JP2011083714A - Activated alumina catalyst and method for removing nitrous oxide - Google Patents

Activated alumina catalyst and method for removing nitrous oxide Download PDF

Info

Publication number
JP2011083714A
JP2011083714A JP2009238867A JP2009238867A JP2011083714A JP 2011083714 A JP2011083714 A JP 2011083714A JP 2009238867 A JP2009238867 A JP 2009238867A JP 2009238867 A JP2009238867 A JP 2009238867A JP 2011083714 A JP2011083714 A JP 2011083714A
Authority
JP
Japan
Prior art keywords
activated alumina
alumina catalyst
mass
nitrous oxide
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009238867A
Other languages
Japanese (ja)
Other versions
JP5580568B2 (en
Inventor
Naoki Fujiwara
尚樹 藤原
Daisuke Kamihashira
大助 神柱
Takashi Umeki
孝 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009238867A priority Critical patent/JP5580568B2/en
Publication of JP2011083714A publication Critical patent/JP2011083714A/en
Application granted granted Critical
Publication of JP5580568B2 publication Critical patent/JP5580568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated alumina catalyst excellently removing nitrous oxide included in combustion gas and a method for removing nitrous oxide. <P>SOLUTION: The activated alumina catalyst for removing the nitrous oxide contained in combustion gas has (a) 0.01-0.05 mass% Na<SB>2</SB>O and (b) ≤1 mass% SO<SB>3</SB>. The activated alumina catalyst has preferably ≤0.01 mass% SO<SB>3</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活性アルミナ触媒及び亜酸化窒素の除去方法に関する。   The present invention relates to an activated alumina catalyst and a method for removing nitrous oxide.

石油、重油、石油コークス、バイオマス、産業廃棄物等を燃料とする流動層燃焼は、800〜850℃程度の低温のため、公害性のガスである一酸化窒素(NO)、二酸化窒素(NO)等の窒素酸化物の放出が少ないが、地球温暖化の原因である温暖化係数が高い亜酸化窒素(以下、「NO」と略記する場合がある)の発生量が多くなり、その低減策の開発が望まれている。
例えば、NOの低減策には、これまで活性コークスによるNO吸着、補助燃料ガスの燃焼装置への吹込みによる部分高温化、燃焼炉の外部の排ガス経路中にアルミナを配置して燃焼ガスに含まれるNOを除去するNO除去などの方法が知られている(例えば特許文献1参照)。しかしながら、燃焼炉外にアルミナを配置してNOを除去する方法では、既存の燃焼装置を大幅に改良する必要があり、多額の費用が必要となる場合がある。
一方、燃焼炉内にアルミナを配置して燃焼ガスに含まれるNOを除去するNO除去などの方法も知られている(例えば、特許文献2,3参照)。
Fluidized bed combustion using petroleum, heavy oil, petroleum coke, biomass, industrial waste, etc. as the fuel is a low temperature of about 800 to 850 ° C. Therefore, pollutant gases such as nitric oxide (NO) and nitrogen dioxide (NO 2 ). ) And the like, but the amount of nitrous oxide (hereinafter sometimes abbreviated as “N 2 O”), which has a high global warming potential, is a cause of global warming. Development of reduction measures is desired.
For example, N 2 O reduction measures include N 2 O adsorption by activated coke, partial temperature increase by blowing auxiliary fuel gas into the combustion device, and alumina in the exhaust gas path outside the combustion furnace. A method such as N 2 O removal for removing N 2 O contained in the combustion gas is known (see, for example, Patent Document 1). However, in the method of removing N 2 O by arranging alumina outside the combustion furnace, it is necessary to significantly improve the existing combustion apparatus, which may require a large amount of cost.
On the other hand, methods such as N 2 O removal in which alumina is disposed in a combustion furnace to remove N 2 O contained in the combustion gas are also known (see, for example, Patent Documents 2 and 3).

特開平6−327973号公報JP-A-6-327773 特開平6−123406号公報JP-A-6-123406 特開2004−82111号公報JP 2004-82111 A

しかしながら、特許文献1に記載のアルミナは、ランタニド元素の酸化物と混合することで活性化が図られているため、アルミナ単体ではNOを十分に除去することができない可能性がある。
また、特許文献2に記載のアルミナは、700℃で約20%しかNOを除去することができない。一般にアルミナは不純物を複数種、トータルで1%近く含んでおり、より最適なNO除去性能を有するアルミナがどのようなものかは開示されていない。
さらに、特許文献3に記載の多孔質アルミナ粒子は、NOの除去性能について具体的に開示されていないため、十分にNOを除去できない可能性がある。
However, since the alumina described in Patent Document 1 is activated by mixing with an oxide of a lanthanide element, there is a possibility that N 2 O cannot be sufficiently removed with alumina alone.
Further, the alumina described in Patent Document 2 can remove N 2 O only at about 20% at 700 ° C. In general, alumina contains a plurality of impurities and a total of nearly 1%, and it is not disclosed what kind of alumina has more optimal N 2 O removal performance.
Furthermore, since the porous alumina particles described in Patent Document 3 are not specifically disclosed with respect to N 2 O removal performance, there is a possibility that N 2 O cannot be sufficiently removed.

本発明は、燃焼ガスに含まれるNOを良好に除去することができる活性アルミナ触媒、及び、亜酸化窒素の除去方法を提供することを目的とする。 The present invention, activated alumina catalyst can be effectively removed the N 2 O contained in the combustion gas, and aims to provide a method of removing nitrous oxide.

(1)本発明の活性アルミナ触媒は、燃焼ガスに含有される亜酸化窒素を除去する活性アルミナ触媒であって、下記(a)及び(b)を満たすことを特徴とする活性アルミナ触媒。
(a)酸化ナトリウム(NaO)の含有量が0.01質量%以上0.05質量%以下
(b)三酸化硫黄(SO)の含有量が1質量%以下
(2)(1)に記載の活性アルミナ触媒において、前記三酸化硫黄(SO)の含有量が0.01質量%以下であることが好ましい。
(3)(1)又は(2)に記載の活性アルミナ触媒において、γ、χ、η、ρ、δ、ベーマイト型のいずれか一種、又はそれらの混合物であることが好ましい。
(4)本発明の亜酸化窒素の除去方法は、流動層燃焼炉内で(1)から(3)までのいずれか一つに記載の活性アルミナ触媒と亜酸化窒素を含む燃焼ガスを接触させることにより前記亜酸化窒素を除去することを特徴とする。
(1) The activated alumina catalyst of the present invention is an activated alumina catalyst that removes nitrous oxide contained in combustion gas, and satisfies the following (a) and (b):
(A) Content of sodium oxide (Na 2 O) is 0.01 mass% or more and 0.05 mass% or less (b) Content of sulfur trioxide (SO 3 ) is 1 mass% or less (2) (1) In the activated alumina catalyst described in 1 ), the content of the sulfur trioxide (SO 3 ) is preferably 0.01% by mass or less.
(3) In the activated alumina catalyst described in (1) or (2), any one of γ, χ, η, ρ, δ, boehmite type, or a mixture thereof is preferable.
(4) The method for removing nitrous oxide according to the present invention comprises contacting the activated alumina catalyst according to any one of (1) to (3) and a combustion gas containing nitrous oxide in a fluidized bed combustion furnace. The nitrous oxide is thereby removed.

本発明の活性アルミナ触媒は、不純物としての酸化ナトリウム(NaO)の含有量が特定の範囲であり、不純物としての三酸化硫黄(SO)の含有量が特定値以下であるため、NOの除去性能が高い。したがって、特に流動層燃焼炉内において、燃焼ガス中に含まれるNOを良好に除去することができる。 In the activated alumina catalyst of the present invention, the content of sodium oxide (Na 2 O) as an impurity is in a specific range, and the content of sulfur trioxide (SO 3 ) as an impurity is below a specific value. 2 O removal performance is high. Therefore, particularly in a fluidized bed combustion furnace, N 2 O contained in the combustion gas can be removed well.

本発明の亜酸化窒素の除去方法を模擬的に実施するための実験装置の概略図。Schematic of the experimental apparatus for implementing the nitrous oxide removal method of the present invention in a simulated manner.

以下、本発明を実施するための形態について詳述する。
[活性アルミナ触媒の構成]
本実施形態の活性アルミナ触媒は、流動層燃焼炉で発生した燃焼ガス中に含まれるNOに接触して燃焼ガスからNOを除去する。
活性アルミナ触媒は、純度が95%以上であることが好ましい。純度が95%未満であると、NOの除去性能が低下する場合がある。そのため、活性アルミナ触媒の純度は、98%以上であることがより好ましい。活性アルミナ触媒は、不純物として、酸化ナトリウム(以下、「NaO」と略記する)、三酸化硫黄(以下、「SO」と略記する)、二酸化ケイ素、二酸化チタン、三酸化鉄(Fe)、酸化カルシウム、酸化マグネシウム、塩素などを含んでいる。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
[Configuration of activated alumina catalyst]
The activated alumina catalyst of the present embodiment contacts N 2 O contained in the combustion gas generated in the fluidized bed combustion furnace to remove N 2 O from the combustion gas.
The activated alumina catalyst preferably has a purity of 95% or more. If the purity is less than 95%, N 2 O removal performance may be reduced. Therefore, the purity of the activated alumina catalyst is more preferably 98% or more. The activated alumina catalyst contains, as impurities, sodium oxide (hereinafter abbreviated as “Na 2 O”), sulfur trioxide (hereinafter abbreviated as “SO 3 ”), silicon dioxide, titanium dioxide, iron trioxide (Fe 2). O 3 ), calcium oxide, magnesium oxide, chlorine and the like are included.

ここで、NaOの含有量は、0.01質量%以上0.05質量%以下である。NaOの含有量を0.01質量%未満とするには、活性アルミナ触媒の洗浄に手間がかかり、効率的な活性アルミナ触媒の製造が困難になる可能性がある。また、NaOの含有量が0.01質量%未満であっても、NOの除去性能が向上しない可能性がある。一方、NaOの含有量が0.05質量%を超える場合には、NOの除去性能が低下する。 Here, the Na 2 O content is 0.05 mass% or less than 0.01 mass%. If the Na 2 O content is less than 0.01% by mass, it takes time to clean the activated alumina catalyst, which may make it difficult to produce an activated alumina catalyst efficiently. Moreover, even if the content of Na 2 O is less than 0.01% by mass, the N 2 O removal performance may not be improved. On the other hand, when the content of Na 2 O exceeds 0.05 mass%, the removal performance of N 2 O decreases.

不純物としてのNaOは、ボーキサイト、ボーキサイトからアルミナを得る過程で経由するアルミン酸ナトリム、及びアルミナ自体などのアルミニウム含有金属を酸(塩酸、硫酸、硝酸)などにより酸洗浄する方法により、得られるアルミナ中のNaOを減少させることができる。
例えば、攪拌機付き容器にアルミナ触媒と希塩酸を混合したアルミナ含有スラリー(スラリー濃度が50質量%以下)を入れて、1〜24時間攪拌し、ろ過などで固液分離して得られる固体分を十分な水で洗浄する。水洗後の水のpHが、水洗に使う前の水と略同じpHに収まった時点で洗浄をやめる。
Na 2 O as an impurity can be obtained by a method of acid cleaning an aluminum-containing metal such as bauxite, sodium aluminate in the process of obtaining alumina from bauxite, and alumina itself with an acid (hydrochloric acid, sulfuric acid, nitric acid) or the like. Na 2 O in alumina can be reduced.
For example, an alumina-containing slurry (a slurry concentration of 50% by mass or less) in which an alumina catalyst and dilute hydrochloric acid are mixed is placed in a container equipped with a stirrer and stirred for 1 to 24 hours. Wash with fresh water. Washing is stopped when the pH of the water after washing is approximately the same as that of water before washing.

又、ボーキサイトを水酸化ナトリウム以外の強アルカリ、例えば水酸化カルシウムなどを使用して処理すれば、アルミン酸カルシウムが得られ、NaOの含有量が極めて少ない活性アルミナ触媒を得ることもできる。
さらに、ほぼ完全にNaOを含有しない活性アルミナ触媒を製造する方法として、アルミニウムアルコキシドを加水分解しても良い。
Further, if bauxite is treated with a strong alkali other than sodium hydroxide, such as calcium hydroxide, calcium aluminate can be obtained, and an activated alumina catalyst having a very low Na 2 O content can also be obtained.
Furthermore, aluminum alkoxide may be hydrolyzed as a method for producing an activated alumina catalyst containing almost completely no Na 2 O.

不純物としてのSOの含有量は1質量%以下であり、より好ましくは、0.01質量%以下である。
SOの含有量が1質量%を超える場合には、NOの除去性能が低下する。SOの含有量を0.01質量%以下としたのは、通常、SOの検出に用いられる蛍光X線分析(XRF)の検出限界であり、これ以下であれば確実にNOの除去性能が向上するからである。
なお、NaOの場合と同様に、アルミナ触媒の洗浄効率を考慮すれば、SOの下限値は0.001質量%であり、0.001質量%未満としてもNOの除去性能がこれ以上飛躍的に向上するとは考えられないからである。
なお、NaO及びSO以外の不純物は、含有量が多い場合でもNOの除去性能は著しく低下することはない。
The content of SO 3 as an impurity is 1% by mass or less, and more preferably 0.01% by mass or less.
When the content of SO 3 exceeds 1% by mass, N 2 O removal performance decreases. The content of SO 3 was 0.01% by mass or less is usually the detection limit of the fluorescent X-ray analysis to be used for the detection of SO 3 (XRF), ensures the N 2 O If this less This is because the removal performance is improved.
As in the case of Na 2 O, considering the cleaning efficiency of the alumina catalyst, the lower limit of SO 3 is 0.001% by mass, and even if it is less than 0.001% by mass, the N 2 O removal performance is low. It is because it is not thought that it improves dramatically more than this.
It should be noted that impurities other than Na 2 O and SO 3 do not significantly reduce N 2 O removal performance even when the content is large.

活性アルミナ触媒は、結晶形態で分類すると、α−アルミナと、γ−アルミナと、ベーマイトに分けられる。γ−アルミナを詳細に分類すると、κ、θ、δ、γ、η、χ、ρの7種類に分けられる。
ここで、活性アルミナ触媒がα−アルミナ、θ−アルミナ、又は、α−アルミナ及びθ−アルミナの混合物の場合、NOの除去性能が低いため、好ましくない。そのため、活性アルミナ触媒は、κ、δ、γ、η、χ、ρ、ベーマイト型のいずれか一種、又はそれらの混合物により構成されていることが好ましい。
また、活性アルミナ触媒がχ、ベーマイト型のいずれか一種、又はそれらの混合物で構成されている場合、NaOの含有量が多いと、上記塩酸による洗浄によりNaOの含有量を0.01質量%未満まで容易に減少させることができる。
The active alumina catalyst is classified into α-alumina, γ-alumina, and boehmite when classified by crystal form. When γ-alumina is classified in detail, it can be divided into seven types: κ, θ, δ, γ, η, χ, and ρ.
Here, when the activated alumina catalyst is α-alumina, θ-alumina, or a mixture of α-alumina and θ-alumina, N 2 O removal performance is low, which is not preferable. Therefore, the activated alumina catalyst is preferably composed of any one of κ, δ, γ, η, χ, ρ, boehmite type, or a mixture thereof.
Further, when the activated alumina catalyst is composed of any one of χ, boehmite type, or a mixture thereof, if the content of Na 2 O is large, the content of Na 2 O is reduced to 0. 0 by washing with hydrochloric acid. It can be easily reduced to less than 01% by mass.

そして、活性アルミナ触媒は、細孔容積が0.2cm/g以上1.0cm/g以下、好ましくは0.3cm/g以上0.8cm/g以下であることが好ましい。細孔容積が0.2cm/g以上1.0cm/g以下の場合、流動層燃焼炉が700℃程度でも、活性アルミナ触媒は良好なNOの除去性能を有する。 The activated alumina catalyst has a pore volume of 0.2 cm 3 / g or more and 1.0 cm 3 / g or less, preferably 0.3 cm 3 / g or more and 0.8 cm 3 / g or less. When the pore volume is 0.2 cm 3 / g or more and 1.0 cm 3 / g or less, the activated alumina catalyst has good N 2 O removal performance even when the fluidized bed combustion furnace is about 700 ° C.

