JP2004351364A - Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride - Google Patents

Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride Download PDF

Info

Publication number
JP2004351364A
JP2004351364A JP2003154219A JP2003154219A JP2004351364A JP 2004351364 A JP2004351364 A JP 2004351364A JP 2003154219 A JP2003154219 A JP 2003154219A JP 2003154219 A JP2003154219 A JP 2003154219A JP 2004351364 A JP2004351364 A JP 2004351364A
Authority
JP
Japan
Prior art keywords
chlorine
agent
exhaust gas
clf
trifluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154219A
Other languages
Japanese (ja)
Other versions
JP4564242B2 (en
Inventor
Yoichi Mori
洋一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003154219A priority Critical patent/JP4564242B2/en
Priority to TW093113633A priority patent/TWI361104B/en
Priority to SG200402960A priority patent/SG111184A1/en
Priority to KR1020040038115A priority patent/KR101178179B1/en
Publication of JP2004351364A publication Critical patent/JP2004351364A/en
Application granted granted Critical
Publication of JP4564242B2 publication Critical patent/JP4564242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Semiconductors (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for satisfactorily treating exhaust gas containing a halogenated inorganic gas containing a large quantity of chlorine trifluoride and an agent for treating the exhaust gas containing the halogenated inorganic gas, which has high throughput capacity and a long-term service life. <P>SOLUTION: This treatment apparatus includes the first treatment part 10 packed with a chlorine trifluoride decomposing agent and the second treatment part 20 packed with a chlorine removing agent. The part 10 is arranged on the upstream side of the part 20. The exhaust gas is made to pass first through the part 10 and then through the part 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、三フッ化塩素(ClF)を含む無機ハロゲン化ガスを含有する排ガスの処理方法及び処理装置に関し、特に半導体製作工程などでClFにより装置内面などをドライクリーニングする際に排出されるClF、SiF、SiCl、BF、BCl、PF、PCl、F、Clなどの無機ハロゲン化ガスを含有する排ガスを無害化する処理方法及び処理装置に関する。
【0002】
【従来の技術】
近年、超LSIの微細化及び生産効率の向上要求により、CVD装置やPVD装置などの薄膜形成装置における容器や配管の内面に付着する薄膜成分を三フッ化塩素(ClF)などのガスでオートクリーニングする方法が用いられている。加工するウェハーの口径が大きくなるにつれ、ClFガスの通気量が増加し、クリーニング所用時間が長期化する傾向にある。しかし、ClFはTLV値が0.1ppmと極めて毒性が強い。さらに、オートクリーニング後に排出される排ガス中には、ClFの他に、薄膜成分のクリーニング時に副産物として同時に排出されるSiF、SiCl、BF、BCl、PF、PCl、F、Clなどの有害な無機ハロゲン化ガスも含まれている。
【0003】
ClFの処理としては、アルカリ水溶液による湿式スクラバーやソーダ石灰、活性アルミナなどによる乾式除外方法が一般的に行われている。しかし、ソーダ石灰や活性アルミナなどの処理剤を単独で用いても、ClFをTLV値以下まで除去することができず、処理剤との反応により塩素が遊離し、SiF、SiCl、BF、BCl、PF、PCl、F、Clなどの無機ハロゲン化ガスを十分に除去することができない、という問題があった。
【0004】
そこで、本発明者は、塩素の遊離を防止し、ClFをTLV値以下まで除去し且つ他の無機ハロゲン化ガスを十分に除去するために、鉄の酸化物と水酸化カルシウム等のアルカリ剤を併用する処理方法(特公平6−177号公報)を提案した。しかし、多量のClFを十分に処理するためには、まだ改良の余地があることが判明した。
【0005】
そこで、さらに本発明者は、多量のClFを十分に処理するために、鉄の酸化物又は合成ゼオライトと接触させた後にアニオン交換樹脂と接触させる処理方法(特開平11−70319号公報)を提案した。しかし、クリーニング所要時間の長期化に伴う処理剤と排ガスの反応熱による温度上昇により、長時間処理後にはアニオン交換樹脂の性能が低下し、クリーニング後にNパージを行い、処理剤を冷却することが必要であることが判明した。
【0006】
【特許文献1】
特公平6−177号公報
【特許文献2】
特開平11−70319号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、半導体製造工程などにおける三フッ化塩素によるクリーニング所要時間が長く、多量の三フッ化塩素に加えて、多量の酸性ガスを含む無機ハロゲン化ガス含有排ガスをも十分に処理することができる無機ハロゲン化ガス含有排ガスの処理方法を提供することにある。
【0008】
また、本発明の目的は、長時間処理後であっても、処理性能があまり低下せず、三フッ化塩素(ClF)及び他の酸性ガスを含む無機ハロゲン化ガス含有排ガスを十分に処理することができる無機ハロゲン化ガスの処理装置及び処理剤を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガスを、三フッ化塩素(ClF)分解剤と接触させ、次いで、塩素除去剤と接触させることを特徴とする無機ハロゲン化ガス含有排ガスの処理方法が提供される。三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガスを、三フッ化塩素(ClF)分解剤と接触させることによって、フッ素原子を分解剤に化学反応により固定させて除去し、他の酸性ガスを分解剤に固定する。このとき、遊離塩素ガス(Cl)が生成する。次いで、遊離塩素ガスを含む排ガスを塩素除去剤と接触させることによって、遊離塩素ガスを除去し、塩素原子を無害な塩として、排ガス中から除去する。
【0010】
本発明により処理する排ガスとしては、三フッ化塩素(ClF)の他に、四フッ化珪素(SiF)、四塩化珪素(SiCl)、三フッ化硼素(BF)、三塩化硼素(BCl)、三フッ化リン(PF)、三塩化リン(PCl)、フッ素ガス(F)及び塩素ガス(Cl)から選択される1種以上の酸性ガスを含むことが好ましい。これらの排ガスは、半導体製造工程中のクリーニング工程、例えば半導体製造装置においてPoly−Si膜やSiN膜などの膜付けした後のチャンバ内をクリーニングする工程などから発生する排ガスであることが好ましい。
【0011】
次に、例えば、三フッ化塩素(ClF)を含む排ガスを三フッ化塩素分解剤としての合成ゼオライト及び塩素除去剤としての硫黄系還元剤(Na)に接触させた場合を例にして、本発明の処理方法を説明する。
【0012】
まず、三フッ化塩素を含む排ガスを合成ゼオライトと接触させると、下記式1
【0013】
【化1】

Figure 2004351364
【0014】
のように、フッ素原子が合成ゼオライト中のAl部分と化学反応して固定され、塩素原子が塩素ガス(Cl)として遊離する。
【0015】
次いで、この排ガスを塩素除去剤と接触させると、下記式2
【0016】
【化2】
Figure 2004351364
【0017】
のように、塩素原子が硫黄系還元剤(Na)と反応して、無害な塩(NaCl)を生成し、排ガスから除去される。
【0018】
上記式1及び2においては、三フッ化塩素分解剤としてAl部分を含む合成ゼオライト及び塩素除去剤としてNaである硫黄系還元剤を用いているが、本発明において用いることができる三フッ化塩素分解剤及び塩素除去剤はこれらに限定されるものではない。本発明において用いることができる三フッ化塩素分解剤は、三フッ化塩素を分解して、フッ素原子を固定できるものであればよく、例えばFeを主成分とする3価の鉄の酸化物などを好ましく挙げることができる。しかし、合成ゼオライトは、鉄の酸化物よりも三フッ化塩素の分解処理量が多く、分解能力が高いこと、及び急激な分解反応による温度や圧力の急上昇を招く三フッ化塩素の処理剤層内での凝縮及び液化状態での蓄積を防止することができるので特に好ましい。
【0019】
本発明の三フッ化塩素分解剤として用いることができる合成ゼオライトとしては、アルミニウム含有量が高いことが好ましい。例えば、1モル部のAlに対して0.5〜10モル部のSiOを含有することが好ましく、1モル部のAlに対して1〜5モル部のSiOを含有することがより好ましく、1モル部のAlに対して2.5モル部のSiOを含有することが特に好ましい。このような合成ゼオライトとしては、三フッ化塩素の分解能力が高いX型合成ゼオライトを好ましく挙げることができる。具体的には、本発明において用いることができる合成ゼオライトとしては、NaO・Al・2〜3SiO・nHOのX型合成ゼオライト、特にNaO・Al・2.5SiO・nHOの化学式を有するX型合成ゼオライトなどを好ましく挙げることができる。上記式中、酸化ナトリウムが、酸化カリウムなどの他のアルカリ金属酸化物や、酸化カルシウムなどの土類アルカリ金属酸化物に置換されたもの、例えば、Li−X型、K−X型、Mg−X型、Ca−X型、Ba−X型合成ゼオライトであってもよい。
【0020】
本発明において用いる三フッ化塩素分解剤としての合成ゼオライトは、平均細孔径が好ましくは4〜100Åであり、より好ましくは4〜20Å、特に好ましくは10Åであり、比表面積が好ましくは600〜900m/gであり、より好ましくは600〜700m/gであり、特に好ましくは650m/gである。合成ゼオライトの平均細孔径及び比表面積が上記範囲にある場合には、より高い活性を示し、三フッ化塩素の分解能力が高いという利点が得られる。
【0021】
また、本発明において用いることができる塩素除去剤は、遊離塩素ガスを還元して無害な塩を生成することができるものであればよく、例えば、アニオン交換樹脂などを好ましく挙げることができる。しかし、硫黄系還元剤は、塩素の処理量が多く、アニオン交換樹脂と比較して耐熱性があり、高温状態での処理能力が高いので、特に好ましい。
【0022】
本発明において用いる塩素除去剤としての硫黄系還元剤としては、亜流酸塩、亜ニチオン酸塩、四チオン酸塩、チオ硫酸塩などを好ましく挙げることができ、これらを単独又は2種以上混合して用いてもよい。例えば、亜流酸塩とチオ硫酸塩の組合せなどを好ましく用いることができる。
【0023】
本発明において用いる三フッ化塩素分解剤及び塩素除去剤の形状は、操作性及び取り扱い性が良ければ特に限定されず、粒状/棒状、板状など、いずれの形態でもよい。
【0024】
本発明において用いる三フッ化塩素分解剤及び塩素除去剤は、三フッ化塩素との化学反応が効率よく進行し、フッ素原子及び塩素原子を効率よく固定させるために、排ガス中のハロゲン原子との接触面積が大きい方が好ましい。また、排ガス通過時に通気抵抗を上昇させない範囲であることが好ましい。これらの条件を満たす三フッ化塩素分解剤としての合成ゼオライトは、4〜20meshの範囲の球状もしくは円柱状が好ましく、8〜20meshの範囲の球状もしくは円柱がより好ましく、14〜20meshの範囲の球状であることが特に好ましい。また、塩素除去剤としての硫黄系還元剤は、1.6〜3.2mmφの範囲の円柱が好ましく、1.6〜2.4mmφの範囲の円柱状がより好ましく、1.6mmφの円柱状ペレットが特に好ましい。
【0025】
本発明の処理方法においては、ガス処理時の温度は、常温〜150℃の範囲であることが好ましく、常温〜200℃の範囲であることがより好ましく、常温であることが特に好ましい。ガス処理温度を200℃を越える高温とすると、処理装置の材質や構造を耐熱性にする必要があり、経済的ではない。また、常温未満の低温にするには、クーラーなどの冷却装置を使用して温度を下げる必要があり、処理コストが高くなるので好ましくない。
【0026】
また、本発明によれば、三フッ化塩素分解剤及び塩素除去剤の組合せからなる、三フッ化塩素を含む無機ハロゲン化ガス含有排ガスの処理剤が提供される。ここで、三フッ化塩素分解剤と塩素除去剤とは、排ガス処理に際して個別に用いることができるように、混合されていないことが好ましい。
【0027】
本発明の処理剤において、三フッ化塩素分解剤は、上述の合成ゼオライトがあることが好ましく、X型合成ゼオライトであることが特に好ましい。また、塩素除去剤は、上述の硫黄系還元剤であることが特に好ましい。
【0028】
本発明の処理剤において、三フッ化塩素分解剤と塩素除去剤との使用量の比率は、三フッ化塩素の処理量に応じて変動するが、三フッ化塩素分解剤:塩素除去剤の比率が1:1〜1:0.6の範囲であることが好ましい。
【0029】
さらに、本発明によれば、三フッ化塩素分解剤を充填してなる第1処理部と、塩素除去剤を充填してなる第2処理部と、を含み、該第1処理部は該第2処理部の上流に配置されていることを特徴とする、三フッ化塩素を含む無機ハロゲン化ガス含有排ガスの処理装置が提供される。本発明の排ガスの処理装置においては、排ガスを最初に第1処理部に通過させ、次いで第2処理部に通過させるように、第1処理部と第2処理部とを配置すればよい。例えば、第1処理部が上段で、第2処理部が下段に配置されている場合には、排ガス流を下向流として流すように構成すればよい。逆に、第1処理部が下段で、第2処理部が上段に配置されている場合には、排ガス流を上向流として流すように構成すればよい。さらに、第1処理部と第2処理部とが並列に配置されている場合には、排ガスが第1処理部を通過した後に第2処理部を通過するように構成すればよい。
【0030】
本発明の処理装置においては、第1処理部と第2処理部との間に、さらに断熱部を設けることが好ましい。断熱材としては、多孔質で不活性な成分、例えば、シリカゲル、天然ゼオライト、アルミナなどを用いることができる。このような断熱部を設けることにより、排ガスの流入濃度の増加や通気時間が長期化して、第1処理部での三フッ化塩素分解剤との反応による温度上昇が激しく200℃近くの高温になる場合にも、第2処理部の塩素除去剤の熱劣化を防ぐことができる。
【0031】
また、本発明によれば、排ガス処理入口及び処理ガス出口を有するカラム形状であり、該カラム内において排ガス処理入口側に三フッ化塩素分解剤を充填してなる第1処理部と、処理ガス出口側に塩素除去剤を充填してなる第2処理部と、を備え、第1処理部と第2処理部との間に断熱材を充填してなる断熱部が設けられている構成である三フッ化塩素を含む無機ハロゲン化ガス含有排ガスの処理装置が提供される。
【0032】
本発明において、第1処理部の三フッ化塩素分解剤の充填量は、三フッ化塩素の処理量に依存して変動するが、典型的には50容量%〜70容量%、好ましくは60容量%程度であり、第2処理部の塩素除去剤の充填量は、典型的には25容量%〜45容量%、好ましくは35容量%程度である。三フッ化塩素分解剤及び塩素除去剤の充填量が上述の範囲にある場合には、三フッ化塩素の他に共存する無機ハロゲン化ガスに対しても高い処理性能を得ることができるという利点が得られる。
【0033】
【発明の実施の形態】
図を参照しながら、本発明の排ガス処理装置及び排ガス処理方法を説明するが、本発明はこれらに限定されるものではない。
【0034】
図1には、本発明の排ガス処理装置の第1の実施形態が示されている。この実施形態では、二つの充填カラムを用い、それぞれの充填カラムの内部に一つの充填層が配置されている。すなわち、図1に示す排ガス処理装置1は、三フッ化塩素分解剤を充填してなる第1処理部としての第1カラム10と、塩素除去剤を充填してなる第2処理部としての第2カラム20と、を含み、該第1処理部としての第1カラム10は該第2処理部としての第2カラム20の上流に配置されている。第1カラム10には、排ガス発生源からLINを介して排ガスを流入させる排ガス流入口12と、三フッ化塩素分解剤を充填してなる三フッ化塩素分解剤層14と、三フッ化塩素分解剤層14を通過した一次処理後のガスを流出させる一次処理ガス流出口16と、が設けられている。第2カラム20には、第1カラム10の一次処理ガス流出口16からの一次処理ガスを受け入れる一次処理ガス流入口22と、塩素除去剤を充填してなる塩素除去剤層24と、塩素除去剤層24を通過した二次処理後のガスを流出させる二次処理ガス流出口26と、が設けられている。第1カラム10の一次処理ガス流出口16と、第2カラム20の一次処理ガス流入口22と、の間には、一次処理ガスラインLが設けられ、第1カラム10でフッ素原子が吸着除去された一次処理ガスを第2カラム20に導入するように構成されている。
【0035】
排ガス発生源からの排ガスは、排ガス流出口12からLINを介して第1カラム10内に導入され、三フッ化塩素分解剤層14を上向流として通過する。三フッ化塩素分解剤層24を通過する間に、排ガス中のフッ素原子は三フッ化塩素分解剤層24に固定されて排ガス中から除去され、フッ素原子を除去した一次処理ガスが形成される。三フッ化塩素分解剤層24を通過した一次処理ガスは、一次処理ガス流出口16から一次処理ガスラインLを通って、第2カラム20の一次処理ガス流入口22を通して、第2カラム20内に導入される。第2カラム20内にて、一次処理ガスは、塩素除去剤層24を上向流として通過し、この間に塩素原子が塩素除去剤に吸着除去され、塩素原子を除去した二次処理ガスが形成される。次いで、二次処理ガスは、二次処理ガス流出口26を通ってLOUTを介して外部に排出される。
【0036】
図2には、本発明の処理装置の第2の実施形態が示されている。図2においては、一つの充填カラムの内部に二つの充填層が配置されている。すなわち、図2に示す排ガス処理装置100は、排ガス処理入口及び処理ガス出口を有するカラムであり、該カラム内において排ガス処理入口側に三フッ化塩素分解剤を充填してなる第1処理部110と、処理ガス出口側に塩素除去剤を充填してなる第2処理部120と、を備え、第1処理部110と第2処理部120との間に断熱材を充填してなる断熱部130が設けられている。
【0037】
排ガス発生源からの排ガスは、LINを介してカラム100に導入され、第1処理部110、断熱部130及び第2処理部120を上向流として通過し、LOUTを介して外部に排出される。排ガス中のフッ素原子は、第1処理部110にて三フッ化塩素分解剤に固定され除去される。フッ素原子が除去された一次処理ガスは、断熱部130を通過して、第2処理部120に導入され、ここで塩素原子が吸着除去される。
【0038】
【実施例】
以下、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0039】
実施例1
42mmφのSUS製ミニカラムを2本準備し、一方のカラムに、層高さが190mmとなるように、合成ゼオライト(ミズカシーブス13X−1420B:水澤化学製、粒径14〜20mesh)を260mL充填し、第1処理部を調製した。他方のカラムに、層高さが190mmとなるように、硫黄系還元剤(ECL−3:ズードケミー触媒製、粒径1.6mmφペレット、組成:塩基性炭素亜鉛25%、チオ硫酸ソーダ17%、アルミナ56%、クレイ2%)を260mL充填し、第2処理部を調製した。2本のカラムを図1に示す構成の処理装置に組立てた。排ガスに模したNで希釈したClFを用いて、処理実験を行った。
【0040】
図1に示す処理装置に、Nで希釈したClFを流入濃度1.0%、ガス流量667mL/minで通気し、第2処理部からの二次処理ガスを分析した。ClFやClの分析は質量分析装置(ABB Extrel社製Questor GP)で行い、HClやHFの分析はイオンクロマトグラフ分析装置(ダイオネクス社製AI−450)で行い、SOの「分析はガスクロマトグラフ質量分析装置(島津製作所製QP−5050A)で行った。結果を表1に示す。
【0041】
【表1】
Figure 2004351364
【0042】
通気開始後46.5時間までは、ClF、Cl、HCl、HF、SOの全種について、常時、検出限界以下に処理されていた。47時間経過後に、Clが0.6ppmと許容濃度(Clとして0.5ppm)を越えてリークし始めたため、通気を停止した。
【0043】
本実施例により、本処理装置を用いた本処理方法によれば、通気開始後46.5時間という長い間、いずれの成分についても許容濃度以下に良好に処理できることがわかる。
【0044】
比較例1
第1処理部として、三フッ化塩素分解剤としての合成ゼオライトに代えて、塩素除去剤としての硫黄系還元剤(ECL−3:ズードケミー触媒製、粒径1.6mmφペレット、組成:塩基性炭素亜鉛25%、チオ硫酸ソーダ17%、アルミナ56%、クレイ2%)260mLを充填した以外は実施例1と同様に調製し、同様の通気条件で、三フッ化塩素分解剤としての合成ゼオライトの性能を評価した。結果を表2に示す。
【0045】
【表2】
Figure 2004351364
【0046】
通気開始後47時間までは、ClF、Cl、HCl、HFについては検出限界以下に処理できたが、SOについては100〜400ppmと非常に高濃度でリークしていることがわかる。47.5時間後には、ClF及びClが許容濃度を超えてリークした。
【0047】
比較例1により、合成ゼオライトを第1処理部として用いない場合には、副産物として有害なSOが許容濃度を超えて多量に生成されることがわかる。
【0048】
実施例2
第2処理部として硫黄系還元剤に代えてアニオン交換樹脂(DOWEX製、20〜50mesh)260mLを充填した以外は、実施例1と同様に調製し、同様の通気条件で、硫黄系還元剤の塩素除去剤としての性能を評価した。結果を表3に示す。
【0049】
【表3】
Figure 2004351364
【0050】
通気開始後41時間までは、ClF、Cl、HCl、HF、SOの全種について、常時、検出限界以下に処理されていた。41.5時間経過後に、Clが0.5ppmと許容濃度(Clとして0.5ppm)を越えてリークし始めたため、通気を停止した。
【0051】
実施例2により、硫黄系還元剤に代えてアニオン交換樹脂を用いる場合には、副産物の発生もなく、ClF、Cl、HCl、HF、SOの全種について良好に処理することができるが、処理剤としての持続時間が41.5時間と、合成ゼオライトと硫黄系還元剤の組合せの場合よりも6時間ほど持続時間が短いことがわかる。
【0052】
【発明の効果】
本発明の処理方法によれば、多量の三フッ化塩素及び他の酸性ガスを含む無機ハロゲン化ガス含有排ガスであっても、ClF、Cl、HCl、HF、SOを良好に無害化処理することができる。
【0053】
よって、本発明の処理方法は、半導体製造工程におけるクリーニング所要時間が長く、多量の無機ハロゲン化ガスが発生し、三フッ化塩素(ClF)ばかりでなく、四フッ化珪素(SiF)、四塩化珪素(SiCl)、三フッ化硼素(BF)、三塩化硼素(BCl)、三フッ化リン(PF)、三塩化リン(PCl)、フッ素ガス(F)及び塩素ガス(Cl)から選択される1種以上の酸性ガスをも多量に含む排ガスをの処理に適用して、十分な処理効果を得ることができる。
【0054】
また、本発明によれば、処理容量が大きく、長期化された寿命を有する三フッ化塩素を含む無機ハロゲン化ガス含有排ガスの処理剤が提供される。
【0055】
さらに、本発明によれば、長時間処理後であっても、処理性能があまり低下せず、三フッ化塩素を含む無機ハロゲン化ガス含有排ガスを十分に処理することができる無機ハロゲン化ガスの処理装置が提供される。
【図面の簡単な説明】
【図1】図1は、本発明の処理装置の第1の実施形態を示す概略説明図である。
【図2】図2は、本発明の処理装置の第2の実施形態を示す概略説明である。
【符号の説明】
1;100:処理装置
10:第1処理部
20:第2処理部
14:三フッ化塩素分解剤層
24:塩素除去剤層
110:第1処理部(三フッ化塩素分解剤層)
120:第2処理部(塩素除去剤層)
130:断熱部(断熱材層)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for treating an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride (ClF 3 ), and more particularly, to an exhaust gas when dry cleaning the inner surface of the apparatus with ClF 3 in a semiconductor manufacturing process or the like. The present invention relates to a processing method and a processing apparatus for detoxifying an exhaust gas containing an inorganic halogenated gas such as ClF 3 , SiF 4 , SiCl 4 , BF 3 , BCl 3 , PF 3 , PCl 3 , F 2 , and Cl 2 .
[0002]
[Prior art]
In recent years, due to the demand for miniaturization of VLSI and improvement of production efficiency, thin film components adhering to the inner surfaces of containers and pipes in thin film forming apparatuses such as CVD apparatuses and PVD apparatuses are automatically converted to gas such as chlorine trifluoride (ClF 3 ). A cleaning method is used. As the diameter of the wafer to be processed increases, the amount of ClF 3 gas flowing increases, and the time required for cleaning tends to increase. However, ClF 3 is extremely toxic with a TLV value of 0.1 ppm. Further, in the exhaust gas discharged after the auto-cleaning, in addition to ClF 3 , SiF 4 , SiCl 4 , BF 3 , BCl 3 , PF 3 , PCl 3 and F 2 which are simultaneously discharged as by-products at the time of cleaning the thin film component. also includes harmful inorganic halide gas such as Cl 2.
[0003]
As a treatment for ClF 3 , a dry scrubber using an alkaline aqueous solution, a soda lime, a dry exclusion method using activated alumina, and the like are generally performed. However, even if a treating agent such as soda lime or activated alumina is used alone, ClF 3 cannot be removed to a TLV value or less, and chlorine reacts with the treating agent to release SiF 4 , SiCl 4 , and BF. 3 , inorganic halogenated gas such as BCl 3 , PF 3 , PCl 3 , F 2 , and Cl 2 cannot be sufficiently removed.
[0004]
In order to prevent the release of chlorine, remove ClF 3 to the TLV value or less, and sufficiently remove other inorganic halogenated gases, the present inventor has proposed an iron oxide and an alkaline agent such as calcium hydroxide. (Japanese Patent Publication No. 6-177). However, it has been found that there is still room for improvement in order to sufficiently treat a large amount of ClF 3 .
[0005]
In order to sufficiently treat a large amount of ClF 3 , the present inventor further developed a treatment method (Japanese Patent Application Laid-Open No. H11-70319) in which a large amount of ClF 3 is brought into contact with an iron oxide or synthetic zeolite and then brought into contact with an anion exchange resin. Proposed. However, it the temperature rise due to the treatment agent and the reaction heat of the exhaust gas due to prolonged cleaning duration, the performance of the anion exchange resin is reduced after prolonged treatment, performed N 2 purged after cleaning, cooling the treatment agent Turned out to be necessary.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 6-177 [Patent Document 2]
JP-A-11-70319
[Problems to be solved by the invention]
An object of the present invention is that the cleaning time by chlorine trifluoride in a semiconductor manufacturing process is long, and in addition to a large amount of chlorine trifluoride, an inorganic halogenated gas-containing exhaust gas containing a large amount of an acidic gas is sufficiently treated. It is an object of the present invention to provide a method for treating an exhaust gas containing an inorganic halogenated gas.
[0008]
Further, an object of the present invention is to sufficiently treat an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride (ClF 3 ) and another acidic gas without significantly deteriorating the treatment performance even after long-time treatment. It is an object of the present invention to provide a processing apparatus and a processing agent for an inorganic halogenated gas that can be used.
[0009]
[Means for Solving the Problems]
According to the present invention, chlorine trifluoride inorganic halide gas-containing exhaust gas containing (ClF 3), is contacted with chlorine trifluoride (ClF 3) decomposing agent, then said the contacting with chlorine removal agent The present invention provides a method for treating an exhaust gas containing an inorganic halogenated gas. Chlorine trifluoride inorganic halide gas-containing exhaust gas containing (ClF 3), by contact with chlorine trifluoride (ClF 3) decomposing agent, it is fixed is removed by a chemical reaction of fluorine atoms to the decomposing agent, other Is fixed to the decomposing agent. At this time, free chlorine gas (Cl 2 ) is generated. Next, the exhaust gas containing free chlorine gas is brought into contact with a chlorine removing agent to remove the free chlorine gas and remove chlorine atoms as harmless salts from the exhaust gas.
[0010]
Exhaust gas to be treated according to the present invention includes, in addition to chlorine trifluoride (ClF 3 ), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), boron trifluoride (BF 3 ), and boron trichloride. It is preferable to include at least one acidic gas selected from (BCl 3 ), phosphorus trifluoride (PF 3 ), phosphorus trichloride (PCl 3 ), fluorine gas (F 2 ) and chlorine gas (Cl 2 ). . These exhaust gases are preferably exhaust gases generated from a cleaning step in a semiconductor manufacturing process, for example, a step of cleaning the inside of a chamber after forming a film such as a Poly-Si film or a SiN film in a semiconductor manufacturing apparatus.
[0011]
Next, for example, when an exhaust gas containing chlorine trifluoride (ClF 3 ) is brought into contact with a synthetic zeolite as a chlorine trifluoride decomposing agent and a sulfur-based reducing agent (Na 2 S 2 O 3 ) as a chlorine remover. As an example, the processing method of the present invention will be described.
[0012]
First, when an exhaust gas containing chlorine trifluoride is brought into contact with synthetic zeolite, the following formula 1 is obtained.
[0013]
Embedded image
Figure 2004351364
[0014]
As described above, the fluorine atom chemically reacts with the Al 2 O 3 portion in the synthetic zeolite and is fixed, and the chlorine atom is released as chlorine gas (Cl 2 ).
[0015]
Next, when this exhaust gas is brought into contact with a chlorine removing agent, the following formula 2 is obtained.
[0016]
Embedded image
Figure 2004351364
[0017]
As described above, the chlorine atom reacts with the sulfur-based reducing agent (Na 2 S 2 O 3 ) to generate a harmless salt (NaCl) and is removed from the exhaust gas.
[0018]
In the above formulas 1 and 2, a synthetic zeolite containing an Al 2 O 3 part as a chlorine trifluoride decomposing agent and a sulfur-based reducing agent Na 2 S 2 O 3 as a chlorine removing agent are used. The chlorine trifluoride decomposer and the chlorine remover that can be used are not limited to these. The chlorine trifluoride decomposer that can be used in the present invention may be any as long as it can decompose chlorine trifluoride and fix a fluorine atom. For example, trivalent iron containing Fe 2 O 3 as a main component can be used. Oxides and the like can be preferably mentioned. However, synthetic zeolite has a higher decomposition capacity of chlorine trifluoride than iron oxides, has a higher decomposition capacity, and has a processing agent layer of chlorine trifluoride that causes a sharp rise in temperature and pressure due to a rapid decomposition reaction. It is particularly preferable because condensation in the inside and accumulation in a liquefied state can be prevented.
[0019]
The synthetic zeolite that can be used as the chlorine trifluoride decomposer of the present invention preferably has a high aluminum content. For example, preferably contains 1 part by mol of Al 2 O 3 with respect to SiO 2 of 0.5 to 10 mol parts, 1 mole of Al 2 O 3 with respect to 1 to 5 molar parts of SiO 2 More preferably, it is particularly preferable to contain 2.5 mol parts of SiO 2 with respect to 1 mol part of Al 2 O 3 . As such a synthetic zeolite, an X-type synthetic zeolite having a high ability to decompose chlorine trifluoride can be preferably mentioned. Specifically, the synthetic zeolite which can be used in the present invention, Na 2 O · Al 2 O 3 · 2~3SiO 2 · nH 2 O X -type synthetic zeolite, Especially Na 2 O · Al 2 O 3 An X-type synthetic zeolite having a chemical formula of 2.5SiO 2 · nH 2 O is preferably used. In the above formula, sodium oxide is replaced with another alkali metal oxide such as potassium oxide or an earth alkali metal oxide such as calcium oxide, for example, Li-X type, KX type, Mg- X-type, Ca-X-type, Ba-X-type synthetic zeolite may be used.
[0020]
The synthetic zeolite as a chlorine trifluoride decomposer used in the present invention has an average pore diameter of preferably 4 to 100 °, more preferably 4 to 20 °, particularly preferably 10 °, and a specific surface area of preferably 600 to 900 m. a 2 / g, more preferably a 600~700m 2 / g, particularly preferably 650m 2 / g. When the average pore diameter and the specific surface area of the synthetic zeolite are in the above-mentioned ranges, higher activity is exhibited, and the advantage of high ability to decompose chlorine trifluoride is obtained.
[0021]
In addition, the chlorine remover that can be used in the present invention may be any one that can generate a harmless salt by reducing free chlorine gas, and preferably includes, for example, an anion exchange resin. However, the sulfur-based reducing agent is particularly preferable because it has a large amount of chlorine to be treated, has heat resistance as compared with an anion exchange resin, and has a high processing ability in a high temperature state.
[0022]
Preferable examples of the sulfur-based reducing agent as the chlorine removing agent used in the present invention include sulfite, nitrite, tetrathionate, thiosulfate, and the like. These may be used alone or in combination of two or more. May be used. For example, a combination of sulfite and thiosulfate can be preferably used.
[0023]
The shape of the chlorine trifluoride decomposing agent and the chlorine removing agent used in the present invention is not particularly limited as long as operability and handleability are good, and may be any form such as granular / rod-like and plate-like.
[0024]
The chlorine trifluoride decomposing agent and the chlorine removing agent used in the present invention, the chemical reaction with chlorine trifluoride proceeds efficiently, in order to efficiently fix fluorine atoms and chlorine atoms, the halogen atoms in the exhaust gas and A larger contact area is preferred. Further, it is preferable that the flow rate is within a range that does not increase the ventilation resistance when the exhaust gas passes. The synthetic zeolite as the chlorine trifluoride decomposing agent satisfying these conditions is preferably spherical or cylindrical in the range of 4 to 20 mesh, more preferably spherical or cylindrical in the range of 8 to 20 mesh, and spherical in the range of 14 to 20 mesh. Is particularly preferred. Further, the sulfur-based reducing agent as the chlorine removing agent is preferably a cylinder having a diameter of 1.6 to 3.2 mmφ, more preferably a cylinder having a diameter of 1.6 to 2.4 mmφ, and a columnar pellet having a diameter of 1.6 mmφ. Is particularly preferred.
[0025]
In the treatment method of the present invention, the temperature during the gas treatment is preferably in the range of room temperature to 150 ° C, more preferably in the range of room temperature to 200 ° C, and particularly preferably room temperature. If the gas processing temperature is higher than 200 ° C., it is necessary to make the material and structure of the processing apparatus heat-resistant, which is not economical. In addition, in order to lower the temperature below normal temperature, it is necessary to lower the temperature using a cooling device such as a cooler, which is not preferable because the processing cost increases.
[0026]
Further, according to the present invention, there is provided a treating agent for an exhaust gas containing chlorine trifluoride and containing an inorganic halogenated gas, comprising a combination of a chlorine trifluoride decomposing agent and a chlorine removing agent. Here, it is preferable that the chlorine trifluoride decomposing agent and the chlorine removing agent are not mixed so that they can be used individually at the time of exhaust gas treatment.
[0027]
In the treating agent of the present invention, the chlorine trifluoride decomposing agent preferably includes the above-mentioned synthetic zeolite, and particularly preferably an X-type synthetic zeolite. Further, the chlorine removing agent is particularly preferably the above-mentioned sulfur-based reducing agent.
[0028]
In the treatment agent of the present invention, the ratio of the amounts of the chlorine trifluoride decomposer and the chlorine remover used varies depending on the treatment amount of chlorine trifluoride. Preferably, the ratio is in the range of 1: 1 to 1: 0.6.
[0029]
Further, according to the present invention, it includes a first processing section filled with a chlorine trifluoride decomposing agent, and a second processing section filled with a chlorine removing agent, wherein the first processing section includes the second processing section. An apparatus for treating an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride, which is disposed upstream of the two treatment sections. In the exhaust gas processing apparatus of the present invention, the first processing unit and the second processing unit may be arranged so that the exhaust gas first passes through the first processing unit and then passes through the second processing unit. For example, when the first processing unit is disposed in the upper stage and the second processing unit is disposed in the lower stage, the exhaust gas flow may be configured to flow as a downward flow. Conversely, when the first processing unit is disposed at the lower stage and the second processing unit is disposed at the upper stage, the exhaust gas flow may be configured to flow as an upward flow. Further, when the first processing unit and the second processing unit are arranged in parallel, the exhaust gas may be configured to pass through the first processing unit and then pass through the second processing unit.
[0030]
In the processing apparatus of the present invention, it is preferable to further provide a heat insulating section between the first processing section and the second processing section. As the heat insulating material, a porous inert component such as silica gel, natural zeolite, or alumina can be used. By providing such a heat insulating portion, the inflow concentration of the exhaust gas increases and the ventilation time is prolonged, and the temperature rise due to the reaction with the chlorine trifluoride decomposing agent in the first processing portion is sharp, and the temperature is increased to nearly 200 ° C. Even in such a case, it is possible to prevent thermal deterioration of the chlorine removing agent in the second processing section.
[0031]
Further, according to the present invention, a first processing section having a column shape having an exhaust gas processing inlet and a processing gas outlet, wherein the exhaust gas processing inlet side is filled with a chlorine trifluoride decomposing agent in the column; A second processing section filled with a chlorine removing agent on the outlet side, and a heat insulating section filled with a heat insulating material is provided between the first processing section and the second processing section. An apparatus for treating an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride is provided.
[0032]
In the present invention, the filling amount of the chlorine trifluoride decomposing agent in the first treatment unit varies depending on the treatment amount of chlorine trifluoride, but is typically 50% by volume to 70% by volume, preferably 60% by volume. %, And the filling amount of the chlorine removing agent in the second treatment section is typically about 25% to 45% by volume, preferably about 35% by volume. When the loadings of the chlorine trifluoride decomposer and the chlorine remover are in the above-mentioned ranges, an advantage that high processing performance can be obtained even for an inorganic halogenated gas that coexists in addition to chlorine trifluoride. Is obtained.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
The exhaust gas treatment apparatus and the exhaust gas treatment method of the present invention will be described with reference to the drawings, but the present invention is not limited to these.
[0034]
FIG. 1 shows a first embodiment of an exhaust gas treatment apparatus of the present invention. In this embodiment, two packed columns are used, and one packed bed is disposed inside each packed column. That is, the exhaust gas treatment apparatus 1 shown in FIG. 1 has a first column 10 as a first treatment section filled with a chlorine trifluoride decomposing agent and a second column as a second treatment section filled with a chlorine remover. And the first column 10 as the first processing unit is disposed upstream of the second column 20 as the second processing unit. The first column 10, a flue gas inlet 12 for flowing the exhaust gas from the exhaust gas source via the L IN, and chlorine trifluoride decomposer layer 14 formed by filling the chlorine trifluoride decomposition agent, trifluoride A primary processing gas outlet 16 through which the gas after the primary processing that has passed through the chlorine decomposition agent layer 14 flows out is provided. The second column 20 includes a primary processing gas inlet 22 for receiving a primary processing gas from the primary processing gas outlet 16 of the first column 10, a chlorine removing agent layer 24 filled with a chlorine removing agent, and a chlorine removing agent. And a secondary processing gas outlet 26 through which the gas after the secondary processing that has passed through the agent layer 24 flows out. A primary processing gas line L is provided between the primary processing gas outlet 16 of the first column 10 and the primary processing gas inlet 22 of the second column 20, and the first column 10 adsorbs and removes fluorine atoms. The primary processing gas is introduced into the second column 20.
[0035]
Exhaust gas from the exhaust gas source is introduced into the first column 10 from the exhaust gas outlet 12 via the L IN, it passes chlorine trifluoride decomposing agent layer 14 as an upward stream. While passing through the chlorine trifluoride decomposing agent layer 24, the fluorine atoms in the exhaust gas are fixed to the chlorine trifluoride decomposing agent layer 24 and removed from the exhaust gas to form a primary processing gas from which the fluorine atoms have been removed. . The primary processing gas that has passed through the chlorine trifluoride decomposing agent layer 24 passes through the primary processing gas line L from the primary processing gas outlet 16, passes through the primary processing gas inlet 22 of the second column 20, and enters the second column 20. Will be introduced. In the second column 20, the primary processing gas passes through the chlorine removing agent layer 24 as an upward flow, during which chlorine atoms are adsorbed and removed by the chlorine removing agent, forming a secondary processing gas from which chlorine atoms have been removed. Is done. Then, secondary treatment gas is discharged to the outside through the L OUT through the second process gas outlet 26.
[0036]
FIG. 2 shows a second embodiment of the processing apparatus of the present invention. In FIG. 2, two packed beds are arranged inside one packed column. That is, the exhaust gas treatment apparatus 100 shown in FIG. 2 is a column having an exhaust gas treatment inlet and a treatment gas outlet, and a first treatment unit 110 in which the exhaust gas treatment inlet side is filled with a chlorine trifluoride decomposing agent in the column. And a second processing section 120 filled with a chlorine removing agent on the processing gas outlet side, and a heat insulating section 130 filled with a heat insulating material between the first processing section 110 and the second processing section 120. Is provided.
[0037]
Exhaust gas from the exhaust gas generating source, through the L IN is introduced into the column 100, discharge the first processing unit 110, a heat insulating section 130 and the second processing unit 120 through a upward flow, to the outside through the L OUT Is done. Fluorine atoms in the exhaust gas are fixed to the chlorine trifluoride decomposing agent in the first processing section 110 and removed. The primary processing gas from which the fluorine atoms have been removed passes through the heat insulating section 130 and is introduced into the second processing section 120, where chlorine atoms are adsorbed and removed.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0039]
Example 1
Two SUS mini columns having a diameter of 42 mm were prepared, and one column was filled with 260 mL of synthetic zeolite (Mizuka Sieves 13X-1420B: manufactured by Mizusawa Chemical, particle size: 14 to 20 mesh) so that the layer height was 190 mm. One processing section was prepared. In the other column, a sulfur-based reducing agent (ECL-3: manufactured by Sudochemie catalyst, particle diameter 1.6 mmφ, composition: 25% basic carbon zinc, 17% sodium thiosulfate, so that the layer height is 190 mm, 260 mL of alumina (56%, clay 2%) was charged to prepare a second treatment part. The two columns were assembled in a processing apparatus having the configuration shown in FIG. A treatment experiment was performed using ClF 3 diluted with N 2 simulated as exhaust gas.
[0040]
ClF 3 diluted with N 2 was passed through the processing apparatus shown in FIG. 1 at an inflow concentration of 1.0% at a gas flow rate of 667 mL / min, and the secondary processing gas from the second processing unit was analyzed. The analysis of ClF 3 and Cl 2 is performed by a mass spectrometer (Questor GP manufactured by ABB Extreme), the analysis of HCl and HF is performed by an ion chromatograph analyzer (AI-450 manufactured by Dionex), and “SO 2 F 2 ” The analysis was performed with a gas chromatograph mass spectrometer (QP-5050A manufactured by Shimadzu Corporation), and the results are shown in Table 1.
[0041]
[Table 1]
Figure 2004351364
[0042]
Until 46.5 hours after the start of aeration, all species of ClF 3 , Cl 2 , HCl, HF, and SO 2 F 2 were always treated below the detection limit. After the elapse of 47 hours, Cl 2 started to leak at 0.6 ppm, which exceeded the allowable concentration (0.5 ppm as Cl 2 ), so the ventilation was stopped.
[0043]
According to the present example, according to the present processing method using the present processing apparatus, all the components can be satisfactorily processed to the allowable concentration or less for as long as 46.5 hours after the start of ventilation.
[0044]
Comparative Example 1
As the first treatment part, a sulfur-based reducing agent (ECL-3: manufactured by Sudochemie catalyst, particle size 1.6 mmφ pellets, composition: basic carbon) instead of synthetic zeolite as a chlorine trifluoride decomposing agent (Zinc 25%, Sodium thiosulfate 17%, Alumina 56%, Clay 2%) Prepared in the same manner as in Example 1 except that 260 mL was filled, and under the same ventilation conditions, a synthetic zeolite as a chlorine trifluoride decomposing agent was used. The performance was evaluated. Table 2 shows the results.
[0045]
[Table 2]
Figure 2004351364
[0046]
Up to 47 hours after the start of aeration, ClF 3 , Cl 2 , HCl, and HF could be processed below the detection limit, but SO 2 F 2 leaked at a very high concentration of 100 to 400 ppm. . After 47.5 hours, ClF 3 and Cl 2 leaked beyond the allowable concentration.
[0047]
Comparative Example 1 shows that when the synthetic zeolite is not used as the first treatment section, harmful SO 2 F 2 is generated as a by-product in a large amount exceeding the allowable concentration.
[0048]
Example 2
Prepared in the same manner as in Example 1 except that 260 mL of an anion exchange resin (manufactured by DOWEX, 20 to 50 mesh) was filled in place of the sulfur-based reducing agent as the second treatment unit, and the sulfur-based reducing agent was prepared under the same aeration conditions. The performance as a chlorine remover was evaluated. Table 3 shows the results.
[0049]
[Table 3]
Figure 2004351364
[0050]
Up to 41 hours after the start of aeration, all species of ClF 3 , Cl 2 , HCl, HF, and SO 2 F 2 were always treated below the detection limit. After the passage of 41.5 hours, Cl 2 began to leak at 0.5 ppm, which exceeded the allowable concentration (0.5 ppm as Cl 2 ), so the ventilation was stopped.
[0051]
According to Example 2, when an anion exchange resin is used in place of a sulfur-based reducing agent, no by-product is generated, and all kinds of ClF 3 , Cl 2 , HCl, HF, and SO 2 F 2 can be favorably treated. It can be seen that the duration as a treating agent is 41.5 hours, which is about 6 hours shorter than the case of a combination of a synthetic zeolite and a sulfur-based reducing agent.
[0052]
【The invention's effect】
According to the treatment method of the present invention, ClF 3 , Cl 2 , HCl, HF, and SO 2 F 2 can be satisfactorily reduced even with an exhaust gas containing an inorganic halogenated gas containing a large amount of chlorine trifluoride and another acidic gas. Detoxification treatment can be performed.
[0053]
Therefore, the processing method of the present invention requires a long cleaning time in the semiconductor manufacturing process, generates a large amount of an inorganic halogenated gas, and produces not only chlorine trifluoride (ClF 3 ) but also silicon tetrafluoride (SiF 4 ). Silicon tetrachloride (SiCl 4 ), boron trifluoride (BF 3 ), boron trichloride (BCl 3 ), phosphorus trifluoride (PF 3 ), phosphorus trichloride (PCl 3 ), fluorine gas (F 2 ) and chlorine A sufficient treatment effect can be obtained by applying the treatment to exhaust gas containing a large amount of one or more acid gases selected from gas (Cl 2 ).
[0054]
Further, according to the present invention, there is provided a treatment agent for an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride, which has a large treatment capacity and a long life.
[0055]
Furthermore, according to the present invention, even after a long-time treatment, the treatment performance is not significantly reduced, and the inorganic halogenated gas containing the inorganic halogenated gas containing chlorine trifluoride can be sufficiently treated. A processing device is provided.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a first embodiment of a processing apparatus of the present invention.
FIG. 2 is a schematic diagram illustrating a processing apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
1; 100: processing apparatus 10: first processing unit 20: second processing unit 14: chlorine trifluoride decomposing agent layer 24: chlorine removing agent layer 110: first processing unit (chlorine trifluoride decomposing agent layer)
120: 2nd processing part (chlorine removal agent layer)
130: Heat insulation part (heat insulation material layer)

Claims (9)

三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガスを、三フッ化塩素(ClF)分解剤と接触させ、次いで、塩素除去剤と接触させることを特徴とする排ガスの処理方法。Chlorine trifluoride inorganic halide gas-containing exhaust gas containing (ClF 3), chlorine trifluoride (ClF 3) is contacted with a decomposer, then the processing method of the exhaust gas comprises contacting with chlorine removal agent. 前記三フッ化塩素(ClF)分解剤は合成ゼオライトであり、前記塩素除去剤は硫黄系還元剤であることを特徴とする請求項1に記載の方法。The chlorine trifluoride (ClF 3) decomposing agent is a synthetic zeolite A method according to claim 1, wherein the chlorine removal agent is sulfur-based reducing agent. 前記排ガスは、さらに、四フッ化珪素(SiF)、四塩化珪素(SiCl)、三フッ化硼素(BF)、三塩化硼素(BCl)、三フッ化リン(PF)、三塩化リン(PCl)、フッ素ガス(F)及び塩素ガス(Cl)から選択される1種以上の酸性ガスを含むことを特徴とする請求項1又は2に記載の方法。The exhaust gas further includes silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), boron trifluoride (BF 3 ), boron trichloride (BCl 3 ), phosphorus trifluoride (PF 3 ), The method according to claim 1, further comprising one or more acid gases selected from phosphorus chloride (PCl 3 ), fluorine gas (F 2 ), and chlorine gas (Cl 2 ). 三フッ化塩素(ClF)分解剤及び塩素除去剤の組合せからなる、三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガス用処理剤。An inorganic halogenated gas-containing exhaust gas treating agent containing chlorine trifluoride (ClF 3 ), comprising a combination of a chlorine trifluoride (ClF 3 ) decomposer and a chlorine remover. 前記三フッ化塩素(ClF)分解剤は合成ゼオライトであり、前記塩素除去剤は硫黄系還元剤であることを特徴とする請求項4に記載の処理剤。The chlorine trifluoride (ClF 3) decomposing agent is a synthetic zeolite, the treatment agent according to claim 4, wherein the chlorine removal agent is sulfur-based reducing agent. 三フッ化塩素(ClF)分解剤を充填してなる第1処理部と、塩素除去剤を充填してなる第2処理部と、を含み、該第1処理部は該第2処理部の上流に配置されていることを特徴とする、三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガスの処理装置。It includes a first processing section filled with a chlorine trifluoride (ClF 3 ) decomposing agent and a second processing section filled with a chlorine removing agent, wherein the first processing section is a part of the second processing section. An apparatus for treating an exhaust gas containing an inorganic halogenated gas containing chlorine trifluoride (ClF 3 ), which is disposed upstream. 前記三フッ化塩素(ClF)分解剤は合成ゼオライトであり、前記塩素除去剤は硫黄系還元剤であることを特徴とする請求項6に記載の処理装置。The chlorine trifluoride (ClF 3) decomposing agent is a synthetic zeolite, the processing apparatus according to claim 6, wherein the chlorine removal agent is sulfur-based reducing agent. 前記第1処理部と前記第2処理部との間に、さらに断熱部を設けることを特徴とする請求項6又は7に記載の処理装置。The processing apparatus according to claim 6, wherein a heat insulating unit is further provided between the first processing unit and the second processing unit. 排ガス処理入口及び処理ガス出口を有するカラム形状であり、該カラム内において排ガス処理入口側に三フッ化塩素(ClF)分解剤を充填してなる第1処理部と、処理ガス出口側に塩素除去剤を充填してなる第2処理部と、を備え、第1処理部と第2処理部との間に断熱材を充填してなる断熱部が設けられていることを特徴とする三フッ化塩素(ClF)を含む無機ハロゲン化ガス含有排ガスの処理装置。It has a column shape having an exhaust gas treatment inlet and a treatment gas outlet, and in the column, a first treatment part in which an exhaust gas treatment inlet is filled with a chlorine trifluoride (ClF 3 ) decomposing agent; A second processing section filled with a removing agent, and a heat insulating section filled with a heat insulating material is provided between the first processing section and the second processing section. An apparatus for treating an exhaust gas containing an inorganic halogenated gas containing chlorine fluoride (ClF 3 ).
JP2003154219A 2003-05-30 2003-05-30 Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride Expired - Lifetime JP4564242B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003154219A JP4564242B2 (en) 2003-05-30 2003-05-30 Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride
TW093113633A TWI361104B (en) 2003-05-30 2004-05-14 Method, reagent and apparatus for treating emissions containing chlorine trifluoride and other inorganic halogenated gases
SG200402960A SG111184A1 (en) 2003-05-30 2004-05-21 Method, reagent and apparatus for treating emissions containing chlorine trifluoride and other inorganic halogenated gases
KR1020040038115A KR101178179B1 (en) 2003-05-30 2004-05-28 Method, reagent and apparatus for treating emissions containing chlorine trifluoride and other inorganic halogenated gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154219A JP4564242B2 (en) 2003-05-30 2003-05-30 Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride

Publications (2)

Publication Number Publication Date
JP2004351364A true JP2004351364A (en) 2004-12-16
JP4564242B2 JP4564242B2 (en) 2010-10-20

Family

ID=34048944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154219A Expired - Lifetime JP4564242B2 (en) 2003-05-30 2003-05-30 Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride

Country Status (4)

Country Link
JP (1) JP4564242B2 (en)
KR (1) KR101178179B1 (en)
SG (1) SG111184A1 (en)
TW (1) TWI361104B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158990A (en) * 2004-12-02 2006-06-22 Taiyo Nippon Sanso Corp Detoxifying apparatus and its management method
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
WO2010067677A1 (en) * 2008-12-11 2010-06-17 セントラル硝子株式会社 Method for eliminating unwanted substances from chlorine trifluoride
JP2011235216A (en) * 2010-05-07 2011-11-24 Kansai Univ Method for decomposing and treating fluorine-based gas by means of zeolite
JP2015112545A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2015112546A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2016221428A (en) * 2015-05-28 2016-12-28 宇部興産株式会社 Gas processing device and gas processing cartridge
JP2020018953A (en) * 2018-07-30 2020-02-06 クラリアント触媒株式会社 Halogen gas remover and manufacturing method therefor, and method for monitoring consumption state of remover
CN116902922A (en) * 2023-09-13 2023-10-20 福建省巨颖高能新材料有限公司 Device and method for preparing industrial grade chlorine pentafluoride

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252153B2 (en) * 2013-12-12 2017-12-27 宇部興産株式会社 Gas processing apparatus and gas processing cartridge
JP2015112544A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
CN114538380B (en) * 2021-01-29 2022-10-14 福建德尔科技股份有限公司 Electronic-grade chlorine trifluoride purification system and temperature difference power control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217217A (en) * 1990-01-19 1991-09-25 Central Glass Co Ltd Treatment of waste gas containing chlorine trifluoride
JPH03229618A (en) * 1990-02-05 1991-10-11 Ebara Res Co Ltd Treatment of exhaust gas containing clf3
JPH0494723A (en) * 1990-08-10 1992-03-26 Central Glass Co Ltd Dry process for treatment of waste gas containing chlorine fluoride
JPH10263367A (en) * 1997-03-27 1998-10-06 Aiwa Co Ltd Deodorization device
JPH1170319A (en) * 1997-06-20 1999-03-16 Ebara Corp Treatment of exhaust gas containing inorganic halogenated gas and treatment device
JP2000117053A (en) * 1998-10-16 2000-04-25 Tomoe Shokai:Kk Chlorine trifluoride treating cylinder and treatment of gas to be treated containing chlorine trifluoride
JP2001017831A (en) * 1999-07-07 2001-01-23 Toyo C C I Kk Treating agent for halogen gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290920A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Highly corrosion-resisting waste gas decomposition device and semiconductor manufacturing device
JP3600073B2 (en) 1999-07-14 2004-12-08 セントラル硝子株式会社 Improved microbial pesticide formulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217217A (en) * 1990-01-19 1991-09-25 Central Glass Co Ltd Treatment of waste gas containing chlorine trifluoride
JPH03229618A (en) * 1990-02-05 1991-10-11 Ebara Res Co Ltd Treatment of exhaust gas containing clf3
JPH0494723A (en) * 1990-08-10 1992-03-26 Central Glass Co Ltd Dry process for treatment of waste gas containing chlorine fluoride
JPH10263367A (en) * 1997-03-27 1998-10-06 Aiwa Co Ltd Deodorization device
JPH1170319A (en) * 1997-06-20 1999-03-16 Ebara Corp Treatment of exhaust gas containing inorganic halogenated gas and treatment device
JP2000117053A (en) * 1998-10-16 2000-04-25 Tomoe Shokai:Kk Chlorine trifluoride treating cylinder and treatment of gas to be treated containing chlorine trifluoride
JP2001017831A (en) * 1999-07-07 2001-01-23 Toyo C C I Kk Treating agent for halogen gas

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553705B2 (en) * 2004-12-02 2010-09-29 大陽日酸株式会社 Abatement device and its management method
JP2006158990A (en) * 2004-12-02 2006-06-22 Taiyo Nippon Sanso Corp Detoxifying apparatus and its management method
US8450235B2 (en) 2007-10-26 2013-05-28 Asahi Kasei Chemicals Corporation Supported composite particle material, production process of same and process for producing compounds using supported composite particle material as catalyst for chemical synthesis
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
WO2010067677A1 (en) * 2008-12-11 2010-06-17 セントラル硝子株式会社 Method for eliminating unwanted substances from chlorine trifluoride
JP2010158664A (en) * 2008-12-11 2010-07-22 Central Glass Co Ltd Detoxifying method of chlorine trifluoride
CN102143793A (en) * 2008-12-11 2011-08-03 中央硝子株式会社 Detoxifying method of chlorine trifluoride
JP2011235216A (en) * 2010-05-07 2011-11-24 Kansai Univ Method for decomposing and treating fluorine-based gas by means of zeolite
JP2015112545A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2015112546A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2016221428A (en) * 2015-05-28 2016-12-28 宇部興産株式会社 Gas processing device and gas processing cartridge
JP2020018953A (en) * 2018-07-30 2020-02-06 クラリアント触媒株式会社 Halogen gas remover and manufacturing method therefor, and method for monitoring consumption state of remover
JP7253132B2 (en) 2018-07-30 2023-04-06 クラリアント触媒株式会社 Halogen gas remover, method for producing same, and method for monitoring consumption of remover
CN116902922A (en) * 2023-09-13 2023-10-20 福建省巨颖高能新材料有限公司 Device and method for preparing industrial grade chlorine pentafluoride
CN116902922B (en) * 2023-09-13 2023-12-05 福建省巨颖高能新材料有限公司 Device and method for preparing industrial grade chlorine pentafluoride

Also Published As

Publication number Publication date
SG111184A1 (en) 2005-05-30
JP4564242B2 (en) 2010-10-20
KR101178179B1 (en) 2012-08-29
KR20040103406A (en) 2004-12-08
TWI361104B (en) 2012-04-01
TW200503823A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
US6649082B2 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
JP4564242B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride
JP5145904B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JPWO2007135823A1 (en) Halogen gas removal method and halogen gas removal agent
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
JP3840877B2 (en) Halogen-based gas detoxifying agent, detoxifying method and use thereof
KR100481584B1 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JP5309945B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
EP1967254B1 (en) Use of a faujasite and method for the adsorption of halogen-containing gases
JP5499816B2 (en) Halogen gas removal method
JP3981206B2 (en) Method and apparatus for treating exhaust gas containing inorganic halogenated gas
JPH02273511A (en) Method for detoxifying halides of nitrogen or carbon
JP3574973B2 (en) Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants
JP3667804B2 (en) How to remove harmful gases
JP2011005477A (en) Method for rendering iodine fluoride harmless
JP3703538B2 (en) Hazardous gas removal method and removal agent
KR100968089B1 (en) Low temperature Adsorption treatment Agent for Fluorine Compound gas, Method of treating for Fluorine compound gas Using thereof, And Apparatus For Treatment of Fluorine compound gas
JP2005040766A (en) Treating agent and treating method of waste gas containing acid gas and/or hydrocarbon
JP5498660B2 (en) Silane disinfectant and method
KR100494305B1 (en) Removal method of inorganic halogenated gas
JP2004344729A (en) Apparatus and method for dry treatment of hf-containing gas
JP3557409B2 (en) Hazardous component remover and method for treating gas containing harmful components
JPH057044B2 (en)
JP5016618B2 (en) Method for treating exhaust gas containing SF6

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term