JP2006110467A - Phosphorus separation apparatus for semiconductor manufacturing apparatus - Google Patents

Phosphorus separation apparatus for semiconductor manufacturing apparatus Download PDF

Info

Publication number
JP2006110467A
JP2006110467A JP2004300410A JP2004300410A JP2006110467A JP 2006110467 A JP2006110467 A JP 2006110467A JP 2004300410 A JP2004300410 A JP 2004300410A JP 2004300410 A JP2004300410 A JP 2004300410A JP 2006110467 A JP2006110467 A JP 2006110467A
Authority
JP
Japan
Prior art keywords
phosphorus
exhaust gas
semiconductor manufacturing
column
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004300410A
Other languages
Japanese (ja)
Inventor
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2004300410A priority Critical patent/JP2006110467A/en
Publication of JP2006110467A publication Critical patent/JP2006110467A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorus separation apparatus for a semiconductor manufacturing apparatus capable of completely removing phosphorus in a safe form, contained in exhaust gas from the semiconductor manufacturing apparatus. <P>SOLUTION: This phosphorus separation apparatus 9 for the semiconductor manufacturing apparatus, which is composed of a column 11 through which exhaust gas from the semiconductor manufacturing apparatus passes, packing materials 19 comprising copper wires and a nickel porous material packed inside the column 11 and being in contact with the exhaust gas; and an electric resistance type heating furnace 17 heating the inside of the column 11 up to a depositing and solidifying temperature of phosphorus, is disposed on the downstream side of an exhaust gas passage 5a of the semiconductor manufacturing apparatus. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造装置から排出される排ガス中から燐を安全な形態で分離除去する半導体製造装置用燐分離装置に関する。   The present invention relates to a phosphorus separator for a semiconductor manufacturing apparatus that separates and removes phosphorus from exhaust gas discharged from a semiconductor manufacturing apparatus in a safe form.

化合物半導体単結晶膜の製造に気相成長法が多く用いられている。主たる気相成長法には、有機金属化学気相成長法(MOCVD法)や水素化物気相成長法(HVPE法)がある。例えばIII−V族化合物半導体の有機金属化学気相成長法では、加熱した単結晶基板上にIII族とV族の有機金属ガスを流し、水素化物気相成長法では、加熱した単結晶基板上にIII族の塩の蒸気とV族の水素化物を流し、それぞれ目的とする組成の化合物半導体単結晶膜をエピタキシャル成長させる。   Vapor phase epitaxy is often used for the production of compound semiconductor single crystal films. The main vapor deposition methods include a metal organic chemical vapor deposition method (MOCVD method) and a hydride vapor deposition method (HVPE method). For example, in the metal-organic chemical vapor deposition method of a III-V compound semiconductor, a group III and group V metal-organic gas is flowed over a heated single crystal substrate, and in the hydride vapor deposition method, a heated single crystal substrate is used. Then, a group III salt vapor and a group V hydride are allowed to flow through to epitaxially grow a compound semiconductor single crystal film having a target composition.

これらの気相成長法では、通常、キャリアガスの水素とともにV族原料を過剰に流す。このため、半導体製造装置の排ガス中には、未反応のV族原料、V族原料の分解生成物及び水素が多量に含まれている。V族原料としてアルシンやホスフィン等が用いられる場合には、V族原料の分解生成物には砒素(As)や燐(P)が含まれている。   In these vapor phase growth methods, an excessive amount of group V raw material is usually flowed together with hydrogen as a carrier gas. For this reason, in the exhaust gas of a semiconductor manufacturing apparatus, unreacted V group raw material, the decomposition product of V group raw material, and hydrogen are contained in large quantities. When arsine, phosphine, or the like is used as the group V material, arsenic (As) or phosphorus (P) is contained in the decomposition product of the group V material.

排ガス中のV族原料としてのアルシンやホスフィン及びその分解生成物は有害物質であり、燐は発火性を有するので、排ガスを除害塔に通し、V族原料及びその分解生成物を排ガス中から除去した後、排ガスを大気放散する。除害塔では、一般に、金属酸化物、金属水酸化物や塩基性金属炭酸塩が除害剤として使われており、除害剤が排ガス中のV族原料及びその分解生成物と接触し、接触したV族原料及びその分解生成物を安全な物質に化学変化させて排ガス中から除去する。例えば、水酸化第二銅を反応主成分とする除害剤と砒素又は燐を含む排ガスとを接触させて、排ガス中から砒素や燐を除去する(特許文献1を参照)。   Arsine and phosphine as a group V raw material in the exhaust gas and their decomposition products are harmful substances, and phosphorus is ignitable. After removal, the exhaust gas is released to the atmosphere. In the abatement tower, metal oxides, metal hydroxides and basic metal carbonates are generally used as the abatement agent, and the abatement agent comes into contact with the Group V raw material and its decomposition products in the exhaust gas, The contacted Group V raw material and its decomposition products are chemically changed to safe substances and removed from the exhaust gas. For example, an abatement agent containing cupric hydroxide as a reaction main component is contacted with an exhaust gas containing arsenic or phosphorus to remove arsenic and phosphorus from the exhaust gas (see Patent Document 1).

しかし、除害塔はV族原料であるアルシンやホスフィン等の除去に対して有効であるが、分解生成物である砒素や燐に対しては、取り扱いが容易で安全な形態での除去が難しい。すなわち、砒素や燐が除害剤の表面や除害塔内部に固着し、堆積してしまうためアルシンやホスフィン等の除去能力が早期に低下するといった課題がある。そこで、特許文献1では、排ガスをフィルタに通し、フィルタによってミスト状又は粉末状の砒素や燐を捕集した後、水酸化第二銅を反応主成分とする除害剤に排ガスを接触させる方法が提唱されている。   However, the abatement tower is effective in removing arsine and phosphine, which are group V materials, but it is difficult to remove arsenic and phosphorus, which are decomposition products, in an easy-to-handle and safe form. . In other words, arsenic and phosphorus adhere to the surface of the detoxifying agent and the inside of the detoxifying tower and are deposited, so that there is a problem that the ability to remove arsine and phosphine is quickly reduced. Therefore, in Patent Document 1, after exhaust gas is passed through a filter, mist or powdery arsenic or phosphorus is collected by the filter, and then the exhaust gas is contacted with a detoxifying agent containing cupric hydroxide as a main component of reaction. Has been proposed.

多くの場合、分解生成物である燐は排ガス中で黄燐の形態をとっているため大気と接触して自然発火する危険性を有する。このため、フィルタや除害剤を交換する際、発火防止に細心の注意を払う必要があり、作業が煩雑化する。この問題に対処するため、半導体製造装置から除害塔に至る排ガス流路において、排ガス中から黄燐を安全に除去する技術が検討されている。   In many cases, the decomposition product phosphorus takes the form of yellow phosphorus in the exhaust gas, and thus has a risk of spontaneous ignition in contact with the atmosphere. For this reason, when exchanging the filter and the detoxifying agent, it is necessary to pay close attention to preventing ignition, which complicates the work. In order to cope with this problem, a technique for safely removing yellow phosphorus from exhaust gas in an exhaust gas flow path from a semiconductor manufacturing apparatus to a detoxification tower has been studied.

かかる技術の一つとして、ホスフィンを燐蒸気に分解するために十分に高い温度まで排ガスを加熱した後、100℃より高く加熱された酸化カルシウムを収容する反応器中に排ガスを通し、反応器中の酸化カルシウムに酸素及び/又は空気を導入して燐酸カルシウムを生成させる除害方法が提唱されている(特許文献2を参照)。   One such technique is to heat the exhaust gas to a sufficiently high temperature to decompose phosphine into phosphorous vapor, and then pass the exhaust gas through a reactor containing calcium oxide heated above 100 ° C. in the reactor. A detoxification method has been proposed in which oxygen and / or air is introduced into calcium oxide to produce calcium phosphate (see Patent Document 2).

あるいは、トラップ装置内に設けられたオイル分散装置で発生させた低温オイルミストによって排ガス中の燐をオイルに析出固化して捕集し、そのオイルから燐固化物を燐固化物除去フィルタで分離除去し、再び、トラップ装置において燐析出捕集用オイルとして使用し、燐を排ガス中から除去する半導体製造装置用燐トラップ装置が提唱されている(特許文献3を参照)。
特開平10−99636号公報 特開平7−759号公報 特開2003−135926号公報
Alternatively, phosphorus in exhaust gas is precipitated and solidified in oil by a low-temperature oil mist generated by an oil dispersion device provided in the trap device, and the solidified phosphorus is separated and removed from the oil by a solidified matter removal filter. Then, again, a phosphorus trap device for a semiconductor manufacturing apparatus has been proposed which is used as an oil for collecting and collecting phosphorus in a trap device and removes phosphorus from exhaust gas (see Patent Document 3).
Japanese Patent Laid-Open No. 10-99636 Japanese Patent Laid-Open No. 7-759 JP 2003-135926 A

しかしながら、特許文献2の除害方法には、以下の問題が存在する。通常、III−V族化合物半導体製造装置の排ガスは水素を含むため、反応器中の酸化カルシウムに酸素や空気を導入することには爆発の危険性が伴う。爆発の危険性を排除するために、酸素や空気の導入を行わないこととすると、酸化カルシウム、燐および酸素の反応生成物であるリン酸カルシウム(Ca(PO32、Ca227、Ca2(PO42など)が生成し難くなるため、燐の効率的な除去ができなくなる。 However, the abatement method of Patent Document 2 has the following problems. Usually, since the exhaust gas of the III-V compound semiconductor manufacturing apparatus contains hydrogen, introducing oxygen or air into the calcium oxide in the reactor involves an explosion risk. In order to eliminate the danger of explosion, if oxygen and air are not introduced, calcium phosphate (Ca (PO 3 ) 2 , Ca 2 P 2 O 7 , calcium phosphate, a reaction product of oxygen and oxygen, Ca 2 (PO 4 ) 2 or the like) is not easily generated, and phosphorus cannot be efficiently removed.

特許文献3の半導体製造装置用燐トラップ装置には、以下の問題が存在する。半導体製造装置の排ガス中の黄燐は高い粘性を有するので、燐固化物除去フィルタが目詰まりしやすい。また、オイル中の燐固化物が黄燐であるので、燐固化物除去フィルタに捕集された黄燐を移送する際、黄燐が自然発火する危険性を完全に拭い去ることができない。
本発明は、上記問題を解決するものであり、その目的とするところは、半導体製造装置の排ガス中から燐を安全な形態として完全に除去できる半導体製造装置用燐分離装置を提供することである。
The phosphorus trap apparatus for semiconductor manufacturing apparatus of Patent Document 3 has the following problems. Since the yellow phosphorus in the exhaust gas of the semiconductor manufacturing apparatus has a high viscosity, the phosphor solidified product removal filter is easily clogged. Moreover, since the phosphorus solidified substance in oil is yellow phosphorus, when transferring the yellow phosphorus collected by the phosphorus solidified removal filter, the risk that yellow phosphorus spontaneously ignites cannot be completely wiped out.
The present invention solves the above problems, and an object of the present invention is to provide a phosphorus separator for a semiconductor manufacturing apparatus that can completely remove phosphorus from the exhaust gas of the semiconductor manufacturing apparatus in a safe form. .

本発明は、その課題を解決するために以下のような構成をとる。請求項1の発明に係る半導体製造装置用燐分離装置は、半導体製造装置の排ガスが内部を通るカラムと、銅、ニッケル、コバルト又はカドミウムの線材と銅、ニッケル、コバルト又はカドミウムの多孔質材の少なくとも一方からなり、カラム内に充填されて排ガスと接触する充填材と、カラム内を燐の析出固化温度以上の温度まで加熱する加熱手段とを有する。   The present invention adopts the following configuration in order to solve the problem. The phosphorus separator for a semiconductor manufacturing apparatus according to the invention of claim 1 includes a column through which the exhaust gas of the semiconductor manufacturing apparatus passes, a wire of copper, nickel, cobalt or cadmium and a porous material of copper, nickel, cobalt or cadmium. It comprises at least one and has a packing material packed in the column and brought into contact with the exhaust gas, and a heating means for heating the column to a temperature not lower than the precipitation solidification temperature of phosphorus.

請求項1の発明によると、カラム内が燐の析出固化温度以上の温度まで加熱され、カラム内で排ガス中の燐が燐蒸気となり、燐蒸気がカラム内の充填材と接触して反応し、燐化物が生成し、排ガス中から燐が分離される。
燐蒸気と反応して燐化物を生成しやすい金属には、アルカリ土類金属(マグネシウム、カルシウム)や遷移金属(チタニウム、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム)がある。アルカリ土類金属を充填材とし、アルカリ土類金属と燐蒸気とを反応させ、燐化物を生成させると、生成した燐化物が大気中の水分と迅速に反応し、有害なホスフィンを発生する。また、遷移金属を充填材として用いる場合、遷移金属表面には緻密な酸化皮膜が形成されているため、遷移金属と燐蒸気との反応が阻害される。
According to the invention of claim 1, the inside of the column is heated to a temperature equal to or higher than the precipitation solidification temperature of phosphorus, the phosphorus in the exhaust gas becomes phosphorus vapor in the column, and the phosphorous vapor comes into contact with the packing material in the column and reacts. Phosphides are produced and phosphorus is separated from the exhaust gas.
Metals that easily generate phosphides by reacting with phosphorus vapor include alkaline earth metals (magnesium, calcium) and transition metals (titanium, zirconium, vanadium, niobium, tantalum, chromium, manganese, iron, cobalt, nickel, copper , Zinc and cadmium). When an alkaline earth metal is used as a filler and an alkaline earth metal and phosphorus vapor are reacted to produce a phosphide, the produced phosphide reacts rapidly with moisture in the atmosphere to generate harmful phosphine. Further, when a transition metal is used as a filler, since a dense oxide film is formed on the surface of the transition metal, the reaction between the transition metal and phosphorus vapor is inhibited.

しかし、遷移金属のうち銅又はニッケルを充填材とすると、その金属表面に形成されているCu2OやNiO等の酸化皮膜が排ガス中の水素によって容易に還元され、銅やニッケルの反応活性な金属表面が露出する。露出した銅やニッケルの金属表面では排ガス中の燐蒸気との反応でその金属表面に燐化銅や燐化ニッケルが生成し、排ガス中から燐が燐化物として分離される。燐化銅にはCu3P及びCuP2があるが、燐化物として排ガス中から分離される燐化銅は、主にCu3Pである。また、燐化ニッケルにはNi2P、Ni52、Ni73、Ni54、NiP2、NiP及び、Ni125があるが、燐化物として排ガス中から分離される燐化ニッケルは、主にNi2Pである。Cu3PやNi2Pは燐化銅や燐化ニッケルの中でも低級燐化物であり、大気中で分解せず、塩酸や硝酸に対しても溶解しないので、排ガス中から分離される燐は安全な形態となっている。 However, when copper or nickel is used as a filler among transition metals, an oxide film such as Cu 2 O or NiO formed on the metal surface is easily reduced by hydrogen in the exhaust gas, and the reaction activity of copper or nickel is increased. The metal surface is exposed. On the exposed metal surface of copper or nickel, copper phosphide or nickel phosphide is generated on the metal surface by reaction with phosphorus vapor in the exhaust gas, and phosphorus is separated from the exhaust gas as a phosphide. Copper phosphide includes Cu 3 P and CuP 2, but the copper phosphide separated from the exhaust gas as a phosphide is mainly Cu 3 P. Nickel phosphide includes Ni 2 P, Ni 5 P 2 , Ni 7 P 3 , Ni 5 P 4 , NiP 2 , NiP, and Ni 12 P 5 , and phosphorous separated from exhaust gas as phosphide. Nickel bromide is mainly Ni 2 P. Cu 3 P and Ni 2 P are lower phosphides among copper phosphide and nickel phosphide, and do not decompose in the atmosphere and do not dissolve in hydrochloric acid or nitric acid. It has become a form.

遷移金属のうちコバルトは原産国の政情に影響を受ける形で価格変動が大きく価格も高いが、コバルトを充填材とすることもできる。コバルトを充填材とした場合、金属表面に形成されたCoOを主とする酸化皮膜は水素によって容易に還元され、反応活性なコバルトの金属表面が露出し、露出したコバルトの金属表面では排ガス中の燐蒸気との反応で燐化コバルトが生成し、排ガス中から燐が分離される。   Of the transition metals, cobalt is affected by the politics of the country of origin and has a large price fluctuation and high price, but cobalt can also be used as a filler. When cobalt is used as the filler, the oxide film mainly composed of CoO formed on the metal surface is easily reduced by hydrogen, and the reactive metal surface of cobalt is exposed. Cobalt phosphide is produced by reaction with phosphorus vapor, and phosphorus is separated from the exhaust gas.

遷移金属のうちカドミウムは労働安全基準法における特定化学物質であるので取り扱いに注意を要するが、カドミウムを充填材とすることもできる。カドミウムを充填材とした場合、金属表面に形成されたCdOを主とする酸化皮膜は水素によって容易に還元され、反応活性なカドミウムの金属表面が露出し、露出したカドミウムの金属表面では排ガス中の燐蒸気との反応で燐化カドミウムが生成し、排ガス中から燐が分離される。   Of the transition metals, cadmium is a specified chemical substance in the Industrial Safety Standards Law, so care should be taken in handling, but cadmium can also be used as a filler. When cadmium is used as the filler, the oxide film mainly composed of CdO formed on the metal surface is easily reduced by hydrogen, and the metal surface of reactive cadmium is exposed. The exposed metal surface of cadmium is in the exhaust gas. Cadmium phosphide is produced by reaction with phosphorus vapor, and phosphorus is separated from the exhaust gas.

充填材を線材とすることにより排ガスと適度な接触が得られると同時に、排ガスが絡み合った線材同士の隙間をスムーズに通過するため、充填材に目詰まりが生じることを抑制できる。線材の直径は特に制限しないが、細径の線材を用いた方が排ガス中の燐と充填材との反応率が高まる。しかし、線材が細径化するとコストが高くなる。したがって、費用対効果を考慮しつつ線材の直径を選定する。例えば、直径が0.1〜1mmの銅線を充填材とすれば、最適な費用対効果が図られる。また、線材の長さは特に限定しないが、短いチップ状の線材を用いるとカラム内における充填材の充填率と排ガス中の燐蒸気との接触面積が大きくなり燐分離能力は向上するが、充填材に目詰まりが生じやすい。一方、長い線材を用いると充填材をウール状の塊にでき交換作業が容易なものとなる。充填率及び排ガス中の燐蒸気との接触面積と交換作業の簡便性を総合的に考慮して、適切な線材の長さを選定する。   By using the filler as a wire, an appropriate contact with the exhaust gas can be obtained, and at the same time, the filler can smoothly pass through the gap between the wires intertwined with the exhaust gas, so that clogging of the filler can be suppressed. The diameter of the wire is not particularly limited, but the reaction rate between phosphorus in the exhaust gas and the filler increases when a thin wire is used. However, the cost increases when the diameter of the wire is reduced. Therefore, the diameter of the wire is selected in consideration of cost effectiveness. For example, if a copper wire having a diameter of 0.1 to 1 mm is used as the filler, an optimum cost-effectiveness can be achieved. The length of the wire is not particularly limited, but if a short chip-like wire is used, the packing ratio in the column and the contact area between the phosphorus vapor in the exhaust gas increase and the phosphorus separation performance is improved. The material is likely to be clogged. On the other hand, when a long wire is used, the filler can be made into a wool-like lump and the replacement work is easy. In consideration of the filling rate, the contact area with the phosphorus vapor in the exhaust gas, and the simplicity of the replacement work, an appropriate wire length is selected.

多孔質材は一般的に大きな比表面積を有する一体成形物であるため交換作業が容易で、かつ、排ガス中の燐蒸気と充填材との接触面積が大きく、燐化物が多孔質材内部の孔表面にまで生成し、排ガス中から燐を効率的に除去できる。しかし、多孔質材の孔径が小さすぎると、燐化物によって多孔質材の孔が塞がれやすくなるためカラム内の圧力が上昇し、半導体製造条件が不安定になる。したがって、多孔質材の一例としてニッケルカドミウム電池の電極や空気清浄機のフィルタに用いられるニッケル発泡金属を用いる場合、比表面積が500〜1000m2/m3であることが好ましい。なお、比表面積が500〜1000m2/m3の多孔質材の孔径を単位長さ当たりのセル数で表示すると2〜3個/cmとなる。 Since the porous material is generally an integrally formed product having a large specific surface area, the replacement work is easy, the contact area between the phosphorus vapor in the exhaust gas and the filler is large, and the phosphide is a pore in the porous material. It produces | generates to the surface and can remove phosphorus efficiently from waste gas. However, if the pore diameter of the porous material is too small, the pores of the porous material are likely to be blocked by phosphides, so the pressure in the column rises and the semiconductor manufacturing conditions become unstable. Therefore, when using the nickel foam metal used for the electrode of a nickel cadmium battery and the filter of an air cleaner as an example of a porous material, it is preferable that a specific surface area is 500-1000 m < 2 > / m < 3 >. In addition, when the pore diameter of the porous material having a specific surface area of 500 to 1000 m 2 / m 3 is expressed as the number of cells per unit length, it is 2 to 3 cells / cm.

充填材を線材及び多孔質材の組み合わせとした場合、目詰まりの抑制と高い燐分離効率を合わせて得られる。線材と多孔質材の組み合わせ方法には特に制限を設けない。
また、多孔質材として排ガス中に微粒子捕集に適した孔径を有するものを採用することで、一般的に燐分離装置の後段に設置される微粒子除去フィルタの代替とすることも可能である。さらに、孔径の異なる数種類の多孔質材を重ね合わせて使用することで、燐分離と微粒子除去の双方の効果を高めることが可能である。
When the filler is a combination of a wire and a porous material, it is possible to obtain a combination of suppression of clogging and high phosphorus separation efficiency. There is no particular limitation on the method of combining the wire and the porous material.
Further, by adopting a porous material having a pore size suitable for collecting particulates in the exhaust gas, it is possible to substitute for a particulate removal filter that is generally installed at the subsequent stage of the phosphorus separator. Furthermore, it is possible to enhance both the effects of phosphorus separation and fine particle removal by using several types of porous materials having different pore sizes in an overlapping manner.

加熱手段は、排ガス中の燐を燐蒸気とするために、カラム内を燐の析出固化温度以上の温度まで加熱可能であれば足りる。カラム内が燐の析出固化温度以上の温度であれば、燐蒸気が充填材と大きな反応速度で反応するが、カラム内が燐の析出固化温度未満であると、燐が排ガス中から析出固化し充填材との反応速度が遅くなるとともに、黄燐が充填材の表面に付着したまま残留することが考えられ、燐を安全な形態で分離できない。加熱手段として、抵抗加熱式電気炉が安価で温度制御も簡便なために最適であるが、充填材の昇温、降温を迅速に行う場合は赤外線集光加熱式電気炉が適している。   The heating means only needs to be able to heat the column to a temperature equal to or higher than the precipitation solidification temperature of phosphorus in order to convert phosphorus in the exhaust gas into phosphorus vapor. If the temperature inside the column is equal to or higher than the precipitation solidification temperature of phosphorus, phosphorus vapor reacts with the packing material at a high reaction rate. However, if the temperature in the column is lower than the precipitation solidification temperature of phosphorus, the phosphorus solidifies from the exhaust gas. It is considered that the reaction rate with the filler becomes slow and yellow phosphorus remains attached to the surface of the filler, so that phosphorus cannot be separated in a safe form. As a heating means, a resistance heating type electric furnace is optimal because it is inexpensive and the temperature control is simple, but an infrared condensing heating type electric furnace is suitable for rapidly raising and lowering the temperature of the filler.

請求項2の発明に係る半導体製造装置用燐分離装置は、請求項1記載の半導体製造装置用燐分離装置であって、多孔質材が多孔率98%以上を有する発泡金属である。
請求項2の発明によると、多孔質材には、主として焼結金属と発泡金属があるが、焼結金属は粉末を焼結して形成するのに対し、発泡金属は発泡ポリウレタンに導電処理を施した後、メッキし、次に焼成することでポリウレタンを燃焼除去することで形成する。したがって、発泡金属の多孔率は98%と高く半導体製造装置用燐分離装置の充填材として適している。
A phosphorus separator for a semiconductor manufacturing apparatus according to a second aspect of the present invention is the phosphorus separator for a semiconductor manufacturing apparatus according to the first aspect, wherein the porous material is a foam metal having a porosity of 98% or more.
According to the invention of claim 2, the porous material mainly includes a sintered metal and a foamed metal. The sintered metal is formed by sintering powder, whereas the foamed metal performs conductive treatment on the foamed polyurethane. After the application, plating is performed, followed by firing to form polyurethane by burning off. Therefore, the porosity of the foam metal is as high as 98% and is suitable as a filler for a phosphorus separator for semiconductor manufacturing equipment.

請求項3の発明に係る半導体製造装置用燐分離装置は、請求項1又は請求項2に記載の半導体製造装置用燐分離装置であって、カラムの排ガス入口側に線材、出口側に多孔質材を充填している。
請求項3の発明によると、先ず線材で排ガス中の大部分の燐を分離し、次の多孔質材で線材では分離しきれなかった微量の燐を多孔質材の目詰まりを抑えながら分離できるので、燐の分離効率を高めることができる。
A phosphorus separator for a semiconductor manufacturing apparatus according to a third aspect of the present invention is the phosphorus separator for a semiconductor manufacturing apparatus according to the first or second aspect, wherein the column is porous on the exhaust gas inlet side and porous on the outlet side. Filled with material.
According to the invention of claim 3, most of the phosphorus in the exhaust gas is first separated by the wire, and a trace amount of phosphorus that could not be separated by the wire by the next porous material can be separated while suppressing clogging of the porous material. Therefore, phosphorus separation efficiency can be increased.

本発明は、上記のような半導体製造装置用燐分離装置であるので、半導体製造装置の排ガス中から燐を安全な形態として完全に除去できる。   Since the present invention is a phosphorus separator for a semiconductor manufacturing apparatus as described above, phosphorus can be completely removed from the exhaust gas of the semiconductor manufacturing apparatus as a safe form.

本発明を実施するための最良の形態を図1及び図2を参照しつつ説明する。図1は本発明に係る半導体製造装置用燐分離装置を備える半導体製造装置の排ガス流路の構成図、図2は本発明に係る半導体製造装置用燐分離装置の断面図である。
図1に示す半導体製造装置1は反応炉3を有し、アルシンとホスフィンをV族原料として化合物半導体単結晶膜を製造可能に構成されている。
The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of an exhaust gas flow path of a semiconductor manufacturing apparatus equipped with a phosphorus separator for a semiconductor manufacturing apparatus according to the present invention, and FIG. 2 is a cross-sectional view of the phosphorus separator for a semiconductor manufacturing apparatus according to the present invention.
A semiconductor manufacturing apparatus 1 shown in FIG. 1 includes a reaction furnace 3 and is configured to be able to manufacture a compound semiconductor single crystal film using arsine and phosphine as group V materials.

排ガス流路5aが半導体製造装置1の反応炉3から半導体製造装置用燐分離装置9まで接続されており、反応炉3と半導体製造装置用燐分離装置9との間に真空ポンプ7が設置されている。排ガス流路5a及び真空ポンプ7は加熱装置(図示せず)を有し、排ガス流路5a内及び真空ポンプ7内が燐の析出固化温度以上の温度に加熱維持されている。なお、燐の析出固化温度は、排ガスの圧力や組成によって変化するが、通常は80〜90℃程度である。   The exhaust gas flow path 5a is connected from the reaction furnace 3 of the semiconductor manufacturing apparatus 1 to the phosphorus separator 9 for semiconductor manufacturing apparatus, and a vacuum pump 7 is installed between the reaction furnace 3 and the phosphorus separator 9 for semiconductor manufacturing apparatus. ing. The exhaust gas flow path 5a and the vacuum pump 7 have a heating device (not shown), and the exhaust gas flow path 5a and the vacuum pump 7 are heated and maintained at a temperature equal to or higher than the precipitation solidification temperature of phosphorus. In addition, although the precipitation solidification temperature of phosphorus changes with the pressure and composition of exhaust gas, it is about 80-90 degreeC normally.

図2に示すように、半導体製造装置用燐分離装置9はカラム11、充填材19及び電気抵抗式加熱炉17を有する。
カラム11は、透明石英製円筒のハウジング13と、ハウジング13の両端に着脱可能に装着されたステンレス鋼製のフランジ15a、15bとを有する。下端側のフランジ15aが上流側の排ガス流路5aに接続されてカラム11の排ガス入口をなし、上端側のフランジ15bが下流側の排ガス流路5bに接続されてカラム11の排ガス出口をなしている。ハウジング13とフランジ15a、15bとの間には耐熱性を有するフッ素ゴム製のパッキンが装着されている。カラム11のサイズは、排ガス中の燐の量、充填材19の量、カラム11の加熱温度に応じて、最適値を選定する。
As shown in FIG. 2, the phosphorus separator 9 for semiconductor manufacturing apparatus includes a column 11, a filler 19, and an electric resistance heating furnace 17.
The column 11 includes a transparent quartz cylindrical housing 13 and stainless steel flanges 15 a and 15 b detachably attached to both ends of the housing 13. The lower end flange 15a is connected to the upstream exhaust gas passage 5a to form the exhaust gas inlet of the column 11, and the upper end flange 15b is connected to the downstream exhaust gas passage 5b to form the exhaust gas outlet of the column 11. Yes. Between the housing 13 and the flanges 15a and 15b, a heat-resistant fluororubber packing is mounted. The optimum size of the column 11 is selected according to the amount of phosphorus in the exhaust gas, the amount of the filler 19 and the heating temperature of the column 11.

充填材19がカラム11内に充填されており、充填材19は銅線19aとニッケル多孔質材19bとからなる。銅線19aがフランジ15a側に充填され、ニッケル多孔質材19bがフランジ15b側に充填されている。銅線19aとして、例えば、安価な銅線スクラップを用いることができ、その直径は0.1〜1mm、長さは1〜10mで、屈曲後カラム11に挿入可能な大きさに圧縮成型したものである。ニッケル多孔質材19bとして、例えば、住友電気工業株式会社製のセルメット(登録商標)を用いることができ、その比表面積は500〜1000m2/m3である。 A packing material 19 is packed in the column 11, and the packing material 19 includes a copper wire 19a and a nickel porous material 19b. The copper wire 19a is filled on the flange 15a side, and the nickel porous material 19b is filled on the flange 15b side. As the copper wire 19a, for example, an inexpensive copper wire scrap can be used, and its diameter is 0.1 to 1 mm, the length is 1 to 10 m, and it is compression molded to a size that can be inserted into the column 11 after bending. It is. As the nickel porous material 19b, for example, Celmet (registered trademark) manufactured by Sumitomo Electric Industries, Ltd. can be used, and the specific surface area is 500 to 1000 m 2 / m 3 .

電気抵抗式加熱炉17が加熱手段をなし、ハウジング13の外周を覆っており、電気抵抗式加熱炉17を開くことによりカラム11内の充填材19をハウジング13越しに観察可能に構成されている。電気抵抗式加熱炉17によって、カラム11内が燐の析出固化温度以上であり400℃以下の温度に加熱維持されている。なお、カラム11内の温度が高くなるとカラム11内を流れる排ガスの流速が早くなるので、カラム11内の温度の上限は、カラム11内における排ガスの流速及び充填材19と燐の反応速度を考慮して定められ、排ガス中の燐が充填材19と反応せずにカラム11から下流に流れることを防止できる温度とされている。また、電気抵抗式加熱炉17によって、フランジ15a、15bが燐の析出固化温度以上であって200℃以下の温度に維持されており、フランジ15a、15bの温度がハウジング13とフランジ15a、15bとの間のパッキンの耐熱温度以下となっている。フランジ15a、15bの温度を制御するためには、フランジ15a、15bを伝熱媒体を流通させることが可能な構造とし、温度制御した伝熱媒体を循環させる。   An electric resistance heating furnace 17 serves as a heating means and covers the outer periphery of the housing 13. By opening the electric resistance heating furnace 17, the packing material 19 in the column 11 can be observed through the housing 13. . The inside of the column 11 is heated and maintained at a temperature not lower than the precipitation solidification temperature of phosphorus and not higher than 400 ° C. by the electric resistance heating furnace 17. Since the flow rate of the exhaust gas flowing through the column 11 increases as the temperature in the column 11 increases, the upper limit of the temperature in the column 11 takes into consideration the flow rate of the exhaust gas in the column 11 and the reaction rate of the packing material 19 and phosphorus. The temperature is such that phosphorus in the exhaust gas can be prevented from flowing downstream from the column 11 without reacting with the filler 19. Further, the flanges 15a and 15b are maintained at a temperature not lower than the precipitation solidification temperature of phosphorus and not higher than 200 ° C. by the electric resistance heating furnace 17, and the temperature of the flanges 15a and 15b It is below the heat resistance temperature of the packing between. In order to control the temperature of the flanges 15a and 15b, the flanges 15a and 15b are structured to allow the heat transfer medium to flow, and the temperature-controlled heat transfer medium is circulated.

排ガス流路5bが半導体製造装置用燐分離装置9から微粒子除去フィルタ21を通って除害塔23に接続されている。排ガス流路5bは加熱装置(図示せず)を有し、排ガス流路5b内がV族原料の析出固化温度以上の温度であり、且つ、V族原料の露点以上の温度に加熱維持されている。
除害塔23は内部に金属酸化物、金属水酸化物や塩基性金属炭酸塩からなる除害剤を有し、排ガス中のV族原料を除去可能に構成されている。
排ガス流路5cが除害塔23から大気放散設備(図示せず)まで接続されている。
The exhaust gas flow path 5b is connected to the detoxification tower 23 through the fine particle removal filter 21 from the phosphorus separator 9 for semiconductor manufacturing equipment. The exhaust gas channel 5b has a heating device (not shown), and the inside of the exhaust gas channel 5b is heated and maintained at a temperature equal to or higher than the precipitation solidification temperature of the V group raw material and higher than the dew point of the V group raw material. Yes.
The detoxification tower 23 has a detoxifying agent made of a metal oxide, metal hydroxide or basic metal carbonate inside, and is configured to be able to remove the group V raw material in the exhaust gas.
The exhaust gas flow path 5c is connected from the detoxification tower 23 to the atmospheric radiation facility (not shown).

次に、作用について説明する。
まず、排ガス中からの燐の分離について説明する。
半導体製造装置1の反応炉3に、アルシン及びホスフィンのV族原料がキャリアガスの水素とともに供給される。真空ポンプ7が排ガスを反応炉3から排ガス流路5aに吸引する。排ガス中に、未反応のアルシンとホスフィン、分解生成物である砒素と燐、及び、水素が含まれており、排ガス中の燐の主成分は黄燐である。
Next, the operation will be described.
First, the separation of phosphorus from exhaust gas will be described.
A group V material of arsine and phosphine is supplied to the reaction furnace 3 of the semiconductor manufacturing apparatus 1 together with hydrogen as a carrier gas. The vacuum pump 7 sucks the exhaust gas from the reaction furnace 3 into the exhaust gas passage 5a. The exhaust gas contains unreacted arsine and phosphine, decomposition products arsenic and phosphorus, and hydrogen, and the main component of phosphorus in the exhaust gas is yellow phosphorus.

排ガス流路5a内及び真空ポンプ7内は燐の析出固化温度以上の温度となっているので、排ガス流路5aに吸引された排ガス中の燐は燐蒸気となり、燐が排ガス流路5a内及び真空ポンプ7内に固着、堆積することは防止されている。
排ガスが排ガス流路5aからフランジ15aを通って半導体製造装置用燐分離装置9のカラム11内に流入する。カラム11の排ガス入口であるフランジ15aは燐の析出固化温度以上であるので、燐がフランジ15aにおいて析出固化することが防止されている。
Since the exhaust gas flow path 5a and the vacuum pump 7 have a temperature equal to or higher than the precipitation solidification temperature of phosphorus, the phosphorus in the exhaust gas sucked into the exhaust gas flow path 5a becomes phosphorus vapor, and the phosphorus is in the exhaust gas flow path 5a and It is prevented from sticking and depositing in the vacuum pump 7.
The exhaust gas flows from the exhaust gas flow path 5a through the flange 15a into the column 11 of the phosphorus separator 9 for semiconductor manufacturing equipment. Since the flange 15a, which is the exhaust gas inlet of the column 11, has a temperature equal to or higher than the precipitation solidification temperature of phosphorus, the phosphorus is prevented from being precipitated and solidified in the flange 15a.

カラム11内は燐の析出固化温度以上の温度であるので、カラム11内で排ガス中の燐は燐蒸気となっている。カラム11内に流入した排ガスは、まず、充填材19の銅線19aの間を通過する。銅線19a表面にCu2Oの酸化皮膜が形成されていても、Cu2Oは排ガス中の水素によって還元されて、銅線19aの反応活性な金属表面が排ガス中に露出した状態となっている。排ガス中の燐が銅線19aと接触して反応し、主にCu3Pからなる燐化銅が銅線19aの表面に生成し、排ガス中から燐が分離される。銅線19aを圧縮成型した充填材19には十分な隙間が存在するので、排ガスは銅線19aと反応しなかった燐とともに銅線19a同士の間を通ってニッケル多孔質材19bまで流れる。 Since the temperature inside the column 11 is equal to or higher than the precipitation solidification temperature of phosphorus, the phosphorus in the exhaust gas in the column 11 is phosphorus vapor. The exhaust gas flowing into the column 11 first passes between the copper wires 19 a of the filler 19. Even if a Cu 2 O oxide film is formed on the surface of the copper wire 19a, the Cu 2 O is reduced by hydrogen in the exhaust gas, and the reactive metal surface of the copper wire 19a is exposed in the exhaust gas. Yes. Phosphorus in the exhaust gas contacts and reacts with the copper wire 19a, and copper phosphide mainly composed of Cu 3 P is generated on the surface of the copper wire 19a, so that phosphorus is separated from the exhaust gas. Since there is a sufficient gap in the filler 19 obtained by compression-molding the copper wire 19a, the exhaust gas flows between the copper wires 19a together with phosphorus that has not reacted with the copper wire 19a to the nickel porous material 19b.

ニッケル多孔質材19bの表面に薄いNiOの酸化皮膜が形成されているが、NiOは排ガス中の水素によって容易に還元されて、ニッケル多孔質材19bの反応活性な金属表面が排ガス中に露出した状態となっている。銅線19aと反応せず排ガス中に残存する燐がニッケル多孔質材19bと接触して反応し、主にNi2Pからなる燐化ニッケルがニッケル多孔質材19bの孔表面に生成し、排ガス中に残存していた燐が排ガス中から分離される。銅線19a及びニッケル多孔質材19bによって燐を分離された排ガスはカラム11の排ガス出口であるフランジ15bを通って排ガス流路5bに流れる。 A thin NiO oxide film is formed on the surface of the nickel porous material 19b, but NiO is easily reduced by hydrogen in the exhaust gas, and the reactive metal surface of the nickel porous material 19b is exposed in the exhaust gas. It is in a state. Phosphorus remaining in the exhaust gas without reacting with the copper wire 19a contacts and reacts with the nickel porous material 19b, and nickel phosphide mainly composed of Ni 2 P is generated on the surface of the pores of the nickel porous material 19b. The phosphorus remaining therein is separated from the exhaust gas. The exhaust gas from which phosphorus is separated by the copper wire 19a and the nickel porous material 19b flows through the flange 15b, which is the exhaust gas outlet of the column 11, to the exhaust gas flow path 5b.

カラム11内の温度は、カラム11内における排ガスの流速及び充填材19と燐の反応速度を考慮して定められ、排ガス中の燐が充填材19と反応せずにカラム11から下流に流れることを防止できる温度に制御しているので、排ガス中の燐はすべて銅線19a又はニッケル多孔質材19bと反応し分離される。したがって、フランジ15bを通って排ガス流路5bに流れる排ガス中に燐は含まれていない。   The temperature in the column 11 is determined in consideration of the flow rate of the exhaust gas in the column 11 and the reaction rate of the packing material 19 and phosphorus, and the phosphorus in the exhaust gas flows downstream from the column 11 without reacting with the packing material 19. Therefore, all the phosphorus in the exhaust gas reacts with the copper wire 19a or the nickel porous material 19b and is separated. Therefore, phosphorus is not contained in the exhaust gas flowing through the flange 15b to the exhaust gas passage 5b.

排ガス流路5bに流れた排ガスは、微粒子除去フィルタ21を通って除害塔23に流れる。排ガス流路5b及び微粒子除去フィルタ21内は、V族原料の分解生成物である燐の析出固化温度以上の温度であり、且つ、V族原料の露点以上の温度となっているので、排ガス中の未反応のホスフィンが排ガス流路5b内及び微粒子除去フィルタ21において析出固化したり凝縮したりすることはない。また、排ガス中から燐が既に分離されているので、排ガス流路5b内及び微粒子除去フィルタ21に燐が固着、堆積することもない。
排ガスが微粒子除去フィルタ21を通ると、原料の反応生成物や分解生成物である微粒子は捕集分離される。
The exhaust gas that has flowed into the exhaust gas flow path 5 b flows through the particulate removal filter 21 to the detoxification tower 23. The exhaust gas flow path 5b and the inside of the particulate removal filter 21 are at a temperature equal to or higher than the precipitation solidification temperature of phosphorus, which is a decomposition product of the V group raw material, and higher than the dew point of the V group raw material. The unreacted phosphine does not precipitate and solidify or condense in the exhaust gas flow path 5b and the particulate removal filter 21. Further, since phosphorus has already been separated from the exhaust gas, the phosphorus does not adhere and deposit in the exhaust gas flow path 5b and the particulate removal filter 21.
When the exhaust gas passes through the particulate removal filter 21, the particulates that are the reaction products and decomposition products of the raw material are collected and separated.

微粒子除去フィルタ21を通った排ガスは除害塔23に流入し、排ガス中からホスフィンが除害塔23の除害剤によって除去される。したがって、除害塔23を通った排ガス中にホスフィンは含まれていない。また、排ガス中から燐が既に分離されているので、除害塔23内に燐が固着、堆積することもない。
除害塔23を通った排ガスは排ガス流路5cに流れ、大気放散設備から大気放散される。大気放散される排ガス中から、有害なホスフィン、砒素及び燐が除去されているので、環境に負荷を与えない。
The exhaust gas that has passed through the particulate removal filter 21 flows into the detoxification tower 23, and phosphine is removed from the exhaust gas by the detoxifying agent in the detoxification tower 23. Therefore, phosphine is not contained in the exhaust gas that has passed through the detoxification tower 23. Further, since phosphorus has already been separated from the exhaust gas, phosphorus does not adhere and accumulate in the detoxification tower 23.
The exhaust gas that has passed through the detoxification tower 23 flows into the exhaust gas passage 5c and is diffused into the atmosphere from the atmospheric radiation facility. Harmful phosphine, arsenic, and phosphorus are removed from the exhaust gas emitted to the atmosphere, so there is no impact on the environment.

次に、半導体製造装置用燐分離装置9のメンテナンスについて説明する。
銅線19aが燐と反応すると金属光沢を有する褐色から銀色に変化し、ニッケル多孔質材19bが燐と反応すると金属光沢を有する銀色から灰色に変化する。したがって、電気抵抗式加熱炉17を開き、透明石英製のハウジング13越しにカラム11内の銅線19a及びニッケル多孔質材19bの表面の色を観察することによって、充填材19の交換時期を判断できる。
Next, maintenance of the phosphorus separator 9 for semiconductor manufacturing equipment will be described.
When the copper wire 19a reacts with phosphorus, it changes from brown having a metallic luster to silver, and when the nickel porous material 19b reacts with phosphorus, it changes from silver having metallic luster to gray. Therefore, by opening the electric resistance heating furnace 17 and observing the color of the surface of the copper wire 19a and the nickel porous material 19b in the column 11 through the transparent quartz housing 13, the replacement time of the filler 19 is determined. it can.

銅線19a及びニッケル多孔質材19bを交換する際は、大気中でハウジング13からフランジ15a、15bを取り外し、使用済みの銅線19a及びニッケル多孔質材19bを取り出す。そして、新たな銅線19a及びニッケル多孔質材19bを充填してからフランジ15a、15bを取り付ける。
使用済みの銅線19a及びニッケル多孔質材19bとともに取り出される燐は、大気中で安全な形態のCu3PやNi2Pである。したがって、充填材19の交換を大気中で行っても、使用済みの銅線19a及びニッケル多孔質材19bが自然発火するおそれはなく、充填材19の交換作業が安全且つ容易なものとなる。
When exchanging the copper wire 19a and the nickel porous material 19b, the flanges 15a and 15b are removed from the housing 13 in the atmosphere, and the used copper wire 19a and the nickel porous material 19b are taken out. Then, after filling a new copper wire 19a and a nickel porous material 19b, the flanges 15a and 15b are attached.
The phosphorus taken out together with the used copper wire 19a and the nickel porous material 19b is Cu 3 P or Ni 2 P in a safe form in the atmosphere. Therefore, even if the replacement of the filler 19 is performed in the atmosphere, the used copper wire 19a and the nickel porous material 19b are not likely to spontaneously ignite, and the replacement work of the filler 19 becomes safe and easy.

排ガス流路5a及び真空ポンプ7内には燐が固着したり堆積したりせず、半導体製造装置用燐分離装置9内で充填材19と反応した燐は安全な形態のCu3PやNi2Pとなっており、排ガス流路5bから下流側には燐が流れないので、排ガス流路5a、真空ポンプ7、半導体製造装置用燐分離装置9、排ガス流路5b、微粒子除去フィルタ21及び除害塔23を大気開放してメンテナンスしても、黄燐の自然発火という問題がない。したがって、これらの各機器のメンテナンス作業が安全且つ容易なものとなる。 Phosphorus does not adhere or accumulate in the exhaust gas flow path 5a and the vacuum pump 7, and the phosphorus that reacts with the filler 19 in the phosphorus separator 9 for semiconductor manufacturing equipment is in a safe form of Cu 3 P or Ni 2. Since phosphorus does not flow downstream from the exhaust gas flow path 5b, the exhaust gas flow path 5a, the vacuum pump 7, the phosphorus separation device 9 for semiconductor manufacturing equipment, the exhaust gas flow path 5b, the particulate removal filter 21, and the removal Even if the harmful tower 23 is opened and maintained, there is no problem of spontaneous ignition of yellow phosphorus. Therefore, the maintenance work of these devices becomes safe and easy.

なお、本実施の形態において、カラム11のハウジング13が透明石英製であり、黄燐とハウジング13が反応することが防止されているが、代わりに、強固な酸化皮膜を表面に有するステンレス鋼によってハウジング13を形成し、300℃未満の高温条件下で用いることが可能である。しかし、この場合はハウジング13の外側から銅線19a及びニッケル多孔質材19bの色の変化を観察できないだけでなく、赤外線集光加熱式電気炉を用いて赤外線を充填材19に直接照射することができなくなる。
また、フランジ15a、15bを燐の析出固化温度以上であって200℃以下の温度に維持しているが、電気抵抗式加熱炉17の輻射が大きくフランジ15a、15bの温度が200℃を超えてしまう場合には、ハウジング13の長さを長くするか、電気抵抗式加熱炉17の長さを短くすればよい。
In this embodiment, the housing 13 of the column 11 is made of transparent quartz, and the reaction between the yellow phosphorus and the housing 13 is prevented. Instead, the housing is made of stainless steel having a strong oxide film on the surface. 13 can be used under high temperature conditions of less than 300 ° C. However, in this case, not only the color change of the copper wire 19a and the nickel porous material 19b cannot be observed from the outside of the housing 13, but also the infrared rays are directly irradiated to the filler 19 using an infrared condensing heating type electric furnace. Can not be.
Further, the flanges 15a and 15b are maintained at a temperature not lower than the precipitation solidification temperature of phosphorus and not higher than 200 ° C., but the radiation of the electric resistance heating furnace 17 is large and the temperature of the flanges 15a and 15b exceeds 200 ° C. In such a case, the length of the housing 13 may be increased or the length of the electric resistance heating furnace 17 may be decreased.

本発明に係る半導体製造装置用燐分離装置を備える半導体製造装置の排ガス流路の構成図である。It is a block diagram of the exhaust gas flow path of a semiconductor manufacturing apparatus provided with the phosphorus separation apparatus for semiconductor manufacturing apparatuses which concerns on this invention. 本発明に係る半導体製造装置用燐分離装置の断面図である。It is sectional drawing of the phosphorus separation apparatus for semiconductor manufacturing apparatuses which concerns on this invention.

符号の説明Explanation of symbols

1 半導体製造装置
3 反応炉
5a、5b、5c 排ガス流路
7 真空ポンプ
9 半導体製造装置用燐分離装置
11 カラム
13 ハウジング
15a、15b フランジ
17 電気抵抗式加熱炉
19 充填材
19a 銅線
19b ニッケル多孔質材
21 微粒子除去フィルタ
23 除害塔
DESCRIPTION OF SYMBOLS 1 Semiconductor manufacturing apparatus 3 Reactor 5a, 5b, 5c Exhaust gas flow path 7 Vacuum pump 9 Phosphor separator for semiconductor manufacturing apparatus 11 Column 13 Housing 15a, 15b Flange 17 Electrical resistance heating furnace 19 Filler 19a Copper wire 19b Nickel porous Material 21 Fine particle removal filter 23 Detoxification tower

Claims (3)

半導体製造装置の排ガスが内部を通るカラムと、
銅、ニッケル、コバルト又はカドミウムの線材と銅、ニッケル、コバルト又はカドミウムの多孔質材の少なくとも一方からなり、カラム内に充填されて排ガスと接触する充填材と、
カラム内を燐の析出固化温度以上の温度まで加熱する加熱手段とを有することを特徴とする半導体製造装置用燐分離装置。
A column through which the exhaust gas from the semiconductor manufacturing equipment passes;
A filler comprising at least one of a copper, nickel, cobalt or cadmium wire and a porous material of copper, nickel, cobalt or cadmium, filled in a column and in contact with exhaust gas;
And a heating means for heating the inside of the column to a temperature equal to or higher than the precipitation solidification temperature of phosphorus.
多孔質材が多孔率98%以上を有する発泡金属であることを特徴とする請求項1記載の半導体製造装置用燐分離装置。   2. The phosphorus separator for a semiconductor manufacturing apparatus according to claim 1, wherein the porous material is a foam metal having a porosity of 98% or more. カラムの排ガス入口側に線材、出口側に多孔質材を充填したことを特徴とする請求項1又は請求項2に記載の半導体製造装置用燐分離装置。   The phosphorus separator for a semiconductor manufacturing apparatus according to claim 1 or 2, wherein the exhaust gas inlet side of the column is filled with a wire material and the outlet side is filled with a porous material.
JP2004300410A 2004-10-14 2004-10-14 Phosphorus separation apparatus for semiconductor manufacturing apparatus Pending JP2006110467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004300410A JP2006110467A (en) 2004-10-14 2004-10-14 Phosphorus separation apparatus for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004300410A JP2006110467A (en) 2004-10-14 2004-10-14 Phosphorus separation apparatus for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2006110467A true JP2006110467A (en) 2006-04-27

Family

ID=36379421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004300410A Pending JP2006110467A (en) 2004-10-14 2004-10-14 Phosphorus separation apparatus for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2006110467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119774A1 (en) 2006-04-13 2007-10-25 Chugai Seiyaku Kabushiki Kaisha Taurine transporter gene
JP2014240074A (en) * 2014-08-29 2014-12-25 株式会社アルファテック Recovery system of detoxifying tower and recovery method of detoxifying tower

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200820A (en) * 1987-02-17 1988-08-19 Kikuchi:Kk Treatment of exhaust gas in producing semiconductor
JPH0271824A (en) * 1988-07-06 1990-03-12 Hoechst Ag Removal of hydrogen phosphite from exhaust gas
JPH0724250A (en) * 1993-07-08 1995-01-27 Nippon Process Eng Kk Method and device for separating and removing yellow phosphor or the like in waste gas flow
JPH07124438A (en) * 1993-11-01 1995-05-16 Sumitomo Electric Ind Ltd Waste treatment equipment of vapor growth device
WO1999030809A1 (en) * 1997-12-15 1999-06-24 Nippon Sanso Corporation Method and device for treating exhaust gas
JP2002320822A (en) * 2001-02-28 2002-11-05 Kocat Inc Apparatus for treating waste gas and method therefor
JP2003126647A (en) * 2001-10-22 2003-05-07 Nippon Sanso Corp Method and apparatus for detoxification of special gas
JP2003135926A (en) * 2001-11-02 2003-05-13 Sumitomo Chem Co Ltd Phosphorus trapping apparatus for semiconductor manufacturing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200820A (en) * 1987-02-17 1988-08-19 Kikuchi:Kk Treatment of exhaust gas in producing semiconductor
JPH0271824A (en) * 1988-07-06 1990-03-12 Hoechst Ag Removal of hydrogen phosphite from exhaust gas
JPH0724250A (en) * 1993-07-08 1995-01-27 Nippon Process Eng Kk Method and device for separating and removing yellow phosphor or the like in waste gas flow
JPH07124438A (en) * 1993-11-01 1995-05-16 Sumitomo Electric Ind Ltd Waste treatment equipment of vapor growth device
WO1999030809A1 (en) * 1997-12-15 1999-06-24 Nippon Sanso Corporation Method and device for treating exhaust gas
JP2002320822A (en) * 2001-02-28 2002-11-05 Kocat Inc Apparatus for treating waste gas and method therefor
JP2003126647A (en) * 2001-10-22 2003-05-07 Nippon Sanso Corp Method and apparatus for detoxification of special gas
JP2003135926A (en) * 2001-11-02 2003-05-13 Sumitomo Chem Co Ltd Phosphorus trapping apparatus for semiconductor manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119774A1 (en) 2006-04-13 2007-10-25 Chugai Seiyaku Kabushiki Kaisha Taurine transporter gene
EP2228450A1 (en) 2006-04-13 2010-09-15 Chugai Seiyaku Kabushiki Kaisha Taurine transporter gene
JP2014240074A (en) * 2014-08-29 2014-12-25 株式会社アルファテック Recovery system of detoxifying tower and recovery method of detoxifying tower

Similar Documents

Publication Publication Date Title
EP2736837B1 (en) Method for producing silicon nanowires
EP0609028B1 (en) Dry exhaust gas conditioning
US6805728B2 (en) Method and apparatus for the abatement of toxic gas components from a semiconductor manufacturing process effluent stream
EP2671846B1 (en) Noble metal-oxide joined nanoparticles and method for high-purity production of the same
JP5344493B2 (en) Composition for recovering metal components
JP2006110467A (en) Phosphorus separation apparatus for semiconductor manufacturing apparatus
EP1032467A1 (en) Device for purifying a mercury-containing flue gas
CN102438939B (en) Hydrogen-generating material and manufacture method, method for preparing hydrogen and hydrogen producing apparatus
JP5979634B2 (en) Recovery method of metal components
JP5000700B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
CN110327949B (en) Carbon-supported rhodium/rhodium phosphide nanocomposite and preparation method and application thereof
Balan et al. A new organometallic synthesis of size-controlled tin (0) nanoparticles
EP0898999A2 (en) Abatement of NF3 using small particle fluidized bed
JP5133231B2 (en) Apparatus and method for treating exhaust gas containing organometallic compound
KR20130056217A (en) Adsorbent for removing metal compounds and method for same
JP2005281115A (en) Gas refining apparatus
JP4228870B2 (en) Catalytic PFC decomposition method and apparatus
KR100359510B1 (en) Agent for and process of treating exhaust gas
TW494006B (en) Harmful gas purifying column and method
JP2003135926A (en) Phosphorus trapping apparatus for semiconductor manufacturing apparatus
JP2004327893A (en) Phosphorus trap for semiconductor production system
JPH0312303A (en) Method for refining gaseous hydride
JP3217854B2 (en) Organic metal purification method
JP2837201B2 (en) Purification method of acid gas
JP3557409B2 (en) Hazardous component remover and method for treating gas containing harmful components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207