年、これらの排ガス中に微量含まれてはい
るが、他の窒素酸化物に比較して安定で無害といわれて
いた亜酸化窒素が、成層圏で分解し一酸化窒素を生成す
ることが明らかになり、また、高い温室効果を示し、そ
の半減期も約150年と長いことから地球温暖化への影
響も示唆されるなど、問題になってきている。しかしな
がら、前記の脱硝方法では亜酸化窒素は全く分解、除去
することはできず、さらに、アンモニアを還元剤とする
脱硝方法においては、脱硝装置の運転条件によっては一
酸化窒素、二酸化窒素及びアンモニア等の反応により亜
酸化窒素が比較的高濃度で生成する場合があることさえ
も明らかとなってきた。
BACKGROUND OF THE INVENTION Various regulatory measures have been taken with respect to the release of various industrial exhaust gases into the atmosphere, such as combustion exhaust gases and chemical factory exhaust gases, from the viewpoint of pollution prevention and environmental conservation. In particular, nitrogen oxides are strictly regulated from being released into the atmosphere as they are the cause of photochemical smog, acid rain, and the like. Conventionally, the nitrogen oxides that have been subject to emission regulations are nitric oxide (NO) and nitrogen dioxide (NO2), and denitrification technology has been researched for these substances, using reducing substances such as ammonia. Catalytic reduction methods and methods for decomposing nitrogen into nitrogen and oxygen using catalysts such as metal catalysts have been developed. However, in recent years, nitrous oxide, which is contained in trace amounts in these exhaust gases but is said to be stable and harmless compared to other nitrogen oxides, has been decomposed in the stratosphere to produce nitrogen monoxide. It has also become a problem as it has a strong greenhouse effect and has a long half-life of approximately 150 years, suggesting that it may have an impact on global warming. However, in the denitrification method described above, nitrous oxide cannot be decomposed or removed at all, and furthermore, in the denitrification method using ammonia as a reducing agent, nitrogen monoxide, nitrogen dioxide, and ammonia may be produced depending on the operating conditions of the denitrification equipment. It has even become clear that nitrous oxide can be produced in relatively high concentrations through this reaction.

【0003】そのため、各種排ガス中に含まれる亜酸化
窒素を分解除去する方法が種々検討され、提案されてい
る。従来、排ガス中の亜酸化窒素を分解する方法として
提案されている方法の主なものは、高温下において金属
触媒と接触させて分解する接触分解法(特開昭63−7
826号など)、アンモニアや水素などの還元性ガスと
ともに触媒に接触させて還元分解する接触還元法(特公
昭55−47933号、特開平2−68120号など)
あるいは、光又は放射線により分解する方法(特開昭6
3−111927号、特開昭63−111929号など
)などであるが、これらの方法においては、処理温度が
高温であること、排ガス中に存在する酸素、硫黄酸化物
、水分などにより触媒が被毒し分解活性が低下する、特
殊な装置を必要とするなどの問題点が多く、実用化に到
っていないのが実情である。
[0003] Therefore, various methods for decomposing and removing nitrous oxide contained in various exhaust gases have been studied and proposed. The main method that has been proposed to decompose nitrous oxide in exhaust gas is the catalytic decomposition method (Japanese Unexamined Patent Application Publication No. 63-7-7), which decomposes nitrous oxide by contacting it with a metal catalyst at high temperature.
826, etc.), catalytic reduction method in which reductive decomposition is carried out by contacting with a catalyst together with a reducing gas such as ammonia or hydrogen (Japanese Patent Publication No. 55-47933, JP-A No. 2-68120, etc.)
Alternatively, a method of decomposition using light or radiation (Japanese Unexamined Patent Publication No. 6
3-111927, JP-A-63-111929, etc.), but in these methods, the treatment temperature is high and the catalyst is exposed to oxygen, sulfur oxides, moisture, etc. present in the exhaust gas. The reality is that it has not been put into practical use because of many problems such as poisoning, reduced decomposition activity, and the need for special equipment.

