JP2010131564A - Exhaust gas treatment apparatus and treatment method therefor - Google Patents

Exhaust gas treatment apparatus and treatment method therefor Download PDF

Info

Publication number
JP2010131564A
JP2010131564A JP2008312129A JP2008312129A JP2010131564A JP 2010131564 A JP2010131564 A JP 2010131564A JP 2008312129 A JP2008312129 A JP 2008312129A JP 2008312129 A JP2008312129 A JP 2008312129A JP 2010131564 A JP2010131564 A JP 2010131564A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
flow path
value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008312129A
Other languages
Japanese (ja)
Inventor
Misaki Sumikura
みさき 隅倉
Masataka Hidaka
政隆 日高
Takeshi Takemoto
剛 武本
Ichiro Enbutsu
伊智朗 圓佛
Yoshihiro Nobutomo
義弘 信友
Hideyuki Tadokoro
秀之 田所
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008312129A priority Critical patent/JP2010131564A/en
Priority to CN200910253831A priority patent/CN101745286A/en
Publication of JP2010131564A publication Critical patent/JP2010131564A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability by safely reducing waste ozone less than a given level, and to reduce facility cost and running cost of a waste ozone treatment apparatus using activated carbon and/or a catalyst. <P>SOLUTION: Exhaust gas 1 containing ozone or the like flows into a flow path 2 and flows into an activated carbon column 4, where gas like ozone contained in the exhaust gas 1 is decomposed by activated carbon. The ozone gas concentration is measured by a gas concentration meter 3 set in the flow path of the decomposed exhaust gas, the exhaust gas containing ozone is diluted with air in a branch flow path 11 into which dilution gas like air flows, and released to the atmosphere by a blower 6. A controlling device 7 transmits 9 an alarm, cuts off 10 inflow of the exhaust gas, switches the gas flow path, and controls 19 the flow of the dilution air, based on the measured value of the gas concentration meter 3, and a regulation value CA of atmospheric releasing ozone and ozone concentration CH causing ignition of the activated carbon, which are set values received from an input means 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、オゾン、ダイオキシン類、臭気ガス等のガスを含む排ガスを処理する装置に係わり、特に、これらのガスを含む排ガスを活性炭及び/又は触媒で処理、又は空気などで希釈して処理する排ガス処理装置及び処理方法に関する。   The present invention relates to an apparatus for treating exhaust gas containing gases such as ozone, dioxins, and odor gas, and in particular, treats exhaust gas containing these gases with activated carbon and / or a catalyst or dilutes with air or the like. The present invention relates to an exhaust gas treatment apparatus and a treatment method.

オゾンガスは、上下水の消毒・脱臭、工場排水の処理、脱臭装置などに利用が広がっている。一方、オゾンは大気汚染物質である光化学オキシダントの主成分であり、人体や植物に悪影響を与えるため、未利用のオゾン(以下、排オゾンと称する)は極力除去する必要がある。大気汚染に係わる環境基準によると、光化学オキシダントは1時間値で0.06ppm以下と定められている。   Ozone gas is widely used for disinfection and deodorization of water and sewage, treatment of factory effluent, and deodorization equipment. On the other hand, ozone is a main component of a photochemical oxidant that is an air pollutant and adversely affects human bodies and plants. Therefore, it is necessary to remove unused ozone (hereinafter referred to as exhausted ozone) as much as possible. According to environmental standards related to air pollution, the photochemical oxidant is determined to be 0.06 ppm or less per hour.

排オゾンの処理方法には、活性炭で吸着・分解する方法、触媒で分解する方法、加熱してオゾンを自己分解させる方法、薬液で洗浄する方法などがあり、処理効果、維持管理性、経済性等を考慮して選択されている。   Waste ozone treatment methods include adsorption / decomposition with activated carbon, decomposition with catalyst, self-decomposition of ozone by heating, cleaning with chemicals, etc., treatment effect, maintenance and economics It is selected in consideration of etc.

オゾンを処理する従来技術として、例えば非特許文献1には、活性炭で吸着・分解する方法が開示されており、この開示技術によると、オゾンを確実に処理でき、維持管理上も活性炭の取替えと追加のみであり、加熱や廃液処理が不要などの利点を有していて、広く利用されている。ただし、数100ppmといった高濃度の排オゾンが流入すると、急速な酸化反応に伴い発火する危険があるため、これを回避する措置が必要になる。   As a conventional technique for treating ozone, for example, Non-Patent Document 1 discloses a method of adsorption / decomposition with activated carbon. According to this disclosed technique, ozone can be treated reliably, and maintenance is also replaced with activated carbon. It is an addition only and has the advantage that heating and waste liquid treatment are unnecessary, and is widely used. However, when exhaust ozone having a high concentration of several hundred ppm flows in, there is a risk of ignition due to a rapid oxidation reaction, and measures to avoid this are necessary.

非特許文献1には、排オゾン入口の後段にミストセパレータ、触媒用加温ヒータ、マンガン触媒塔、活性炭塔、ブロワの順に接続された排オゾン分解装置の例が示されている。マンガン触媒は活性炭に比べ高濃度のオゾンが分解可能である。マンガン触媒によって活性炭へ流入するガス中のオゾン濃度は0.1ppm以下に低減され、活性炭はさらに確実に0.06ppm以下にまで低減するためのバックアップの位置付けである。この例では、浄水処理を対象としており、入口の排オゾン濃度が最大4g/Nmと想定されている。 Non-Patent Document 1 shows an example of an exhaust ozone decomposing apparatus in which a mist separator, a catalyst heating heater, a manganese catalyst tower, an activated carbon tower, and a blower are connected in this order after the exhaust ozone inlet. Manganese catalysts can decompose ozone at a higher concentration than activated carbon. The ozone concentration in the gas flowing into the activated carbon by the manganese catalyst is reduced to 0.1 ppm or less, and the activated carbon is positioned as a backup for further reliably reducing to 0.06 ppm or less. In this example, water purification treatment is targeted, and the exhaust ozone concentration at the inlet is assumed to be 4 g / Nm 3 at the maximum.

また、オゾンを処理する従来技術として、例えば特許文献1には、上述の非特許文献1の処理装置と同様に、触媒塔の後段に活性炭塔を配した排オゾン処理装置において、触媒塔から流出したガスのオゾン濃度を測定して警報を発する方法が開示されている。この特許文献1の方法では、触媒のオゾン分解性能の低下を検知し、触媒を交換することにより、高濃度のオゾンを含む排ガスが活性炭塔に流入することを回避することができる。
「水道施設設計指針」、発行所日本水道協会 平成12年3月31日発行、318頁〜312頁 特開平11−70321号公報
In addition, as a conventional technique for treating ozone, for example, Patent Document 1 discloses an exhaust ozone treatment apparatus in which an activated carbon tower is disposed at the rear stage of the catalyst tower, as in the processing apparatus of Non-Patent Document 1 described above. A method of issuing an alarm by measuring the ozone concentration of the gas is disclosed. In the method of Patent Document 1, it is possible to prevent the exhaust gas containing high-concentration ozone from flowing into the activated carbon tower by detecting a decrease in the ozonolysis performance of the catalyst and replacing the catalyst.
“Water Supply Facility Design Guidelines”, Issued by Japan Waterworks Association, issued on March 31, 2000, pages 318-312 Japanese Patent Laid-Open No. 11-70321

ところで、オゾンを含む排ガスを、再度被処理水等に注入するリサイクル運転を行う場合や、下水や工場廃止等の処理にオゾンを使用する場合に、運転条件や非処理水の水質によっては、排オゾン濃度が100ppm以下程度の低濃度になる。例えば、発明者らが行った、消毒と脱色・脱臭を目的として下水二次処理水をオゾン処理する実験では、排オゾン濃度は最大でも50ppm以下、平均約20ppmであった。このように、排オゾン濃度が、活性炭を発火させる濃度(例えば、数100ppm)より充分低い場合、活性炭のみで排オゾン処理を行うことができる。   By the way, depending on the operating conditions and the quality of non-treated water, when exhaust gas containing ozone is recycled into water to be treated again, or when ozone is used for treatment such as sewage and plant abolition. The ozone concentration becomes a low concentration of about 100 ppm or less. For example, in an experiment conducted by the inventors for ozone treatment of sewage secondary treated water for the purpose of disinfection and decolorization / deodorization, the exhaust ozone concentration was 50 ppm or less at the maximum and an average of about 20 ppm. Thus, when the exhaust ozone concentration is sufficiently lower than the concentration at which the activated carbon is ignited (for example, several hundred ppm), the exhaust ozone treatment can be performed only with the activated carbon.

それにも拘わらず、この場合の排オゾン処理装置として、上記の非特許文献1又は特許文献1に示された、触媒と活性炭を含む構成を用いた場合、触媒用の加温ヒータの運転コストや触媒塔の設備コストおよび触媒の維持管理が必要となる。   Nevertheless, when the configuration including the catalyst and activated carbon shown in Non-Patent Document 1 or Patent Document 1 is used as the exhaust ozone treatment device in this case, the operating cost of the heating heater for the catalyst is Equipment costs for the catalyst tower and catalyst maintenance are required.

また、排オゾン処理後の処理ガスのオゾン濃度は、規制値以下に維持する必要があるが、規制値は0.06ppmと低く、直接測定して警報を出すためには、この規制値より充分低い濃度でも感知できる高感度で高価なオゾン濃度計が必要である。   In addition, the ozone concentration of the treatment gas after exhaust ozone treatment needs to be kept below the regulation value, but the regulation value is as low as 0.06 ppm, which is more than this regulation value for direct measurement and warning. There is a need for a highly sensitive and expensive ozone densitometer that can detect even low concentrations.

本発明の目的は、上記従来技術の課題を解決すべく、活性炭及び/又は触媒を用いた排オゾン処理装置において、安全に排オゾンを所定値以下に低減し、かつ設備コストおよび運転コストを低減して、排オゾン除去に信頼性が高く、かつ経済的な排オゾン処理装置および処理方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, in an exhaust ozone treatment apparatus using activated carbon and / or a catalyst, to safely reduce exhaust ozone to a predetermined value or less, and to reduce facility costs and operation costs. An object of the present invention is to provide a waste ozone treatment apparatus and a treatment method that are highly reliable and economical for removing waste ozone.

前記課題を解決するために、本発明は主として次のような構成を採用する。
大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、前記ガス濃度計は、前記排ガス分解塔で前記排ガスを分解した分解処理後の排ガスの流路に配置されるとともに、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の所定値に、前記計測したガス濃度が達すると警報を指示する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
An exhaust gas decomposition tower that decomposes exhaust gas that is restricted to atmospheric release with activated carbon and / or a catalyst, a blower that releases the gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air, nitrogen, etc. on the upstream side of the blower From a dilution gas pipe that communicates a non-removal target gas to the exhaust gas flow path, a gas concentration meter that measures the exhaust gas concentration provided in the exhaust gas flow path, a measured value from the gas concentration meter, and input operation means An exhaust gas treatment apparatus comprising a control unit for instructing a gas concentration alarm based on an input set value of the exhaust gas, wherein the gas concentration meter The control unit measures the concentration of the exhaust gas before dilution and is disposed in the flow path and on the upstream side of the dilution gas pipe. Concentration regulation And then, a predetermined value of less than the calculated value calculated from said input setting value and the dilution ratio, a structure for indicating a warning to the gas concentration measured reaches.

ことを特徴とする排ガス処理装置。   An exhaust gas treatment apparatus characterized by that.

また、大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、前記ガス濃度計は、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、前記希釈ガス配管接続後の排ガスの流路には、前記排ガス分解塔を経由して前記送風機に繋がる第1の流路と、直接に前記送風機に繋がる第2の流路とを形成する三方弁が設けられ、前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第1の所定値に、前記計測したガス濃度が達すると、前記第2の流路から前記第1の流路に切り替えるように前記三方弁に指示し、さらに、前記制御部は、前記入力設定値と希釈倍率とから算出した算出値未満の第2の所定値に、前記計測したガス濃度が達すると警報を指示する構成とする。   In addition, an exhaust gas decomposition tower that decomposes the exhaust gas regulated to be released into the atmosphere with activated carbon and / or a catalyst, a blower that releases the gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air and nitrogen on the upstream side of the blower Dilution gas piping for communicating a non-removable gas such as the exhaust gas flow path, a gas concentration meter for measuring the exhaust gas concentration provided in the exhaust gas flow path, and a measured value and input operation from the gas concentration meter An exhaust gas treatment apparatus comprising: a control unit for instructing a gas concentration alarm based on an input set value from the means, wherein the gas concentration meter is disposed on the upstream side of the dilution gas pipe and is diluted The concentration of the previous exhaust gas is measured, and the exhaust gas flow path after the dilution gas pipe connection is connected to the first flow path connected to the blower via the exhaust gas decomposition tower and the second directly connected to the blower. Three-way valve that forms a flow path with The control unit is configured to set the input set value by the input operation means as a gas concentration regulation value for atmospheric emission, and to a first predetermined value less than a calculated value calculated from the input set value and a dilution rate, When the measured gas concentration reaches, the three-way valve is instructed to switch from the second flow path to the first flow path, and the control unit calculates from the input set value and the dilution rate. A warning is instructed when the measured gas concentration reaches a second predetermined value less than the calculated value.

また、大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、前記ガス濃度計は、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、前記希釈ガス配管接続後の排ガスの流路には、前記排ガス分解塔としての活性炭塔を経由して前記送風機に繋がる第1の流路と、前記排ガス分解塔としての触媒塔を経由して前記送風機に繋がる第2の流路とを形成する三方弁が設けられ、前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第1の所定値に、前記計測したガス濃度が達すると警報を指示し、さらに、前記制御部は、前記入力操作手段による前記入力設定値を前記活性炭塔の活性炭が発火する発火濃度値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第2の所定値に、前記計測したガス濃度が達すると、前記第1の流路から前記第2の流路に切り替えるように前記三方弁に指示する構成とする。   In addition, an exhaust gas decomposition tower that decomposes the exhaust gas regulated to be released into the atmosphere with activated carbon and / or a catalyst, a blower that releases the gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air and nitrogen on the upstream side of the blower Dilution gas piping for communicating a non-removable gas such as the exhaust gas flow path, a gas concentration meter for measuring the exhaust gas concentration provided in the exhaust gas flow path, and a measured value and input operation from the gas concentration meter An exhaust gas treatment apparatus comprising: a control unit for instructing a gas concentration alarm based on an input set value from the means, wherein the gas concentration meter is disposed on the upstream side of the dilution gas pipe and is diluted The exhaust gas flow path after measuring the concentration of the previous exhaust gas and connected to the dilution gas pipe is connected to the blower via the activated carbon tower as the exhaust gas decomposition tower, and the exhaust gas decomposition tower As a catalyst tower A three-way valve forming a second flow path connected to the blower, and the control unit sets the input set value by the input operation means as a gas concentration regulation value for atmospheric discharge, and the input set value and dilution When the measured gas concentration reaches a first predetermined value less than the calculated value calculated from the magnification, an alarm is instructed, and the control unit sets the input set value by the input operation means of the activated carbon tower. When the measured gas concentration reaches a second predetermined value that is less than a calculated value calculated from the input set value and the dilution rate, the second concentration from the first flow path is set as the ignition concentration value at which activated carbon ignites. The three-way valve is instructed to switch to this flow path.

また、大気放出を規制されている排ガスを活性炭で分解する活性炭塔と、前記活性炭塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えて、排ガスを処理する処理方法において、前記制御部には、前記入力操作手段から、大気放出のガス濃度規制値と前記活性炭塔における活性炭が発火する発火濃度値とが予め入力され、続いて、前記ガス濃度計で計測されたガス濃度が入力され、前記計測されたガス濃度と前記活性炭による排ガス分解能力とから算出した換算ガス濃度値が前記発火濃度値未満の所定値に達していると判定されると、前記活性炭塔への排ガス入力を遮断するように指示され、さらに、前記計測されたガス濃度値が、前記大気放出のガス濃度規制値と希釈倍率とから算出した算出値未満の所定値に達していると判定されると、警報を指示する排ガス処理方法。   In addition, an activated carbon tower that decomposes exhaust gas that is controlled to be released into the atmosphere with activated carbon, a blower that discharges the gas decomposed in the activated carbon tower to the atmosphere, and non-removable gases such as air and nitrogen on the upstream side of the blower A dilution gas pipe that communicates with the exhaust gas flow path, a gas concentration meter that measures the exhaust gas concentration provided in the exhaust gas flow path, a measured value from the gas concentration meter, and an input set value from the input operation means A control unit for instructing a gas concentration alarm based on the exhaust gas processing method. The ignition concentration value at which activated carbon ignites is input in advance, then the gas concentration measured by the gas concentration meter is input, and calculated from the measured gas concentration and the exhaust gas decomposition ability by the activated carbon. When it is determined that the converted gas concentration value has reached a predetermined value less than the ignition concentration value, it is instructed to shut off the exhaust gas input to the activated carbon tower, and the measured gas concentration value is An exhaust gas processing method for instructing an alarm when it is determined that a predetermined value less than a calculated value calculated from a gas concentration restriction value and a dilution factor of atmospheric release is reached.

本発明によると、活性炭及び/又は触媒を用いた排オゾン処理装置において、空気等による希釈前の処理ガス(活性炭などで排オゾン処理をした後のガス)の濃度と流量、及び空気などの希釈ガスの流量の計測値又は実験値から予測した希釈後のガスのオゾン濃度に基づいて、警報の発信、排ガスの流入遮断、ガス流路の切替え等を行い、排オゾンの濃度を所定値以下に低減させることができる。このように、空気等による希釈前に測定するため、オゾン濃度計の感度は低くてもよく、これによって、設備コストを低減することができ、経済性を向上させることができる。   According to the present invention, in an exhaust ozone treatment apparatus using activated carbon and / or a catalyst, the concentration and flow rate of a processing gas (gas after exhausted ozone treatment with activated carbon or the like) before dilution with air or the like, and dilution of air or the like Based on the ozone concentration of the diluted gas predicted from the measured value or experimental value of the gas flow, the alarm is sent, the inflow of the exhaust gas is interrupted, the gas flow path is switched, etc., and the concentration of exhaust ozone is kept below the specified value. Can be reduced. Thus, since it measures before dilution with air etc., the sensitivity of an ozone densitometer may be low, and, thereby, an installation cost can be reduced and economical efficiency can be improved.

本発明の実施形態に係る排ガス処理装置について、図1〜図9を参照しながら以下詳細に説明する。図1は本発明の第1の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。図2は第1の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。図3は本発明の第2の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。図4は第2の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。   An exhaust gas treatment apparatus according to an embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a process diagram showing the overall configuration of the exhaust gas treatment apparatus according to the first embodiment of the present invention. FIG. 2 is a flowchart showing the processing method of the exhaust gas processing apparatus according to the first embodiment. FIG. 3 is a process diagram showing the overall configuration of the exhaust gas treatment apparatus according to the second embodiment of the present invention. FIG. 4 is a flowchart showing a processing method of the exhaust gas processing apparatus according to the second embodiment.

また、図5は本発明の第3の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。図6は第3の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。図7は第3の実施形態に係る排ガス処理装置の全体構成における変形例を示す処理工程である。図8は本発明の第4の実施形態に係る排ガス処理装置の全体構成を示す処理工程である。図9は第4の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。   FIG. 5 is a process diagram showing the overall configuration of the exhaust gas treatment apparatus according to the third embodiment of the present invention. FIG. 6 is a flowchart showing a processing method of the exhaust gas processing apparatus according to the third embodiment. FIG. 7 shows processing steps showing a modification of the overall configuration of the exhaust gas processing apparatus according to the third embodiment. FIG. 8 shows processing steps showing the overall configuration of the exhaust gas processing apparatus according to the fourth embodiment of the present invention. FIG. 9 is a flowchart showing a processing method of the exhaust gas processing apparatus according to the fourth embodiment.

図面において、1は排ガス、2は流路、3はオゾン濃度計、4は活性炭塔、5は流路、6はブロワ、7は制御装置、8は入力手段、9は警報装置、10は排ガス発生元制御装置、11は分岐流路、12は三方弁、13は流路、14は触媒塔、15は流路、16は流量計、17は分岐流路、18は流量計、19は流量調整弁、をそれぞれ表す。   In the drawings, 1 is exhaust gas, 2 is a flow path, 3 is an ozone concentration meter, 4 is an activated carbon tower, 5 is a flow path, 6 is a blower, 7 is a control device, 8 is an input means, 9 is an alarm device, and 10 is exhaust gas. Source control device, 11 is a branch channel, 12 is a three-way valve, 13 is a channel, 14 is a catalyst tower, 15 is a channel, 16 is a flow meter, 17 is a branch channel, 18 is a flow meter, 19 is a flow rate Each represents a regulating valve.

「第1の実施形態」
まず、本発明の実施形態においては、排ガス処理の除去対象が排ガスに含まれるオゾンである場合を例示して以下説明するが、オゾンに限らず、活性炭及び/又は触媒で処理するガスとして、オゾン以外にダイオキシン類、臭気ガスが挙げられ、これらのガスはそのままでは大気に放出できないように規制されている規制ガスであり、これらのガスについても本発明は適用可能である。
“First Embodiment”
First, in the embodiment of the present invention, the case where the object of removal of exhaust gas treatment is ozone contained in the exhaust gas will be described as an example. However, ozone is not limited to ozone, and as a gas to be treated with activated carbon and / or a catalyst, ozone is used. In addition to these, dioxins and odorous gases are listed, and these gases are regulated gases that are regulated so that they cannot be released into the atmosphere as they are, and the present invention can also be applied to these gases.

図1に示す排オゾン処理工程では、排ガス1が流路2を通過し、活性炭塔4へ流入する。活性炭塔4では、充填された活性炭により、排ガス1に含まれるオゾンが分解される。その後、排ガス1は流路5へ処理ガスとして流出し(排ガス中のオゾンが活性炭などで分解した後のガスを処理ガスと称する)、その一部がオゾン濃度計3に流入してオゾン濃度を測定された後、再び合流する。続いて流路5に接続した分岐流路11から注入した空気、窒素などの非オゾンガスにより希釈された後に、ブロワ6によって大気中へ放出される。   In the exhaust ozone treatment process shown in FIG. 1, the exhaust gas 1 passes through the flow path 2 and flows into the activated carbon tower 4. In the activated carbon tower 4, ozone contained in the exhaust gas 1 is decomposed by the filled activated carbon. Thereafter, the exhaust gas 1 flows out into the flow path 5 as a processing gas (the gas after the ozone in the exhaust gas is decomposed by activated carbon or the like is referred to as a processing gas), and a part of it flows into the ozone concentration meter 3 to reduce the ozone concentration. After being measured, merge again. Subsequently, after being diluted with air or non-ozone gas such as nitrogen injected from the branch channel 11 connected to the channel 5, it is discharged into the atmosphere by the blower 6.

また、制御装置7は、オゾン濃度計3、入力手段8、警報装置9、および排ガス発生元制御装置(オゾンを利用して消毒又は脱臭等を実行する装置の制御装置)10に接続される。制御装置7は、オゾン濃度計3から受信したオゾン濃度の測定値Cと入力手段8から受信した警報発信値CAを比較し、測定値Cの方が高い場合は、警報装置9へ信号を送り、警報装置9から警報が発信される。ここで、警報発信値CAは入力手段8で設定される値であり、例えば光化学オキシダントの規制値である0.06ppm未満の適宜の値に対応する値に設定するとよい(警報発信値CAは、オゾン濃度計3の計測値に対応して比較される値であり、上記規制値未満の適宜値に対応する希釈前の値である)。   The control device 7 is connected to an ozone concentration meter 3, an input unit 8, an alarm device 9, and an exhaust gas generation source control device (a control device for a device that performs disinfection or deodorization using ozone) 10. The control device 7 compares the measured value C of the ozone concentration received from the ozone concentration meter 3 with the alarm transmission value CA received from the input means 8, and sends a signal to the alarm device 9 if the measured value C is higher. An alarm is transmitted from the alarm device 9. Here, the alarm transmission value CA is a value set by the input means 8, and for example, it may be set to a value corresponding to an appropriate value of less than 0.06 ppm which is a regulated value of photochemical oxidant (the alarm transmission value CA is This is a value that is compared with the measured value of the ozone concentration meter 3, and is a value before dilution corresponding to an appropriate value less than the above-mentioned regulation value).

また、制御装置7は、入力手段8で設定した上限値CH(CH>CA)と測定値Cとを比較し、測定値Cの方が高い場合は、排ガス発生元制御装置10へ信号を送り、排ガス発生元制御装置10により、排ガスの流路2への流入が遮断されるようにする。上限値CHは、例えば活性炭塔4の入口におけるオゾン濃度が活性炭の発火濃度に達する値未満の適宜の値に対応する値に設定するとよい(上限値CHは、オゾン濃度計3の計測値に対応して比較される値であり、上記発火濃度未満の適宜値に対応する分解前の値である)。   Further, the control device 7 compares the upper limit value CH (CH> CA) set by the input means 8 with the measured value C, and sends a signal to the exhaust gas generation source control device 10 when the measured value C is higher. The exhaust gas generation source control device 10 blocks the inflow of exhaust gas into the flow path 2. The upper limit value CH may be set to a value corresponding to an appropriate value less than the value at which the ozone concentration at the inlet of the activated carbon tower 4 reaches the ignition concentration of the activated carbon (the upper limit value CH corresponds to the measured value of the ozone concentration meter 3). And a value before decomposition corresponding to an appropriate value less than the ignition concentration).

警報発信値CAは上限値CHより低い値とし、例えば、次に示す数1を用いて設定してもよい。   The alarm transmission value CA is set to a value lower than the upper limit value CH, and may be set using the following equation 1, for example.

CA=Ce(F1+F2)/F1 (数1)
数1において、CAは警報発信値、Ceは大気中へ放出されるオゾン濃度、F1は排ガス1の流量、F2は分岐流路11の非オゾンガスの流量である。F1およびF2は、流路2および分岐流路11に流量計を設けて、その測定値を制御手段7で取得してもよく、また、予め設計時に測定した所定値を用いてもよい
なお、F1とF2は設計時に予め規定されていて測定済みの所定値としてもよい。後述するが、図1の例示で、希釈ガス配管を大気開放にしておいて、ブロア6の吸引能力と、排ガスの配管及び希釈ガス配管の管径と、排ガス配管の圧力損失と、を基に予め決められるものである。ここで、(F1+F2)/F1は希釈倍率を表している。この希釈倍率とCeとによって、警報発信値CAが入力手段8で設定されるのである。ここで、警報が発せられるということは、作業者にガス濃度が大気放出規制値との比較で高いことを報知するともに、活性炭塔の活性炭の交換を促す役割を担っている。
CA = Ce (F1 + F2) / F1 (Equation 1)
In Equation 1, CA is the alarm transmission value, Ce is the ozone concentration released into the atmosphere, F1 is the flow rate of the exhaust gas 1, and F2 is the flow rate of the non-ozone gas in the branch flow path 11. F1 and F2 may be provided with a flow meter in the flow path 2 and the branch flow path 11, and the measured value may be acquired by the control means 7, or a predetermined value measured in advance at the time of design may be used. F1 and F2 may be predetermined values that are defined in advance at the time of design and have been measured. As will be described later, in the example of FIG. 1, the dilution gas piping is opened to the atmosphere, and the suction capacity of the blower 6, the diameter of the exhaust gas piping and the dilution gas piping, and the pressure loss of the exhaust gas piping are used. It is predetermined. Here, (F1 + F2) / F1 represents a dilution rate. The alarm transmission value CA is set by the input means 8 based on the dilution factor and Ce. Here, the fact that an alarm is issued plays a role of notifying the worker that the gas concentration is high in comparison with the atmospheric emission regulation value and urging the replacement of the activated carbon in the activated carbon tower.

さらに、分岐流路11に流量調整弁19を設け、警報装置9から警報が発信された場合、流量調整弁19の開度を増加し、希釈倍率を上げてもよい。この開度調整は、流量調整弁19を接続された制御手段7が自動的に行っても、警報を受けた運転員が手動で行ってもよい。   Furthermore, when the flow control valve 19 is provided in the branch flow path 11 and an alarm is transmitted from the alarm device 9, the opening degree of the flow control valve 19 may be increased to increase the dilution factor. This opening degree adjustment may be automatically performed by the control means 7 connected to the flow rate adjusting valve 19 or manually by an operator who has received an alarm.

このように、本実施形態では、オゾン濃度を計測した部位の排ガスの後流側に、オゾン濃度を希釈する希釈用の分岐流路11が配置されており、オゾン濃度計3で計測する濃度は、希釈前であるので大気放出のオゾン濃度よりも濃く、その計測に当たって高感度の濃度計を必要としない。また、図1に示す処理工程の系統図によると、活性炭塔4のオゾン分解能力と活性炭塔4後流側のオゾン濃度計の計測値とを用いて、活性炭塔入口側の排ガス流路2におけるオゾン濃度が実験的に予測可能である。   Thus, in the present embodiment, the diverging branch channel 11 for diluting the ozone concentration is arranged on the downstream side of the exhaust gas at the site where the ozone concentration is measured, and the concentration measured by the ozone concentration meter 3 is Since it is before dilution, it is thicker than the ozone concentration released into the atmosphere, and a highly sensitive concentration meter is not required for the measurement. Further, according to the system diagram of the treatment process shown in FIG. 1, using the ozone decomposing capability of the activated carbon tower 4 and the measured value of the ozone concentration meter on the downstream side of the activated carbon tower 4, The ozone concentration can be predicted experimentally.

したがって、活性炭塔4に流入する排ガスのオゾン濃度の換算値に基づいて(換算値を元に入力手段8の値を設定する)、警報発信値CAと比較判断することにより警報を発信することができ、さらに、上限値CHと比較判断することにより、排ガスの流入を遮断することで活性炭の発火を回避し、運転の信頼性を向上できる。また、触媒を用いないため、触媒用の加温ヒータの運転コストや触媒塔の設備コストが不要となり、経済性を向上できる。   Therefore, based on the converted value of the ozone concentration of the exhaust gas flowing into the activated carbon tower 4 (the value of the input means 8 is set based on the converted value), an alarm can be transmitted by comparing with the alarm transmission value CA. In addition, by comparing with the upper limit value CH, it is possible to avoid ignition of the activated carbon by blocking the inflow of the exhaust gas, and to improve the operation reliability. Further, since no catalyst is used, the operating cost of the heating heater for the catalyst and the equipment cost of the catalyst tower are not required, and the economy can be improved.

なお、図1に示す処理工程の系統図では、オゾン濃度計3で計測したオゾン濃度(流路5における処理ガスのオゾン濃度)は、上述したように、活性炭塔4の前流側の流路2における排ガス1のオゾン濃度を予測し対応可能とし得るものであり、この排ガス1のオゾン濃度を対象として警報値と上限値を設定するとよい。そうすると、活性炭の発火回避の警報と排ガス入力阻止の作動を行わせることができる。諸条件次第ではあるが(例えば活性炭の分解能力、希釈の度合い)、一般的に云えば、排ガス1中のオゾン濃度が上昇すると、まず、オゾンの大気放出の規制値に達し、次いで活性炭の発火濃度に到達することとなる。条件によっては規制値と発火濃度の到達時期が逆転することもあり得る。   1, the ozone concentration measured by the ozone concentration meter 3 (the ozone concentration of the processing gas in the flow path 5) is the flow path on the upstream side of the activated carbon tower 4 as described above. The ozone concentration of the exhaust gas 1 in 2 can be predicted and made compatible, and an alarm value and an upper limit value may be set for the ozone concentration of the exhaust gas 1 as a target. If it does so, the warning of the ignition avoidance of activated carbon and the action | operation of exhaust gas input inhibition can be performed. Depending on various conditions (for example, the decomposition ability of activated carbon, the degree of dilution), generally speaking, when the ozone concentration in the exhaust gas 1 rises, it first reaches the regulation value for the atmospheric release of ozone, and then the ignition of the activated carbon. The concentration will be reached. Depending on the conditions, the time when the regulation value and the ignition concentration are reached may be reversed.

図2に示す制御装置7のフローチャートによると、まず、ステップS1において、入力手段8で大気放出の警報発信値CAとその上限値CHを設定した値を受信し、ステップS2において、オゾン濃度計3で測定したオゾン濃度Cを受信し、ステップS3でCとCHとを比較して、C<CHであればステップS5に進む。ステップS5でC<CAでないときにステップS6で警報を発信し、適宜にステップS7で流量調整弁19の開度を増すように制御する。また、ステップS3で否であれば、排ガス発生元制御装置10に信号を送り排ガス1の流入を遮断する。   According to the flowchart of the control device 7 shown in FIG. 2, first, in step S1, the input means 8 receives the value set with the atmospheric emission alarm transmission value CA and its upper limit CH, and in step S2, the ozone concentration meter 3 is received. In step S3, C and CH are compared, and if C <CH, the process proceeds to step S5. When C <CA is not satisfied in step S5, an alarm is issued in step S6, and control is performed to increase the opening degree of the flow regulating valve 19 as appropriate in step S7. If the answer is NO in step S3, a signal is sent to the exhaust gas generation source control device 10 to block the inflow of the exhaust gas 1.

「第2の実施形態」
本発明の第2の実施形態に係る排ガス処理装置について、図3と図4を参照して以下説明する。第2の実施形態に関する処理工程を図3に示し、その処理方法を図4に示す。
“Second Embodiment”
An exhaust gas treatment apparatus according to a second embodiment of the present invention will be described below with reference to FIGS. FIG. 3 shows processing steps relating to the second embodiment, and FIG. 4 shows the processing method.

図3に示すように、排ガス1が流路2に流入し、その一部が流路2に並列に接続されたオゾン濃度計3に流入してオゾン濃度を測定された後、再び合流する。この合流後に希釈のための非オゾンガス(例えば、空気)の分岐流路11が接続される。   As shown in FIG. 3, the exhaust gas 1 flows into the flow path 2, and a part thereof flows into the ozone concentration meter 3 connected in parallel with the flow path 2 to measure the ozone concentration, and then merges again. After this merging, a branch passage 11 of non-ozone gas (for example, air) for dilution is connected.

空気等の非オゾンガスによって希釈された排ガス1は、オゾン濃度次第ではあるが原則的には活性炭塔4へ流入する。活性炭塔4では、充填された活性炭により、排ガス1に含まれるオゾンが分解される。その後、排ガス1は流路5へ流出し、ブロワ6によって大気中へ放出される。   The exhaust gas 1 diluted with a non-ozone gas such as air flows into the activated carbon tower 4 in principle, depending on the ozone concentration. In the activated carbon tower 4, ozone contained in the exhaust gas 1 is decomposed by the filled activated carbon. Thereafter, the exhaust gas 1 flows out to the flow path 5 and is released into the atmosphere by the blower 6.

また、制御装置7はオゾン濃度計3、入力手段8、警報装置9、および排ガス発生元制御装置10に接続される。制御装置7は、オゾン濃度計3から受信したオゾン濃度の測定値Cと入力手段8から受信した警報発信値CAを比較し、測定値Cの方が高い場合は、警報装置9へ信号を送り、警報装置9から警報が発信される。さらに、制御装置7は、測定値Cと入力手段8から受信した上限値CHとを比較し、測定値Cの方が高い場合は、排ガス発生元制御装置10へ信号を送り、排ガス発生元制御装置10により、排ガスの流路2への流入が遮断される。   The control device 7 is connected to the ozone concentration meter 3, input means 8, alarm device 9, and exhaust gas generation source control device 10. The control device 7 compares the measured value C of the ozone concentration received from the ozone concentration meter 3 with the alarm transmission value CA received from the input means 8, and sends a signal to the alarm device 9 if the measured value C is higher. An alarm is transmitted from the alarm device 9. Further, the control device 7 compares the measured value C with the upper limit value CH received from the input means 8 and, if the measured value C is higher, sends a signal to the exhaust gas generation source control device 10 to control the exhaust gas generation source. The apparatus 10 blocks the flow of exhaust gas into the flow path 2.

また、制御手段7は、入力手段8から受信した目標値CLと測定値Cを比較し、測定値Cの方が低い場合は、活性炭塔4の入口側の流路に設けられた三方弁12へ信号を送り、流路13側へ三方弁12を切替える。その結果、排ガス1は活性炭塔4を通らず、ブロワ6へ流入する。この際、三方弁12を切り換える信号である目標値CLは、希釈後の排ガス1のオゾン濃度が活性炭塔4で分解する必要がなくてそのままブロア6で大気放出しても構わない低濃度の適宜の値(CL<CA)とし、例えば、大気中の光化学オキシダントの基準値0.06ppm以下の適宜の値とするとよい。ここで、分岐流路11は非オゾンガスである空気などを強制的に押し込むのではなくて、ブロア6の吸引力と分岐流路の径寸法によって一定量が流路2に吸引流入する構成であってもよい(なお、第1の実施形態においてもこの吸引流入する構成も適用可能である)。ここで、目標値CLは、大気放出の規制値(0.06ppm)未満の所定値(警報を発信する基準値)よりもさらに低い適宜の値とする(CH>CA>CL)。   Further, the control means 7 compares the target value CL received from the input means 8 with the measured value C. If the measured value C is lower, the three-way valve 12 provided in the flow path on the inlet side of the activated carbon tower 4. To switch the three-way valve 12 to the flow path 13 side. As a result, the exhaust gas 1 does not pass through the activated carbon tower 4 and flows into the blower 6. At this time, the target value CL, which is a signal for switching the three-way valve 12, is appropriately low in concentration so that the ozone concentration of the exhaust gas 1 after dilution does not need to be decomposed in the activated carbon tower 4 and may be released into the air as it is in the blower 6. (CL <CA), for example, an appropriate value of 0.06 ppm or less as a reference value for photochemical oxidants in the atmosphere. Here, the branch channel 11 does not forcibly push in air or the like that is non-ozone gas, but a fixed amount is sucked into the channel 2 depending on the suction force of the blower 6 and the diameter of the branch channel. (Note that this suction-in configuration can also be applied in the first embodiment). Here, the target value CL is set to an appropriate value (CH> CA> CL) that is lower than a predetermined value (reference value for transmitting an alarm) that is less than the regulation value (0.06 ppm) of atmospheric emission.

このように、空気などによる希釈流量は一定であるので、オゾン濃度計3によるオゾン濃度測定値と一定の希釈流量とに基づいて、オゾンを分解せずにそのまま大気放出するオゾン濃度に換算した目標値CLを設定することができる。   Thus, since the dilution flow rate by air etc. is constant, based on the ozone concentration measured value by the ozone densitometer 3 and the constant dilution flow rate, the target converted into the ozone concentration that is released into the atmosphere as it is without decomposing ozone. The value CL can be set.

図4において、ステップS1〜S6までの処理方法は、第1の実施形態を示す図2と同様であり、ステップS8でオゾン濃度測定値Cが目標値CLよりも小であれば、ステップS9で三方弁12を切り換えて、活性炭塔4経由ではなくてブロア6に直結する流路13に排ガスを流すのである。   In FIG. 4, the processing method from step S1 to S6 is the same as that in FIG. 2 showing the first embodiment. If the ozone concentration measurement value C is smaller than the target value CL in step S8, the processing method is step S9. The three-way valve 12 is switched so that the exhaust gas flows through the flow path 13 directly connected to the blower 6 instead of via the activated carbon tower 4.

以上のように、第2の実施形態によると、空気等の非オゾンガスによる希釈の前流側でオゾン濃度を計測し、この計測値を基づいて、希釈のための分岐流路後に設置された、ブロアへの活性炭塔経由接続と直接接続とを切り替える三方弁の構成を採用しており、分岐流路の前流側におけるオゾン濃度の測定値に基づいて警報を発信する、又は排ガスの流入を遮断することにより、活性炭の発火を回避し、運転の信頼性を向上できる。また、触媒を用いないため、触媒用の加温ヒータの運転コストや触媒塔の設備コストが不要となり、経済性を向上できる。   As described above, according to the second embodiment, the ozone concentration is measured on the upstream side of dilution with a non-ozone gas such as air, and based on this measurement value, installed after the branch flow path for dilution, Uses a three-way valve configuration that switches between connection via the activated carbon tower and direct connection to the blower, and issues an alarm based on the measured ozone concentration on the upstream side of the branch flow path, or shuts off the exhaust gas flow By doing so, ignition of the activated carbon can be avoided and the reliability of operation can be improved. Further, since no catalyst is used, the operating cost of the heating heater for the catalyst and the equipment cost of the catalyst tower are not required, and the economy can be improved.

さらに、活性炭塔の排ガス入口におけるオゾン濃度の測定値が目標値以下の場合、ガス流路を切替えて、希釈後の排ガスを直接にブロワへ送ることにより、活性炭の消耗を遅らせ、活性炭交換に要する維持管理コストを低減できる。   Furthermore, when the measured value of ozone concentration at the exhaust gas inlet of the activated carbon tower is below the target value, the exhaust gas consumption is delayed by switching the gas flow path and sending the diluted exhaust gas directly to the blower. Maintenance costs can be reduced.

「第3の実施形態」
本発明の第3の実施形態に係る排ガス処理装置について、図5と図6を参照して以下説明する。第3の実施形態に関する処理工程を図5に示し、その処理方法を図6に示す。本発明の第3の実施形態では、測定したオゾン濃度が高い場合のみ、オゾン分解触媒を充填した触媒塔を採用する構成を特徴とする。
“Third Embodiment”
An exhaust gas treatment apparatus according to a third embodiment of the present invention will be described below with reference to FIGS. FIG. 5 shows the processing steps relating to the third embodiment, and FIG. 6 shows the processing method. The third embodiment of the present invention is characterized in that a catalyst tower packed with an ozonolysis catalyst is employed only when the measured ozone concentration is high.

図5に示すように、排ガス1が流路2に流入し、その一部が流路2に並列に接続されたオゾン濃度計3に流入してオゾン濃度を測定された後、再び合流する。この合流後に希釈のための非オゾンガス(例えば、空気)の分岐流路11が接続される。   As shown in FIG. 5, the exhaust gas 1 flows into the flow path 2, and a part thereof flows into the ozone concentration meter 3 connected in parallel with the flow path 2 to measure the ozone concentration, and then merges again. After this merging, a branch passage 11 of non-ozone gas (for example, air) for dilution is connected.

空気等の非オゾンガスによって希釈された排ガス1は、測定されたオゾン濃度次第ではあるが通常の動作状況では活性炭塔4へ流入する。活性炭塔4では、充填された活性炭により、排ガス1に含まれるオゾンが分解される。その後、排ガス1は流路5へ流出し、ブロワ6によって大気中へ放出される。   The exhaust gas 1 diluted with a non-ozone gas such as air flows into the activated carbon tower 4 under normal operating conditions, depending on the measured ozone concentration. In the activated carbon tower 4, ozone contained in the exhaust gas 1 is decomposed by the filled activated carbon. Thereafter, the exhaust gas 1 flows out to the flow path 5 and is released into the atmosphere by the blower 6.

図5によると、希釈後のガスは三方弁12に流入して、三方弁12の出力の一方は前述の活性炭塔4に流れ、出力の他方は流路13を通って触媒塔14に流れる。三方弁12の切り替えは制御装置7によって行われ、後述するが、オゾン濃度計3で測定されたオゾン濃度の大小によって選択される。   According to FIG. 5, the diluted gas flows into the three-way valve 12, one of the outputs of the three-way valve 12 flows to the activated carbon tower 4, and the other of the outputs flows to the catalyst tower 14 through the flow path 13. The switching of the three-way valve 12 is performed by the control device 7 and is selected according to the magnitude of the ozone concentration measured by the ozone concentration meter 3 as described later.

制御装置7は、オゾン濃度計3、入力手段8、及び警報装置9に接続される。制御装置7は、オゾン濃度計3から受信したオゾン濃度の測定値Cと入力手段8から受信した警報発信値CAを比較し、測定値Cの方が高い場合は、警報装置9へ信号を送り、警報装置9から警報が発信され、作業者にオゾン濃度の注意を促す。さらに、制御装置7は、入力手段8から受信した上限値CHと測定値Cを比較し、測定値Cの方が高い場合は、活性炭塔4の入口側流路に設けられた三方弁12へ信号を送り、流路13側へ三方弁12を切り替える。ここで、上限値CHは活性炭が発火する濃度に安全のための尤度を加えた値とするとよい。   The control device 7 is connected to the ozone concentration meter 3, the input means 8, and the alarm device 9. The control device 7 compares the measured value C of the ozone concentration received from the ozone concentration meter 3 with the alarm transmission value CA received from the input means 8, and sends a signal to the alarm device 9 if the measured value C is higher. Then, an alarm is transmitted from the alarm device 9 to urge the operator to pay attention to the ozone concentration. Furthermore, the control device 7 compares the upper limit value CH received from the input means 8 with the measured value C. If the measured value C is higher, the control device 7 goes to the three-way valve 12 provided in the inlet-side flow path of the activated carbon tower 4. A signal is sent and the three-way valve 12 is switched to the flow path 13 side. Here, the upper limit value CH may be a value obtained by adding a safety likelihood to the concentration at which the activated carbon ignites.

流路13には、オゾンを分解する触媒を充填した触媒塔14が接続され、触媒塔14に流入した排ガス1に含まれるオゾンが分解される。その後、排ガス1は触媒塔14に接続された流路15へ流出し、ブロワ6により大気中へ放出される。ここで、触媒塔14は、そのオゾン分解能力が活性炭塔4のそれよりも高いものである。   A catalyst tower 14 filled with a catalyst for decomposing ozone is connected to the flow path 13, and ozone contained in the exhaust gas 1 flowing into the catalyst tower 14 is decomposed. Thereafter, the exhaust gas 1 flows out to the flow path 15 connected to the catalyst tower 14 and is released into the atmosphere by the blower 6. Here, the catalyst tower 14 has a higher ozonolysis capability than that of the activated carbon tower 4.

図6において、ステップS1,S2,S3,S5,S6までの処理方法は、第2の実施形態を示す図4と同様であり、ステップS3でオゾン濃度測定値Cが上限値CHよりも大であれば、ステップS9で三方弁12の流路を切り換えて、触媒塔14に排ガスを流すのである。   In FIG. 6, the processing method up to steps S1, S2, S3, S5, and S6 is the same as that in FIG. 4 showing the second embodiment, and the ozone concentration measurement value C is larger than the upper limit value CH in step S3. If there is, the flow path of the three-way valve 12 is switched in step S9, and the exhaust gas is caused to flow to the catalyst tower 14.

図7は、本発明の第3の実施形態に係る排ガス処理装置の変形例を示すものであり、触媒塔14から排ガス1が流出する流路15を活性炭塔4の入口へ接続している。この変形例の場合には、触媒塔14で分解できなかった低濃度のオゾンを活性炭塔4でさらに除去する効果が期待できる。   FIG. 7 shows a modification of the exhaust gas treatment apparatus according to the third embodiment of the present invention, in which a flow path 15 through which the exhaust gas 1 flows out from the catalyst tower 14 is connected to the inlet of the activated carbon tower 4. In the case of this modification, an effect of further removing low concentration ozone that could not be decomposed by the catalyst tower 14 using the activated carbon tower 4 can be expected.

第3の実施形態によると、空気等の非オゾンガスによる希釈の前流側でオゾン濃度を計測し、この計測値を基づいて、希釈のための分岐流路後に設置された、活性炭塔経由と触媒塔経由とに接続する三方弁を切り換える構成を採用しており、希釈用の分岐流路の前流側におけるオゾン濃度の測定値に基づいて警報を発信する、又は活性炭塔の排ガス入口におけるオゾン濃度が活性炭の発火濃度より高い場合、ガス流路を切替えて排ガスを触媒塔へ送ることにより、排ガスの処理を停止することなく活性炭の発火を回避し、運転の安定性と信頼性を向上できる。また、触媒は排ガス中のオゾン濃度が高い場合にのみ使用するため、触媒装置を小型化でき、かつ交換頻度を低減できるため、経済性を向上できる。   According to the third embodiment, the ozone concentration is measured on the upstream side of dilution with non-ozone gas such as air, and the activated carbon tower and the catalyst installed after the branch flow path for dilution are measured based on the measured value. Adopts a configuration that switches a three-way valve connected to the tower, and issues an alarm based on the measured value of the ozone concentration on the upstream side of the dilution branch flow path, or the ozone concentration at the exhaust gas inlet of the activated carbon tower If the ignition concentration is higher than the ignition concentration of activated carbon, by switching the gas flow path and sending the exhaust gas to the catalyst tower, ignition of the activated carbon can be avoided without stopping the processing of the exhaust gas, and the stability and reliability of operation can be improved. Further, since the catalyst is used only when the ozone concentration in the exhaust gas is high, the catalyst device can be miniaturized and the replacement frequency can be reduced, so that the economy can be improved.

「第4の実施形態」
本発明の第4の実施形態に係る排ガス処理装置について、図8と図9を参照して以下説明する。第4の実施形態に関する処理工程を図8に示し、その処理方法を図9に示す。本発明の第4の実施形態では、排ガス処理の除去対象が排ガスに含まれるオゾンである場合に、そのオゾン濃度が低い場合を想定し、空気等の希釈のみで排オゾン処理を行う、すなわち活性炭塔と触媒塔を不要として排オゾン処理を行うことを特徴とする。
“Fourth Embodiment”
An exhaust gas treatment apparatus according to a fourth embodiment of the present invention will be described below with reference to FIGS. 8 and 9. FIG. 8 shows the processing steps related to the fourth embodiment, and FIG. 9 shows the processing method. In the fourth embodiment of the present invention, when the removal target of the exhaust gas treatment is ozone contained in the exhaust gas, assuming that the ozone concentration is low, the exhaust ozone treatment is performed only by dilution of air or the like, that is, activated carbon The waste ozone treatment is performed without using a tower and a catalyst tower.

図8に示すように、排ガス1が流路2に流入し、その一部が流路2に並列に接続されたオゾン濃度計3に流入してオゾン濃度を測定された後、流量計16に流入して流量を測定される。続いて、排ガス1は、流路2に接続した分岐流路17から注入した空気などの非オゾンガスにより希釈された後、ブロワ6によって大気中へ放出される。このとき、非オゾンガスは、分岐流路17に接続された流量計18で流量を測定され、続いて流量調整弁19を通過する。   As shown in FIG. 8, after the exhaust gas 1 flows into the flow path 2 and a part of it flows into the ozone concentration meter 3 connected in parallel to the flow path 2 and the ozone concentration is measured, The inflow is measured. Subsequently, the exhaust gas 1 is diluted with a non-ozone gas such as air injected from the branch flow path 17 connected to the flow path 2 and then released into the atmosphere by the blower 6. At this time, the flow rate of the non-ozone gas is measured by the flow meter 18 connected to the branch flow path 17 and then passes through the flow rate adjustment valve 19.

制御装置7は、オゾン濃度計3、入力手段8、警報装置9、流量計16、流量計18、および流量調整弁19に接続される。制御装置7は、オゾン濃度計3から受信したオゾン濃度の測定値Cと入力手段8から受信した警報発信値CAを比較し、測定値Cの方が高い場合は、警報装置9へ信号を送り、警報装置9から警報が発信される。   The control device 7 is connected to the ozone concentration meter 3, input means 8, alarm device 9, flow meter 16, flow meter 18, and flow rate adjustment valve 19. The control device 7 compares the measured value C of the ozone concentration received from the ozone concentration meter 3 with the alarm transmission value CA received from the input means 8, and sends a signal to the alarm device 9 if the measured value C is higher. An alarm is transmitted from the alarm device 9.

また、制御装置7は、オゾン濃度計3の測定値Cと流量計16の測定値F1と流量計18の測定値F2を用いて(図9のステップS2を参照)、次の数2によって大気中へ放出されるオゾンガスの濃度Ceを算出する(図9のステップS3を参照)。   Further, the control device 7 uses the measured value C of the ozone concentration meter 3, the measured value F1 of the flow meter 16, and the measured value F2 of the flow meter 18 (see step S2 in FIG. The concentration Ce of ozone gas released into the inside is calculated (see step S3 in FIG. 9).

Ce=C×F1/(F1+F2) (数2)
制御手段7は、入力手段8から受信した目標濃度Ce1(図9のステップS1を参照)と算出したCeを比較し(図9のステップS4を参照)、Ce<Ce1を満たすF2となるように、流量調整弁19へ信号を送り、弁の開度を変更する(図9のステップS5を参照)。ここで、目標濃度Ce1は、例えば大気中の光化学オキシダントの基準値0.06ppmとするとよい。また、流量調整弁19は、警報装置9からの警報を受けて、手動で実施してもよい。また、流量計16の計測値F1は、あらかじめ設計時に把握した測定値を用いてもよい。また、流量計18の計測値F2は、あらかじめ設計時に把握した流量調整弁19の開度とF2の関係を用いてもよい。
Ce = C × F1 / (F1 + F2) (Equation 2)
The control means 7 compares the target concentration Ce1 received from the input means 8 (see step S1 in FIG. 9) with the calculated Ce (see step S4 in FIG. 9), so that F2 satisfies Ce <Ce1. Then, a signal is sent to the flow rate adjusting valve 19 to change the opening of the valve (see step S5 in FIG. 9). Here, the target concentration Ce1 may be set to a reference value of 0.06 ppm for photochemical oxidant in the atmosphere, for example. Further, the flow rate adjusting valve 19 may be manually implemented in response to an alarm from the alarm device 9. Further, as the measurement value F1 of the flow meter 16, a measurement value grasped in advance during design may be used. Further, the measurement value F2 of the flow meter 18 may use the relationship between the opening degree of the flow rate adjustment valve 19 and F2, which is grasped in advance at the time of design.

第4の実施形態によると、排ガス1中のオゾン濃度が比較的低い場合を想定した排ガス処理装置であり、換言すると、空気等による希釈の調整範囲内で大気放出の規制値をクリアできる程度の排ガスに対して適用可能なものであり、ここでは、空気等の排オゾンガスの流量を能動的に制御するものである(空気等を分岐流路17に押し込むような送給システムを用いる)。このように、希釈のための分岐流路の前流側で測定したオゾン濃度に基づいて警報を発信、あるいは希釈倍率を変更することにより、触媒や活性炭が不要となり、排ガスの規制値を達成し、かつ経済性を向上できる。   According to the fourth embodiment, it is an exhaust gas treatment device that assumes a case where the ozone concentration in the exhaust gas 1 is relatively low. The present invention is applicable to exhaust gas, and here, the flow rate of exhaust ozone gas such as air is actively controlled (a feeding system that pushes air or the like into the branch flow path 17 is used). In this way, by issuing an alarm based on the ozone concentration measured on the upstream side of the branch flow path for dilution, or by changing the dilution factor, no catalyst or activated carbon is required, and the regulation value of exhaust gas is achieved. And economic efficiency can be improved.

本発明の第1の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。It is a processing process figure which shows the whole structure of the waste gas processing apparatus which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。It is a flowchart which shows the processing method of the waste gas processing apparatus which concerns on 1st Embodiment. 本発明の第2の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。It is a process drawing which shows the whole structure of the waste gas processing apparatus which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。It is a flowchart which shows the processing method of the waste gas processing apparatus which concerns on 2nd Embodiment. 本発明の第3の実施形態に係る排ガス処理装置の全体構成を示す処理工程図である。It is a process drawing which shows the whole structure of the waste gas processing apparatus which concerns on the 3rd Embodiment of this invention. 第3の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。It is a flowchart which shows the processing method of the waste gas processing apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る排ガス処理装置の全体構成における変形例を示す処理工程である。It is a process process which shows the modification in the whole structure of the waste gas processing apparatus which concerns on 3rd Embodiment. 本発明の第4の実施形態に係る排ガス処理装置の全体構成を示す処理工程である。It is a process process which shows the whole structure of the waste gas processing apparatus which concerns on the 4th Embodiment of this invention. 第4の実施形態に係る排ガス処理装置の処理方法を示すフローチャートである。It is a flowchart which shows the processing method of the waste gas processing apparatus which concerns on 4th Embodiment.

符号の説明Explanation of symbols

1 排ガス
2 流路
3 オゾン濃度計
4 活性炭塔
5 流路
6 ブロワ
7 制御装置
8 入力手段
9 警報装置
10 排ガス発生元制御装置
11 分岐流路
12 三方弁
13 流路
14 触媒塔
15 流路
16 流量計
17 分岐流路
18 流量計
19 流量調整弁
DESCRIPTION OF SYMBOLS 1 Exhaust gas 2 Flow path 3 Ozone concentration meter 4 Activated carbon tower 5 Flow path 6 Blower 7 Control apparatus 8 Input means 9 Alarm apparatus 10 Exhaust gas generation source control apparatus 11 Branch flow path 12 Three-way valve 13 Flow path 14 Catalyst tower 15 Flow path 16 Flow rate Total 17 Branch flow path 18 Flow meter 19 Flow control valve

Claims (9)

大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、
前記ガス濃度計は、前記排ガス分解塔で前記排ガスを分解した分解処理後の排ガスの流路に配置されるとともに、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、
前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の所定値に、前記計測したガス濃度が達すると警報を指示する
ことを特徴とする排ガス処理装置。
Exhaust gas decomposition tower that decomposes exhaust gas regulated to be released into the atmosphere with activated carbon and / or a catalyst, a blower that discharges gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air, nitrogen, etc. on the upstream side of the blower From a dilution gas pipe that communicates a non-removal target gas to the exhaust gas flow path, a gas concentration meter that measures the exhaust gas concentration provided in the exhaust gas flow path, a measured value from the gas concentration meter, and input operation means A control unit for instructing a gas concentration alarm based on the input set value of
The gas concentration meter is disposed in the flow path of the exhaust gas after the decomposition treatment in which the exhaust gas is decomposed in the exhaust gas decomposition tower, and is disposed on the upstream side of the dilution gas pipe, and the concentration of the exhaust gas before dilution is determined. Measure and
The control unit uses the input set value by the input operation means as a gas concentration regulation value for atmospheric release, and the measured gas concentration reaches a predetermined value less than a calculated value calculated from the input set value and a dilution rate. Then, an exhaust gas treatment device that issues an alarm.
請求項1において、
前記希釈ガス配管に流量調整弁を設け、
前記制御部は、前記警報を指示するとともに、前記流量調整弁の開度を増加して前記希釈倍率を拡大する
ことを特徴とする排ガス処理装置。
In claim 1,
A flow rate adjustment valve is provided in the dilution gas pipe,
The control unit instructs the alarm, and increases the dilution rate by increasing the opening of the flow rate adjusting valve.
請求項1において、
前記排ガス分解塔として活性炭塔を設置し、
前記制御部は、前記入力操作手段による前記入力設定値を前記活性炭塔の活性炭が発火する発火濃度値とし、前記計測したガス濃度と前記活性炭の排ガス分解能力とから算出した換算ガス濃度値が前記発火濃度値未満の所定値に達すると、前記活性炭塔への排ガス入力を遮断するように指示する
ことを特徴とする排ガス処理装置。
In claim 1,
An activated carbon tower is installed as the exhaust gas decomposition tower,
The control unit sets the input set value by the input operation means as an ignition concentration value at which the activated carbon of the activated carbon tower ignites, and the converted gas concentration value calculated from the measured gas concentration and the exhaust gas decomposition ability of the activated carbon An exhaust gas treatment apparatus characterized by instructing to shut off the exhaust gas input to the activated carbon tower when a predetermined value less than the ignition concentration value is reached.
大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、
前記ガス濃度計は、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、
前記希釈ガス配管接続後の排ガスの流路には、前記排ガス分解塔を経由して前記送風機に繋がる第1の流路と、直接に前記送風機に繋がる第2の流路とを形成する三方弁が設けられ、
前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第1の所定値に、前記計測したガス濃度が達すると、前記第2の流路から前記第1の流路に切り替えるように前記三方弁に指示し、
さらに、前記制御部は、前記入力設定値と希釈倍率とから算出した算出値未満の第2の所定値に、前記計測したガス濃度が達すると警報を指示する
ことを特徴とする排ガス処理装置。
Exhaust gas decomposition tower that decomposes exhaust gas regulated to be released into the atmosphere with activated carbon and / or a catalyst, a blower that discharges gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air, nitrogen, etc. on the upstream side of the blower From a dilution gas pipe that communicates a non-removal target gas to the exhaust gas flow path, a gas concentration meter that measures the exhaust gas concentration provided in the exhaust gas flow path, a measured value from the gas concentration meter, and input operation means A control unit for instructing a gas concentration alarm based on the input set value of
The gas concentration meter is arranged on the upstream side of the dilution gas pipe to measure the concentration of exhaust gas before dilution,
A three-way valve that forms a first flow path connected to the blower via the exhaust gas decomposition tower and a second flow path directly connected to the blower in the flow path of the exhaust gas after the dilution gas pipe is connected. Is provided,
The control unit sets the input set value by the input operation means as a gas concentration restriction value for atmospheric emission, and measures the measured gas to a first predetermined value less than a calculated value calculated from the input set value and a dilution rate. When the concentration reaches, it instructs the three-way valve to switch from the second flow path to the first flow path,
Further, the control unit instructs an alarm when the measured gas concentration reaches a second predetermined value less than a calculated value calculated from the input set value and the dilution rate.
請求項4において、
前記排ガス分解塔として活性炭塔を設置し、
前記制御部は、前記入力操作手段による前記入力設定値を前記活性炭塔の活性炭が発火する発火濃度値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第3の所定値に、前記計測したガス濃度が達すると、前記排ガス処理装置への排ガス入力を遮断するように指示する
ことを特徴とする排ガス処理装置。
In claim 4,
An activated carbon tower is installed as the exhaust gas decomposition tower,
The control unit sets the input set value by the input operation means as an ignition concentration value at which the activated carbon of the activated carbon tower ignites, and a third predetermined value less than a calculated value calculated from the input set value and the dilution rate, When the measured gas concentration reaches, an instruction is given to shut off the exhaust gas input to the exhaust gas treatment device.
大気放出を規制されている排ガスを活性炭及び/又は触媒で分解する排ガス分解塔と、前記排ガス分解塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、
前記ガス濃度計は、前記希釈ガス配管の前流側に配置されて、希釈前の排ガスの濃度を計測し、
前記希釈ガス配管接続後の排ガスの流路には、前記排ガス分解塔としての活性炭塔を経由して前記送風機に繋がる第1の流路と、前記排ガス分解塔としての触媒塔を経由して前記送風機に繋がる第2の流路とを形成する三方弁が設けられ、
前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第1の所定値に、前記計測したガス濃度が達すると警報を指示し、
さらに、前記制御部は、前記入力操作手段による前記入力設定値を前記活性炭塔の活性炭が発火する発火濃度値とし、前記入力設定値と希釈倍率とから算出した算出値未満の第2の所定値に、前記計測したガス濃度が達すると、前記第1の流路から前記第2の流路に切り替えるように前記三方弁に指示する
ことを特徴とする排ガス処理装置。
Exhaust gas decomposition tower that decomposes exhaust gas regulated to be released into the atmosphere with activated carbon and / or a catalyst, a blower that discharges gas decomposed in the exhaust gas decomposition tower to the atmosphere, and air, nitrogen, etc. on the upstream side of the blower From a dilution gas pipe that communicates a non-removal target gas to the exhaust gas flow path, a gas concentration meter that measures the exhaust gas concentration provided in the exhaust gas flow path, a measured value from the gas concentration meter, and input operation means A control unit for instructing a gas concentration alarm based on the input set value of
The gas concentration meter is arranged on the upstream side of the dilution gas pipe to measure the concentration of exhaust gas before dilution,
The exhaust gas flow path after the dilution gas pipe connection is connected to the first flow path connected to the blower via the activated carbon tower as the exhaust gas decomposition tower and the catalyst tower as the exhaust gas decomposition tower. A three-way valve is provided that forms a second flow path leading to the blower,
The control unit sets the input set value by the input operation means as a gas concentration restriction value for atmospheric emission, and measures the measured gas to a first predetermined value less than a calculated value calculated from the input set value and a dilution rate. When the concentration reaches, an alarm is given,
Further, the control unit sets the input set value by the input operation means as an ignition concentration value at which the activated carbon of the activated carbon tower ignites, and a second predetermined value less than a calculated value calculated from the input set value and the dilution factor. In addition, when the measured gas concentration reaches, the three-way valve is instructed to switch from the first flow path to the second flow path.
請求項6において、
前記排ガス分解塔としての触媒塔を経由して前記送風機に繋がる第2の流路の代わりに、前記三方弁、前記触媒塔入口、前記触媒塔出口、前記活性炭塔入口の順に繋がる流路を形成する
ことを特徴とする排ガス処理装置。
In claim 6,
Instead of the second flow path connected to the blower via the catalyst tower as the exhaust gas decomposition tower, a flow path connected in order of the three-way valve, the catalyst tower inlet, the catalyst tower outlet, and the activated carbon tower inlet is formed. An exhaust gas treatment apparatus characterized by that.
大気放出を規制されている排ガスの流れる第1の流路と、前記排ガスを空気、窒素等の非規制ガスで希釈するために前記第1の流路に合流させる前記非規制ガスの第2の流路と、前記合流した第3の流路の排ガスを含んだガスを大気に放出する送風機と、前記送風機の前流側で前記第1の流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えた排ガス処理装置であって、
前記ガス濃度計は、前記第2の流路による合流点の前流側に配置されて、希釈前の排ガスの濃度を計測し、
前記第1の流路には前記排ガスの流量を計測する第1の流量計を設け、前記第2の流路には前記非規制ガスの流量を計測する第2の流量計及び流量調整弁を設け、
前記制御部は、前記第1の流量計と前記第2の流量計からの出力を基に希釈倍率を算出し、前記希釈倍率と前記ガス濃度計の測定値とに基づいて大気に放出されるガス濃度を演算し、
さらに、前記制御部は、前記入力操作手段による前記入力設定値を大気放出のガス濃度規制値とし、前記演算したガス濃度が前記入力設定値に達すると警報を指示するとともに、前記流量調整弁の開度を増加して前記希釈倍率を拡大する
ことを特徴とする排ガス処理装置。
A first flow path for exhaust gas that is restricted from being released into the atmosphere, and a second flow path for the non-regulated gas that joins the first flow path to dilute the exhaust gas with a non-regulated gas such as air or nitrogen. A flow path, a blower that discharges gas containing exhaust gas from the merged third flow path to the atmosphere, and a gas concentration that measures the exhaust gas concentration provided in the first flow path on the upstream side of the blower An exhaust gas treatment apparatus comprising: a meter; and a control unit that instructs a gas concentration alarm based on a measured value from the gas concentration meter and an input set value from an input operation unit,
The gas concentration meter is disposed on the upstream side of the confluence at the second flow path, and measures the concentration of exhaust gas before dilution,
The first flow path is provided with a first flow meter for measuring the flow rate of the exhaust gas, and the second flow path is provided with a second flow meter and a flow rate adjusting valve for measuring the flow rate of the non-regulated gas. Provided,
The control unit calculates a dilution rate based on outputs from the first flow meter and the second flow meter, and is released to the atmosphere based on the dilution rate and the measured value of the gas concentration meter. Calculate the gas concentration,
Further, the control unit sets the input set value by the input operation means as a gas concentration regulation value for atmospheric emission, and gives an alarm when the calculated gas concentration reaches the input set value. An exhaust gas treatment apparatus characterized by increasing the dilution rate by increasing the opening.
大気放出を規制されている排ガスを活性炭で分解する活性炭塔と、前記活性炭塔で分解したガスを大気に放出する送風機と、前記送風機の前流側で空気、窒素等の非除去対象ガスを前記排ガスの流路に連通させる希釈ガス配管と、前記排ガスの流路に設けられた排ガス濃度を計測するガス濃度計と、前記ガス濃度計からの計測値と入力操作手段からの入力設定値に基づいてガス濃度の警報を指示する制御部と、を備えて、排ガスを処理する処理方法において、
前記制御部には、前記入力操作手段から、大気放出のガス濃度規制値と前記活性炭塔における活性炭が発火する発火濃度値とが予め入力され、続いて、前記ガス濃度計で計測されたガス濃度が入力され、
前記計測されたガス濃度と前記活性炭による排ガス分解能力とから算出した換算ガス濃度値が前記発火濃度値未満の所定値に達していると判定されると、前記活性炭塔への排ガス入力を遮断するように指示され、
さらに、前記計測されたガス濃度値が、前記大気放出のガス濃度規制値と希釈倍率とから算出した算出値未満の所定値に達していると判定されると、警報を指示する
ことを特徴とする排ガス処理方法。
Activated carbon tower for decomposing exhaust gas restricted to atmospheric release with activated carbon, a blower for releasing the gas decomposed in the activated carbon tower to the atmosphere, and non-removable target gases such as air and nitrogen on the upstream side of the blower Based on the dilution gas piping communicating with the exhaust gas flow path, the gas concentration meter for measuring the exhaust gas concentration provided in the exhaust gas flow path, the measured value from the gas concentration meter and the input set value from the input operation means A control unit for instructing a gas concentration alarm, and a processing method for processing exhaust gas,
From the input operation means, the control unit is preliminarily input with a gas concentration regulation value of atmospheric emission and an ignition concentration value at which activated carbon in the activated carbon tower ignites, and subsequently, the gas concentration measured by the gas concentration meter Is entered,
When it is determined that the converted gas concentration value calculated from the measured gas concentration and the exhaust gas decomposition ability by the activated carbon has reached a predetermined value less than the ignition concentration value, the exhaust gas input to the activated carbon tower is shut off. Is instructed to
Further, an alarm is instructed when it is determined that the measured gas concentration value has reached a predetermined value less than a calculated value calculated from the atmospheric gas concentration restriction value and the dilution factor. Exhaust gas treatment method.
JP2008312129A 2008-12-08 2008-12-08 Exhaust gas treatment apparatus and treatment method therefor Pending JP2010131564A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008312129A JP2010131564A (en) 2008-12-08 2008-12-08 Exhaust gas treatment apparatus and treatment method therefor
CN200910253831A CN101745286A (en) 2008-12-08 2009-12-08 Discharge gas treatment apparatus and its treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312129A JP2010131564A (en) 2008-12-08 2008-12-08 Exhaust gas treatment apparatus and treatment method therefor

Publications (1)

Publication Number Publication Date
JP2010131564A true JP2010131564A (en) 2010-06-17

Family

ID=42343442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312129A Pending JP2010131564A (en) 2008-12-08 2008-12-08 Exhaust gas treatment apparatus and treatment method therefor

Country Status (2)

Country Link
JP (1) JP2010131564A (en)
CN (1) CN101745286A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005360A (en) * 2009-06-23 2011-01-13 Tokyo Electron Ltd Gas decomposition system and method of checking lifetime of gas decomposer
WO2011155462A1 (en) 2010-06-09 2011-12-15 三菱製鋼株式会社 Hinge device
CN102928555A (en) * 2012-09-29 2013-02-13 聚光科技(杭州)股份有限公司 Smoke composite analysis system and method
KR101357541B1 (en) * 2011-06-29 2014-01-29 현대제철 주식회사 Treating apparatus for waste gas in sintering machine and control method thereof
JP2014195808A (en) * 2014-06-30 2014-10-16 東京エレクトロン株式会社 Gas decomposition system and life checking method of gas decomposer
KR20190059795A (en) * 2017-11-23 2019-05-31 차태영 Device for removing residual ozone gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929164B (en) * 2012-10-26 2014-11-12 中联重科股份有限公司 Waste gas collecting control method, device and system
CN107064405A (en) * 2017-01-24 2017-08-18 南京大学环境规划设计研究院有限公司 A kind of ozone decomposed experimental provision
CN112691461A (en) * 2021-01-07 2021-04-23 曾茶香 Industrial waste gas discharge device convenient for controlling discharge capacity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005360A (en) * 2009-06-23 2011-01-13 Tokyo Electron Ltd Gas decomposition system and method of checking lifetime of gas decomposer
WO2011155462A1 (en) 2010-06-09 2011-12-15 三菱製鋼株式会社 Hinge device
KR101357541B1 (en) * 2011-06-29 2014-01-29 현대제철 주식회사 Treating apparatus for waste gas in sintering machine and control method thereof
CN102928555A (en) * 2012-09-29 2013-02-13 聚光科技(杭州)股份有限公司 Smoke composite analysis system and method
JP2014195808A (en) * 2014-06-30 2014-10-16 東京エレクトロン株式会社 Gas decomposition system and life checking method of gas decomposer
KR20190059795A (en) * 2017-11-23 2019-05-31 차태영 Device for removing residual ozone gas
KR102024871B1 (en) 2017-11-23 2019-09-24 차태영 Device for removing residual ozone gas

Also Published As

Publication number Publication date
CN101745286A (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP2010131564A (en) Exhaust gas treatment apparatus and treatment method therefor
JP6581202B2 (en) Pollutant reduction apparatus and method
US6921476B2 (en) UV-assisted advanced-ozonation water treatment system and advanced-ozonation module
KR102024871B1 (en) Device for removing residual ozone gas
JP4673709B2 (en) Water treatment system
JP2004188246A (en) System for manufacturing ozonized water
EA025910B1 (en) Method for treatment of sulphide-containing spent caustic
KR20090107468A (en) A treatment apparatus of bankfiltered water by use of oxidation basin and bio activated carbon filter
JP2009172541A (en) Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus
JP2008207090A (en) Water treatment method and apparatus
JP2005046831A (en) Ozone water treatment system
JP6241525B1 (en) Wastewater recovery method and apparatus for incineration plant adopting wastewater closed system
CA2826715A1 (en) Ozone-ultrasonic treatment of spent caustic wastewater
JP2005152745A (en) Wet flue gas desulfurization method and wet flue gas desulfurizer
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP4391879B2 (en) Ammonia decomposition and removal equipment
WO2017175794A1 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP4417587B2 (en) Accelerated oxidation treatment equipment
KR20170031559A (en) Apparatus for reducing water and air pollutant
JP5991664B2 (en) Flue gas desulfurization system
JP2008272761A (en) Accelerated oxidation treatment apparatus
WO2009066636A1 (en) Method and apparatus for treating organic-containing water
JP2003210966A (en) Ozone water feeding device
CN107540117B (en) Ammonia-containing wastewater treatment device
TWI594956B (en) An ammonia containing waste water processing system