また、活性アルミナ触媒は、比表面積が100m/g以上300m/g以下であることが好ましい。この範囲を外れると、酸点と考えられるアルミナの強い活性点が消失してNOの除去性能が低下したり、触媒強度が低下しすぎる、製造することが非常に難しくなる恐れがある。 The active alumina catalyst preferably has a specific surface area of 100 m 2 / g or more and 300 m 2 / g or less. If it is out of this range, the strong active sites of alumina considered to be acid sites disappear, the N 2 O removal performance is lowered, the catalyst strength is too low, and it may be very difficult to produce.

上述の構成を備えた活性アルミナ触媒は、流動層燃焼炉内において好適に使用される。
流動層燃焼炉は、流動媒体としての活性アルミナ触媒及び燃料が装入される流動層部と、その下側に配置された空気流入部とを備える。空気流入部から流動層部に空気が流入することにより、活性アルミナ触媒は燃料とともに流動状態となる。
流動層の燃焼温度は、温度制御部により700℃〜950℃に制御されていることが好ましく、特に好ましくは750℃〜900℃である。燃焼温度が700℃未満であると、燃料の不完全燃焼や、燃料が本来持つ燃焼エネルギーを効率よく利用できなくなる恐れがあり、950℃を超えるとNOxが多量に発生する等の恐れがある。前記温度範囲で制御すると、強力な温暖化ガスであるNOの発生量が増えるリスクが高くなるが、本発明の活性アルミナ触媒を用いる事で前記リスクを著しく軽減できるので、本発明の利用価値が非常に高くなる。
流動層燃焼炉としては、例えば、常圧型、加圧型、バブリング型、循環型などが挙げられる。
The activated alumina catalyst having the above-described configuration is preferably used in a fluidized bed combustion furnace.
The fluidized bed combustion furnace includes a fluidized bed portion in which an activated alumina catalyst and a fuel as a fluidized medium are charged, and an air inflow portion disposed below the fluidized bed portion. When air flows from the air inflow portion into the fluidized bed portion, the activated alumina catalyst becomes fluidized together with the fuel.
The combustion temperature of the fluidized bed is preferably controlled to 700 ° C. to 950 ° C. by the temperature control unit, and particularly preferably 750 ° C. to 900 ° C. If the combustion temperature is less than 700 ° C, incomplete combustion of the fuel or the combustion energy inherent in the fuel may not be used efficiently, and if it exceeds 950 ° C, a large amount of NOx may be generated. When the temperature is controlled within the above temperature range, the risk of increasing the amount of N 2 O, which is a powerful warming gas, increases. However, the use of the present invention can be significantly reduced by using the activated alumina catalyst of the present invention. The value is very high.
Examples of the fluidized bed combustion furnace include a normal pressure type, a pressure type, a bubbling type, and a circulation type.

[亜酸化窒素の除去方法]
次に、本実施形態の亜酸化窒素の除去方法について説明する。
まず、流動層燃焼炉内に、活性アルミナ触媒と燃料を装入する。装入後、流動層燃焼炉の下部から空気を流入させて、活性アルミナ触媒と燃料を流動させ、燃焼状態とする。そして、流動層燃焼炉の温度制御部により、流動層燃焼炉内の温度を700〜950℃に制御する。この温度範囲では、燃焼ガス中にNOが含まれており、活性アルミナ触媒は、NOと接触することにより、NOを除去する。したがって、燃焼ガス中のNOを良好に除去することができる。なお、流動層燃焼炉内に活性アルミナ触媒を装入する構成を示したが、活性アルミナ触媒を投入する構成でもよい。
[Nitrous oxide removal method]
Next, the nitrous oxide removal method of this embodiment will be described.
First, an activated alumina catalyst and a fuel are charged into a fluidized bed combustion furnace. After the charging, air is introduced from the lower part of the fluidized bed combustion furnace to cause the activated alumina catalyst and the fuel to flow to be in a combustion state. And the temperature control part of a fluidized-bed combustion furnace controls the temperature in a fluidized-bed combustion furnace to 700-950 degreeC. In this temperature range, it includes the N 2 O in the combustion gases, activated alumina catalyst, by contacting the N 2 O, to remove the N 2 O. Therefore, N 2 O in the combustion gas can be removed well. In addition, although the structure which charged the activated alumina catalyst in the fluidized bed combustion furnace was shown, the structure which throws in an activated alumina catalyst may be sufficient.

[実施形態の効果]
本実施形態の活性アルミナ触媒は、不純物としてのNaOの含有量が特定の範囲であり、かつ、不純物としてのSOの含有量が特定値以下であるため、活性アルミナ触媒の製造効率を低下させることなく、良好にNOを除去できる。
そして、活性アルミナ触媒は、流動層燃焼時の温度が700〜950℃という低温においてもNOを良好に除去することができ、NOやNOといった他の温室効果ガスの生成も抑制することができる。
[Effect of the embodiment]
In the activated alumina catalyst of the present embodiment, the content of Na 2 O as an impurity is in a specific range, and the content of SO 3 as an impurity is not more than a specific value. N 2 O can be removed satisfactorily without lowering.
The activated alumina catalyst can satisfactorily remove N 2 O even at a low temperature of 700 to 950 ° C. during fluidized bed combustion, and suppresses the generation of other greenhouse gases such as NO and NO 2. Can do.

また、SOの含有量が0.01質量%以下であるため、さらに、NOを良好に除去することができる。 Moreover, since the content of SO 3 is 0.01% by mass or less, N 2 O can be further satisfactorily removed.

さらに、活性アルミナ触媒は、γ、χ、η、ρ、δ、ベーマイト型のいずれか一種、又はそれらの混合物であるため、優れたNO除去性能を有する。また、活性アルミナ触媒を塩酸にて洗浄することにより容易にNaOの含有量を減少させることができるため、簡単な洗浄方法によりNOの除去性能に優れた活性アルミナ触媒を製造することができる。 Furthermore, since the activated alumina catalyst is any one of γ, χ, η, ρ, δ, boehmite type, or a mixture thereof, it has excellent N 2 O removal performance. Moreover, since the content of Na 2 O can be easily reduced by washing the activated alumina catalyst with hydrochloric acid, an activated alumina catalyst having excellent N 2 O removal performance can be produced by a simple washing method. Can do.

そして、本実施形態のNOの除去方法では、流動層燃焼炉内にて活性アルミナ触媒がNOを除去するため、流動層燃焼炉外の排ガス経路に活性アルミナ触媒を装入したり加熱したりするための装置を別途設ける必要が無いため、コストの低減が図れる。 In the N 2 O removal method of the present embodiment, the activated alumina catalyst removes N 2 O in the fluidized bed combustion furnace, so that the activated alumina catalyst is inserted into the exhaust gas path outside the fluidized bed combustion furnace. Since it is not necessary to provide a separate device for heating, the cost can be reduced.

(実施形態の変形例)
尚、本発明は、前述した実施形態に限定されるものではなく、以下に示すような変形をも含むものである。
前記実施形態では、流動層燃焼炉内に活性アルミナ触媒を装入する構成を示したがこれに限られず、流動層燃焼炉の外部の排ガス経路上に活性アルミナ触媒を配置してもよい。この場合、排ガス経路中では、活性アルミナ触媒の温度が低下して除去性能が低下する可能性があるため、活性アルミナ触媒を加熱する加熱装置を設置してもよい。
また、前記実施形態では、流動媒体として活性アルミナ触媒を使用する構成を示したが、これに限られない。活性アルミナ触媒と異なる他の流動媒体、例えば、石英砂、石灰石、石炭灰などを混合しても良い。
(Modification of the embodiment)
In addition, this invention is not limited to embodiment mentioned above, The deformation | transformation as shown below is also included.
In the above-described embodiment, the configuration in which the activated alumina catalyst is charged into the fluidized bed combustion furnace is shown. However, the present invention is not limited thereto, and the activated alumina catalyst may be disposed on the exhaust gas path outside the fluidized bed combustion furnace. In this case, in the exhaust gas path, there is a possibility that the temperature of the activated alumina catalyst is lowered and the removal performance is lowered. Therefore, a heating device for heating the activated alumina catalyst may be installed.
Moreover, in the said embodiment, although the structure which uses an activated alumina catalyst as a fluid medium was shown, it is not restricted to this. Other fluid media different from the activated alumina catalyst, such as quartz sand, limestone, and coal ash, may be mixed.

また、流動層燃焼炉内に活性アルミナ触媒を装入する構成を示したが、これに限られない。例えば、流動層燃焼炉内において、活性アルミナ触媒と異なる流動媒体を使用して流動層を形成し、この流動層上にフリーボード部を配置し、フリーボード部に活性アルミナ触媒を装入する構成でも良い。この場合、フリーボード部において、活性アルミナ触媒が燃焼ガス中のNOと接触し、NOを除去することができる。
さらに、流動層燃焼炉内に燃料が装入される構成も示したが、燃料としては、例えば、石炭、重油、石油コークス、産業廃棄物などでもよい。
Moreover, although the structure which inserts an activated alumina catalyst in a fluidized bed combustion furnace was shown, it is not restricted to this. For example, in a fluidized bed combustion furnace, a fluidized bed is formed using a fluidized medium different from the activated alumina catalyst, a freeboard portion is disposed on the fluidized bed, and the activated alumina catalyst is inserted into the freeboard portion. But it ’s okay. In this case, the freeboard section can be activated alumina catalyst is in contact with the N 2 O in the combustion gas, to remove the N 2 O.
Furthermore, although the configuration in which fuel is charged into the fluidized bed combustion furnace is shown, the fuel may be, for example, coal, heavy oil, petroleum coke, industrial waste, or the like.

以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。
[実施例1〜3、比較例1〜7]
実施例1、2、比較例1〜7では、表1,2に示すような活性アルミナ単品を活性アルミナ触媒として使用した。
実施例3では、比較例2〜4と同様の出発原料により製造された活性アルミナ触媒であり、塩酸で洗浄したものを使用した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the content, such as an Example, at all.
[Examples 1 to 3, Comparative Examples 1 to 7]
In Examples 1 and 2 and Comparative Examples 1 to 7, activated alumina alone as shown in Tables 1 and 2 was used as an activated alumina catalyst.
In Example 3, an activated alumina catalyst produced from the same starting material as in Comparative Examples 2 to 4 and washed with hydrochloric acid was used.

(実験装置の構成)
図1に示すように、実験装置1は、NOガスを貯留するガス貯留部11と、ガス貯留部11に連結されたガス導入管12と、ガス導入管12が底部に連結された内径6mmの石英管13と、石英管13の頂部に連結されたガス排出管14とを備える。また、石英管13の軸方向の略中央部には、石英管13の周囲を包囲して活性アルミナ触媒を加熱する電気炉15を備える。ガス導入管12の略中央部には、ガス流量計121が配置され、ガス排出管14の略中央部には、記録計142が接続されたNO分析計141が配置されている。
(Configuration of experimental equipment)
As shown in FIG. 1, the experimental apparatus 1 has a gas storage part 11 for storing N 2 O gas, a gas introduction pipe 12 connected to the gas storage part 11, and an inner diameter where the gas introduction pipe 12 is connected to the bottom. A 6 mm quartz tube 13 and a gas discharge tube 14 connected to the top of the quartz tube 13 are provided. Further, an electric furnace 15 that surrounds the periphery of the quartz tube 13 and heats the activated alumina catalyst is provided at a substantially central portion in the axial direction of the quartz tube 13. A gas flow meter 121 is disposed at a substantially central portion of the gas introduction pipe 12, and an N 2 O analyzer 141 connected with a recorder 142 is disposed at a substantially central portion of the gas discharge pipe 14.

石英管13に、充填長が100mmとなるように実施例及び比較例に係る活性アルミナ触媒を充填してアルミナ層21を形成した。活性アルミナ触媒の充填量は1gであり、粒径が0.25〜0.5mmであった。
アルミナ層21の上端には、薄い石英ウール層22a、充填長30mmの石英砂層23a及び薄い石英ウール層22bからなる上部3層充填体を形成した。また、アルミナ層21の下端には、同様に、薄い石英ウール層22c、充填長30mmの石英砂層23b及び薄い石英ウール層22dからなる下部3層充填体を形成した。これら上部3層充填体及び下部3層充填体によりアルミナ層21を保持固定している。
The alumina tube 21 was formed by filling the quartz tube 13 with the activated alumina catalyst according to the example and the comparative example so that the filling length was 100 mm. The filling amount of the activated alumina catalyst was 1 g, and the particle size was 0.25 to 0.5 mm.
At the upper end of the alumina layer 21, an upper three-layer filler comprising a thin quartz wool layer 22a, a quartz sand layer 23a having a filling length of 30 mm, and a thin quartz wool layer 22b was formed. Similarly, a lower three-layer filler comprising a thin quartz wool layer 22c, a quartz sand layer 23b with a filling length of 30 mm, and a thin quartz wool layer 22d was formed at the lower end of the alumina layer 21. The alumina layer 21 is held and fixed by the upper three-layer filler and the lower three-layer filler.

(実験方法)
窒素で希釈されてNO濃度が500ppmとなったNOガスを、ガス導入管12からガス流量計121経由で流量1リットル/分(常温、常圧)の割合で石英管13の底部に供給した。そして、電気炉15でアルミナ層21の温度を変化させながら、アルミナ層21にNOガスを通過させた。そして石英管13の頂部からガス排出管14に排出された排ガスをNO分析計141に導き、ここで排ガス中のNO濃度を分析して各活性アルミナ触媒についてのNO除去率を測定した。
流動層燃焼温度が800〜850℃の場合ではどの活性アルミナ触媒も100%近くのNOの除去率を示したため、より低温の650℃及び700℃における活性アルミナ触媒のNO除去率を測定して比較した。測定結果は表1、2に示す。なお、表1,2において、結晶形態は粉末X線回折装置を用いて決定し、組成比は下記要領でXRF(蛍光X線)装置を用いた元素分析により決定した。
組成の分析方法としては、試料に融剤となる四ほう酸リチウムを混合して、加熱し、ガラスビードを作成した上で、PANalytical社製Axios蛍光X線分析装置により、組成を定量した。
(experimental method)
N 2 O gas diluted with nitrogen to a N 2 O concentration of 500 ppm is passed through the gas flow meter 121 from the gas introduction pipe 12 at a flow rate of 1 liter / minute (normal temperature, normal pressure) at the bottom of the quartz tube 13. Supplied to. Then, N 2 O gas was passed through the alumina layer 21 while changing the temperature of the alumina layer 21 with the electric furnace 15. The exhaust gas discharged from the top of the quartz tube 13 to the gas exhaust pipe 14 is guided to the N 2 O analyzer 141, where the N 2 O concentration in the exhaust gas is analyzed to analyze the N 2 O removal rate for each activated alumina catalyst. Was measured.
Since the fluidized bed combustion temperature showed the removal rate of any active alumina catalyst also near 100% N 2 O in the case of 800 to 850 ° C., the N 2 O removal ratio of active alumina catalyst in the cooler 650 ° C. and 700 ° C. Measured and compared. The measurement results are shown in Tables 1 and 2. In Tables 1 and 2, the crystal form was determined using a powder X-ray diffractometer, and the composition ratio was determined by elemental analysis using an XRF (fluorescent X-ray) apparatus in the following manner.
As a composition analysis method, lithium tetraborate serving as a flux was mixed with a sample and heated to prepare a glass bead, and then the composition was quantified using an Axios X-ray fluorescence analyzer manufactured by PANalytical.

Figure 2011083714
Figure 2011083714

Figure 2011083714
Figure 2011083714

表1、2から、実施例1〜3と比較例1〜5とを比較すると、実施例1〜3では、NaOの含有率が0.05質量%以下、かつ、SOの含有率が1質量%以下であるため、比較的低温の650℃であっても除去率が70%以上であった。
また、比較例2,3では、700℃の高温であればNOを良好に除去し、実施例に近いレベルであった。しかし、排出規制が厳しいNOの発生を抑えつつ、NOを除去させる場合には、反応温度が低いほうが好ましい。低温の650℃の場合、比較例2,3では、除去率は実施例1〜3よりも低下した。
さらに、実施例1〜3と比較例6,7とを比較すると、実施例1〜3の活性アルミナ触媒は、結晶形態がγ型の一種又はγ、χ、ベーマイト型の混合物であったため、高い除去率であった。一方、比較例6,7では、活性アルミナの結晶形態がα、θ型であったため、除去率は低く、不活性であることがわかった。
尚、実施例3は塩酸で洗浄したことにより、塩素量が4000ppmと多く、流動層炉内で用いると、装置の腐食等の問題を起こす恐れが有るため、実施例1、実施例2のように、アルミナ中の塩素量は500ppm以下、特に100ppmとする事が、より好ましい。
From Tables 1 and 2, when Examples 1 to 3 and Comparative Examples 1 to 5 are compared, in Examples 1 to 3, the content of Na 2 O is 0.05% by mass or less, and the content of SO 3 Is 1% by mass or less, so the removal rate was 70% or more even at a relatively low temperature of 650 ° C.
In Comparative Examples 2 and 3, N 2 O was removed well at a high temperature of 700 ° C., which was a level close to that of the example. However, when N 2 O is removed while suppressing the generation of NO x , which has strict emission regulations, a lower reaction temperature is preferable. In the case of 650 degreeC of low temperature, in the comparative examples 2 and 3, the removal rate fell rather than Examples 1-3.
Further, comparing Examples 1 to 3 with Comparative Examples 6 and 7, the activated alumina catalysts of Examples 1 to 3 were high because the crystal form was a kind of γ type or a mixture of γ, χ, boehmite type. The removal rate. On the other hand, in Comparative Examples 6 and 7, since the activated alumina crystal forms were α and θ types, it was found that the removal rate was low and inactive.
Since Example 3 is washed with hydrochloric acid, the amount of chlorine is as high as 4000 ppm, and if used in a fluidized bed furnace, it may cause problems such as corrosion of the apparatus. In addition, the amount of chlorine in the alumina is more preferably 500 ppm or less, particularly 100 ppm.

本発明は、活性アルミナ触媒を使用してNOを除去する方法に利用できる。特に、流動層燃焼炉内で良好に排ガス中のNOを除去する方法として利用できる。 The present invention can be used in a method for removing N 2 O using an activated alumina catalyst. In particular, it can be used as a method for removing N 2 O in exhaust gas satisfactorily in a fluidized bed combustion furnace.

1 実験装置
11 ガス貯留部
12 ガス導入管
13 石英管
14 ガス排出管
15 電気炉
21 アルミナ層
141 分析計
DESCRIPTION OF SYMBOLS 1 Experimental apparatus 11 Gas storage part 12 Gas introduction pipe 13 Quartz tube 14 Gas discharge pipe 15 Electric furnace 21 Alumina layer 141 Analyzer

Claims (4)

燃焼ガスに含有される亜酸化窒素を除去する活性アルミナ触媒であって、
下記(a)及び(b)を満たすことを特徴とする活性アルミナ触媒。
(a)酸化ナトリウム(NaO)の含有量が0.01質量%以上0.05質量%以下
(b)三酸化硫黄(SO)の含有量が1質量%以下
An activated alumina catalyst for removing nitrous oxide contained in combustion gas,
An activated alumina catalyst characterized by satisfying the following (a) and (b).
(A) Content of sodium oxide (Na 2 O) is 0.01% by mass or more and 0.05% by mass or less (b) Content of sulfur trioxide (SO 3 ) is 1% by mass or less
請求項1に記載の活性アルミナ触媒において、
前記三酸化硫黄(SO)の含有量が0.01質量%以下である
ことを特徴とする活性アルミナ触媒。
The activated alumina catalyst according to claim 1,
Activated alumina catalyst content of the sulfur trioxide (SO 3) is equal to or less than 0.01 mass%.
請求項1又は2に記載の活性アルミナ触媒において、
γ、χ、η、ρ、δ、ベーマイト型のいずれか一種、又はそれらの混合物である
ことを特徴とする活性アルミナ触媒。
In the activated alumina catalyst according to claim 1 or 2,
An activated alumina catalyst characterized by being any one of γ, χ, η, ρ, δ, boehmite type, or a mixture thereof.
流動層燃焼炉内で、請求項1から請求項3までのいずれか一項に記載の活性アルミナ触媒と亜酸化窒素を含む燃焼ガスを接触させることにより、前記亜酸化窒素を除去することを特徴とする亜酸化窒素の除去方法。   The nitrous oxide is removed by bringing the activated alumina catalyst according to any one of claims 1 to 3 and a combustion gas containing nitrous oxide into contact with each other in a fluidized bed combustion furnace. A method for removing nitrous oxide.
JP2009238867A 2009-10-16 2009-10-16 Active alumina catalyst and method for removing nitrous oxide Active JP5580568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238867A JP5580568B2 (en) 2009-10-16 2009-10-16 Active alumina catalyst and method for removing nitrous oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238867A JP5580568B2 (en) 2009-10-16 2009-10-16 Active alumina catalyst and method for removing nitrous oxide

Publications (2)

Publication Number Publication Date
JP2011083714A true JP2011083714A (en) 2011-04-28
JP5580568B2 JP5580568B2 (en) 2014-08-27

Family

ID=44077077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238867A Active JP5580568B2 (en) 2009-10-16 2009-10-16 Active alumina catalyst and method for removing nitrous oxide

Country Status (1)

Country Link
JP (1) JP5580568B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312328A (en) * 1986-07-03 1988-01-19 Ebara Corp Denitration method
JPH04341324A (en) * 1991-05-17 1992-11-27 Mitsui Mining Co Ltd Method for decomposing and removing nitrous oxide
JPH04363143A (en) * 1991-06-07 1992-12-16 Nippon Shokubai Co Ltd Catalyst for decomposition of nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JPH06123406A (en) * 1992-08-28 1994-05-06 Idemitsu Kosan Co Ltd Removal of nitrogen monoxide in combustion gas
JPH06218232A (en) * 1993-01-26 1994-08-09 Sakai Chem Ind Co Ltd Purifying method for nitrous oxide containing waste gas
JPH06327973A (en) * 1993-05-27 1994-11-29 Mitsubishi Heavy Ind Ltd Catalyst for decomposing nitrous oxide and treatment of nitrous oxide
JPH10337472A (en) * 1997-06-06 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Nitrous oxide removing catalyst
JP2004082111A (en) * 2002-06-28 2004-03-18 Idemitsu Kosan Co Ltd Method of controlling emission of n2o and nox from combustion equipment
JP2006142160A (en) * 2004-11-17 2006-06-08 Kyoto Univ Catalyst for decomposition of nitrous oxide and method of decomposing nitrous oxide using it
WO2008020535A1 (en) * 2006-08-15 2008-02-21 Idemitsu Kosan Co., Ltd. Method for decomposing dinitrogen monoxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312328A (en) * 1986-07-03 1988-01-19 Ebara Corp Denitration method
JPH04341324A (en) * 1991-05-17 1992-11-27 Mitsui Mining Co Ltd Method for decomposing and removing nitrous oxide
JPH04363143A (en) * 1991-06-07 1992-12-16 Nippon Shokubai Co Ltd Catalyst for decomposition of nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JPH06123406A (en) * 1992-08-28 1994-05-06 Idemitsu Kosan Co Ltd Removal of nitrogen monoxide in combustion gas
JPH06218232A (en) * 1993-01-26 1994-08-09 Sakai Chem Ind Co Ltd Purifying method for nitrous oxide containing waste gas
JPH06327973A (en) * 1993-05-27 1994-11-29 Mitsubishi Heavy Ind Ltd Catalyst for decomposing nitrous oxide and treatment of nitrous oxide
JPH10337472A (en) * 1997-06-06 1998-12-22 Ishikawajima Harima Heavy Ind Co Ltd Nitrous oxide removing catalyst
JP2004082111A (en) * 2002-06-28 2004-03-18 Idemitsu Kosan Co Ltd Method of controlling emission of n2o and nox from combustion equipment
JP2006142160A (en) * 2004-11-17 2006-06-08 Kyoto Univ Catalyst for decomposition of nitrous oxide and method of decomposing nitrous oxide using it
WO2008020535A1 (en) * 2006-08-15 2008-02-21 Idemitsu Kosan Co., Ltd. Method for decomposing dinitrogen monoxide

Also Published As

Publication number Publication date
JP5580568B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2438976B1 (en) Carbon dioxide sequestration materials and processes
WO2008052465A1 (en) A sintered flue gas wet desulfurizing and dedusting process
JP4427498B2 (en) Carbon dioxide absorber and carbon dioxide separator
CN102151484B (en) Catalytic cracking regenerated flue gas sulfur transfer agent and preparation method thereof
CN109279651A (en) A method of from extraction high-purity titanium dioxide in the discarded SCR denitration of baric and cerium
US9895659B2 (en) Methods for removing contaminants from exhaust gases
CN205392139U (en) Flue gas dedusting and desulfurizing denitrogenation system
CA2823939A1 (en) Process for carbon dioxide removal from a gas by contacting it with a solid
WO2021117623A1 (en) Sodium ferrite particle powder and production method thereof
CN105771997A (en) Preparation method and application of dealkalized red mud
JP5309945B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JP5580568B2 (en) Active alumina catalyst and method for removing nitrous oxide
CN106268241B (en) Copper making ring collection fume desulphurization method and device
JP2012106215A (en) Method for purification and treatment of flue gas
Xiao et al. ZrO2 modified MnOx/attapulgite catalysts for NH3-SCR of NO at low temperature
JP2012055836A (en) Method of treating gas
Lau et al. Effect of operating conditions towards simultaneous removal of SO2 and NO using copper modified rice husk ash: Role as sorbent and catalyst
JP5702172B2 (en) Activated alumina catalyst and method for removing nitrous oxide
CN106669419A (en) Denitration method for FCC (Fluid Catalytic Cracking) device regenerated fume
Terasaka et al. Absorption and stripping of CO2 with a molten salt slurry in a bubble column at high temperature
CN106345250A (en) Ultralow emission process for catalytic cracking smoke
Moshiri et al. Enhancing SO2 capture capacity by preparation of a nano‐CaO sorbent with modified structural parameters
CN110170246A (en) Sulfur transfer additive and preparation method applied to incomplete regen-eration catalytic cracking unit
JP2014213281A (en) Hydrogen sulfide removing agent and method for manufacturing the same
JP2002336648A (en) High-temperature acidic gas immobilizing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140711

R150 Certificate of patent or registration of utility model

Ref document number: 5580568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150