【0004】0004

【発明が解決しようとする課題】前記の従来技術の中で
は、接触分解法が最も簡便で実用的なものと考えられる
が、この方法は一般に高温での処理を必要とする。前記
特開昭63−7826号に記載されている方法は、亜酸
化窒素を含有するガスを元素の周期率表の第Ib族又は
第VIII族の金属又は該金属の酸化物あるいは複合酸
化物を含有する触媒と接触せしめる方法であるが、その
実施例から見て50%以上の脱硝率を得るためには、貴
金属触媒を除いて350℃以上の高温度が必要である。 また、本発明者らの実験によれば、ここに記載されてい
るNiO、Fe2 O3 、CoO、CuOなどの触媒
は処理される排ガス中に水分や硫黄酸化物が含まれてい
ると短時間で失活し、亜酸化窒素の分解活性が低下する
という問題点があることが判明した。本発明の目的は、
従来の接触分解方法における問題点を解決し、比較的低
温度での処理が可能で、水分や硫黄酸化物の共存する亜
酸化窒素含有排ガスを処理することができる、亜酸化窒
素の分解除去方法を提供することにある。
Among the above-mentioned conventional techniques, the catalytic cracking method is considered to be the simplest and most practical, but this method generally requires treatment at high temperatures. The method described in JP-A No. 63-7826 is a method in which a gas containing nitrous oxide is mixed with a metal of Group Ib or Group VIII of the Periodic Table of the Elements, or an oxide or composite oxide of the metal. Although this is a method of contacting with a catalyst contained, in order to obtain a denitrification rate of 50% or more in view of the examples, a high temperature of 350° C. or higher is required except for the noble metal catalyst. Additionally, according to experiments conducted by the present inventors, the catalysts described here such as NiO, Fe2O3, CoO, and CuO can be used in a short period of time if the exhaust gas being treated contains moisture or sulfur oxides. It was found that there was a problem in that the deactivation of nitrous oxide resulted in a decrease in the decomposition activity of nitrous oxide. The purpose of the present invention is to
A method for decomposing and removing nitrous oxide that solves the problems with conventional catalytic cracking methods, allows processing at relatively low temperatures, and can treat exhaust gas containing nitrous oxide that coexists with water and sulfur oxides. Our goal is to provide the following.

【0005】[0005]

【課題を解決するための手段】本発明者らは、亜酸化窒
素の分解触媒について探索の結果、Rh2 O3 及び
Co2 O3 を活性成分とする金属酸化物触媒が、排
ガス中の水分や硫黄酸化物の被毒による活性低下が極め
て小さく、比較的低温においても高活性で亜酸化窒素を
酸素と窒素とに分解できることを見出し、本発明を完成
した。 すなわち、本発明は、亜酸化窒素含有ガスを、三二酸化
ロジウム(Rh2 O3 )、三二酸化コバルト(Co
2 O3 )又はこれらの混合物のいずれかを活性成分
とする触媒と100〜600℃の温度で接触させ、亜酸
化窒素を分解させることを特徴とする亜酸化窒素の分解
除去方法及び水分及び/又は硫黄酸化物の共存する亜酸
化窒素含有ガスを、三二酸化ロジウム(Rh2 O3 
)、三二酸化コバルト(Co2 O3 )又はこれらの
混合物のいずれかを活性成分とする触媒と100〜60
0℃の温度で接触させ、亜酸化窒素を分解させることを
特徴とする亜酸化窒素の分解除去方法である。
[Means for Solving the Problems] As a result of searching for a catalyst for decomposing nitrous oxide, the present inventors found that a metal oxide catalyst containing Rh2 O3 and Co2 O3 as active components can effectively decompose moisture and sulfur oxides in exhaust gas. The present invention was completed based on the discovery that the decrease in activity due to poisoning of nitrous oxide is extremely small and that nitrous oxide can be decomposed into oxygen and nitrogen with high activity even at relatively low temperatures. That is, the present invention converts nitrous oxide-containing gas into rhodium sesquioxide (Rh2O3), cobalt sesquioxide (Co
A method for decomposing and removing nitrous oxide, and a method for decomposing and removing water and/or nitrous oxide, which is characterized in that nitrous oxide is decomposed by contacting with a catalyst containing 2O3) or a mixture thereof as an active ingredient at a temperature of 100 to 600°C. Nitrous oxide-containing gas in which sulfur oxides coexist is converted into rhodium sesquioxide (Rh2O3
), cobalt sesquioxide (Co2O3), or a mixture thereof as an active component;
This is a method for decomposing and removing nitrous oxide, which is characterized by contacting at a temperature of 0° C. to decompose nitrous oxide.

【0006】本発明の方法において使用する触媒は、R
h2 O3、Co2 O3 又はこれらの混合物のいず
れかを活性成分として含有するものである。これらの触
媒は、各活性成分をSiO2 を主成分とするコロイダ
ルシリカなどのバインダ−成分とともに造粒するか、チ
タニア、アルミナ、シリカ/アルミナ、あるいはマグネ
シア等の担体に担持させた形で使用するのが好都合であ
る。また、触媒の形状、大きさ等は使用目的、使用状況
等に応じて適宜選定すればよく、粒状、俵状、球状、リ
ング状、円柱状、板状、ハニカム状などの形状が使用で
きるが、ガスとの接触効率や圧力損失の点などからハニ
カム状、板状などが特に好ましい。
The catalyst used in the process of the invention is R
It contains either h2O3, Co2O3 or a mixture thereof as an active ingredient. These catalysts can be used by granulating each active component with a binder component such as colloidal silica mainly composed of SiO2, or by supporting it on a carrier such as titania, alumina, silica/alumina, or magnesia. is convenient. In addition, the shape and size of the catalyst may be appropriately selected depending on the purpose of use, usage conditions, etc., and shapes such as granules, bales, spheres, rings, cylinders, plates, and honeycombs can be used. , honeycomb shape, plate shape, etc. are particularly preferable from the viewpoint of contact efficiency with gas and pressure loss.

【0007】触媒の製造方法は特に限定されるものでは
ないが、粉末状のRh2 O3 又はCo2 O3 若
しくはこれらを任意の割合で混合した混合粉末を原料と
し、バインダ−成分とともに水と混練し、必要により担
体成分を添加して混合後適当な大きさに成形して乾燥し
たものを粉砕して粒度調整する方法、バインダ−成分お
よび担体成分とともに水と混練し任意の形状に成形後乾
燥する方法、バインダ−成分とともに水と混合してスラ
リ−状とし、任意の形状の担体に付着させ乾燥する方法
など任意の方法をとることができる。触媒中の活性成分
の含有比率は、各活性成分の単体若しくはこれらの混合
物を各種担体上に担持させた担持触媒から、少量のバイ
ンダ−成分とともに成形した含有率98重量%以上のも
のまで、処理ガスの性状、処理装置や処理温度あるいは
要求される亜酸化窒素の分解率などの処理条件に応じて
、広い範囲内で任意に設定することができる。なお、担
体上に担持させる場合には担持量が金属酸化物として0
.1〜30重量%の範囲となるようにするのが好ましい
。0.1重量%未満では触媒活性が低く、30重量%を
超えると担体による補強効果が小さくなる。
[0007] The method for producing the catalyst is not particularly limited, but powdered Rh2O3 or Co2O3 or a mixed powder of these in any proportion is used as a raw material, kneaded with water together with a binder component, and mixed with water as required. A method in which a carrier component is added, mixed, molded into an appropriate size, dried, and then pulverized to adjust the particle size; a method in which the binder component and the carrier component are kneaded with water, molded into an arbitrary shape, and then dried; Any method can be used, such as mixing the binder component with water to form a slurry, adhering it to a carrier of any shape, and drying it. The content ratio of the active components in the catalyst varies depending on the processing, from supported catalysts in which each active component or a mixture thereof is supported on various carriers, to a catalyst with a content of 98% by weight or more in which the active components are molded together with a small amount of binder component. It can be arbitrarily set within a wide range depending on processing conditions such as gas properties, processing equipment, processing temperature, and required decomposition rate of nitrous oxide. In addition, when supporting on a carrier, the supported amount is 0 as the metal oxide.
.. Preferably, the content is in the range of 1 to 30% by weight. If it is less than 0.1% by weight, the catalyst activity will be low, and if it exceeds 30% by weight, the reinforcing effect of the carrier will be reduced.

【0008】このようにして調製した触媒を反応槽に充
填し、亜酸化窒素含有ガスを通して反応させることによ
り亜酸化窒素を酸素と窒素とに分解することができる。 反応温度及びガスの空間速度(SV)は、ガス中の亜酸
化窒素濃度、触媒の形態や使用量、反応装置の形状等に
より異なるが、反応温度は、100〜600℃の範囲、
特に150〜600℃の範囲が好ましく、空間速度は、
3000〜20000(hr−1)の範囲が好ましい。 温度が100℃未満では亜酸化窒素の分解が進行しにく
く、また、600℃を超えると触媒の劣化が激しくなる
ので好ましくない。空間速度が3000(hr−1)未
満では亜酸化窒素の分解率には変化はないもののガスの
処理能力が小さくなり実用的でなく、また、20000
(hr−1)を超えると亜酸化窒素の分解率が低下する
ので好ましくない。
[0008] Nitrous oxide can be decomposed into oxygen and nitrogen by filling a reaction tank with the catalyst thus prepared and causing a reaction by passing a nitrous oxide-containing gas through the catalyst. The reaction temperature and gas space velocity (SV) vary depending on the nitrous oxide concentration in the gas, the form and amount of catalyst used, the shape of the reactor, etc., but the reaction temperature is in the range of 100 to 600°C,
In particular, the range of 150 to 600°C is preferable, and the space velocity is
The range of 3000 to 20000 (hr-1) is preferable. If the temperature is less than 100°C, the decomposition of nitrous oxide will be difficult to proceed, and if it exceeds 600°C, the deterioration of the catalyst will become severe, which is not preferable. If the space velocity is less than 3,000 (hr-1), there is no change in the decomposition rate of nitrous oxide, but the gas processing capacity becomes small, making it impractical;
(hr-1) is not preferable because the decomposition rate of nitrous oxide decreases.

【0009】本発明の方法によれば、アンモニアや水素
などの還元剤を必要とすることなく、排ガス中の亜酸化
窒素を酸素と窒素とに分解することができる。しかも本
発明で使用する触媒は、比較的低温でも高活性で、水分
や硫黄酸化物などの被毒による活性低下が非常に小さく
、長時間にわたって安定した高い脱硝率を維持すること
ができる。すなわち、従来のCoO、RhO系触媒では
水分や硫黄酸化物の影響が大きく、250℃以下では全
く亜酸化窒素の分解活性は認められないが、本発明のC
o2 O3 、Rh2 O3系触媒、とくに両者の混合
触媒では20容量%以下の水分あるいは10容量%以下
の硫黄酸化物が共存する条件下においても150℃付近
の温度で10%以上の分解率を得ることができる。この
ような低温において、水分あるいは硫黄酸化物の共存下
に亜酸化窒素の分解活性を示す触媒は従来知られていな
かったものである。
According to the method of the present invention, nitrous oxide in exhaust gas can be decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. In addition, the catalyst used in the present invention has high activity even at relatively low temperatures, has very little reduction in activity due to poisoning by water or sulfur oxides, and can maintain a stable high denitrification rate over a long period of time. In other words, conventional CoO and RhO catalysts are greatly affected by moisture and sulfur oxides, and no nitrous oxide decomposition activity is observed at temperatures below 250°C.
O2 O3, Rh2 O3 based catalysts, especially mixed catalysts of both, can achieve a decomposition rate of 10% or more at a temperature around 150°C even under conditions where less than 20% by volume of moisture or less than 10% by volume of sulfur oxides coexist. be able to. A catalyst that exhibits nitrous oxide decomposition activity in the presence of moisture or sulfur oxides at such low temperatures has not been previously known.

【0010】0010

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (触媒の調製)市販のCo2 O3 (純度99.5%
)、Rh2 O3 (純度99.0%)、CoO(純度
99.5%)及びRhO(純度99.0%)を使用し、
次の操作に従って触媒を調製した。 (1)Co2 O3 又はRh2 O3 の単味触媒及
びCo2 O3 及びRh2 O3 の混合触媒 Co2 O3 又はRh2 O3 100重量部あるい
はCo2 O3 とRh2 O3 とをそれぞれ98/
2又は50/50の割合で混合した混合物100重量部
に対しバインダ−(成形助剤)としてコロイダルシリカ
をSiO2 として3重量部添加して水練りした。この
混練物を直径約30mmの球状に成形し、空気雰囲気中
で120℃で24時間乾燥させたものを破砕し、1〜3
mmの粒状触媒を得た。これらの触媒をそれぞれ(Co
2 O3 )、(Rh2 O3 )、(Co2 O3 
−Rh2 O3 、98/2)及び(Co2 O3 −
Rh2 O3 、50/50)と表示する。 (2)Co2 O3 及びRh2 O3 を使用したア
ルミナ担持触媒 窒素雰囲気中で600℃で5時間加熱処理したγ−アル
ミナ100重量部に、Co2 O3 又はRh2 O3
 それぞれ20重量部にコロイダルシリカをSiO2 
として3重量部混合したものを添加し、水練りした。こ
の混練物を直径約30mmの球状に成形し、空気雰囲気
中で120℃で24時間乾燥させたものを破砕し、1〜
3mmの粒状触媒を得た。これらの触媒をそれぞれ(C
o2 O3 /Al2 O3 )及び(Rh2 O3 
/Al2 O3 )と表示する。
EXAMPLES The method of the present invention will be explained in more detail with reference to Examples below. (Preparation of catalyst) Commercially available Co2 O3 (purity 99.5%
), Rh2O3 (purity 99.0%), CoO (purity 99.5%) and RhO (purity 99.0%),
A catalyst was prepared according to the following procedure. (1) Single catalyst of Co2 O3 or Rh2 O3 and mixed catalyst of Co2 O3 and Rh2 O3 100 parts by weight of Co2 O3 or Rh2 O3 or 98 parts of Co2 O3 and Rh2 O3 respectively
3 parts by weight of colloidal silica as a binder (forming aid) as SiO2 was added to 100 parts by weight of the mixture mixed in a ratio of 2 or 50/50 and kneaded with water. This kneaded product was molded into a sphere with a diameter of about 30 mm, dried in an air atmosphere at 120°C for 24 hours, and crushed.
A granular catalyst of mm was obtained. Each of these catalysts (Co
2 O3 ), (Rh2 O3 ), (Co2 O3
-Rh2O3, 98/2) and (Co2O3-
Rh2 O3, 50/50). (2) Alumina-supported catalyst using Co2 O3 and Rh2 O3 Co2 O3 or Rh2 O3 was added to 100 parts by weight of γ-alumina heat-treated at 600°C for 5 hours in a nitrogen atmosphere.
20 parts by weight of colloidal silica and SiO2
A mixture of 3 parts by weight was added and kneaded with water. This kneaded material was formed into a sphere with a diameter of about 30 mm, dried in an air atmosphere at 120°C for 24 hours, and crushed.
A 3 mm granular catalyst was obtained. Each of these catalysts (C
o2 O3 /Al2 O3 ) and (Rh2 O3
/Al2O3).

【0011】(3)Co2 O3 及びRh2 O3 
を使用したチタニア担持触媒 Co2 O3 50重量部及びRh2 O3 50重量
部の混合物にコロイダルシリカをSiO2 として3重
量部添加し、さらにチタニア(アナタ−ゼ型)100重
量部を加えて水練りした。この混練物を直径約30mm
の球状に成形し、空気雰囲気中で120℃で24時間乾
燥させたものを破砕し、1〜3mmの粒状触媒を得た。 この触媒を(Co2 O3 −Rh2 O3 /TiO
2 )と表示する。 (4)CoO及びRhOを使用したアルミナ担持触媒窒
素雰囲気中で600℃で5時間加熱処理したγ−アルミ
ナ100重量部を、硝酸コバルト又は硝酸ロジウムの水
溶液に浸漬し、CoO又はRhOとしてそれぞれ20重
量部を吸着させ、空気雰囲気中、110℃で24時間乾
燥し、さらに窒素雰囲気中、600℃で5時間焼成して
触媒を調製した。これらの触媒をそれぞれ(CoO/A
l2 O3 )及び(RhO/Al2 O3 )と表示
する。 (亜酸化窒素分解除去試験)前記のように調製した触媒
それぞれ25mlを、内径20mmの石英管よりなる試
験装置に充填し、所定の温度条件で、所定の組成に調製
したガスを通し、反応管入口と出口におけるガス中の亜
酸化窒素の濃度を測定した。その値から、亜酸化窒素の
分解率を算出し、触媒の活性度を比較した。
(3) Co2 O3 and Rh2 O3
3 parts by weight of colloidal silica as SiO2 was added to a mixture of 50 parts by weight of Co2 O3 and 50 parts by weight of Rh2 O3, and 100 parts by weight of titania (anatase type) was added and kneaded with water. This kneaded material is approximately 30mm in diameter.
The catalyst was molded into a spherical shape, dried at 120° C. for 24 hours in an air atmosphere, and crushed to obtain a granular catalyst of 1 to 3 mm. This catalyst (Co2 O3 -Rh2 O3 /TiO
2) is displayed. (4) Alumina-supported catalyst using CoO and RhO 100 parts by weight of γ-alumina heat-treated at 600°C for 5 hours in a nitrogen atmosphere was immersed in an aqueous solution of cobalt nitrate or rhodium nitrate, and 20 parts by weight of each of CoO or RhO was added. A catalyst was prepared by adsorbing a portion of the catalyst, drying it in an air atmosphere at 110°C for 24 hours, and then calcining it in a nitrogen atmosphere at 600°C for 5 hours. Each of these catalysts (CoO/A
12 O3 ) and (RhO/Al2 O3 ). (Nitrous oxide decomposition and removal test) 25 ml of each of the catalysts prepared as described above was filled into a test device consisting of a quartz tube with an inner diameter of 20 mm, and a gas adjusted to a prescribed composition was passed through the reaction tube under prescribed temperature conditions. The concentration of nitrous oxide in the gas at the inlet and outlet was measured. From this value, the decomposition rate of nitrous oxide was calculated and the activity of the catalyst was compared.

【0012】(実施例1)触媒層の温度を表1に示すよ
うに設定し、60ppmのN2 Oを含有する空気を、
6000hr−1の空間速度で通過させ、N2 Oの分
解率を測定した。結果は、表1に示すとおりであり、本
発明で使用する触媒は従来のCoO又はRhO系の触媒
に比較して高い亜酸化窒素の分解活性を示し、特にCo
2 O3 とRh2 O3 とを配合した触媒では著し
い相乗効果が認められ、150℃の低温においても約2
0%の分解率が得られていることがわかる。なお、N2
 Oの濃度を変化させて同様の試験を行ったところN2
 O濃度1000ppm程度まではほぼ同様の分解率が
得られた。
(Example 1) The temperature of the catalyst layer was set as shown in Table 1, and air containing 60 ppm of N2O was
It was passed through at a space velocity of 6000 hr-1, and the decomposition rate of N2O was measured. The results are shown in Table 1, and the catalyst used in the present invention exhibits higher nitrous oxide decomposition activity than conventional CoO or RhO-based catalysts, and in particular
A remarkable synergistic effect was observed in the catalyst containing 2 O3 and Rh2 O3, and even at a low temperature of 150°C, approximately 2
It can be seen that a decomposition rate of 0% was obtained. In addition, N2
When a similar test was conducted by changing the concentration of O, N2
Almost the same decomposition rate was obtained up to an O concentration of about 1000 ppm.

【0013】[0013]

【表1】[Table 1]

【0014】(実施例2)触媒層の温度を表2に示すよ
うに設定し、150ppmのN2 O及び14%の水分
を含有する空気を、5000hr−1の空間速度で通過
させ、反応開始から100時間後のN2 Oの分解率を
測定した。結果は、表2に示すとおりであり、従来のC
oO又はRhO系触媒は失活が激しく400℃において
も20%程度の分解率しか得られないのに対し、本発明
の触媒を使用した場合には失活が少なく、単味触媒でも
300℃で約40〜60%、400℃では約75〜80
%の分解率を示し、Co2 O3 とRh2 O3 と
を併用した触媒では、150℃で約10%、200℃で
約40%、250℃では約80%、300℃で約90%
、400℃では99%以上の高い分解率を維持している
ことがわかる。
(Example 2) The temperature of the catalyst layer was set as shown in Table 2, and air containing 150 ppm N2O and 14% moisture was passed through the catalyst layer at a space velocity of 5000 hr-1. The decomposition rate of N2O was measured after 100 hours. The results are shown in Table 2, and the conventional C
oO or RhO type catalysts are severely deactivated and a decomposition rate of only about 20% can be obtained even at 400°C, whereas when the catalyst of the present invention is used, there is less deactivation and even a single catalyst can be decomposed at 300°C. Approximately 40-60%, approximately 75-80 at 400℃
% decomposition rate, and with a catalyst using a combination of Co2 O3 and Rh2 O3, it is about 10% at 150°C, about 40% at 200°C, about 80% at 250°C, and about 90% at 300°C.
, it can be seen that a high decomposition rate of 99% or more is maintained at 400°C.

【0015】[0015]

【表2】[Table 2]

【0016】(実施例3)触媒層の温度を表3に示すよ
うに設定し、150ppmのN2 O及び50ppmの
SO2 を含有する空気を、5000hr−1の空間速
度で通過させ、反応開始から100時間後のN2 Oの
分解率を測定した。結果は、表3に示すとおりであり、
従来のCoO又はRhO系触媒は失活が激しく400℃
においても20〜40%程度の分解率しか得られないの
に対し、本発明の触媒を使用した場合には失活が少なく
、Co2 O3 単味触媒でも300℃で約40〜45
%、400℃では約90%の分解率を示し、Co2 O
3 とRh2 O3 とを併用した触媒では、150℃
で約20%、200℃で約50%、250℃では約90
%、300〜400℃では99%以上の高い分解率を維
持していることがわかる。
(Example 3) The temperature of the catalyst layer was set as shown in Table 3, and air containing 150 ppm N2 O and 50 ppm SO2 was passed through it at a space velocity of 5000 hr-1. The rate of N2O decomposition after hours was measured. The results are shown in Table 3,
Conventional CoO or RhO catalysts are severely deactivated at 400℃
However, when the catalyst of the present invention is used, there is little deactivation, and even with a single Co2 O3 catalyst, the decomposition rate is only about 20-40% at 300°C.
%, shows a decomposition rate of about 90% at 400°C, and shows a decomposition rate of about 90% at 400°C.
3 and Rh2 O3 in combination, the temperature at 150°C
approx. 20% at 200℃, approx. 50% at 200℃, approx. 90% at 250℃
%, it can be seen that a high decomposition rate of 99% or more is maintained at 300 to 400°C.

【0017】[0017]

【表3】[Table 3]

【0018】[0018]

【発明の効果】本発明の方法によれば、アンモニアや水
素などの還元剤を必要とすることなく、排ガス中の亜酸
化窒素を効率よく酸素と窒素とに分解することができる
。しかも本発明で使用する触媒は、比較的低温でも活性
が高く、水分や硫黄酸化物などの被毒による活性低下が
非常に小さく、長時間にわたって安定した高い脱硝率を
維持することができるので、水分や硫黄酸化物の混在す
ることの多い亜酸化窒素を含有する各種排ガスの処理に
極めて効果が大きい。
[Effects of the Invention] According to the method of the present invention, nitrous oxide in exhaust gas can be efficiently decomposed into oxygen and nitrogen without requiring a reducing agent such as ammonia or hydrogen. Furthermore, the catalyst used in the present invention has high activity even at relatively low temperatures, has very little reduction in activity due to poisoning by water or sulfur oxides, and can maintain a stable high denitrification rate over a long period of time. It is extremely effective in treating various exhaust gases containing nitrous oxide, which often contains moisture and sulfur oxides.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  亜酸化窒素含有ガスを、三二酸化ロジ
ウム(Rh2 O3 )、三二酸化コバルト(Co2 
O3 )又はこれらの混合物のいずれかを活性成分とす
る触媒と100〜600℃の温度で接触させ、亜酸化窒
素を分解させることを特徴とする亜酸化窒素の分解除去
方法。
[Claim 1] Nitrous oxide-containing gas is mixed with rhodium sesquioxide (Rh2 O3), cobalt sesquioxide (Co2
A method for decomposing and removing nitrous oxide, which comprises contacting a catalyst containing either O3) or a mixture thereof as an active ingredient at a temperature of 100 to 600°C to decompose nitrous oxide.
【請求項2】  水分及び/又は硫黄酸化物の共存する
亜酸化窒素含有ガスを、三二酸化ロジウム(Rh2 O
3 )、三二酸化コバルト(Co2 O3 )又はこれ
らの混合物のいずれかを活性成分とする触媒と100〜
600℃の温度で接触させ、亜酸化窒素を分解させるこ
とを特徴とする亜酸化窒素の分解除去方法。
[Claim 2] Nitrous oxide-containing gas in which moisture and/or sulfur oxide coexist is replaced with rhodium sesquioxide (Rh2O
3), a catalyst containing either cobalt sesquioxide (Co2O3) or a mixture thereof as an active component and 100~
A method for decomposing and removing nitrous oxide, which comprises contacting at a temperature of 600°C to decompose nitrous oxide.
JP14062991A 1991-05-17 1991-05-17 Method for decomposing and removing nitrous oxide Expired - Fee Related JP3236031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14062991A JP3236031B2 (en) 1991-05-17 1991-05-17 Method for decomposing and removing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14062991A JP3236031B2 (en) 1991-05-17 1991-05-17 Method for decomposing and removing nitrous oxide

Publications (2)

Publication Number Publication Date
JPH04341324A true JPH04341324A (en) 1992-11-27
JP3236031B2 JP3236031B2 (en) 2001-12-04

Family

ID=15273142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14062991A Expired - Fee Related JP3236031B2 (en) 1991-05-17 1991-05-17 Method for decomposing and removing nitrous oxide

Country Status (1)

Country Link
JP (1) JP3236031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185574A (en) * 2006-01-12 2007-07-26 Mitsui Zosen Plant Engineering Inc Catalyst for decomposing nitrous oxide
JP2011083714A (en) * 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd Activated alumina catalyst and method for removing nitrous oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185574A (en) * 2006-01-12 2007-07-26 Mitsui Zosen Plant Engineering Inc Catalyst for decomposing nitrous oxide
JP2011083714A (en) * 2009-10-16 2011-04-28 Idemitsu Kosan Co Ltd Activated alumina catalyst and method for removing nitrous oxide

Also Published As

Publication number Publication date
JP3236031B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
AU755129B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
JP2005516767A (en) Novel catalyst for reducing NO to N2 using hydrogen under NOx oxidation conditions
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
SK282140B6 (en) Process of catalytic oxidation of ammonia to nitrogen in exhaust gas
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JPS637826A (en) Removing method for nitrous oxide in gas mixture
JPH04341324A (en) Method for decomposing and removing nitrous oxide
JPH06106028A (en) Treatment of nitrous oxide containing gas
JPH06246135A (en) Treatment of gaseous nitrous oxide
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
US6077493A (en) Method for removing nitrogen oxides
JP3270082B2 (en) Decomposition and removal method of nitrous oxide
JP3270080B2 (en) Method for decomposing and removing nitrous oxide
JPH06190244A (en) Decomposition treatment of nitrous oxide
BG104214A (en) Method for reducing the nitrogen oxide content in gases and the respective catalysts
JP3270092B2 (en) Method for decomposing and removing nitrous oxide
JP3324777B2 (en) Method for treating nitrogen oxide-containing gas
JPH067640A (en) Treatment of nitrous oxide containing gas
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH05220350A (en) Method for decomposing and removing nitrous oxide
JP4348167B2 (en) Nitrogen oxide reduction catalyst and method for removing nitrogen oxide
JP2007216082A (en) Catalyst for decomposing ammonia and method for treating ammonia
JPWO2005018807A1 (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees