JP5309945B2 - Halogen-based gas scavenger and halogen-based gas scavenging method using the same - Google Patents

Halogen-based gas scavenger and halogen-based gas scavenging method using the same Download PDF

Info

Publication number
JP5309945B2
JP5309945B2 JP2008316548A JP2008316548A JP5309945B2 JP 5309945 B2 JP5309945 B2 JP 5309945B2 JP 2008316548 A JP2008316548 A JP 2008316548A JP 2008316548 A JP2008316548 A JP 2008316548A JP 5309945 B2 JP5309945 B2 JP 5309945B2
Authority
JP
Japan
Prior art keywords
chlorine gas
zeolite
halogen
detoxifying
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008316548A
Other languages
Japanese (ja)
Other versions
JP2010137174A (en
Inventor
茂 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008316548A priority Critical patent/JP5309945B2/en
Publication of JP2010137174A publication Critical patent/JP2010137174A/en
Application granted granted Critical
Publication of JP5309945B2 publication Critical patent/JP5309945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は半導体・液晶製造におけるエッチング工程、CVD(化学気相蒸着)プロセス及びクリーニング工程などから排出される塩素ガスを含む排ガスを無害化する、塩素ガスの除害剤及びそれを用いる塩素ガスの除害方法に関するものである。 The present invention is an etching process in the semiconductor and LCD manufacturing, CVD detoxifies the exhaust gas containing chlorine gas discharged from such (chemical vapor deposition) process, and a cleaning step, detoxifying agents of the chlorine gas and chlorine gas used it It relates to abatement methods.

半導体・液晶製造におけるエッチング工程、CVD(化学気相蒸着)プロセス及びクリーニング工程などから排出されるハロゲン系ガスを含む排ガス無害化する方法として、熱分解法、湿式法及び乾式法が知られている。熱分解法は加熱または燃焼して前記排ガスを分解するものである。熱分解法では可燃性ガスを多く取扱う半導体工場内で高温を使用する問題がある。また熱分解ガスは水などで処理されるが、排水処理が問題となる。   Thermal decomposition methods, wet methods, and dry methods are known as methods for detoxifying exhaust gases containing halogen-based gases discharged from etching processes, CVD (chemical vapor deposition) processes, and cleaning processes in semiconductor / liquid crystal manufacturing. . In the thermal decomposition method, the exhaust gas is decomposed by heating or combustion. In the pyrolysis method, there is a problem of using a high temperature in a semiconductor factory that handles a large amount of combustible gas. The pyrolysis gas is treated with water or the like, but wastewater treatment becomes a problem.

湿式法は苛性ソーダ水溶液などのアルカリ水溶液や水に吸収させるものである。前記排ガスをアルカリ水溶液に吸収させる場合、ナトリウムによるウエハーの汚染、ハロゲン系ガスとアルカリ水溶液との反応によって生成する固形物が処理装置の排気ラインを閉塞するなどの問題がある。また、水を使用する場合、排水量を抑制するために洗浄水を循環使用されることが多く、前記排ガスが十分に洗浄されない問題がある。   In the wet method, an aqueous alkali solution such as an aqueous caustic soda solution or water is absorbed. When the exhaust gas is absorbed in an alkaline aqueous solution, there are problems such as contamination of the wafer by sodium and solid matter produced by the reaction between the halogen-based gas and the alkaline aqueous solution blocking the exhaust line of the processing apparatus. Moreover, when using water, in order to suppress the amount of waste_water | drain, in many cases, the wash water is circulated and used, There exists a problem in which the said waste gas is not fully wash | cleaned.

乾式法は固体の除害剤と前記排ガスを接触させて処理する簡便であり、熱分解法及び湿式法の問題点を改善できる方法として多く採用されている。これまで提案されている多くの除害剤は多量の活性炭を使用しているが、活性炭はハロゲン系ガスの急激な吸着・反応に伴う発熱による発火及び爆発などが発生する危険性があるため、不燃性であるゼオライトを使用した除害剤及び除害方法が提案されている。ゼオライトには数多くの結晶構造があり、組成、細孔径も多種多様である。   The dry method is a simple method in which a solid detoxifying agent and the exhaust gas are brought into contact with each other, and is widely used as a method that can improve the problems of the thermal decomposition method and the wet method. Many abatement agents that have been proposed so far use a large amount of activated carbon, but activated carbon has a risk of ignition and explosion due to heat generation due to rapid adsorption and reaction of halogen gas, A detoxifying agent and a detoxifying method using a nonflammable zeolite have been proposed. Zeolite has a large number of crystal structures, and the composition and pore size are also diverse.

例えば特許文献1はハロゲン系ガスをアルミナおよび/またはゼオライトとソーダライムを組み合せて除害する方法が開示されている。特許文献2には、ハロゲン系ガスを平均孔径9Å以上のゼオライトを使用することが記載されている。特許文献3、4にはハロゲン系ガスをゼオライト等の除害剤と接触させる工程を含むハロゲン系ガスの除害方法が記載されており、ゼオライトとしてMS−5A(CaA型ゼオライト)及びMS−13X(NaX型ゼオライト)等が例示されている。特許文献5には、固体塩基と炭素質材料と無機酸化物の多孔質体からなる造粒物によりハロゲン系ガスを除供する方法が記載されており、ゼオライトとしてはA型ゼオライトが例示されている。   For example, Patent Document 1 discloses a method of detoxifying a halogen-based gas by combining alumina and / or zeolite and soda lime. Patent Document 2 describes that a halogen-based gas having an average pore diameter of 9 mm or more is used. Patent Documents 3 and 4 describe a halogen-based gas removal method including a step of contacting a halogen-based gas with a detoxifying agent such as zeolite. MS-5A (CaA-type zeolite) and MS-13X are used as zeolites. (NaX type zeolite) and the like are exemplified. Patent Document 5 describes a method of removing a halogen-based gas by using a granulated product made of a porous body of a solid base, a carbonaceous material, and an inorganic oxide, and examples of zeolite include A-type zeolite. .

特許文献6には、カチオンとしてアルカリ金属および/またはアルカリ土類金属を少なくとも1種を含有しているSiO/Alモル比が2.0〜2.3のフォージャサイト型ゼオライトのハロゲン系ガス除害剤が例示されているが、いずれもKカチオンは30mol%以下のものであった。 Patent Document 6 discloses a faujasite-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 2.0 to 2.3 containing at least one alkali metal and / or alkaline earth metal as a cation. Halogen-based gas scavengers are exemplified, but in all cases, K cation was 30 mol% or less.

これまで開示されているものは、ハロゲン系ガスの除害性能は必ずしも十分なものではなかった。   What has been disclosed so far has not always been sufficient in the halogen gas removal performance.

特開昭62−289222号公報(請求項1)JP-A-62-289222 (Claim 1) 特開平6−47233号公報(請求項1)JP-A-6-47233 (Claim 1) 特開2001−338910号公報(請求項16および18)JP 2001-338910 A (Claims 16 and 18) 特開2004−181300号公報(請求項1及び明細書{0012}欄)JP-A-2004-181300 (claim 1 and description {0012} column) WO2003/033115号公報(請求項1〜7及び第10ページ、43行目)WO2003 / 033115 (Claims 1 to 7 and page 10, line 43) 特開2008−229610号公報(請求項1〜3及び第10ページ、43行目)JP 2008-229610 A (Claims 1 to 3 and page 10, line 43)

本発明は、これまで以上に高効率で塩素ガスを除害できるゼオライトを含んでなる除害剤及びそれを用いた塩素ガスの除害方法を提供するものである。 The present invention provides a detoxifying agent comprising a zeolite capable of detoxifying chlorine gas with higher efficiency than ever, and a method for detoxifying chlorine gas using the same.

本発明者は上記目的を達成するために鋭意検討した結果、従来のゼオライトを使用した除害剤よりも塩素ガスを安全に高効率で除害できる除害剤および除害方法を見出した。 As a result of intensive studies to achieve the above object, the present inventor has found a detoxifying agent and a detoxifying method capable of detoxifying chlorine gas safely and more efficiently than a detoxifying agent using a conventional zeolite.

以下、本発明の塩素ガスの除害剤及びそれを使用する塩素ガスの除害方法について説明する。 The following describes abatement methods chlorine gas used detoxifying agent chlorine gas and its invention.

本発明の塩素ガスの除害剤は、SiO/Alモル比が2.0〜2.3であり、50mol%以上Kカチオンを含有するフォージャサイト型ゼオライトを含んでなるものであり、Kカチオンは特に0mol%以上含有しているものが好ましい。 Detoxifying agents of the chlorine gas of the present invention, SiO 2 / Al 2 O 3 molar ratio is 2.0 to 2.3, those comprising a faujasite type zeolite containing more than 50 mol% K cation In particular, the K cation is preferably contained in an amount of 80 mol% or more.

残りのカチオンは、NaカチオンであるThe remaining cation is Na cations.

本発明の除害剤のゼオライト種としては、SiO/Alモル比2.0〜2.3のフォージャサイト型ゼオライトが用いられるが、特にSiO/Alモル比は特に2.0〜2.2、さらには2.0〜2.1が好ましい。 As the zeolite species of the present pesticide, a faujasite type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 2.0 to 2.3 is used, and in particular, the SiO 2 / Al 2 O 3 molar ratio is In particular, 2.0 to 2.2, more preferably 2.0 to 2.1 is preferable.

本発明の塩素ガスの除害剤は、フォージャサイト型ゼオライトとして特にSiO/Alモル比が低いフォージャサイト型ゼオライト{通常LSX(Low Silica X)ゼオライトと呼ばれている}を用いた場合、そのカチオン量の化学量論的な増大から予想される性能向上をはるかに超えた性能向上を発揮するものである。 The chlorine gas detoxifying agent of the present invention is a faujasite type zeolite having a low SiO 2 / Al 2 O 3 molar ratio as a faujasite type zeolite (usually called LSX (Low Silica X) zeolite). When used, it exhibits a performance improvement far beyond the performance improvement expected from the stoichiometric increase in the cation content.

本発明の塩素ガス除害剤にはバインダーが含有されても良いが、更に除害能力を高めるためにバインダー成分(粘土鉱物、シリカ、アルミナなど)をバインダーレス化してゼオライトに転換していることが好ましく、特に残存するバインダーが0〜10wt%になるまで、ゼオライト結晶に変性転化する(通常「バインダーレス化」といわれる)ことが好ましい。 The chlorine gas abatement agent of the present invention may contain a binder, but the binder component (clay mineral, silica, alumina, etc.) is converted to a zeolite by making it binderless in order to further enhance the abatement capability. In particular, it is preferable to perform modification conversion to zeolite crystals (usually referred to as “binderless”) until the remaining binder becomes 0 to 10 wt% .

ゼオライト粉末はミクロンオーダーの粉末であり、吸着用途などで使用する場合は成形体として使用される。しかしゼオライト粉末は自己結合性がないため成形する時にはバインダーが添加され、バインダーとしては粘土鉱物(カオリン、アタパルジャイト、セピオライト、モンモリロナイトなど)、シリカ、アルミナなどが代表的に使用される。これらのバインダーは吸着能力が極めて低く、その添加量だけ吸着容量は低下するため、本発明の除害剤はバインダー成分をバインダーレス化することによってさらに吸着容量を高めて用いることが好ましい。   Zeolite powder is a micron-order powder, and is used as a molded body when used in adsorption applications. However, since zeolite powder does not have self-bonding properties, a binder is added during molding. As the binder, clay minerals (kaolin, attapulgite, sepiolite, montmorillonite, etc.), silica, alumina and the like are typically used. Since these binders have extremely low adsorption capacity and the adsorption capacity is reduced by the amount of the binder added, it is preferable to use the detoxifying agent of the present invention by further increasing the adsorption capacity by making the binder component binderless.

本発明の塩素ガス除害剤は、低いSiO/Alモル比のフォージャサイト型ゼオライトを用いること、カチオンとしてKカチオンを50mol%以上、好ましくは80mol%以上含有していること、更にバインダー成分をバインダーレス化することによって、期待される除害剤中のゼオライト成分の増大率から予想される塩素ガスの除害性能の増大率を超えた除害性能が発揮されるものである。 The chlorine gas scavenger of the present invention uses a faujasite type zeolite having a low SiO 2 / Al 2 O 3 molar ratio, contains K cation as a cation in an amount of 50 mol% or more, preferably 80 mol% or more , Furthermore, by making the binder component binderless, the abatement performance exceeding the expected increase rate of chlorine gas abatement performance from the expected increase rate of the zeolite component in the abatement agent is exhibited. .

バインダー成分のバインダーレス化は、粘土等のバインダーで成形したゼオライト成形体のバインダー成分をアルカリ処理することでゼオライトへ転換することによって実施できる。バインダーから転換されるゼオライトは、塩素ガスの除害に有効なSiO/Alモル比が2.0〜2.3のフォージャサイト型ゼオライトが好適である。 The binder-less binder component can be carried out by converting the binder component of the zeolite molded body molded with a binder such as clay into zeolite by alkali treatment. Zeolite is converted from the binder is faujasite type zeolite valid SiO 2 / Al 2 O 3 molar ratio abatement of chlorine gas is 2.0 to 2.3 are preferred.

使用されるバインダーは、SiO/Alモル比が2.0〜2.3のフォージャサイト型ゼオライトへ転換できるものであれば特に限定されないが好ましくは粘土鉱物が使用され、そのなかでもカオリン粘土が好適である。カオリン粘土はゼオライトと同様にSiO及びAlで構成されており、SiO/Alモル比は2.0であり、SiO/Alモル比が2.0〜2.3のフォージャサイト型ゼオライトと組成が近いためである。 The binder used is not particularly limited as long as it can be converted into a faujasite type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 2.0 to 2.3, but a clay mineral is preferably used. However, kaolin clay is preferred. Kaolin clay is composed of SiO 2 and Al 2 O 3 like zeolite, SiO 2 / Al 2 O 3 molar ratio is 2.0, and SiO 2 / Al 2 O 3 molar ratio is 2.0 to This is because the composition is similar to that of 2.3 faujasite type zeolite.

バインダーレス化する際のアルカリ濃度、SiO濃度、温度、反応時間などの条件は、バインダーレス化が十分に進行し不純物が生成しないで、使用する時に成形体が粉化しない強度を保持できる条件であればよい。例えばアルカリ濃度0.5〜10mol/L、特にLSXゼオライトへ転化する場合は6〜10mol/L、SiO濃度0〜1.5wt%、温度70〜95℃、反応時間3〜10時間が例示できる。 Conditions such as alkali concentration, SiO 2 concentration, temperature, reaction time, etc. when making binderless are conditions under which binderlessness is sufficiently advanced and impurities are not generated, and the strength at which the molded body does not become powdered when used. If it is. For example, an alkali concentration of 0.5 to 10 mol / L, particularly 6 to 10 mol / L when converted to LSX zeolite, an SiO 2 concentration of 0 to 1.5 wt%, a temperature of 70 to 95 ° C., and a reaction time of 3 to 10 hours can be exemplified. .

次に本発明の除害剤を用いた塩素ガスの除害方法について説明する。 Next, the chlorine gas removal method using the remover of the present invention will be described.

本発明の除害方法は、塩素ガスと接触させる除害剤として本発明の除害剤を使用する以外は、従来の乾式法による塩素ガスの除害方法と同様に実施できる。例えば、一端に塩素ガスの入口及び他端にガス出口を有する除害塔(吸着塔)に本発明の除害剤を充填して、ガス入口より塩素ガスを導入すると、除害塔内の本発明の除害剤に塩素ガスが吸着され、ガス出口より塩素ガスの濃度が許容濃度以下となったガスが放出される。 Abatement process of the present invention, except using the harm-removing agent of the present invention as a detoxifying agent contacting with the chlorine gas can be carried out similarly to the abatement process of chlorine gas by the conventional dry method. For example, when a detoxification tower (adsorption tower) having a chlorine gas inlet at one end and a gas outlet at the other end is filled with the detoxifying agent of the present invention and chlorine gas is introduced from the gas inlet, the book in the detoxification tower Chlorine gas is adsorbed on the detoxifying agent of the invention, and a gas having a chlorine gas concentration below an allowable concentration is released from the gas outlet.

本発明の除害剤の充填量、除害剤の形状と粒子径、除害塔の大きさ、塩素ガスの流量(線速度)、塩素ガスの濃度、除害温度、除害圧力などの処理条件は、除害能力が低下しない条件が適宜選択される。通常、使用される除害剤は球状あるいは円柱状などの成形体であり、好ましくは球状が使用される。球状の場合では粒子直径は0.1〜5mm、円柱状の場合では直径0.5〜3mm、長さ1〜10mm程度のものを使用することができる。極端に粒子径が小さい場合は除害塔の圧力損失が大きく塩素ガスの流通が困難となり、粒子径が大きくなりすぎると除害効率の低下を引き起こす。塩素ガスの濃度は0.1〜10体積%、線速度は0.01〜10m/秒の範囲となるように調整される。除害温度は特に加温及び冷却の必要はなく常温(20〜30℃)で、除害圧力は大気圧でよい。 Treatment of the removal agent filling amount, shape and particle diameter of the removal agent of the present invention, removal tower size, chlorine gas flow rate (linear velocity), chlorine gas concentration, removal temperature, removal pressure, etc. The conditions are appropriately selected so that the abatement ability does not decrease. Usually, the detoxifying agent used is a molded body such as a spherical shape or a cylindrical shape, and preferably a spherical shape is used. In the case of a spherical shape, a particle diameter of 0.1 to 5 mm can be used, and in the case of a cylindrical shape, a diameter of about 0.5 to 3 mm and a length of about 1 to 10 mm can be used. If the particle size is extremely small, the pressure loss of the detoxification tower is large and the circulation of chlorine gas becomes difficult. If the particle size is too large, the detoxification efficiency is lowered. The concentration of chlorine gas is adjusted to be in the range of 0.1 to 10% by volume, and the linear velocity is in the range of 0.01 to 10 m / second. The detoxification temperature is not particularly required to be heated and cooled, and is normal temperature (20 to 30 ° C.), and the detoxification pressure may be atmospheric pressure.

本発明の塩素ガスの除害剤では、半導体・液晶製造におけるエッチング工程、CVD(化学気相蒸着)プロセス及びクリーニング工程などから排出される排ガス中の塩素ガスを効率良く除害することが可能である。発明の塩素ガスの除害剤は従来よりも除害性能が高いため、除害塔の交換頻度を少なくすることができる。 The chlorine gas detoxifying agent of the present invention can efficiently detoxify chlorine gas in exhaust gas discharged from etching processes, CVD (chemical vapor deposition) processes and cleaning processes in semiconductor / liquid crystal manufacturing. is there. Since the chlorine gas detoxifying agent of the present invention has higher detoxifying performance than before, the replacement frequency of the detoxifying tower can be reduced.

以下、実施例及び比較例を用いて本発明について説明する。   Hereinafter, the present invention will be described using examples and comparative examples.

実施例1
ゼオライト粉末としてLSXゼオライト(SiO/Alモル比2.0のフォージャサイト型ゼオライト)を使用して塩素ガスの除害剤を調製した。LSXゼオライトの合成は以下のようにして行った。
Example 1
A chlorine gas detoxifying agent was prepared using LSX zeolite (a faujasite type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 2.0) as the zeolite powder. LSX zeolite was synthesized as follows.

反応容器にケイ酸ナトリウム水溶液(NaO=3.8重量%、SiO=12.6重量%)10770g、水1330g、水酸化ナトリウム(純度99%)1310g、工業用水酸化カリウム水溶液(純度48%)3630gを入れ100rpmで撹拌しながら45℃に保った。当該溶液に40℃のアルミン酸ナトリウム水溶液(NaO=20.0重量%、Al=22.5重量%)5390gを投入した。次にLSX粉末4.22gを小量の水に分散し添加した。添加終了後のスラリーの組成は、3.39NaO・1.31KO・1.90SiO・Al・74.1HOであった。100rpmで撹拌し、45℃で1時間熟成を行った。熟成後、撹拌を継続しながら1時間かけて70℃に昇温した後、撹拌を停止し、70℃で8時間結晶化を行った。得られた結晶を濾過し、純水で洗浄した後、70℃で1晩乾燥してLSXゼオライトを得た。得られたLSXゼオライトは、X線回折からフォージャサイト型ゼオライトであり、また化学組成は0.72NaO・0.28KO・Al・2.0SiOであった。 A reaction vessel was charged with sodium silicate aqueous solution (Na 2 O = 3.8 wt%, SiO 2 = 12.6 wt%) 10770 g, water 1330 g, sodium hydroxide (purity 99%) 1310 g, industrial potassium hydroxide aqueous solution (purity 48 %) 3630 g was added and kept at 45 ° C. with stirring at 100 rpm. To the solution, 5390 g of a 40 ° C. sodium aluminate aqueous solution (Na 2 O = 20.0 wt%, Al 2 O 3 = 22.5 wt%) was added. Next, 4.22 g of LSX powder was dispersed in a small amount of water and added. The composition of the slurry after the addition was 3.39Na 2 O · 1.31K 2 O · 1.90SiO 2 · Al 2 O 3 · 74.1H 2 O. The mixture was stirred at 100 rpm and aged at 45 ° C. for 1 hour. After aging, the temperature was raised to 70 ° C. over 1 hour while continuing stirring, and then the stirring was stopped and crystallization was performed at 70 ° C. for 8 hours. The obtained crystals were filtered, washed with pure water, and then dried at 70 ° C. overnight to obtain LSX zeolite. The obtained LSX zeolite was a faujasite type zeolite from X-ray diffraction, and the chemical composition was 0.72Na 2 O · 0.28K 2 O · Al 2 O 3 · 2.0SiO 2 .

得られたLSXゼオライト100重量部に対して、バインダーとしてアタパルジャイト粘土20重量部と混合混練し、水を適宜加えながら最終的にLSXゼオライト100重量部に対して65重量部の水を加えた後、十分に捏和した。この捏和物を直径1.2〜2.0mmのビーズ状に造粒成形し、100℃で1晩乾燥した。ついで空気流通下において、600℃で2時間焼成した後、大気中で冷却して、水分が20〜25%になるように加湿した。   After mixing and kneading 20 parts by weight of attapulgite clay as a binder with respect to 100 parts by weight of the obtained LSX zeolite, and finally adding 65 parts by weight of water with respect to 100 parts by weight of LSX zeolite while appropriately adding water, He was sufficiently relaxed. This kneaded product was granulated and formed into beads having a diameter of 1.2 to 2.0 mm and dried at 100 ° C. overnight. Subsequently, after calcination at 600 ° C. for 2 hours under air circulation, the mixture was cooled in the air and humidified so that the water content was 20 to 25%.

当該成形体をK交換を行い、水で洗浄した。成形体を乾燥した後、乾燥空気流通下において、530℃で3時間活性化処理し、吸湿させないように冷却して本発明の除害剤とした。得られた除害剤のSiO/Alモル比は2.0であり、カチオンはK55mol%及びNa45mol%であった。 The molded body was subjected to K exchange and washed with water. After the molded body was dried, it was subjected to an activation treatment at 530 ° C. for 3 hours under a flow of dry air, and cooled to prevent moisture absorption, thereby obtaining a detoxifying agent of the present invention. The obtained scavenger had a SiO 2 / Al 2 O 3 molar ratio of 2.0, and the cations were K55 mol% and Na 45 mol%.

得られた除害剤を用いて塩素ガスの除害評価を行った。除害塔としては下端にガス入口及び上端にガス出口を備えており、内径28mm、高さ280mm、内容積172mlのステンレス製を使用した。該除害塔を垂直に設置し、本発明の除害剤を充填した。塩素ガスとしてはNでCl濃度を0.5体積%に調整したガスを使用し、大気圧下、25℃、空塔線速0.08m/秒で処理を行った。除害塔の上端のガス出口から流出したガスのCl濃度は、電気化学式センサー(ドレーゲル・セイフティージャパン製、ポリトロン7000)を用いて測定し、Cl濃度が1ppmに達した時点で破過として、吸着剤単位重量当たりの吸着量を求めた。除害剤の除害能力の結果を表1に示す。 Chlorine gas removal evaluation was performed using the obtained remover. As the detoxification tower, a gas inlet at the lower end and a gas outlet at the upper end were used, and a stainless steel having an inner diameter of 28 mm, a height of 280 mm, and an internal volume of 172 ml was used. The abatement tower was installed vertically and filled with the abatement agent of the present invention. As the chlorine gas, a gas in which the Cl 2 concentration was adjusted to 0.5% by volume with N 2 was used, and the treatment was performed under atmospheric pressure at 25 ° C. and a superficial linear velocity of 0.08 m / sec. The Cl 2 concentration of the gas flowing out from the gas outlet at the upper end of the detoxification tower is measured using an electrochemical sensor (Dregel Safety Japan, Polytron 7000), and breakthrough occurs when the Cl 2 concentration reaches 1 ppm. As a result, the amount of adsorption per unit weight of the adsorbent was determined. Table 1 shows the results of the detoxifying ability of the pesticide.

Clの除害能力は、フォージャサイト型ゼオライトのSiO/Alモル比が2.5から2.0に増大することによるカチオンサイトの増大率をはるかに上回る除害性能であった。更には特許文献6で開示されている除害剤よりも高い能力であった。 The detoxification ability of Cl 2 was a detoxification performance far exceeding the rate of increase of cation sites due to the increase in SiO 2 / Al 2 O 3 molar ratio of faujasite type zeolite from 2.5 to 2.0. It was. Furthermore, the ability was higher than the detoxifying agent disclosed in Patent Document 6.

実施例2
カチオンの組成をK82mol%及びNa18mol%とした以外は、実施例1と同じ方法で除害剤を調製し、除害能力を評価した。除害剤の除害能力の結果を表1に示す。
Example 2
A detoxifying agent was prepared in the same manner as in Example 1 except that the composition of the cation was K82 mol% and Na 18 mol%, and the detoxifying ability was evaluated. Table 1 shows the results of the detoxifying ability of the pesticide.

実施例3
カチオンの組成をK99mol%及びNa1mol%とした以外は、実施例1と同じ方法で除害剤を調製し、除害能力を評価した。除害剤の除害能力の結果を表1に示す。
Example 3
A detoxifying agent was prepared in the same manner as in Example 1 except that the cation composition was K99 mol% and Na 1 mol%, and the detoxifying ability was evaluated. Table 1 shows the results of the detoxifying ability of the pesticide.

実施例4
実施例1で合成されたLSXゼオライト100重量部に対してカオリン粘土を25重量部、CMC(カルボキシメチルセルロース)4重量部を混合し、水を適宜加えながら最終的にLSX粉末100重量部に対して75重量部となるように調整した後、1時間混練した。この混練物を直径1.5mmの円柱状に成形し、長さは3〜5mmに調整した後に、200℃で乾燥した。次いで乾燥空気流通下において、600℃で3時間焼成した後に、大気中で冷却して水分が20〜25%になるように加湿した。得られた成形体を内径108mm、高さ1500mmのカラムに充填してバインダーレス化を行った。バインダーレス化には、NaOH濃度2.2mol/L、SiO濃度1.0wt%の溶液を30リットル使用し、溶液を循環させながら温度90℃で6時間反応させて、全てのバインダー成分(カオリン粘土)をフォージャサイト型ゼオライトへ転化した。次いでカラムに充填したまま水で十分に洗浄した。その後K交換を行い、K65mol%、Na35mol%とした。得られた除害剤のSiO/Alモル比は2.1であった。活性化処理及び除害評価は実施例1と同様に行った。除害剤の除害能力の結果を表1に示す。
Example 4
25 parts by weight of kaolin clay and 4 parts by weight of CMC (carboxymethylcellulose) are mixed with 100 parts by weight of the LSX zeolite synthesized in Example 1, and finally 100 parts by weight of LSX powder is added while adding water appropriately. The mixture was adjusted to 75 parts by weight and then kneaded for 1 hour. The kneaded product was molded into a cylindrical shape having a diameter of 1.5 mm, the length was adjusted to 3 to 5 mm, and then dried at 200 ° C. Subsequently, after baking at 600 ° C. for 3 hours under a circulation of dry air, the mixture was cooled in the air and humidified so that the water content was 20 to 25%. The obtained molded body was filled in a column having an inner diameter of 108 mm and a height of 1500 mm to make it binderless. In the binder-less process, 30 liters of a solution having a NaOH concentration of 2.2 mol / L and a SiO 2 concentration of 1.0 wt% was used, and the reaction was performed at a temperature of 90 ° C. for 6 hours while circulating the solution. Clay) was converted to faujasite type zeolite. Next, the column was thoroughly washed with water while being packed in the column. Thereafter, K exchange was performed to obtain K65 mol% and Na 35 mol%. The scavenger obtained had a SiO 2 / Al 2 O 3 molar ratio of 2.1. Activation treatment and detoxification evaluation were performed in the same manner as in Example 1. Table 1 shows the results of the detoxifying ability of the pesticide.

比較例1
実施例1と同様にLSXゼオライトを合成した。得られたLSXゼオライト100重量部に対して、バインダーとしてセピオライト粘土20重量部と混合混練し、水を適宜加えながら最終的にLSXゼオライト100重量部に対して65重量部の水を加えた後、十分に捏和した。この捏和物を直径1.2〜2.0mmのビーズ状に造粒成形し、100℃で1晩乾燥した。ついで空気流通下において、600℃で2時間焼成した後、大気中で冷却して、水分が20〜25%になるように加湿した。
Comparative Example 1
LSX zeolite was synthesized in the same manner as in Example 1. After mixing and kneading 20 parts by weight of sepiolite clay as a binder with respect to 100 parts by weight of the obtained LSX zeolite, finally adding 65 parts by weight of water to 100 parts by weight of LSX zeolite while adding water appropriately, He was sufficiently relaxed. This kneaded product was granulated and formed into beads having a diameter of 1.2 to 2.0 mm and dried at 100 ° C. overnight. Subsequently, after calcination at 600 ° C. for 2 hours under air circulation, the mixture was cooled in the air and humidified so that the water content was 20 to 25%.

当該成形体をNa交換を行い、水で洗浄した。成形体を乾燥した後、乾燥空気流通下において、530℃で3時間活性化処理し、吸湿させないように冷却して本発明の除害剤とした。得られた除害剤のSiO/Alモル比は2.0であり、カチオンはNa98mol%及びK2mol%であった。除害評価は実施例1と同様に行い、除害剤の除害能力の結果を表1に示す。 The shaped body was exchanged with Na and washed with water. After the molded body was dried, it was subjected to an activation treatment at 530 ° C. for 3 hours under a flow of dry air, and cooled to prevent moisture absorption, thereby obtaining a detoxifying agent of the present invention. The obtained detoxifying agent had a SiO 2 / Al 2 O 3 molar ratio of 2.0 and cations of Na 98 mol% and K 2 mol%. The detoxification evaluation is carried out in the same manner as in Example 1, and the results of the detoxifying ability of the detoxifying agent are shown in Table 1.

比較例2
実施例4と同様の方法でバインダーレス化のみを行ったLSXゼオライト成形体を調製した。カチオンはNa89mol%及びK11mol%であった。活性化処理及び塩素ガスの除害評価は実施例1と同じ操作を行った。除害剤の除害能力の結果を表1に示す。
Comparative Example 2
An LSX zeolite molded body in which only the binder-less process was performed in the same manner as in Example 4 was prepared. The cation was 89 mol% Na and 11 mol% K. Activation treatment and chlorine gas removal evaluation were carried out in the same manner as in Example 1. Table 1 shows the results of the detoxifying ability of the pesticide.

比較例3
ゼオライト粉末として東ソー製F−9粉末(SiO/Alモル比2.5、カチオンがNaであるフォージャサイト型ゼオライト)を使用して実施例2と同様の操作を行い、バインダーレス化は行わなかった。塩素ガスの除害評価は実施例1と同じ操作を行った。除害剤の除害能力の結果を表1に示す。

Comparative Example 3
The same operation as in Example 2 was carried out using Tosoh F-9 powder (SiO 2 / Al 2 O 3 molar ratio 2.5, faujasite type zeolite whose cation is Na) as the zeolite powder, and binderless There was no conversion. The chlorine gas removal evaluation was carried out in the same manner as in Example 1. Table 1 shows the results of the detoxifying ability of the pesticide.

Figure 0005309945
Figure 0005309945

Claims (4)

SiO/Alモル比が2.0〜2.3であり、カチオンとして50mol%以上のKカチオンを含有し、残りのカチオンがNaカチオンであるフォージャサイト型ゼオライトを含んでなる塩素ガス除害剤。 A SiO 2 / Al 2 O 3 molar ratio of 2.0 to 2.3, containing 50 mol% or more of K cations as cations, comprising the faujasite type zeolite remaining cations are Na cation chlorine Gas scavenger. カチオンとしてKを80mol%以上含有し、残りのカチオンがNaカチオンであることを特徴とする請求項に記載の塩素ガス除害剤。 The chlorine gas abatement agent according to claim 1 , wherein K is contained as a cation in an amount of 80 mol% or more, and the remaining cation is a Na cation . バインダーの含有量が0〜10wt%である請求項1又は2に記載の塩素ガス除害剤。 The chlorine gas scavenger according to claim 1 or 2 , wherein the binder content is 0 to 10 wt%. 塩素ガスを請求項1乃至のいずれかに記載の塩素ガス除害剤と接触させることを特徴とする塩素ガスの除害方法。 A method for removing chlorine gas, comprising contacting chlorine gas with the chlorine gas remover according to any one of claims 1 to 3 .
JP2008316548A 2008-12-12 2008-12-12 Halogen-based gas scavenger and halogen-based gas scavenging method using the same Expired - Fee Related JP5309945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316548A JP5309945B2 (en) 2008-12-12 2008-12-12 Halogen-based gas scavenger and halogen-based gas scavenging method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316548A JP5309945B2 (en) 2008-12-12 2008-12-12 Halogen-based gas scavenger and halogen-based gas scavenging method using the same

Publications (2)

Publication Number Publication Date
JP2010137174A JP2010137174A (en) 2010-06-24
JP5309945B2 true JP5309945B2 (en) 2013-10-09

Family

ID=42347774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316548A Expired - Fee Related JP5309945B2 (en) 2008-12-12 2008-12-12 Halogen-based gas scavenger and halogen-based gas scavenging method using the same

Country Status (1)

Country Link
JP (1) JP5309945B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155072A (en) * 2015-02-24 2016-09-01 宇部興産株式会社 Halogen-based gas treatment agent and halogen-based gas treatment method
CN108430924A (en) 2015-12-29 2018-08-21 环球油品公司 The method of binder free zeolite adsorbents and manufacture binder free zeolite adsorbents
CN108473326A (en) 2015-12-29 2018-08-31 环球油品公司 Adhesive-free type zeolite adsorbents and the method for preparing adhesive-free type zeolite adsorbents
JP6812612B2 (en) * 2017-03-14 2021-01-13 大陽日酸株式会社 Ethylene oxide removal method
JP6812613B2 (en) * 2017-03-14 2021-01-13 大陽日酸株式会社 Ethylene oxide removal method
EP3803293A4 (en) 2018-05-30 2022-06-15 Pendar Technologies, LLC Methods and devices for standoff differential raman spectroscopy with increased eye safety and decreased risk of explosion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624624B2 (en) * 1988-08-19 1994-04-06 工業技術院長 Adsorbent for gaseous organic halogen compounds
JPH08206494A (en) * 1995-02-06 1996-08-13 Tosoh Corp Desiccant and use of desiccant
JP2001219056A (en) * 2000-02-14 2001-08-14 Miura Co Ltd Adsorbent for dioxins
JP5145904B2 (en) * 2007-02-21 2013-02-20 東ソー株式会社 Halogen-based gas scavenger and halogen-based gas scavenging method using the same

Also Published As

Publication number Publication date
JP2010137174A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5145904B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JP5375890B2 (en) Carbon dioxide adsorption separation method
JP5309945B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JP5181869B2 (en) PFC adsorbent and PFC abatement method using the same
JP4648977B2 (en) Halide scavenger for high temperature applications
EP1967254B1 (en) Use of a faujasite and method for the adsorption of halogen-containing gases
JP2001219056A (en) Adsorbent for dioxins
KR20140110145A (en) Complex adsorbent and manufacuring method of complex adsorbent
JP2004351364A (en) Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride
CN100431689C (en) Preparation method of compound absorbent for removing nitrogen oxide
JP5499816B2 (en) Halogen gas removal method
JP2008080194A (en) Hydrocarbon adsorbent composed of beta-type zeolite
JP2001347123A (en) Adsorptive separation method for carbon dioxide
JPWO2019016927A1 (en) Hydrogen chloride remover
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP2002003208A (en) Method for refining hydrogen gas
JP2017077541A (en) Carbon dioxide adsorbent
JP3985291B2 (en) Method for removing mercury from flue gas
JPH0975719A (en) Adsorbent of organochlorine compound
WO2010109671A1 (en) Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JP3981708B2 (en) High-temperature acidic gas fixing agent in which Na in hydrosodalite is replaced with a cation and method for producing the same
TWI352616B (en) Method for treating gas containing fluorine compou
JP3345607B2 (en) Method for regenerating hydrogrossular reacting with acid gas
JP2020185533A (en) Hydrochloric acid removing agent
JP2015107450A (en) Carbon dioxide adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R151 Written notification of patent or utility model registration

Ref document number: 5309945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees