JP3574973B2 - Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants - Google Patents

Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants Download PDF

Info

Publication number
JP3574973B2
JP3574973B2 JP2001323236A JP2001323236A JP3574973B2 JP 3574973 B2 JP3574973 B2 JP 3574973B2 JP 2001323236 A JP2001323236 A JP 2001323236A JP 2001323236 A JP2001323236 A JP 2001323236A JP 3574973 B2 JP3574973 B2 JP 3574973B2
Authority
JP
Japan
Prior art keywords
manufacturing plant
hydroxide
exhaust gas
liquid crystal
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001323236A
Other languages
Japanese (ja)
Other versions
JP2003126647A (en
Inventor
由章 杉森
修康 富田
昭彦 新田
修一 小関
大貴 万行
宏之 小野
宏 増崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2001323236A priority Critical patent/JP3574973B2/en
Publication of JP2003126647A publication Critical patent/JP2003126647A/en
Application granted granted Critical
Publication of JP3574973B2 publication Critical patent/JP3574973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有害成分である揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を除去する方法及び装置に関し、詳しくは、有害成分として揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を含む半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法及び除去装置に関する。
【0002】
【従来の技術】
半導体製造工程において使用されるガスには、シラン、アルシン、ホスフィン等の金属水素化物やジクロルシラン、三フッ化ホウ素等の金属ハロゲン化物のように人体に対して有毒なガスや空気中で自然発火する性質を持つガス等、空気中にそのまま排出すると安全上、重大な危険をもたらす特殊ガスが多く使用されている。したがって、これらの特殊ガスを使用した後は、安全に処理して許容濃度未満まで除害してから廃棄する必要がある。
【0003】
これらの特殊ガスを処理する方法は、いくつか実用化されているが、近年最も多用されているのは、除害剤と呼ばれる固形物を使用して特殊ガスを除去する方法であり、これは乾式法との別称がある。最近、この除害剤として、金属水酸化物系の除害剤、特に水酸化第二銅(水酸化銅(II))、中でも結晶性水酸化第二銅を主成分とする除害剤が、従来の金属酸化物系の除害剤に比べて反応熱が小さく、除害反応時の発熱が低いこと、剤の処理能力が大きいこと、水素還元し難いことなどを理由に着目されている。
【0004】
【発明が解決しようとする課題】
しかし、一般的に市販されている工業用の水酸化第二銅は、不純物を数%、例えば5%以上含んでおり、このような不純物を多量に含む水酸化第二銅をそのまま前記除害剤として用いると、含有する不純物の種類によっては、除害反応時の発熱が高くなったり、嵩密度が小さくて単位体積当たりの除害剤の充填量が小さくなるなどの不都合が一部に発生するときがあった。さらに、不純物、特に、リン酸、硫酸、塩酸等の鉱酸成分及びリチウム、ナトリウム、カリウム等のアルカリ金属成分を多く含んでいる水酸化第二銅は、高温になると化学的に不安定となり、経時的に劣化してしまうことがある。
【0005】
また、半導体製造工程から排出される排ガスには様々な成分が混在しており、成分や流量が変化するのが一般的である。前記水酸化第二銅を除害剤として使用した場合、設計値に対して排ガス中の特殊ガス濃度が高くなったり、空塔速度が速くなったりすると、特殊ガスに対する除害能力が若干低下するなどの不都合が発生してしまうことがある。
【0006】
そこで本発明は、半導体製造工場、液晶製造工場等から排出される排ガス中の有害成分である揮発性無機ハロゲン化物,有機金属化合物を効率よく除害処理することができ、かつ、除害剤の性能向上を図りつつ、暴走反応(除害剤が被処理ガス中の水素と反応して高温の発熱を起こす反応)を抑制することができる半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法及び除去装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分である揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物の除去方法は、排ガスを、水酸化第二銅を主成分とし、不純物成分として、リン酸、硫酸、塩酸の鉱酸成分及びリチウム、ナトリウム、カリウムのアルカリ金属成分が含まれ、かつ水酸化第二銅中の不純物成分の含有率が、1つの不純物成分あたり単位換算で0.5重量%以下である高純度水酸化第二銅を主成分とする第1除害剤に接触させた後、金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩のうち少なくとも1つの化合物を主成分とする第2除害剤に接触させることを特徴としている。
【0008】
本発明で除害対象となる特殊ガスは、前述の通り、半導体製造工場、液晶製造工場等から排出される排ガス中に含まれている有害成分ガスであって、例えば化合物半導体製造工程やMOCVD装置、液晶製造装置で使用されて排出される排ガス中の有害成分である。具体的には、揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物等であって、前記揮発性無機水素化物としては、シラン,ジシラン,アルシン,ホスフィン,ジボラン,ゲルマン,アンモニア,硫化水素,セレン化水素等を挙げることができ、また、揮発性無機ハロゲン化物としては、三フッ化ホウ素,三塩化ホウ素,四フッ化ケイ素,ジクロルシラン,トリクロルシラン,四塩化ケイ素,トリクロルアルシン,六フッ化タングステン,四フッ化ゲルマン,三フッ化リン,四塩化チタン,フッ素,塩素,フッ化水素,塩化水素,臭化水素,ヨウ化水素等、ハロゲンガスも含む各種ガスを挙げることができる。
【0009】
さらに、有機金属化合物としては、アルキル基を含むものとして、ジメチル亜鉛,ジメチルカドミウム,ジメチルテルル,ジエチル亜鉛,トリメチルアルミニウム,トリメチルガリウム,トリメチルインジウム,トリメチルアルシン,トリメチルボロン,トリエチルボロン,トリエチルアルミニウム,トリエチルガリウム,トリエチルインジウム,トリエチルアルシン,テトラメチル錫,テトラエチル錫,ターシャリーブチルホスフィン,ターシャリーブチルアルシン等を、アルコキシド基を含むものとして、ジメトキシ亜鉛,トリブトキシガリウム,トリメトキシボロン,トリエトキシボロン,テトラメトキシシラン,テトラエトキシシラン,テトラメトキシゲルマン,テトラエトキシゲルマン,テトラターシャリーブトキシ錫,トリメトキシホスフィン,トリエトキシホスフィン,トリメトキシアルシン,トリエトキシアルシン,テトラエトキシセレン,テトラメトキシチタン,テトラエトキシチタン,テトライソプロポキシチタン,テトライソプロポキシジルコニウム,テトラターシャリーブトキシジルコニウム,ペンタメトキシタンタル,ペンタエトキシタンタル等をそれぞれ挙げることができる。
【0010】
これらの有害な特殊ガスを除害するための第1除害剤として、本発明では、不純物の成分毎濃度がそれぞれ0.5重量%以下の高純度水酸化第二銅であって、好ましくは不純物の総量が5重量%以下、特に好ましくは、除害性能や水酸化第二銅の安定性に大きな影響を与えるリン酸、硫酸、塩酸等の鉱酸成分及びナトリウム、カリウム等のアルカリ金属成分の各成分含有量を、それぞれ0.2重量%以下にした高純度水酸化第二銅を使用する。
【0011】
このように、不純物含有量が少ない高純度水酸化第二銅を第1除害剤の主成分とすることにより、例えばシランを除害処理する場合は、一般的な工業用水酸化第二銅に比べて処理能力を6倍程度にまで高めることができる。また、ホスフィンを除害処理する場合には発熱温度を低くすることができる。なお、不純物を低減するための水酸化第二銅の精製処理は、任意の方法で行うことができ、特に限定されるものではない。
【0012】
さらに、高純度水酸化第二銅として、結晶性の水酸化第二銅を使用することにより、非晶質のものに比べて温度に対する安定性を高めることができるので、有害成分の濃度が高く、反応熱が高い場合にも安定的に使用できる。これにより、除害処理を行うカラム等に特別な冷却構造を採用しなくても、安定した除害処理を行うことができる。
【0013】
また、このように不純物を少なくした高純度水酸化第二銅は、銅含有量が60%以上と、水酸化第二銅の一般品(銅含有量55〜58%程度)に比べて高く、タップ密度も一般品の0.4〜0.5程度から0.8以上と高くなっている。これにより、除害剤として使用したときの単位量当たりの水酸化第二銅量が十%程度増大し、充填密度が20〜30%向上し、圧壊強度も数十%向上する。したがって、除害剤としての処理性能向上が図れるとともに、取扱性も向上する。
【0014】
一方、前記第2除害剤は、前述の通り、金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩のいずれか少なくとも一つの化合物を主成分としている。金属酸化物としては、酸化第一銅、酸化第二銅、酸化マグネシウム、酸化カルシウム、二酸化チタン、酸化クロム、二酸化マンガン、三酸化二マンガン、酸化第一鉄、酸化ニッケル、酸化亜鉛、酸化アルミニウム、二酸化ケイ素、酸化ルテニウム、酸化銀、酸化セリウム、酸化オスミウム等の多くの金属酸化物が使用できる。また、金属酸化水酸化物としては、酸化水酸化マンガン、酸化水酸化鉄、酸化水酸化鉛、酸化水酸化モリブデン等を上げることができ、塩基性金属炭酸塩としては、炭酸二水酸化二銅(塩基性炭酸銅)、塩基性炭酸鉛、塩基性炭酸ニッケル、塩基性炭酸ベリリウム、炭酸マンガン等を挙げることができる。
【0015】
これらの金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩は、それぞれ単独で使用することもできるし、混合して使用することもでき、さらに、複数の層に積層して使用することもできる。例えば、三酸化二マンガンや塩基性炭酸銅と二酸化マンガンや酸化第二銅とを混合したり、三酸化二マンガンや塩基性炭酸銅の充填層の下流側に酸化第二銅や二酸化マンガンの充填層を配置したりすることができる。
【0016】
前記第1除害剤や第2除害剤は、これらを粉末のまま、あるいは適当な形状に成形してそのまま用いることもできるが、適宜な担体、例えば、シリカゲル,アルミナ,珪藻土等の担体に担持させて使用することが好ましい。なお、塩基性金属炭酸塩は、排ガス中に水素が大量に含まれている場合であっても還元されにくいので、水素含有排ガスを処理する場合の第2除害剤として非常に有効である。特に、塩基性炭酸銅が最適である。
【0017】
このように、高純度水酸化第二銅を主成分とする第1除害剤に接触させた後、続いて金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩を主成分とする第2除害剤に接触させることにより、排ガス中の揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物に対する除害処理能力が格段に向上するとともに、両剤の劣化を抑制することができ、長時間にわたって効率の良い除害処理が可能となる。
【0018】
このようにして排ガスの除害処理を行う際に、揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物の種類や第2除害剤の種類によっては、上流側の第1除害剤と排ガス中の有害成分ガスとが接触反応して発生した水分により、下流側の第2除害剤が劣化することがある。特に、特殊ガスを使用する最近のプロセスでは、特殊ガスを大量に、しかも長時間流すケースが増えてきているので、第1除害剤と特殊ガスとの反応で発生する水分は常時発生していることになり、下流側の第2除害剤の表面が水分を多量に吸着して反応効率を損なうことがある。
【0019】
このような場合、第1除害剤との接触により発生した水分を、シリカゲル、アルミナ、ゼオライト等の脱水剤に接触させて除去してから第2除害剤に接触させることにより、水分によって第2除害剤が劣化することを防止でき、より安定した状態の除害処理を効率よく長時間継続させることができる。このとき、前記第1除害剤に接触した後の排ガスを脱水剤に接触させてから第2除害剤に接触させるようにしてもよく、脱水剤を第1除害剤や第2除害剤に添加混合して共存状態にしたり、高純度水酸化第二銅等の除害剤成分の担体として使用したりすることもできる。
【0020】
さらに、前記高純度水酸化第二銅を、ベリリウム、マグネシウム、バナジウム、モリブデン、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム、ケイ素、鉛、アンチモン、ビスマスの元素の群より選ばれた少なくとも1種の単体、または該元素の酸化物、水酸化物(水酸化銅を除く)、炭酸塩、炭酸水素塩、塩基性炭酸塩、酸化水酸化物、過酸化物、カルボン酸塩、オキシ酸塩の少なくとも一種からなる安定化剤、具体的には、マグネシウム、酸化マグネシウム、水酸化マグネシウム、塩基性炭酸マグネシウム、アルミニウム、ケイ素、水酸化ニッケル、亜鉛、一酸化鉛、酸化アンチモン、酸化ビスマス、炭酸コバルト、酸化ホウ素、ホウ酸等の安定化剤と共存させることにより、高純度水酸化第二銅の劣化や熱分解反応を抑制して初期性能を長時間維持することができ、安定した除害処理を行うことができる。
【0021】
高純度水酸化第二銅への安定化剤の添加量は、安定化剤の種類によって多少異なるが、通常は、高純度水酸化第二銅に対して0.01〜10重量%程度が適当であり、添加量が多すぎると水酸化第二銅の除害能力を損なうことがあり、少なすぎると十分な安定化効果を得ることができなくなる。なお、この安定化剤は、前記脱水剤と共に高純度水酸化第二銅中に共存していてもよい。
【0022】
【発明の実施の形態】
図1乃至図3は、本発明装置の各形態例を示す概略系統図である。まず、図1に示す第1形態例は、有害成分として揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を含む排ガスが導入されるガス導入口11と、処理ガスが導出されるガス導出口12とを有するカラム13内に、前記導入口側に前記高純度水酸化第二銅を主成分とする前記第1除害剤14を充填するとともに、前記導出口側に前記第2除害剤15を充填したものである。
【0023】
図2に示す第2形態例は、前記カラム13における第1除害剤14と第2除害剤15との間に脱水剤16を充填したものである。また、図3に示す第3形態例は、前記カラム13における前記導入口側に前記高純度水酸化第二銅を主成分とする第1除害剤14と脱水剤とを共存させた処理剤17を充填したものである。
【0024】
前記第1除害剤は、前述のように、高純度水酸化第二銅と安定化剤とが共存しているものであってもよく、高純度水酸化第二銅と脱水剤及び安定化剤とが共存しているものであってもよい。また、各形態例では、一つのカラムに第1除害剤や第2除害剤を層状に充填したが、第1除害剤と第2除害剤、あるいは、第1除害剤と脱水剤と第2除害剤とを別のカラムに充填して配管で接続するようにしてもよい。
【0025】
このように形成した有害成分の除去装置は、前記導入口11からカラム13内に特殊ガスを含む排ガスを導入することにより、排ガス中の有害成分ガスを上流側の高純度水酸化第二銅を主成分とする第1除害剤で処理した後、下流側の第2除害剤で仕上げ処理を行うので、有害成分を十分に処理したガスを前記導出口12から導出することができる。
【0026】
【実施例】
実施例1
まず、第1除害剤、第2除害剤、脱水剤及び有害成分ガスとして下記のものを用意した。なお、成形品とは、転動造粒機で直径3mmの大きさに造粒したものである。また、処理後のガス中に含まれる有害成分ガス量が各ガスの許容濃度に達するまでの試験ガスの導入量から剤1kg当たりの有害成分ガス処理量[L/kg]を算出し、これを処理能力とした。
【0027】
前記第1除害剤としては、比較として市販の水酸化第二銅の成型品(A)、不純物の成分毎濃度がそれぞれ0.5重量%以下になるように精製した高純度結晶性水酸化第二銅の成形品(B)、第2除害剤として酸化第二銅の成形品(C)、脱水剤としてシリカゲル(S)をそれぞれ用意した。また、有害成分ガスには、シラン(許容濃度5ppm)、アルシン(許容濃度0.05ppm)、ホスフィン(許容濃度0.3ppm)及びターシャリーブチルアルシン(TBA:許容濃度0.025ppm(含有する砒素の許容濃度からの換算値))をそれぞれ用意した。
【0028】
除害処理を行うときの試験ガスとしては、窒素ベースで前記有害ガス成分濃度1%、流量1リットル/分とした第1試験ガス(G1)と、窒素ベースで前記有害ガス成分濃度5%、流量5リットル/分とした第2試験ガス(G2)とを調製した。また、第1除害剤等を充填するカラムには内径43mmのものを用意した。
【0029】
カラム内に、市販の水酸化第二銅(A)(充填高さ250mm)と酸化第二銅(C)(充填高さ50mm)とを層状に充填したもの(図1参照)、高純度結晶性水酸化第二銅(B)(充填高さ250mm)と酸化第二銅(C)(充填高さ50mm)とを層状に充填したもの(図1参照)、高純度結晶性水酸化第二銅(B)(充填高さ215mm)と脱水剤(S)(充填高さ42.5mm)と酸化第二銅(C)(充填高さ42.5mm)とを層状に充填したもの(図2参照)の3種について、両試験ガスを用いて各有害成分ガスに対する処理能力を測定した。その結果を表1に示す。
【0030】
【表1】

Figure 0003574973
【0031】
実施例2
実施例1と同様にして第1除害剤(B)を高さ250mmで充填したカラムの下流側に、表2に示すように、金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩等の第2除害剤を高さ50mmで充填し、ここに第2試験ガス(G2)の条件でシランを含むガスを導入し、各処理能力を測定した。その結果を表2に示す。
【0032】
【表2】
Figure 0003574973
【0033】
実施例3
高純度結晶性水酸化第二銅(B)に、表3に示す各種物質と水とを加えてよく混合した後、転動造粒機にて直径3mmの大きさに造粒し、高純度結晶性水酸化第二銅と各種物質とが共存した状態の第1除害剤を作成した。なお、特記した以外の各物質の添加量は0.5重量%である。得られた各第1除害剤を100℃に保持して青色から黒色への変色状態を調べた。なお、水酸化第二銅自体は青色であるが、高温下では徐々に酸化銅に変化して黒色となる。変色時間の測定結果を表3に示す。
【0034】
【表3】
Figure 0003574973
【0035】
【発明の効果】
以上説明したように、本発明は、あらかじめ高純度な水酸化第二銅を主成分とする第1除害剤に有害成分として揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を含む排ガスを接触させて前処理的に該有害成分の除害処理を行い、ある程度有害成分が低減したガスを、金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩を主成分とする第2除害剤に接触させて仕上げ処理を行うようにしたので、単独でこれらの剤を使用する場合と比較して長時間使用することが可能となる。そして使用条件によって第1除害剤で十分に除害処理を行うことができなかった場合でも、下流側の第2除害剤によって確実に特殊ガス成分を極微量にまで処理することができる。したがって、有害成分を含む排ガス、特に半導体製造工場から排出されるアルシン、ホスフィン、シラン、ジクロルシラン、ターシャリーブチルアルシン等の特殊ガス成分を含む排ガスを効率よく除害処理することができる。
【図面の簡単な説明】
【図1】本発明の有害成分の除去装置の第1形態例を示す概略系統図である。
【図2】本発明の有害成分の除去装置の第2形態例を示す概略系統図である。
【図3】本発明の有害成分の除去装置の第3形態例を示す概略系統図である。
【符号の説明】
11…ガス導入口、12…ガス導出口、13…カラム、14…第1除害剤、15…第2除害剤、16…脱水剤、17…処理剤[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for removing volatile inorganic hydrides, volatile inorganic halides and organometallic compounds which are harmful components. More specifically, the present invention relates to volatile inorganic hydrides, volatile inorganic halides, and organic compounds as harmful components. relates to the removal method and apparatus for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant comprising a metal compound.
[0002]
[Prior art]
Gases used in the semiconductor manufacturing process, such as metal hydrides such as silane, arsine, and phosphine, and metal halides such as dichlorosilane and boron trifluoride, ignite spontaneously in gases and air toxic to the human body. Special gases, such as gases having properties, which pose a serious danger in terms of safety when discharged directly into the air, are often used. Therefore, after using these special gases, it is necessary to dispose them safely after treating them to a level lower than the allowable concentration.
[0003]
Several methods of treating these special gases have been put to practical use, but the most frequently used method in recent years is a method of removing special gases using solid substances called abatement agents. There is another name for the dry method. Recently, metal hydroxide-based scavengers, particularly cupric hydroxide (copper (II) hydroxide), especially scavengers mainly composed of crystalline cupric hydroxide, have been known as such scavengers. , Compared to conventional metal oxide-based abatement agents, the heat of reaction is small, the heat generated during the abatement reaction is low, the agent's processing capacity is large, and it is noted that hydrogen reduction is difficult. .
[0004]
[Problems to be solved by the invention]
However, commercially available industrial cupric hydroxide contains several percent, for example, 5% or more of impurities, and the cupric hydroxide containing a large amount of such impurities is harmless as described above. When used as an agent, depending on the type of impurities contained, some inconveniences such as increased heat generation during the abatement reaction and small filling density of the abatement agent per unit volume due to low bulk density occur There was time to do. Furthermore, impurities, especially phosphoric acid, sulfuric acid, cupric hydroxide containing a large amount of mineral acid components such as hydrochloric acid and alkali metal components such as lithium, sodium and potassium become chemically unstable at high temperatures, It may deteriorate with time.
[0005]
Further, various components are mixed in the exhaust gas discharged from the semiconductor manufacturing process, and the components and the flow rates are generally changed. When the cupric hydroxide is used as a harm-removing agent, when the special gas concentration in the exhaust gas is higher than the design value or when the superficial velocity is high, the harm-removing ability for the special gas is slightly reduced. Inconveniences such as this may occur.
[0006]
Therefore, the present invention can efficiently remove harmful components such as volatile inorganic halides and organometallic compounds in exhaust gas discharged from a semiconductor manufacturing plant, a liquid crystal manufacturing plant, and the like. while achieving improved performance, runaway reaction in an exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing factory can be suppressed (detoxifying agent react to cause heating of the high temperature to react with hydrogen in the process gas) and its object is to provide a removal method and apparatus for removing harmful components.
[0007]
[Means for Solving the Problems]
To achieve the above object, a method of removing a semiconductor manufacturing plant or a harmful components volatile inorganic hydrides in an exhaust gas discharged from a liquid crystal manufacturing plant, volatile inorganic halides, organometallic compounds of the present invention, the exhaust gas Contains cupric hydroxide as a main component, and contains, as impurity components, mineral acid components of phosphoric acid, sulfuric acid, and hydrochloric acid, and alkali metal components of lithium, sodium, and potassium , and an impurity component in cupric hydroxide. Is contacted with a first abatement agent containing high-purity cupric hydroxide as a main component, the content of which is 0.5% by weight or less in terms of a unit per one impurity component. It is characterized in that it is brought into contact with a second abatement agent containing at least one compound of a hydroxide, a metal carbonate and a basic metal carbonate as a main component.
[0008]
As described above, the special gas to be abated in the present invention is a harmful component gas contained in exhaust gas discharged from a semiconductor manufacturing plant, a liquid crystal manufacturing plant, etc., for example, a compound semiconductor manufacturing process or a MOCVD device. And harmful components in the exhaust gas discharged from the liquid crystal manufacturing apparatus. Specifically, it is a volatile inorganic hydride, a volatile inorganic halide, an organometallic compound, or the like. Examples of the volatile inorganic hydride include silane, disilane, arsine, phosphine, diborane, germane, ammonia, and hydrogen sulfide. , Hydrogen selenide, etc., and the volatile inorganic halides include boron trifluoride, boron trichloride, silicon tetrafluoride, dichlorosilane, trichlorosilane, silicon tetrachloride, trichloroarsine, hexafluoride. Various gases including halogen gas such as tungsten, germane tetrafluoride, phosphorus trifluoride, titanium tetrachloride, fluorine, chlorine, hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide can be given.
[0009]
Further, as the organometallic compounds, those containing an alkyl group include dimethylzinc, dimethylcadmium, dimethyltellurium, diethylzinc, trimethylaluminum, trimethylgallium, trimethylindium, trimethylarsine, trimethylboron, triethylboron, triethylaluminum, triethylgallium , Triethylindium, triethylarsine, tetramethyltin, tetraethyltin, tertiary butyl phosphine, tertiary butyl arsine, and the like containing an alkoxide group as dimethoxy zinc, tributoxy gallium, trimethoxy boron, triethoxy boron, tetramethoxy Silane, tetraethoxysilane, tetramethoxygermane, tetraethoxygermane, tetratertiarybutoxytin, trimet Cyphosphine, triethoxyphosphine, trimethoxyarsine, triethoxyarsine, tetraethoxyselenium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetraisopropoxyzirconium, tetratertiarybutoxyzirconium, pentamethoxytantalum, pentaethoxytantalum And the like.
[0010]
In the present invention, as a first abatement agent for removing these harmful special gases, high-purity cupric hydroxide having a concentration of 0.5% by weight or less for each component of impurities is preferably used. The total amount of impurities is 5% by weight or less, and particularly preferably, mineral acid components such as phosphoric acid, sulfuric acid, and hydrochloric acid, and alkali metal components such as sodium and potassium, which greatly affect the abatement performance and the stability of cupric hydroxide. , High-purity cupric hydroxide having a content of each component of 0.2% by weight or less is used.
[0011]
As described above, by using high-purity cupric hydroxide having a small impurity content as a main component of the first abatement agent, for example, when removing silanes, it is possible to use a general industrial cupric hydroxide. In comparison, the processing capacity can be increased up to about six times. In addition, when the phosphine is subjected to the detoxification treatment, the heat generation temperature can be lowered. The purification treatment of cupric hydroxide to reduce impurities can be performed by any method, and is not particularly limited.
[0012]
Furthermore, by using crystalline cupric hydroxide as high-purity cupric hydroxide, the stability with respect to temperature can be increased as compared with amorphous one, so that the concentration of harmful components is high. It can be used stably even when the reaction heat is high. Thereby, stable detoxification processing can be performed without employing a special cooling structure in a column or the like for performing detoxification processing.
[0013]
In addition, the high-purity cupric hydroxide thus reduced in impurities has a copper content of 60% or more, which is higher than a general product of cupric hydroxide (copper content of about 55 to 58%), The tap density also increases from about 0.4 to 0.5 of general products to 0.8 or more. Thereby, the amount of cupric hydroxide per unit amount when used as an abatement agent is increased by about 10%, the packing density is improved by 20 to 30%, and the crushing strength is also improved by several tens%. Therefore, the processing performance as an abatement agent can be improved, and the handleability can be improved.
[0014]
On the other hand, as described above, the second abatement agent contains, as a main component, at least one compound of a metal oxide, a metal oxide hydroxide, a metal carbonate, and a basic metal carbonate. Metal oxides include cuprous oxide, cupric oxide, magnesium oxide, calcium oxide, titanium dioxide, chromium oxide, manganese dioxide, dimanganese trioxide, ferrous oxide, nickel oxide, zinc oxide, aluminum oxide, Many metal oxides such as silicon dioxide, ruthenium oxide, silver oxide, cerium oxide, osmium oxide and the like can be used. Examples of the metal oxide hydroxide include manganese oxide hydroxide, iron oxide hydroxide, lead oxide hydroxide, and molybdenum hydroxide hydroxide. As the basic metal carbonate, dicobium dihydroxide (Basic copper carbonate), basic lead carbonate, basic nickel carbonate, basic beryllium carbonate, manganese carbonate and the like.
[0015]
These metal oxides, metal oxide hydroxides, metal carbonates, and basic metal carbonates can be used alone, or can be used as a mixture. Can also be used. For example, mixing manganese trioxide or basic copper carbonate with manganese dioxide or cupric oxide, or filling cupric oxide or manganese dioxide on the downstream side of a packed layer of dimanganese trioxide or basic copper carbonate Or layers can be arranged.
[0016]
The first and second abatement agents can be used as they are in a powder form or in an appropriate shape and used as they are. However, they can be applied to an appropriate carrier such as a carrier such as silica gel, alumina and diatomaceous earth. It is preferable to use it supported. The basic metal carbonate is very difficult to be reduced even when the exhaust gas contains a large amount of hydrogen, and is therefore very effective as a second abatement agent when treating a hydrogen-containing exhaust gas. In particular, basic copper carbonate is most suitable.
[0017]
As described above, after contact with the first abatement agent containing high-purity cupric hydroxide as a main component, subsequently, a metal oxide, a metal oxide hydroxide, a metal carbonate, and a basic metal carbonate are mainly used. By contacting with a second abatement agent as a component, the ability to remove a volatile inorganic hydride, a volatile inorganic halide and an organometallic compound in exhaust gas is remarkably improved, and the deterioration of both agents is suppressed. This enables efficient abatement treatment for a long time.
[0018]
When performing the abatement treatment of the exhaust gas in this way, depending on the type of the volatile inorganic hydride, the volatile inorganic halide, the organometallic compound or the type of the second abatement agent, the first abatement agent on the upstream side. The second abatement agent on the downstream side may be deteriorated by moisture generated by the contact reaction between the gas and the harmful component gas in the exhaust gas. In particular, in recent processes using special gases, the number of cases where special gases are flowed in large amounts for a long time has increased, and the moisture generated by the reaction between the first abatement agent and the special gases is constantly generated. As a result, the surface of the second abatement agent on the downstream side may adsorb a large amount of water, thereby impairing the reaction efficiency.
[0019]
In such a case, the water generated by the contact with the first abatement agent is removed by contacting with a dehydrating agent such as silica gel, alumina, zeolite or the like, and then is brought into contact with the second abatement agent. (2) Deterioration of the abatement agent can be prevented, and a more stable abatement process can be efficiently continued for a long time. At this time, the exhaust gas after contacting the first abatement agent may be brought into contact with the dehydration agent before being brought into contact with the second abatement agent. It can also be added to and mixed with an agent to make it coexist, or used as a carrier for a scavenger component such as high-purity cupric hydroxide.
[0020]
Further, the high-purity cupric hydroxide is at least one selected from the group consisting of beryllium, magnesium, vanadium, molybdenum, cobalt, nickel, copper, zinc, boron, aluminum, silicon, lead, antimony, and bismuth. Of the element or oxides, hydroxides (excluding copper hydroxide), carbonates, bicarbonates, basic carbonates, hydroxides, peroxides, carboxylates, oxyacids of the element At least one stabilizer, specifically, magnesium, magnesium oxide, magnesium hydroxide, basic magnesium carbonate, aluminum, silicon, nickel hydroxide, zinc, lead monoxide, antimony oxide, bismuth oxide, cobalt carbonate, By coexisting with stabilizing agents such as boron oxide and boric acid, the degradation and thermal decomposition reaction of high-purity cupric hydroxide can be suppressed for the first time. Can be maintained for a long time performance, it is possible to perform a stable abatement process.
[0021]
The amount of the stabilizer to be added to the high-purity cupric hydroxide varies somewhat depending on the type of the stabilizer, but usually about 0.01 to 10% by weight based on the high-purity cupric hydroxide is appropriate. If the amount is too large, the ability to remove copper (II) hydroxide may be impaired. If the amount is too small, a sufficient stabilizing effect cannot be obtained. The stabilizer may be present together with the dehydrating agent in high-purity cupric hydroxide.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 to 3 are schematic system diagrams showing each embodiment of the device of the present invention. First, a first embodiment shown in FIG. 1 has a gas inlet 11 into which exhaust gas containing volatile inorganic hydride, volatile inorganic halide, and organometallic compound as harmful components is introduced, and a gas from which a processing gas is led out. Into a column 13 having an outlet 12, the inlet is filled with the first harm-removing agent 14 containing high-purity cupric hydroxide as a main component, and the second eliminator 14 is provided on the outlet. It is filled with the harmful agent 15.
[0023]
In the second embodiment shown in FIG. 2, a dehydrating agent 16 is filled between the first abatement agent 14 and the second abatement agent 15 in the column 13. Further, a third embodiment shown in FIG. 3 is a treating agent in which a first abatement agent 14 containing high-purity cupric hydroxide as a main component and a dehydrating agent coexist on the inlet side of the column 13. 17 is filled.
[0024]
As described above, the first abatement agent may be one in which high-purity cupric hydroxide and a stabilizer coexist, and may be high-purity cupric hydroxide, a dehydrating agent, and a stabilizing agent. An agent may coexist. Also, in each embodiment, one column is packed with the first abatement agent and the second abatement agent in layers, but the first abatement agent and the second abatement agent or the first abatement agent and the The agent and the second abatement agent may be filled in another column and connected by piping.
[0025]
The harmful component removing device formed as described above introduces an exhaust gas containing a special gas into the column 13 from the inlet port 11 to convert the harmful component gas in the exhaust gas into high-purity cupric hydroxide on the upstream side. After the treatment with the first abatement agent as the main component, the finishing treatment is carried out with the second abatement agent on the downstream side, so that the gas sufficiently treated with the harmful component can be led out from the outlet 12.
[0026]
【Example】
Example 1
First, the following were prepared as a 1st abatement agent, a 2nd abatement agent, a dehydrating agent, and a harmful component gas. In addition, a molded article is what was granulated to the size of 3 mm in diameter with a rolling granulator. Further, a harmful component gas treatment amount [L / kg] per 1 kg of the agent is calculated from the amount of the test gas introduced until the amount of the harmful component gas contained in the treated gas reaches the allowable concentration of each gas. Processing capacity.
[0027]
Examples of the first abatement agent include a commercially available molded product of cupric hydroxide (A) and a high-purity crystalline hydroxide purified so that the concentration of each impurity component is 0.5% by weight or less. A cupric molded article (B), a cupric oxide molded article (C) as a second detoxifying agent, and silica gel (S) as a dehydrating agent were prepared. In addition, harmful component gases include silane (allowable concentration 5 ppm), arsine (allowable concentration 0.05 ppm), phosphine (allowable concentration 0.3 ppm) and tertiary butyl arsine (TBA: allowable concentration 0.025 ppm (of arsenic contained). Conversion values from the allowable concentration)) were prepared.
[0028]
As the test gas when performing the detoxification treatment, a first test gas (G1) having a harmful gas component concentration of 1% on a nitrogen basis and a flow rate of 1 liter / min, a harmful gas component concentration of 5% on a nitrogen basis, A second test gas (G2) having a flow rate of 5 L / min was prepared. A column filled with the first abatement agent or the like had an inner diameter of 43 mm.
[0029]
A column filled with commercially available cupric hydroxide (A) (filling height 250 mm) and cupric oxide (C) (filling height 50 mm) in a layer (see FIG. 1), high-purity crystals Cupric hydroxide (B) (filling height 250 mm) and cupric oxide (C) (filling height 50 mm) packed in layers (see FIG. 1); Copper (B) (filling height 215 mm), dehydrating agent (S) (filling height 42.5 mm), and cupric oxide (C) (filling height 42.5 mm) filled in layers (FIG. 2) ), The processing capacity for each harmful component gas was measured using both test gases. Table 1 shows the results.
[0030]
[Table 1]
Figure 0003574973
[0031]
Example 2
As shown in Table 2, a metal oxide, a metal oxide hydroxide, a metal carbonate, and a base were placed downstream of the column packed with the first abatement agent (B) at a height of 250 mm in the same manner as in Example 1. A second harm-removing agent such as a neutral metal carbonate was filled at a height of 50 mm, and a gas containing silane was introduced therein under the condition of the second test gas (G2), and the respective treatment capacities were measured. Table 2 shows the results.
[0032]
[Table 2]
Figure 0003574973
[0033]
Example 3
After adding various substances shown in Table 3 and water to high-purity crystalline cupric hydroxide (B) and mixing well, the mixture is granulated to a size of 3 mm in diameter by a tumbling granulator to obtain high purity. A first abatement agent in a state where crystalline cupric hydroxide and various substances coexist was prepared. The amount of each substance other than those specified is 0.5% by weight. Each of the obtained first abatement agents was kept at 100 ° C., and the discoloration state from blue to black was examined. The cupric hydroxide itself is blue, but gradually changes to copper oxide and turns black at high temperatures. Table 3 shows the measurement results of the discoloration time.
[0034]
[Table 3]
Figure 0003574973
[0035]
【The invention's effect】
As described above, the present invention includes a volatile inorganic hydride, a volatile inorganic halide, and an organometallic compound as a harmful component in the first abatement agent containing high-purity cupric hydroxide as a main component in advance. The exhaust gas is contacted to pre-treat the harmful components in a pretreatment manner, and the gas with reduced harmful components to some extent is converted to a metal oxide, a metal oxide hydroxide, a metal carbonate, or a basic metal carbonate. Since the finishing treatment is performed by contacting the second abatement agent, the agent can be used for a longer time than when these agents are used alone. Then, even if the first detoxifying agent cannot sufficiently perform the detoxification treatment depending on the use conditions, the special gas component can be surely processed to an extremely small amount by the second detoxification agent on the downstream side. Therefore, the exhaust gas containing harmful components , particularly, the exhaust gas containing special gas components such as arsine, phosphine, silane, dichlorosilane, tertiary butyl arsine and the like discharged from a semiconductor manufacturing plant can be efficiently removed.
[Brief description of the drawings]
FIG. 1 is a schematic system diagram showing a first embodiment of an apparatus for removing harmful components according to the present invention.
FIG. 2 is a schematic system diagram showing a second embodiment of the harmful component removing device of the present invention.
FIG. 3 is a schematic system diagram showing a third embodiment of the harmful component removing device of the present invention.
[Explanation of symbols]
11 gas inlet, 12 gas outlet, 13 column, 14 first abatement agent, 15 second abatement agent, 16 dehydrating agent, 17 treatment agent

Claims (11)

有害成分として揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を含む半導体製造工場や液晶製造工場から排出される排ガスを、水酸化第二銅を主成分とし、不純物成分として、リン酸、硫酸、塩酸の鉱酸成分及びリチウム、ナトリウム、カリウムのアルカリ金属成分が含まれ、かつ水酸化第二銅中の不純物成分の含有率が、1つの不純物成分あたり単位換算で0.5重量%以下である高純度水酸化第二銅を主成分とする第1除害剤に接触させた後、金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩のうち少なくとも1つの化合物を主成分とする第2除害剤に接触させることを特徴とする半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。 Volatile inorganic hydrides as harmful components, volatile inorganic halides, a semiconductor manufacturing factories and exhaust gases that will be discharged from the liquid crystal manufacturing plant comprising an organometallic compound, as a main component cupric hydroxide, as an impurity component, phosphorus Contains mineral acid components such as acid, sulfuric acid and hydrochloric acid and alkali metal components such as lithium, sodium and potassium , and the content of the impurity component in cupric hydroxide is 0.5 wt. % Or less of a high-purity cupric hydroxide as a main component, and then contacted with at least one of a metal oxide, a metal oxide hydroxide, a metal carbonate, and a basic metal carbonate. A method for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant, wherein the method is brought into contact with a second abatement agent containing two compounds as main components . 前記排ガスを、第1除害剤に接触させた後、脱水剤に接触させてから前記第2除害剤に接触させることを特徴とする請求項1記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The exhaust gas is discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 1, wherein the exhaust gas is brought into contact with a first detoxifying agent, then with a dehydrating agent, and then with the second detoxifying agent. Of harmful components in waste gas. 前記第1除害剤は、前記高純度水酸化第二銅と、ベリリウム、マグネシウム、バナジウム、モリブデン、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム、ケイ素、鉛、アンチモン、ビスマスの元素の群より選ばれた少なくとも1種の単体、または該元素の酸化物、水酸化物(水酸化銅を除く)、炭酸塩、炭酸水素塩、塩基性炭酸塩、酸化水酸化物、過酸化物、カルボン酸塩、オキシ酸塩の少なくとも一種からなる安定化剤とが共存していることを特徴とする請求項1記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The first abatement agent, the high-purity cupric hydroxide and beryllium, magnesium, vanadium, molybdenum, cobalt, nickel, copper, zinc, boron, aluminum, silicon, lead, antimony, bismuth At least one element selected, or an oxide, hydroxide (excluding copper hydroxide), carbonate, hydrogencarbonate, basic carbonate, oxide hydroxide, peroxide, carboxylic acid of the element 2. The method for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 1, wherein a stabilizer comprising at least one of a salt and an oxyacid salt is present. 前記第1除害剤は、前記高純度水酸化第二銅と脱水剤とが共存していることを特徴とする請求項1記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The first Jogaizai is detrimental in an exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 1, wherein the said high purity cupric hydroxide and dehydrating agent coexist How to remove components . 前記第1除害剤は、ベリリウム、マグネシウム、バナジウム、モリブデン、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム、ケイ素、鉛、アンチモン、ビスマスの元素の群より選ばれた少なくとも1種の単体、または該元素の酸化物、水酸化物(水酸化銅を除く)、炭酸塩、炭酸水素塩、塩基性炭酸塩、酸化水酸化物、過酸化物、カルボン酸塩、オキシ酸塩の少なくとも一種からなる安定化剤が共存していることを特徴とする請求項記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The first abatement agent, beryllium, magnesium, vanadium, molybdenum, cobalt, nickel, copper, zinc, boron, aluminum, silicon, lead, antimony, at least one element selected from the group of bismuth, or It consists of at least one of oxides, hydroxides (excluding copper hydroxide), carbonates, bicarbonates, basic carbonates, hydroxides, peroxides, carboxylates and oxyacids of the element. 5. The method for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 4 , wherein a stabilizing agent coexists. 前記高純度水酸化第二銅は、水酸化第二銅中のリン酸、硫酸、塩酸の鉱酸成分及びリチウム、ナトリウム、カリウムのアルカリ金属成分の成分毎濃度がそれぞれ0.2重量%以下であることを特徴とする請求項1記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The high-purity cupric hydroxide has a concentration of each of the mineral acid components of phosphoric acid, sulfuric acid, and hydrochloric acid and the alkali metal components of lithium, sodium, and potassium in cupric hydroxide of 0.2% by weight or less. 2. The method for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 1. 前記高純度水酸化第二銅は、結晶性の水酸化第二銅であることを特徴とする請求項1記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去方法。The method for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 1, wherein the high-purity cupric hydroxide is crystalline cupric hydroxide. 有害成分として揮発性無機水素化物,揮発性無機ハロゲン化物,有機金属化合物を含む半導体製造工場や液晶製造工場から排出される排ガスが導入される導入口と、処理ガスが導出される導出口とを有するカラム内に、前記導入口側に水酸化第二銅を主成分とし、不純物成分として、リン酸、硫酸、塩酸の鉱酸成分及びリチウム、ナトリウム、カリウムのアルカリ金属成分が含まれ、かつ水酸化第二銅中の不純物成分の含有率が、1つの不純物成分あたり単位換算で0.5重量%以下である高純度水酸化第二銅を主成分とする第1除害剤を充填するとともに、前記導出口側に金属酸化物、金属酸化水酸化物、金属炭酸塩、塩基性金属炭酸塩のうち少なくとも1つの化合物を主成分とする第2除害剤を充填したことを特徴とする半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去装置。 Volatile inorganic hydrides as harmful components, volatile inorganic halides, and inlet exhaust gas that will be discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant comprising an organic metal compound is introduced, and electrical outlet process gas is derived In the column having, on the inlet side the main component is cupric hydroxide, and as the impurity components, phosphoric acid, sulfuric acid, a mineral acid component of hydrochloric acid and an alkali metal component of lithium, sodium and potassium are contained, and The first abatement agent containing high-purity cupric hydroxide as a main component, in which the content of the impurity component in cupric hydroxide is 0.5% by weight or less per unit of one impurity component , is filled. In addition, the outlet port side is filled with a second harm-removing agent containing at least one compound of a metal oxide, a metal oxide hydroxide, a metal carbonate, and a basic metal carbonate as a main component. Semiconductor manufacturing plant Apparatus for removing harmful components in exhaust gas discharged from a liquid crystal manufacturing plant. 前記第1除害剤と前記第2除害剤との間に、脱水剤が充填されていることを特徴とする請求項8記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去装置。Between the second detoxifying agents and the first detoxifying agents, harmful in the exhaust gas dehydrating agent is discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 8, characterized in that it is filled Component removal device. 前記第1除害剤は、前記高純度水酸化第二銅と、ベリリウム、マグネシウム、バナジウム、モリブデン、コバルト、ニッケル、銅、亜鉛、ホウ素、アルミニウム、ケイ素、鉛、アンチモン、ビスマスの元素の群より選ばれた少なくとも1種の単体、または該元素の酸化物、水酸化物(水酸化銅を除く)、炭酸塩、炭酸水素塩、塩基性炭酸塩、酸化水酸化物、過酸化物、カルボン酸塩、オキシ酸塩の少なくとも一種からなる安定化剤とが共存していることを特徴とする請求項8記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去装置。The first abatement agent, the high-purity cupric hydroxide and beryllium, magnesium, vanadium, molybdenum, cobalt, nickel, copper, zinc, boron, aluminum, silicon, lead, antimony, bismuth At least one element selected, or an oxide, hydroxide (excluding copper hydroxide), carbonate, hydrogencarbonate, basic carbonate, oxide hydroxide, peroxide, carboxylic acid of the element 9. The apparatus for removing harmful components in exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 8, wherein a stabilizer comprising at least one of a salt and an oxyacid salt coexists. 前記第1除害剤は、前記高純度水酸化第二銅と脱水剤とが共存していることを特徴とする請求項8記載の半導体製造工場や液晶製造工場から排出される排ガス中の有害成分の除去装置。The first Jogaizai is detrimental in an exhaust gas discharged from a semiconductor manufacturing plant or a liquid crystal manufacturing plant according to claim 8, wherein the said high purity cupric hydroxide and dehydrating agent coexist Component removal device.
JP2001323236A 2001-10-22 2001-10-22 Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants Expired - Fee Related JP3574973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323236A JP3574973B2 (en) 2001-10-22 2001-10-22 Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323236A JP3574973B2 (en) 2001-10-22 2001-10-22 Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants

Publications (2)

Publication Number Publication Date
JP2003126647A JP2003126647A (en) 2003-05-07
JP3574973B2 true JP3574973B2 (en) 2004-10-06

Family

ID=19140157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323236A Expired - Fee Related JP3574973B2 (en) 2001-10-22 2001-10-22 Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants

Country Status (1)

Country Link
JP (1) JP3574973B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778690B2 (en) * 2004-06-24 2011-09-21 高千穂化学工業株式会社 Outlet cap for toxic gas container valve
JP2006110467A (en) * 2004-10-14 2006-04-27 Furukawa Co Ltd Phosphorus separation apparatus for semiconductor manufacturing apparatus
JP4791856B2 (en) * 2006-03-02 2011-10-12 大陽日酸株式会社 Exhaust gas abatement device for trace oxygen concentration meter, trace oxygen concentration meter equipped with the same, and exhaust gas elimination method for trace oxygen concentration meter
JP5833313B2 (en) * 2009-02-10 2015-12-16 クラリアント触媒株式会社 Detoxifying agent and method for exhaust gas containing metal hydride
KR101623228B1 (en) * 2009-03-27 2016-05-31 수드 케미 촉매주식회사 Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JP6043398B2 (en) * 2015-04-03 2016-12-14 クラリアント触媒株式会社 Detoxifying agent and method for exhaust gas containing metal hydride

Also Published As

Publication number Publication date
JP2003126647A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
EP0546464B1 (en) Process for cleaning harmful gas
US5051117A (en) Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds
US9669400B2 (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
JP3574973B2 (en) Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants
US5853678A (en) Method for removing hydrides, alkoxides and alkylates out of a gas using cupric hydroxide
US5512262A (en) Process for cleaning harmful gas
JP2004351364A (en) Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride
JP2972975B2 (en) Hazardous exhaust gas abatement method and abatement agent
KR20150037855A (en) Method for producing polycrystalline silicon
KR100488091B1 (en) Hazardous Gas Purifiers and Methods
JPH0417082B2 (en)
KR20010061933A (en) Cleaning agent and cleaning process of harmful gas
JP3260825B2 (en) How to purify harmful gases
JP3227601B2 (en) Harmful exhaust gas abatement agent
JP3557539B2 (en) Hazardous gas abatement method and abatement agent
JP2561616B2 (en) Solid remover for harmful components
JP2932056B2 (en) Solid detection agent for harmful components
JP3557409B2 (en) Hazardous component remover and method for treating gas containing harmful components
JPS62286521A (en) Method for purifying exhaust gas
JPS62286520A (en) Method for purifying exhaust gas
JP3507995B2 (en) Remover of harmful components
JPS6331252B2 (en)
WO2010109671A1 (en) Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JP4288042B2 (en) Special gas removal detoxifier and special gas removal method
JP2008119628A (en) Cleaning agent and cleaning method of toxic gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Ref document number: 3574973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees