JP2006158990A - Detoxifying apparatus and its management method - Google Patents

Detoxifying apparatus and its management method Download PDF

Info

Publication number
JP2006158990A
JP2006158990A JP2004349600A JP2004349600A JP2006158990A JP 2006158990 A JP2006158990 A JP 2006158990A JP 2004349600 A JP2004349600 A JP 2004349600A JP 2004349600 A JP2004349600 A JP 2004349600A JP 2006158990 A JP2006158990 A JP 2006158990A
Authority
JP
Japan
Prior art keywords
detoxifying
agent
gas
harmful
detoxifying agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349600A
Other languages
Japanese (ja)
Other versions
JP4553705B2 (en
Inventor
Osayasu Tomita
修康 富田
Yoshiaki Sugimori
由章 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004349600A priority Critical patent/JP4553705B2/en
Publication of JP2006158990A publication Critical patent/JP2006158990A/en
Application granted granted Critical
Publication of JP4553705B2 publication Critical patent/JP4553705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detoxifying apparatus capable of certainly determining breakthrough of a detoxifying agent filled in a detoxifying cylinder, and its management method. <P>SOLUTION: In the detoxifying apparatus, a gas containing a harmful component is introduced into the detoxifying cylinder filled with the detoxifying agent to perform removal treatment of the harmful component. A main detoxifying agent 14 and a sub-detoxifying agent 15 having different reaction form with the harmful component are used as the detoxifying agent and the sub-detoxifying agent is arranged in the detoxifying cylinder 13 at a downstream side in a gas flowing direction of the main detoxifying agent. A gas component measurement means (analyzer 16) for measuring a gas component produced by the reaction of the main detoxifying agent or the sub-detoxifying agent with the harmful component is provided on a treatment gas leading out part 12 for leading out the gas after the removal treatment of the harmful component is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、除害装置及びその管理方法に関し、詳しくは、半導体製造装置等から排出されるガス中の有害成分をガス中から除去するための除害装置及び該除害装置における除害剤の交換時期を判定する管理方法に関する。   The present invention relates to an abatement apparatus and a management method thereof, and more specifically, an abatement apparatus for removing harmful components in a gas discharged from a semiconductor manufacturing apparatus or the like from the gas, and an abatement agent in the abatement apparatus. The present invention relates to a management method for determining replacement time.

揮発性無機水素化物,揮発性無機ハロゲン化物、有機金属化合物等の有害ガス成分を使用する半導体製造装置等からは、これらの有害成分を含む排ガスが排出される。これらの有害成分は、毒性や可燃性を有する危険なものであり、排ガスを大気中に放出する前に無害化する必要がある。このため、前記有害成分と反応して排ガス中から有害成分を除去するための除害剤(除去剤)が各種開発されてきており、近年は、除害剤を充填した除害筒内に排ガスを流通させて無害化する乾式除害装置が多用されている。   Exhaust gases containing these toxic components are discharged from semiconductor manufacturing devices that use toxic inorganic components such as volatile inorganic hydrides, volatile inorganic halides, and organometallic compounds. These harmful components are dangerous and toxic and flammable, and must be detoxified before the exhaust gas is released into the atmosphere. For this reason, various detoxifying agents (removing agents) for removing harmful components from the exhaust gas by reacting with the harmful components have been developed, and in recent years, the exhaust gas is disposed in the detoxification cylinder filled with the detoxifying agent. Dry detoxification devices that distribute and detoxify are widely used.

また、除去処理の進行に伴って除害剤が破過すると有害成分の除去処理を継続できなくなる。このため、除害筒のガス出口部(処理ガス導出部)に分析計を設けて有害成分の濃度を測定し、有害成分濃度が規定濃度以上になったときを除害剤の破過と判定する方法や、有害成分との接触によって変色する検知剤を使用し、この検知剤が変色したときを除害剤の破過と判定する方法が採用されている(例えば、特許文献1参照。)。
特開平6−319945号公報
Further, if the detoxifying agent breaks through with the progress of the removal process, the removal process of harmful components cannot be continued. For this reason, an analyzer is installed at the gas outlet (process gas outlet) of the detoxification cylinder to measure the concentration of harmful components, and when the concentration of harmful components exceeds the specified concentration, it is determined that the detoxifying agent has passed through. And a method of using a detection agent that changes color upon contact with harmful components and determining that the detection agent has changed color as breakthrough of the detoxifying agent (see, for example, Patent Document 1). .
JP-A-6-319945

しかし、分析計で有害成分濃度を測定する方法では、除害筒から流出した有害成分を分析するため、分析計の下流に有害成分が流出することになるから、分析計の後段にも予備の除害手段を設けておく必要がある。また、検知剤によるものでは、除害筒内のガス流れが偏り、有害成分と検知剤との接触が十分に行われないと、除害剤が破過しても検知剤が変色しないおそれがある。このため、除害筒の大きさや形状等に制約が生じていた。さらに、検知剤の変色を目視で確認するため、除害筒の設置位置にも制約があった。   However, in the method of measuring the concentration of harmful components with the analyzer, the harmful components flowing out from the detoxification cylinder are analyzed, so the harmful components flow out downstream of the analyzer. It is necessary to provide an abatement means. In addition, with detection agents, if the gas flow in the detoxifying cylinder is uneven and the contact between the harmful components and the detection agent is not sufficient, the detection agent may not be discolored even if the detoxifying agent breaks through. is there. For this reason, restrictions have arisen in the size, shape, etc. of the abatement cylinder. Furthermore, since the discoloration of the detection agent is visually confirmed, the installation position of the abatement cylinder is also limited.

そこで本発明は、除害筒内に充填した除害剤の破過を確実に判定することができる除害装置及びその管理方法を提供することを目的としている。   Therefore, an object of the present invention is to provide an abatement apparatus and a management method thereof that can reliably determine the breakthrough of the detoxifying agent filled in the abatement cylinder.

上記目的を達成するため、本発明の除害装置は、有害成分を含むガスを除害剤を充填した除害筒内に導入して前記有害成分の除去処理を行う除害装置において、前記除害剤として、前記有害成分との反応形態が異なる主除害剤と副除害剤とを使用し、該副除害剤を前記主除害剤よりもガス流れ方向下流側に配置するとともに、前記有害成分の除去処理を行った後のガスを導出する処理ガス導出部に、前記主除害剤又は副除害剤と前記有害成分との反応により生成するガス成分を測定するガス成分測定手段を設けたことを特徴としている。   In order to achieve the above object, a detoxifying apparatus of the present invention is the detoxifying apparatus for removing a harmful component by introducing a gas containing a harmful component into a detoxifying cylinder filled with a detoxifying agent. As a harmful agent, using a main harmful agent and a secondary harmful agent having a different reaction form with the harmful component, and arranging the secondary harmful agent on the downstream side in the gas flow direction from the primary harmful agent, Gas component measuring means for measuring a gas component generated by a reaction between the main or secondary detoxifying agent and the harmful component in a processing gas deriving unit for deriving a gas after performing the removal processing of the harmful component It is characterized by providing.

上記構成において、前記ガス成分測定手段は、前記副除害剤と前記有害成分との反応によって生成し、前記主除害剤と前記有害成分との反応では生成しないか、生成量が少ないガス成分を測定すること、あるいは、前記主除害剤と前記有害成分との反応によって生成し、前記副除害剤と前記有害成分との反応では生成しないか、生成量が少ないガス成分を測定することを特徴としている。   In the above configuration, the gas component measuring means is generated by a reaction between the sub-detoxifying agent and the harmful component and is not generated by a reaction between the main detoxifying agent and the harmful component, or a gas component with a small production amount. Or measuring a gas component produced by the reaction of the main harmful agent and the harmful component and not generated by the reaction of the auxiliary harmful agent and the harmful component or a small amount of the produced gas It is characterized by.

また、本発明の除害装置の管理方法は、副除害剤と有害成分との反応によって生成する前記ガス成分の濃度が上昇したときを除害剤の交換時期と判定すること、あるいは、主除害剤と前記有害成分との反応によって生成する前記ガス成分の濃度が下降したときを除害剤の交換時期と判定することを特徴としている。   Further, the management method of the abatement apparatus according to the present invention determines that the time when the concentration of the gas component generated by the reaction between the sub-detergent and the harmful component is increased is the replacement time of the harmful agent, The time when the concentration of the gas component generated by the reaction between the detoxifying agent and the detrimental component decreases is determined as the time for replacement of the detoxifying agent.

本発明によれば、除害筒の処理ガス導出部から導出されるガス成分濃度の変化、例えば、有害成分と主除害剤との反応によってのみ生成するガス成分の減少、あるいは、有害成分と副除害剤との反応によってのみ生成するガス成分の増加を判定基準とすることにより、主除害剤の破過を確実に知ることができる。また、主除害剤が破過しても副除害剤によって有害成分の除去処理を継続できるので、有害成分が外部に流出することはない。   According to the present invention, the change in the gas component concentration derived from the processing gas deriving unit of the detoxification cylinder, for example, the reduction of the gas component generated only by the reaction between the harmful component and the main detoxifying agent, or the harmful component By using the increase in gas components generated only by reaction with the sub-detoxifying agent as a criterion, it is possible to reliably know the breakthrough of the main detoxifying agent. Moreover, even if the main harmful chemicals break through, the harmful chemicals can be removed by the secondary harmful chemicals, so that no harmful chemicals will flow out.

図1は本発明の一形態例を示す除害装置の概略系統図である。この除害装置は、有害成分を含むガスを導入するガス導入部11と、除去処理を行ったガスを導出する処理ガス導出部12とを有する除害筒13内に、ガス流れ方向上流側に主除害剤14を、下流側に副除害剤15を積層した状態で充填するとともに、処理ガス導出部12にガス成分測定手段としての分析計16を設けたものである。   FIG. 1 is a schematic system diagram of an abatement apparatus showing an embodiment of the present invention. This abatement device has a gas introduction unit 11 for introducing a gas containing a harmful component and a treatment gas deriving unit 12 for deriving the gas subjected to the removal process, and is disposed upstream in the gas flow direction. The main detoxifying agent 14 is filled with a sub-detoxifying agent 15 laminated on the downstream side, and an analyzer 16 as a gas component measuring means is provided in the processing gas deriving unit 12.

主除害剤14及び副除害剤15は、前記有害成分と反応して有害成分をガス中から除去することができる除害剤であって、両除害剤14,15には、その主成分と有害成分との反応形態が異なるものが用いられている。例えば、有害成分がホスフィン(PH)の場合、除害剤として酸化銅(CuO)を用いた場合には、
3CuO + 2PH → CuP + P + 3H
という除害反応により、分析計16で測定可能なガス成分として水(HO)が生成する。
The main detoxifying agent 14 and the sub-detoxifying agent 15 are detoxifying agents capable of reacting with the harmful components and removing the harmful components from the gas. The thing with which the reaction form of an ingredient and a harmful ingredient differs is used. For example, when the harmful component is phosphine (PH 3 ), when copper oxide (CuO) is used as a detoxifying agent,
3CuO + 2PH 3 → Cu 3 P + P + 3H 2 O
By the detoxification reaction, water (H 2 O) is generated as a gas component that can be measured by the analyzer 16.

また、除害剤として塩基性炭酸銅(Cu(OH)・CuCO)を用いた場合には、
3Cu(OH)・CuCO + 4PH
→ 2CuP + 3CO + 9HO +2P
という除害反応により、分析計16で測定可能なガス成分として水及び二酸化炭素(CO)が生成する。同様に、除害剤が水酸化銅のときには水が、除害剤が硝酸銅のときには窒素酸化物(NOx)が、分析計16で測定可能なガス成分としてそれぞれ生成する。
When basic copper carbonate (Cu (OH) 2 .CuCO 3 ) is used as a detoxifying agent,
3Cu (OH) 2 · CuCO 3 + 4PH 3
→ 2Cu 3 P + 3CO 2 + 9H 2 O + 2P
By this detoxification reaction, water and carbon dioxide (CO 2 ) are generated as gas components that can be measured by the analyzer 16. Similarly, when the detoxifying agent is copper hydroxide, water is generated as a gas component that can be measured by the analyzer 16, and when the detoxifying agent is copper nitrate, nitrogen oxide (NOx) is generated.

したがって、除去対象となる有害成分がホスフィンの場合、酸化銅と塩基性炭酸銅とを主除害剤14及び副除害剤15として用いることにより、処理ガス中の二酸化炭素量の増減や有無を監視することによって主除害剤14の破過を判定することが可能であり、他の水酸化銅や硝酸銅と塩基性炭酸銅との組み合わせでも、二酸化炭素の生成量によって主除害剤14の破過を判定することができる。   Therefore, when the harmful component to be removed is phosphine, by using copper oxide and basic copper carbonate as the main detoxifying agent 14 and the sub-detoxifying agent 15, the amount of carbon dioxide in the processing gas can be increased or decreased. By monitoring, it is possible to determine the breakthrough of the main detoxifying agent 14, and even with other combinations of copper hydroxide, copper nitrate and basic copper carbonate, the main detoxifying agent 14 depends on the amount of carbon dioxide produced. The breakthrough can be determined.

酸化銅、水酸化銅又は硝酸銅と、塩基性炭酸銅とを組み合わせて使用する場合、どちらを主除害剤14とするかは、コストや除害性能等を考慮して任意に設定することができる。例えば、酸化銅、水酸化銅又は硝酸銅を主除害剤14とし、塩基性炭酸銅を副除害剤15として用いた場合は、主除害剤14で有害成分との十分な反応が行われているときの処理ガス中の二酸化炭素濃度は相対的に低濃度であり、主除害剤14が破過して副除害剤15である塩基性炭酸銅と有害成分との反応が始まると、処理ガス中の二酸化炭素濃度が上昇することになる。   When copper oxide, copper hydroxide or copper nitrate is used in combination with basic copper carbonate, which one should be used as the main detoxifying agent should be set arbitrarily in consideration of cost, detoxifying performance, etc. Can do. For example, when copper oxide, copper hydroxide or copper nitrate is used as the main detoxifying agent 14 and basic copper carbonate is used as the sub-detoxifying agent 15, the main detoxifying agent 14 causes sufficient reaction with harmful components. The concentration of carbon dioxide in the processing gas is relatively low, and the main detoxifying agent 14 breaks through and the reaction between the basic copper carbonate, which is the auxiliary detoxifying agent 15, and harmful components begins. As a result, the concentration of carbon dioxide in the processing gas increases.

一方、塩基性炭酸銅を主除害剤14とし、酸化銅、水酸化銅又は硝酸銅を副除害剤15として用いた場合は、主除害剤14で十分な反応が行われているときの処理ガス中の二酸化炭素濃度は相対的に高濃度であり、主除害剤14が破過して副除害剤15での反応が始まると処理ガス中の二酸化炭素濃度が下降することになる。   On the other hand, when basic copper carbonate is used as the main remover 14 and copper oxide, copper hydroxide, or copper nitrate is used as the auxiliary remover 15, when the main remover 14 is sufficiently reacted. The concentration of carbon dioxide in the processing gas is relatively high, and when the main detoxifying agent 14 breaks through and the reaction with the auxiliary detoxifying agent 15 starts, the concentration of carbon dioxide in the processing gas decreases. Become.

また、硝酸銅と他の除害剤とを組み合わせた場合には、処理ガス中の窒素酸化物の濃度を測定すればよい。さらに、処理対象ガス中の有害成分濃度が略一定の場合には、除害反応によって同じガス成分、例えば水が生成する除害剤であっても、主除害剤14との反応で生成する水分量と、副除害剤15との反応で生成する水分量とが、分析計16にて判別可能ならば、処理対象ガス中の同じガス成分の濃度変化を監視することによっても主除害剤14の破過を検出することができる。   Moreover, what is necessary is just to measure the density | concentration of the nitrogen oxide in process gas, when combining a copper nitrate and another abatement agent. Further, when the concentration of harmful components in the gas to be treated is substantially constant, even the detoxifying agent that produces the same gas component, for example, water, by the detoxification reaction, is produced by the reaction with the main detoxifying agent 14. If the amount of water and the amount of water produced by the reaction with the sub-detoxifying agent 15 can be discriminated by the analyzer 16, the main removal is also performed by monitoring the change in the concentration of the same gas component in the gas to be treated. The breakthrough of the agent 14 can be detected.

例えば、前記反応式からわかるように、同一量のホスフィンを処理したとき、塩基性炭酸銅で生成する水分量は、酸化銅で生成する水分量の1.5倍となるから、この水分量の差を検出することによって主除害剤14として使用した酸化銅又は塩基性炭酸銅の破過を検出することができる。   For example, as can be seen from the above reaction formula, when the same amount of phosphine is treated, the amount of water generated with basic copper carbonate is 1.5 times the amount of water generated with copper oxide. By detecting the difference, breakthrough of copper oxide or basic copper carbonate used as the main scavenger 14 can be detected.

他の有害成分を除去する場合でも、基本的に同じ傾向であり、例えば揮発性無機ハロゲン化物、一例としてHF(フッ化水素)では処理後には水が、有機金属化合物、一例としてTBA(トリブチルアルシン)では処理後にイソブタンが生成することになるので、前記ホスフィンの場合と同様に、各除害剤を組み合わせるとともに、主除害剤14が破過したときに濃度変化を生じるガス成分を分析計16で測定することにより、主除害剤14の破過を検出することができ、除害剤の交換時期と判定することができる。   Even when other harmful components are removed, the tendency is basically the same. For example, in the case of volatile inorganic halides, for example, HF (hydrogen fluoride), water is treated after treatment, organometallic compounds, for example, TBA (tributylarsine). ), Isobutane is produced after the treatment, so that in the same manner as in the case of the phosphine, the respective detoxifying agents are combined, and gas components that cause a change in concentration when the main detoxifying agent 14 breaks through are analyzed by the analyzer 16. By measuring with, it is possible to detect the breakthrough of the main detoxifying agent 14 and to determine the replacement time of the detoxifying agent.

除害筒13内に充填する副除害剤15の量は、分析計16で主除害剤14の破過に伴うガス成分濃度の変化を検知したときに、有害成分の除去能力を十分に有している量に設定すればよく、処理対象ガス中の有害成分濃度、処理量、流速等の条件に応じて設定すればよい。また、分析計16には、処理ガス中の分析対象となるガス成分を測定可能なものならば任意の分析計を用いることができるが、連続測定が可能な分析計を用いることが好ましい。   The amount of the secondary detoxifying agent 15 filled in the detoxifying cylinder 13 is sufficient to remove harmful components when the analyzer 16 detects a change in the gas component concentration accompanying the breakthrough of the main detoxifying agent 14. What is necessary is just to set to the quantity which has, and what is necessary is just to set according to conditions, such as a harmful | toxic component density | concentration in process target gas, a processing amount, and a flow rate. The analyzer 16 may be any analyzer as long as it can measure the gas component to be analyzed in the process gas, but it is preferable to use an analyzer capable of continuous measurement.

また、各除害剤は、分析計16で特定のガス成分の変化を測定できれば、複数種の除害剤を組み合わせて使用することも可能であり、例えば、主除害剤14として酸化銅と水酸化銅とを使用し、副除害剤15として塩基性炭酸銅を使用するといったことも可能である。   In addition, each detoxifying agent can be used in combination with a plurality of types of detoxifying agents as long as the analyzer 16 can measure a change in a specific gas component. It is also possible to use copper hydroxide and basic copper carbonate as the sub-detoxifying agent 15.

このように、有害成分の除去に伴って生成する無害なガス成分の濃度を測定し、該ガス成分の濃度変化に基づいて主除害剤14の破過を検知し、除害筒13内の除害剤の交換時期を判定することにより、除害筒13から有害成分が流出する前に除害剤の交換時期を確実に判定できる。また、検知剤の変色を目視によって判定するものに比べてより確実に除害剤の交換時期を判定できる。また、分析計16に警報発生手段を併設しておくことにより、除害剤の交換時期を容易かつ確実に知ることができる。   In this way, the concentration of the harmless gas component generated along with the removal of the harmful component is measured, and the breakthrough of the main detoxifying agent 14 is detected based on the change in the concentration of the gas component. By determining the replacement time of the detoxifying agent, it is possible to reliably determine the replacement time of the detoxifying agent before the harmful component flows out from the detoxifying cylinder 13. In addition, it is possible to more reliably determine the replacement time of the detoxifying agent than in the case where the color change of the detecting agent is visually determined. In addition, by providing an alarm generating means in the analyzer 16, it is possible to easily and reliably know the replacement time of the detoxifying agent.

なお、主除害剤14と副除害剤15とは、上述のように一つの除害筒13内に積層状態で配置することが好ましいが、主除害剤14を充填した主除害筒と副除害剤15を充填した副除害筒とを直列に配置し、副除害筒の処理ガス導出部に前記分析計16を設けることもできる。   In addition, although it is preferable to arrange the main detoxifying agent 14 and the sub-detoxifying agent 15 in a single detoxifying tube 13 as described above, the main detoxifying tube filled with the main detoxifying agent 14 is used. And a sub-detoxifying cylinder filled with the sub-detoxifying agent 15 may be arranged in series, and the analyzer 16 may be provided in the processing gas outlet portion of the sub-detoxifying cylinder.

図2に系統図で示す実験装置を使用した。この実験装置は、ベースガスとしての窒素ガスを供給する窒素ガス容器21と、有害成分ガスを供給する有害ガス容器22とを、圧力制御器23,23及び流量制御器24,24を介して接続し、あらかじめ設定した濃度で有害成分を含む窒素ガスをあらかじめ設定した流量でバッファタンク25に供給できるようにしている。   The experimental apparatus shown in the system diagram in FIG. 2 was used. In this experimental apparatus, a nitrogen gas container 21 that supplies nitrogen gas as a base gas and a harmful gas container 22 that supplies harmful component gas are connected via pressure controllers 23 and 23 and flow rate controllers 24 and 24. In addition, nitrogen gas containing harmful components at a preset concentration can be supplied to the buffer tank 25 at a preset flow rate.

除害筒26には、内径が160mmで、有効充填高さが300mmのステンレス鋼製の円筒体を使用した。除害筒26の処理ガス導出部27には、反応で生成したガス成分を測定するための分析計28と、除去されずに除害筒26から流出した有害成分を測定するための有害成分用分析計29とを設置するとともに、両分析計28,29の測定値を記録する記録計30を設け、記録計30によって各ガス成分濃度の変化を確認できるようにした。   As the abatement cylinder 26, a stainless steel cylindrical body having an inner diameter of 160 mm and an effective filling height of 300 mm was used. The treatment gas deriving unit 27 of the detoxification cylinder 26 includes an analyzer 28 for measuring gas components generated by the reaction and a noxious component for measuring harmful components that have not been removed and have flowed out of the decontamination cylinder 26. An analyzer 29 was installed, and a recorder 30 for recording the measured values of both analyzers 28 and 29 was provided, so that the recorder 30 could check the change in the concentration of each gas component.

実施例1
有害ガス容器22をホスフィン容器、分析計28をフーリエ変換赤外吸収光度分析計(MIDAC社製:IGA200)、有害成分用分析計29をホスフィン用ガス分析計(バイオニクス社製:TG4000)とし、窒素中のホスフィン濃度を1%に調節した処理対象ガスを毎分12リットルで除害筒26に導入するようにした。除害筒26内には、上流側に主除害剤となる酸化銅を主成分とした除害剤を200mmの高さで、下流側に副除害剤となる塩基性炭酸銅を主成分とした除害剤を100mmの高さでそれぞれ充填して積層状態とした。
Example 1
The toxic gas container 22 is a phosphine container, the analyzer 28 is a Fourier transform infrared absorption photometer (MIDAC: IGA200), the toxic component analyzer 29 is a phosphine gas analyzer (Bionics: TG4000), The gas to be treated with the phosphine concentration in nitrogen adjusted to 1% was introduced into the detoxifying cylinder 26 at 12 liters per minute. In the detoxifying cylinder 26, a detoxifying agent mainly composed of copper oxide serving as a main detoxifying agent on the upstream side is 200 mm in height, and a basic copper carbonate serving as a sub-detoxifying agent is composed mainly on the downstream side. Each of the detoxifying agents was filled at a height of 100 mm to form a laminated state.

処理対象ガスを除害筒26に流通させるとともに、分析計28にて二酸化炭素の濃度を、有害成分用分析計29にてホスフィンの濃度をそれぞれ測定した。その結果、実験開始後しばらくは500ppmであった二酸化炭素濃度が、実験開始から47時間後に1000ppm、53時間後に5000ppm、56時間後に7000ppmとなり、その後は約7000ppmの濃度が続いた。有害成分用分析計29では、実験開始から59時間まではホスフィンを検出しなかったが、59時間後に検出されて濃度が徐々に上昇し、60.5時間後に許容濃度の0.3ppmに達した。   The gas to be treated was circulated through the abatement cylinder 26, and the carbon dioxide concentration was measured by the analyzer 28 and the phosphine concentration was measured by the harmful component analyzer 29. As a result, the carbon dioxide concentration, which was 500 ppm for a while after the start of the experiment, became 1000 ppm 47 hours after the start of the experiment, 5000 ppm after 53 hours, 7000 ppm after 56 hours, and then the concentration of about 7000 ppm continued. The toxic component analyzer 29 did not detect phosphine until 59 hours after the start of the experiment, but it was detected 59 hours later, and the concentration gradually increased, and reached an allowable concentration of 0.3 ppm after 60.5 hours. .

この実験結果から、主除害剤である酸化銅は47時間程度で破過が近付き、56時間後に破過したことがわかる。また、副除害剤である塩基性炭酸銅は、59時間後に破過が近付き、60.5時間後に破過したことがわかる。したがって、処理ガス導出部27における二酸化炭素濃度が7000ppmに達した時点の56時間後を主除害剤の交換時期と判定することにより、約3時間分の余裕を持って除害剤を交換することができ、有害成分が外部に流出することを確実に防止できることがわかる。   From this experimental result, it can be seen that the copper oxide as the main scavenger approached breakthrough in about 47 hours and broke through after 56 hours. Moreover, it turns out that breakthrough approached 59 hours after the basic copper carbonate which is a sub-detoxifying agent, and broke through after 60.5 hours. Therefore, by replacing 56 hours after the time when the carbon dioxide concentration in the processing gas deriving unit 27 reaches 7000 ppm with the replacement timing of the main detoxifying agent, the detoxifying agent is replaced with a margin of about 3 hours. It can be seen that harmful components can be reliably prevented from flowing out.

なお、実際の装置管理では、主除害剤が完全に破過する前、例えば、二酸化炭素濃度が5000ppm程度になったときを除害剤の交換時期と判定するように設定しておくことにより、外部への有害成分の流出をより確実に防止することができる。   It should be noted that in actual device management, by setting so that the time when the carbon dioxide concentration reaches about 5000 ppm is determined as the time for replacement of the harmful agent before the main harmful agent completely breaks through. In addition, the outflow of harmful components to the outside can be prevented more reliably.

実施例2
除害筒26の上流側に主除害剤となる塩基性炭酸銅を主成分とした除害剤を200mmの高さで、下流側に副除害剤となる酸化銅を主成分とした除害剤を100mmの高さでそれぞれ充填して積層状態とした。これ以外の条件は実施例1と同じとして実験を行った。
Example 2
A removal agent mainly composed of basic copper carbonate as a main removal agent on the upstream side of the removal tube 26 at a height of 200 mm and a removal agent containing copper oxide as a subsidiary removal agent as a main component on the downstream side. Each of the harmful agents was filled at a height of 100 mm to form a laminated state. The experiment was conducted under the same conditions as in Example 1 except for this.

その結果、分析計28で測定した二酸化炭素濃度は、実験開始から1時間未満で7000ppmとなり、その後しばらくは略7000ppmの一定濃度であった。実験開始43時間後から二酸化炭素濃度が次第に減少し、50時間後には500ppm以下となり、その後は500ppm以下で略一定の濃度となった。有害成分用分析計29では、実験開始から61時間後にホスフィンが検出され、63時間後に許容濃度の0.3ppmに達した。したがって、約50時間で主除害剤が破過したと判定することができる。   As a result, the carbon dioxide concentration measured by the analyzer 28 was 7000 ppm in less than 1 hour from the start of the experiment, and was a constant concentration of approximately 7000 ppm for a while thereafter. The carbon dioxide concentration gradually decreased from 43 hours after the start of the experiment, and became 50 ppm or less after 50 hours, and thereafter became substantially constant at 500 ppm or less. In the harmful component analyzer 29, phosphine was detected 61 hours after the start of the experiment and reached an allowable concentration of 0.3 ppm after 63 hours. Therefore, it can be determined that the main scavenger has passed through in about 50 hours.

実施例3
除害筒26の上流側に主除害剤となる水酸化銅を主成分とした除害剤を200mmの高さで、下流側に副除害剤となる酸化銅を主成分とした除害剤を100mmの高さでそれぞれ充填して積層状態とした。これ以外の条件は実施例1と同じとして実験を行った。
Example 3
An abatement agent mainly composed of copper hydroxide as a main disinfectant on the upstream side of the disinfecting cylinder 26 at a height of 200 mm, and a disinfectant mainly composed of copper oxide as a sub-disinfectant on the downstream side Each of the agents was filled at a height of 100 mm to form a laminated state. The experiment was conducted under the same conditions as in Example 1 except for this.

その結果、分析計28で測定した水分濃度(25℃における相対湿度)は、実験開始から徐々に上昇して10時間後に90%に達し、その後、60時間までは略一定濃度であった。60時間を過ぎてから水分濃度が次第に低下し、65時間後には60%以下となった。有害成分用分析計29で測定したホスフィン濃度は、実験開始から70時間後に許容濃度の0.3ppmに達した。したがって、約65時間で主除害剤が破過したと判定することができる。   As a result, the water concentration (relative humidity at 25 ° C.) measured by the analyzer 28 gradually increased from the start of the experiment, reached 90% after 10 hours, and then remained substantially constant until 60 hours. After 60 hours, the water concentration gradually decreased and became 65% or less after 65 hours. The phosphine concentration measured by the harmful component analyzer 29 reached an allowable concentration of 0.3 ppm 70 hours after the start of the experiment. Therefore, it can be determined that the main scavenger has passed through in about 65 hours.

本発明の一形態例を示す除害装置の概略系統図である。It is a schematic system diagram of the abatement apparatus showing an embodiment of the present invention. 実施例で使用した実験装置の系統図である。It is a systematic diagram of the experimental apparatus used in the Example.

符号の説明Explanation of symbols

11…ガス導入部、12…処理ガス導出部、13…除害筒、14…主除害剤、15…副除害剤、16…分析計   DESCRIPTION OF SYMBOLS 11 ... Gas introduction part, 12 ... Processing gas derivation | leading-out part, 13 ... Detoxification cylinder, 14 ... Main detoxifying agent, 15 ... Sub-detoxifying agent, 16 ... Analyzer

Claims (5)

有害成分を含むガスを除害剤を充填した除害筒内に導入して前記有害成分の除去処理を行う除害装置において、前記除害剤として、前記有害成分との反応形態が異なる主除害剤と副除害剤とを使用し、該副除害剤を前記主除害剤よりもガス流れ方向下流側に配置するとともに、前記有害成分の除去処理を行った後のガスを導出する処理ガス導出部に、前記主除害剤又は副除害剤と前記有害成分との反応により生成するガス成分を測定するガス成分測定手段を設けたことを特徴とする除害装置。   In a detoxification apparatus that introduces a gas containing harmful components into a detoxification cylinder filled with a detoxifying agent and performs the removal process of the detrimental components, as the detoxifying agent, the main reaction having a different reaction form with the harmful components Using a harmful agent and a sub-detoxifying agent, disposing the sub-detoxifying agent on the downstream side in the gas flow direction with respect to the main detoxifying agent, and deriving the gas after the removal of the harmful components A detoxifying device, characterized in that a gas component measuring means for measuring a gas component generated by a reaction between the main detoxifying agent or auxiliary detoxifying agent and the detrimental component is provided in a processing gas deriving unit. 前記ガス成分測定手段は、前記副除害剤と前記有害成分との反応によって生成し、前記主除害剤と前記有害成分との反応では生成しないか、生成量が少ないガス成分を測定することを特徴とする請求項1記載の除害装置。   The gas component measuring means measures a gas component that is generated by a reaction between the sub-detoxifying agent and the harmful component and that is not generated by a reaction between the main detoxifying agent and the harmful component, or a small amount is generated. The abatement apparatus according to claim 1. 前記ガス成分測定手段は、前記主除害剤と前記有害成分との反応によって生成し、前記副除害剤と前記有害成分との反応では生成しないか、生成量が少ないガス成分を測定することを特徴とする請求項1記載の除害装置。   The gas component measuring means measures a gas component that is generated by a reaction between the main harmful agent and the harmful component and is not produced by a reaction between the auxiliary harmful agent and the harmful component, or a production amount is small. The abatement apparatus according to claim 1. 請求項2記載の除害装置の管理方法であって、測定対象となる前記ガス成分の濃度が上昇したときを除害剤の交換時期と判定することを特徴とする除害装置の管理方法。   3. The method for managing an abatement apparatus according to claim 2, wherein the time when the concentration of the gas component to be measured is increased is determined as the replacement timing of the detoxifying agent. 請求項3記載の除害装置の管理方法であって、測定対象となる前記ガス成分の濃度が下降したときを除害剤の交換時期と判定することを特徴とする除害装置の管理方法。   The method for managing an abatement apparatus according to claim 3, wherein the time when the concentration of the gas component to be measured is lowered is determined as a replacement period for the detoxifying agent.
JP2004349600A 2004-12-02 2004-12-02 Abatement device and its management method Expired - Fee Related JP4553705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349600A JP4553705B2 (en) 2004-12-02 2004-12-02 Abatement device and its management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349600A JP4553705B2 (en) 2004-12-02 2004-12-02 Abatement device and its management method

Publications (2)

Publication Number Publication Date
JP2006158990A true JP2006158990A (en) 2006-06-22
JP4553705B2 JP4553705B2 (en) 2010-09-29

Family

ID=36661580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349600A Expired - Fee Related JP4553705B2 (en) 2004-12-02 2004-12-02 Abatement device and its management method

Country Status (1)

Country Link
JP (1) JP4553705B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268962A (en) * 2008-05-07 2009-11-19 Japan Pionics Co Ltd System of decomposing/processing fluoride compound
JP2012163540A (en) * 2011-02-09 2012-08-30 Taiyo Nippon Sanso Corp Gas measuring apparatus and measuring method of hydride gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117053A (en) * 1998-10-16 2000-04-25 Tomoe Shokai:Kk Chlorine trifluoride treating cylinder and treatment of gas to be treated containing chlorine trifluoride
JP2001321638A (en) * 2000-05-15 2001-11-20 Central Glass Co Ltd Method for removing hypofluorite
JP2001334125A (en) * 2000-05-29 2001-12-04 Japan Pionics Co Ltd System and method for purifying nitrogen fluoride
JP2004351364A (en) * 2003-05-30 2004-12-16 Ebara Corp Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117053A (en) * 1998-10-16 2000-04-25 Tomoe Shokai:Kk Chlorine trifluoride treating cylinder and treatment of gas to be treated containing chlorine trifluoride
JP2001321638A (en) * 2000-05-15 2001-11-20 Central Glass Co Ltd Method for removing hypofluorite
JP2001334125A (en) * 2000-05-29 2001-12-04 Japan Pionics Co Ltd System and method for purifying nitrogen fluoride
JP2004351364A (en) * 2003-05-30 2004-12-16 Ebara Corp Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268962A (en) * 2008-05-07 2009-11-19 Japan Pionics Co Ltd System of decomposing/processing fluoride compound
JP2012163540A (en) * 2011-02-09 2012-08-30 Taiyo Nippon Sanso Corp Gas measuring apparatus and measuring method of hydride gas

Also Published As

Publication number Publication date
JP4553705B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
EP1890141A1 (en) Measuring method for total organic carbon, measuring method for total nitrogen and measuring apparatus for the methods
TW200512048A (en) Method for the removal of airborne molecular contaminants using oxygen and/or water gas mixtures
WO2006093026A1 (en) System and method for removing mercury in exhaust gas
JP2005074311A (en) Air cleaner, and air cleaning method
JP2010131564A (en) Exhaust gas treatment apparatus and treatment method therefor
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP4553705B2 (en) Abatement device and its management method
JP4887327B2 (en) Fluorine compound decomposition treatment system
KR102407762B1 (en) The appartus and method for denitrification of exhaust gas
CA2826715A1 (en) Ozone-ultrasonic treatment of spent caustic wastewater
JP4629967B2 (en) Method and apparatus for treating N2O-containing exhaust gas
JP4038511B2 (en) Chemical decontamination method
WO2003008072A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
JP4391879B2 (en) Ammonia decomposition and removal equipment
JP2000140576A (en) System for making fluorogas-containing mixture harmless
KR100338323B1 (en) Apparatus for chemical treatment of exhaust gas from semiconductor manufacturing process
JP2007253082A (en) Detoxifying apparatus of harmful gas
JP4845812B2 (en) Equipment for treating exhaust gas containing fluorine-containing compounds
JP4566896B2 (en) Exhaust gas purification treatment method and apparatus
JP3277408B2 (en) Cleaning device control method and cleaning device
JP4840552B2 (en) Ozone gas monitoring device
JP3143792B2 (en) Method of removing ammonia-containing exhaust gas
JP7221057B2 (en) Apparatus and method for treating gas containing nitrogen oxides
JP4852877B2 (en) Treatment of wastewater containing nitrite anticorrosive
JPH11267443A (en) Dry type harm removing device and method for gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4553705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees