JP2010158664A - Detoxifying method of chlorine trifluoride - Google Patents

Detoxifying method of chlorine trifluoride Download PDF

Info

Publication number
JP2010158664A
JP2010158664A JP2009252714A JP2009252714A JP2010158664A JP 2010158664 A JP2010158664 A JP 2010158664A JP 2009252714 A JP2009252714 A JP 2009252714A JP 2009252714 A JP2009252714 A JP 2009252714A JP 2010158664 A JP2010158664 A JP 2010158664A
Authority
JP
Japan
Prior art keywords
gas
fluorine
mixed gas
wet scrubber
clo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252714A
Other languages
Japanese (ja)
Other versions
JP5471313B2 (en
Inventor
Tomonori Umezaki
智典 梅崎
Isamu Mori
勇 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009252714A priority Critical patent/JP5471313B2/en
Priority to CN2009801344047A priority patent/CN102143793B/en
Priority to KR1020117008395A priority patent/KR101343961B1/en
Priority to PCT/JP2009/069027 priority patent/WO2010067677A1/en
Publication of JP2010158664A publication Critical patent/JP2010158664A/en
Application granted granted Critical
Publication of JP5471313B2 publication Critical patent/JP5471313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/108Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/202Single element halogens
    • B01D2257/2027Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detoxifying method capable of suppressing generation of a refractory substance ClO<SB>3</SB>F when detoxifying mixed gas containing ClF<SB>3</SB>and F<SB>2</SB>by a wet scrubber. <P>SOLUTION: In a preceding stage of detoxifying the mixed gas containing ClF<SB>3</SB>and F<SB>2</SB>by the wet scrubber, a heating reaction part is provided, and halogen gas is added to the mixed gas to react unreacted fluorine gas with the halogen gas to greatly reduce the unreacted fluorine gas. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、三フッ化塩素及びフッ素から成る混合ガスの除害方法に関する。   The present invention relates to a method for removing a mixed gas composed of chlorine trifluoride and fluorine.

三フッ化塩素(ClF3)は下記反応式1に示されるように、塩素とフッ素との直接反
応により合成されることが広く知られている(非特許文献1、2)。
As shown in the following reaction formula 1, chlorine trifluoride (ClF 3 ) is widely known to be synthesized by a direct reaction between chlorine and fluorine (Non-patent Documents 1 and 2).

一般的なClF3の製造工程では、反応器で生成したClF3は冷却捕集器を通過し、目的の生成物のみが選択的に捕集される。 In a typical ClF 3 of the manufacturing process, ClF 3 produced in the reactor is passed through a cold trap, only the desired product are selectively collected.

通常、冷却捕集器を通過したガス中には未反応のF2ガスや捕集しきれなかったClF3が含まれているため、水やアルカリ溶液を使用した湿式スクラバー(排ガス処理装置)によって除害処理される。 Normally, the gas that has passed through the cold collector contains unreacted F 2 gas and ClF 3 that could not be collected. Therefore, the wet scrubber (exhaust gas treatment device) using water or an alkali solution was used. Detoxification treatment.

しかしながら、ClF3とF2の混合ガスを、水を用いた湿式スクラバーで除害処理する場合、下記反応式2に示されるようにフッ素が水と反応することによって、酸素ラジカルが発生する。 However, when the mixed gas of ClF 3 and F 2 is detoxified with a wet scrubber using water, oxygen radicals are generated by the reaction of fluorine with water as shown in the following reaction formula 2.

さらに、下記反応式3に示されるように、発生した酸素ラジカルがClF3と反応し、
フッ化ペルクロリル(ClO3F)が発生する。
Furthermore, as shown in the following reaction formula 3, the generated oxygen radical reacts with ClF 3 ,
Perchloryl fluoride (ClO 3 F) is generated.

ClO3Fは熱的に非常に安定な化合物であり、470℃まで加温しないと熱分解しな
い。また、水に不溶で酸やアルカリで分解できない特徴がある。さらに、物性がClO3
Fと類似したガス中にClO3Fが低濃度で含まれる場合には、蒸留による分離や濃縮も
難しいため、除去が困難という問題があった。
ClO 3 F is a thermally stable compound and does not thermally decompose unless heated to 470 ° C. In addition, it is insoluble in water and cannot be decomposed with acid or alkali. Furthermore, the physical properties are ClO 3
When ClO 3 F is contained at a low concentration in a gas similar to F, there is a problem that separation and concentration by distillation are difficult and removal is difficult.

上記問題の対策において、フッ素含有ガスからフッ素ガスあるいは酸素フッ化物を除去する方法として、硫黄系還元剤と塩基性化合物を含む吸収液を使用する方法が提案されている(特許文献1)。   As a countermeasure for the above problem, as a method for removing fluorine gas or oxygen fluoride from a fluorine-containing gas, a method using an absorbing solution containing a sulfur-based reducing agent and a basic compound has been proposed (Patent Document 1).

特開2006−231105号公報JP 2006-231105 A

「フッ素化学と工業」、渡辺信淳編、化学工業社、p46〜68“Fluorine Chemistry and Industry”, edited by Shingo Watanabe, Chemical Industries, p. 46-68 J. W. Grisard : J. Amer. Chem. Soc., 73、(1951)p5724J. W. Grisard: J. Amer. Chem. Soc., 73, (1951) p5724.

しかしながら、特許文献1に提案されている硫黄系還元剤と塩基性化合物を含む吸収液を使用する方法では、還元剤自体の価格が高価であり、さらに、吸収液中の還元剤の濃度管理が必要となるため、湿式スクラバーを用いた除害処理工程の操作が煩雑となる問題点があった。   However, in the method using an absorbing solution containing a sulfur-based reducing agent and a basic compound proposed in Patent Document 1, the price of the reducing agent itself is expensive, and furthermore, the concentration control of the reducing agent in the absorbing solution is possible. Therefore, there is a problem that the operation of the detoxification process using the wet scrubber becomes complicated.

そこで、本発明は、ClF3とF2を含む混合ガスを湿式スクラバーによって除害処理する際、難分解性物質のClO3Fの発生を抑制することができる除害方法を提供すること
を課題とする。
Accordingly, the present invention provides a detoxification method that can suppress the generation of ClO 3 F, a hardly decomposable substance, when detoxifying a mixed gas containing ClF 3 and F 2 with a wet scrubber. And

本発明者等は、上記課題を解決するために、鋭意検討した結果、ClF3とF2を含む混合ガスを湿式スクラバーによって除害処理する前段階において、加熱反応部を設け、下記反応式4に示されるように、混合ガスにハロゲンガスを添加することによって未反応のフッ素ガスをハロゲンガスと反応させ、未反応のフッ素ガスを大幅に低減させ、従来の湿式スクラバーを用いるClF3の除害方法において問題となっていた難分解性物質のClO3Fの発生を抑制することが可能であることを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have provided a heating reaction section in a stage prior to the detoxification treatment of the mixed gas containing ClF 3 and F 2 with a wet scrubber, and the following reaction formula 4 As shown in FIG. 4, by adding halogen gas to the mixed gas, unreacted fluorine gas is reacted with halogen gas, greatly reducing unreacted fluorine gas, and detoxification of ClF 3 using a conventional wet scrubber The inventors have found that it is possible to suppress the generation of ClO 3 F, which is a hardly decomposable substance, which has been a problem in the method, and have reached the present invention.

すなわち、本発明は、三フッ化塩素及びフッ素から成る混合ガスを、湿式スクラバーによって除害処理する方法であって、湿式スクラバーによる除害処理の前段階において、前記混合ガスに、ハロゲンガスX2(X=Cl、Br又はIを示す。)を添加し、前記混合
ガス中のフッ素とハロゲンガスX2(X=Cl、Br又はIを示す。)を反応させること
によって、前記混合ガス中のフッ素を低減し、湿式スクラバーで生成するフッ化ペルクロリルの生成を未然に防止することを特徴とする除害方法を提供する。
That is, the present invention is a method of detoxifying a mixed gas composed of chlorine trifluoride and fluorine with a wet scrubber, and in the pre-stage of the detoxifying process with a wet scrubber, the mixed gas contains a halogen gas X 2. (Indicating X = Cl, Br or I) and reacting fluorine in the mixed gas with a halogen gas X 2 (indicating X = Cl, Br or I) in the mixed gas. There is provided a detoxification method characterized by reducing fluorine and preventing the formation of perchloryl fluoride generated by a wet scrubber.

本発明は、ClF3とF2を含む混合ガスを湿式スクラバーによって除害処理する際に、難分解性物質のClO3Fの発生を大幅に抑制することが可能であり、難分解性物質のC
lO3Fの処理に使用されていた高価な還元剤の使用や煩雑な濃度管理を行う必要がない
簡便な方法を提供することが可能となる。
In the present invention, when a mixed gas containing ClF 3 and F 2 is detoxified by a wet scrubber, generation of ClO 3 F as a hardly decomposable substance can be greatly suppressed. C
It is possible to provide a simple method that does not require the use of an expensive reducing agent used for the treatment of lO 3 F or complicated concentration control.

さらに、本発明は、湿式スクラバーによる除害処理の前段階において、大幅に未反応のフッ素ガスを低減させることができるため、湿式スクラバーにおいて毒性の高い二フッ化酸素(OF2)などのフッ化酸素化合物の発生を抑制することにも効果を奏する。 Furthermore, the present invention can significantly reduce unreacted fluorine gas in the pre-stage of the detoxification treatment with the wet scrubber, so that fluoridation such as oxygen difluoride (OF 2 ) which is highly toxic in the wet scrubber. It is also effective in suppressing the generation of oxygen compounds.

以下、本発明の好ましい実施態様の一例を説明する。   Hereinafter, an example of a preferred embodiment of the present invention will be described.

処理対象となる三フッ化塩素とフッ素の混合ガスには、ClF5、ClF、BrF5、BrF3、BrF、IF7、IF5、IF3、IF、NF3等の他のインターハロゲンガスが含
まれることを妨げない。
Other interhalogen gases such as ClF 5 , ClF, BrF 5 , BrF 3 , BrF, IF 7 , IF 5 , IF 3 , IF, NF 3 are included in the mixed gas of chlorine trifluoride and fluorine to be treated. Does not prevent it from being included.

未反応のフッ素ガスを低減するための原料ガスにはフッ素以外のハロゲンガスが用いられ、塩素、臭素、又はヨウ素を使用することができる。   A halogen gas other than fluorine is used as a raw material gas for reducing unreacted fluorine gas, and chlorine, bromine, or iodine can be used.

加えるフッ素以外のハロゲンガスは、未反応のフッ素ガスに対して、1.0当量以上加えることが好ましい。   The halogen gas other than fluorine to be added is preferably added in an amount of 1.0 equivalent or more with respect to the unreacted fluorine gas.

また、加えるフッ素以外のハロゲンガスは、特に、希釈せずに使用することがきるが、窒素やアルゴンなどの不活性ガスによって希釈して使用することもできる。   Further, the halogen gas other than fluorine to be added can be used without being diluted, but it can be diluted with an inert gas such as nitrogen or argon.

反応器に用いる材質は、高温でのフッ素ガス耐性が高く、かつ、充分な機械的強度を有するニッケルまたはモネルを使用することが好ましい。   The material used for the reactor is preferably nickel or monel which has high resistance to fluorine gas at high temperatures and has sufficient mechanical strength.

反応温度は反応部の温度が200℃〜400℃であることが好ましく、特に、好ましくは300℃〜350℃が好適である。200℃より低い温度では反応が進行しにくく、400℃より高い温度では、反応器を著しく腐食する可能性があるため好ましくない。   The reaction temperature is preferably 200 ° C to 400 ° C, particularly preferably 300 ° C to 350 ° C. The reaction is difficult to proceed at a temperature lower than 200 ° C., and a temperature higher than 400 ° C. is not preferable because the reactor may be significantly corroded.

フッ素濃度が1〜10%の混合ガス中のフッ素を1〜10ppm程度に低減させるには、反応器に導入した混合ガスを少なくとも30秒以上滞留させることが好ましい。   In order to reduce the fluorine in the mixed gas having a fluorine concentration of 1 to 10% to about 1 to 10 ppm, it is preferable to retain the mixed gas introduced into the reactor for at least 30 seconds or more.

反応器に導入する三フッ化塩素及びフッ素から成る混合ガスおよびハロゲンガスの供給方法は、反応器に供給可能であれば特に限定されない。   There are no particular limitations on the method of supplying the mixed gas and halogen gas comprising chlorine trifluoride and fluorine introduced into the reactor as long as they can be supplied to the reactor.

除害処理に用いる湿式スクラバーは、水又はアルカリ溶液を用いたスクラバーを使用することが好ましく、特に、1段目に水スクラバー、2段目にアルカリスクラバーを使用することが好ましい。   As the wet scrubber used for the detoxification treatment, it is preferable to use a scrubber using water or an alkaline solution, and it is particularly preferable to use a water scrubber in the first stage and an alkali scrubber in the second stage.

また、湿式スクラバーに使用するアルカリ溶液としては、KOH溶液、NaOH溶液、などを用いることができるが、特に、水に対する溶解度が比較的高いKOH溶液を用いることが好ましい。   In addition, as the alkaline solution used for the wet scrubber, a KOH solution, a NaOH solution, or the like can be used. In particular, it is preferable to use a KOH solution having a relatively high solubility in water.

以下の実施例により、本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   The following examples illustrate the invention, but the invention is not limited to these examples.

図1に、本発明を用いた実験の概略系統図を示す。マスフローコントローラー1、2によって、個々にハロゲンガスおよび三フッ化塩素ガスとフッ素ガスの混合ガスの流量を制御し、ニッケル製筒型反応器3にガスを導入する。ニッケル製筒型反応器3は、外部に設置されているヒーター4によって所定温度に加熱することができる。   FIG. 1 shows a schematic system diagram of an experiment using the present invention. The mass flow controllers 1 and 2 individually control the flow rates of the halogen gas, the mixed gas of chlorine trifluoride gas and fluorine gas, and introduce the gas into the nickel tubular reactor 3. The nickel cylindrical reactor 3 can be heated to a predetermined temperature by a heater 4 installed outside.

あらかじめ所定温度に加熱されたニッケル製筒型反応器3に導入されたガスを所定時間反応させた後、ニッケル製筒型反応器3の後段に連結された水とKOH濃度が0.1mol/lのアルカリ溶液のスクラバー(排ガス処理装置)5、6によって除害処理操作を行
う。
After the gas introduced into the nickel cylindrical reactor 3 heated to a predetermined temperature in advance is reacted for a predetermined time, the water and KOH concentration connected to the subsequent stage of the nickel cylindrical reactor 3 are 0.1 mol / l. The scrubber (exhaust gas treatment device) 5 and 6 of the alkaline solution is used for the detoxification treatment.

さらに、スクラバー流通の出口ガスをサンプリングし、FT−IR(大塚電子社製 IG−1000)で分析し、ClO3Fの濃度を測定する。
[実施例1]
内径30mm、長さ600mmのニッケル製筒型反応器3の外壁温度を350℃に設定し、マスフローコントローラー1を用いて、2.8mol%のフッ素ガスと3.5mol%のClF3の混合ガスを75ml/min、マスフローコントローラー2を用いて、3
.4mol%の塩素ガスを10ml/minの流量で、ニッケル製筒型反応器3に導入し
、30秒反応させたあと、後段に連結された水とKOH濃度が0.1mol/lのアルカ
リ溶液のスクラバー(排ガス処理装置)5、6によって除害処理した後、スクラバー流通の出口ガスをサンプリングし、FT−IR(大塚電子社製 IG−1000)を用いてClO3F濃度を分析したところ、180volppmであった。
[比較例1]
塩素ガスを添加しない以外は、実施例1と同条件で行った。その結果、サンプリングしたガス中のClO3F濃度は6000volppmであった。
[実施例2]
内径12.4mm、長さ1000mmのニッケル製筒型反応器3の外壁温度を350℃に設定し、マスフローコントローラー1を用いて、5.0mol%のフッ素ガスと3.0mol%のClF3の混合ガスを493ml/min、マスフローコントローラー2を用
いて、6.0mol%の塩素ガスを44ml/minの流量で、ニッケル製筒型反応器3
に導入し、30秒反応させたあと、後段に連結された水とKOH濃度が0.1mol/l
のアルカリ溶液のスクラバー(排ガス処理装置)5、6によって除害処理した後、スクラバー流通の出口ガスをサンプリングし、FT−IR(大塚電子社製 IG−1000)を用いてClO3F濃度を分析したところ、4volppmであった。
[比較例2]
塩素ガスを添加しない以外は、実施例2と同条件で行った。その結果、サンプリングしたガス中のClO3F濃度は3500volppmであった。
[実施例3]
内径30mm、長さ600mmのニッケル製筒型反応器3の外壁温度を370℃に設定し、マスフローコントローラー1を用いて、2.8mol%のフッ素ガスと3.5mol%のClFの混合ガスを75ml/min、マスフローコントローラー2を用いて、3.4mol%の塩素ガスを10ml/minの流量で、ニッケル製筒型反応器3に導入し、30秒反応させたあと、後段に連結された水とKOH濃度が0.1mol/lのアルカリ溶液のスクラバー(排ガス処理装置)5、6によって除害処理した後、スクラバー流通の出口ガスをサンプリングし、FT−IR(大塚電子社製 IG−1000)を用いてClO3F濃度を分析したところ、160volppmであった。
[比較例3]
塩素ガスを添加しない以外は、実施例3と同条件で行った。その結果、サンプリングしたガス中のClO3F濃度は5600volppmであった。
Further, the outlet gas of the scrubber circulation is sampled and analyzed by FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.), and the concentration of ClO 3 F is measured.
[Example 1]
The outer wall temperature of the nickel cylindrical reactor 3 having an inner diameter of 30 mm and a length of 600 mm was set to 350 ° C., and a mass flow controller 1 was used to mix a mixed gas of 2.8 mol% fluorine gas and 3.5 mol% ClF 3. 75 ml / min, 3 using mass flow controller 2
. After introducing 4 mol% chlorine gas into the nickel cylindrical reactor 3 at a flow rate of 10 ml / min and reacting for 30 seconds, water connected to the latter stage and an alkaline solution having a KOH concentration of 0.1 mol / l After detoxification with scrubbers (exhaust gas treatment devices) 5 and 6, the outlet gas of scrubber circulation was sampled and analyzed for ClO 3 F concentration using FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.). Met.
[Comparative Example 1]
The test was performed under the same conditions as in Example 1 except that no chlorine gas was added. As a result, the ClO 3 F concentration in the sampled gas was 6000 volppm.
[Example 2]
The outer wall temperature of the nickel cylindrical reactor 3 having an inner diameter of 12.4 mm and a length of 1000 mm is set to 350 ° C., and the mass flow controller 1 is used to mix 5.0 mol% fluorine gas and 3.0 mol% ClF 3 . Using a gas flow of 493 ml / min and mass flow controller 2, 6.0 mol% chlorine gas at a flow rate of 44 ml / min, nickel tubular reactor 3
After the reaction for 30 seconds, the water and KOH concentration connected in the latter stage are 0.1 mol / l.
After scrubbing with an alkali solution scrubber (exhaust gas treatment device) 5 and 6, the outlet gas of scrubber circulation was sampled and analyzed for ClO 3 F concentration using FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) As a result, it was 4 volppm.
[Comparative Example 2]
It carried out on the same conditions as Example 2 except not adding chlorine gas. As a result, the ClO 3 F concentration in the sampled gas was 3500 vol ppm.
[Example 3]
The outer wall temperature of the nickel tubular reactor 3 having an inner diameter of 30 mm and a length of 600 mm was set to 370 ° C., and a mass flow controller 1 was used to mix a mixed gas of 2.8 mol% fluorine gas and 3.5 mol% ClF 3. Using a mass flow controller 2 at 75 ml / min, 3.4 mol% chlorine gas was introduced into the nickel tubular reactor 3 at a flow rate of 10 ml / min, reacted for 30 seconds, and then water connected to the subsequent stage. And KOH concentration of 0.1 mol / l alkaline solution scrubber (exhaust gas treatment device) 5 and 6, sampling the scrubber distribution outlet gas, FT-IR (IG-1000 manufactured by Otsuka Electronics Co., Ltd.) Was used to analyze the ClO 3 F concentration and found to be 160 volppm.
[Comparative Example 3]
It carried out on the same conditions as Example 3 except not adding chlorine gas. As a result, the ClO 3 F concentration in the sampled gas was 5600 volppm.

本発明で用いた実験装置の概略図である。It is the schematic of the experimental apparatus used by this invention.

1、2:マスフローコントローラー
3:反応器
4:ヒーター
5:水スクラバー
6:アルカリスクラバー
7:サンプリング箇所
1, 2: Mass flow controller 3: Reactor 4: Heater 5: Water scrubber 6: Alkaline scrubber 7: Sampling location

Claims (3)

少なくとも三フッ化塩素及びフッ素から成る混合ガスを、湿式スクラバーによって除害処理する方法であって、
湿式スクラバーによる除害処理の前段階において、前記混合ガスに、ハロゲンガスX2
X=Cl、Br又はIを示す。)を添加し、前記混合ガス中のフッ素とハロゲンガスX2
(X=Cl、Br又はIを示す。)を反応させることによって、前記混合ガス中のフッ素を低減し、湿式スクラバーで生成するフッ化ペルクロリル(ClO3F)の生成を未然に
防止することを特徴とする除害方法。
A method of detoxifying a mixed gas comprising at least chlorine trifluoride and fluorine with a wet scrubber,
In the previous stage of the detoxification treatment with the wet scrubber, the mixed gas is added with halogen gas X 2 (
X = Cl, Br or I is shown. ), And fluorine and halogen gas X 2 in the mixed gas
(Representing X = Cl, Br, or I) to reduce fluorine in the mixed gas and to prevent the formation of perchloryl fluoride (ClO 3 F) generated by a wet scrubber. Characteristic abatement method.
前記混合ガス中のフッ素ガスに対し1.0当量以上のハロゲンガスX2(X=Cl又はB
r又はIを示す。)を添加することを特徴とする請求項1に記載の方法。
1.0 equivalent or more of halogen gas X 2 (X = Cl or B relative to fluorine gas in the mixed gas)
r or I is shown. ) Is added. The method according to claim 1.
前記混合ガス中のフッ素とハロゲンガスX2(X=Cl、Br又はIを示す。)を200
℃〜400℃の温度範囲で反応させることを特徴とする請求項1又は請求項2に記載の方法。
Fluorine and halogen gas X 2 (X = Cl, Br or I is shown) in the mixed gas is 200.
The method according to claim 1 or 2, wherein the reaction is performed in a temperature range of from ° C to 400 ° C.
JP2009252714A 2008-12-11 2009-11-04 Methods for removing chlorine trifluoride Active JP5471313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009252714A JP5471313B2 (en) 2008-12-11 2009-11-04 Methods for removing chlorine trifluoride
CN2009801344047A CN102143793B (en) 2008-12-11 2009-11-09 Detoxifying method of chlorine trifluoride
KR1020117008395A KR101343961B1 (en) 2008-12-11 2009-11-09 Method for eliminating unwanted substances from a mixed gas comprising chlorine trifluoride and fluorine
PCT/JP2009/069027 WO2010067677A1 (en) 2008-12-11 2009-11-09 Method for eliminating unwanted substances from chlorine trifluoride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008315135 2008-12-11
JP2008315135 2008-12-11
JP2009252714A JP5471313B2 (en) 2008-12-11 2009-11-04 Methods for removing chlorine trifluoride

Publications (2)

Publication Number Publication Date
JP2010158664A true JP2010158664A (en) 2010-07-22
JP5471313B2 JP5471313B2 (en) 2014-04-16

Family

ID=42242669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252714A Active JP5471313B2 (en) 2008-12-11 2009-11-04 Methods for removing chlorine trifluoride

Country Status (4)

Country Link
JP (1) JP5471313B2 (en)
KR (1) KR101343961B1 (en)
CN (1) CN102143793B (en)
WO (1) WO2010067677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134571A (en) * 2017-02-21 2018-08-30 セントラル硝子株式会社 Removal method of iodine compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477849B (en) * 2014-12-02 2016-08-17 中国船舶重工集团公司第七一八研究所 A kind of preparation method of chlorine trifluoride
CN104555927B (en) * 2014-12-31 2016-07-20 中国船舶重工集团公司第七一八研究所 A kind of purification process of chlorine trifluoride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128676A (en) * 1997-10-31 1999-05-18 Japan Pionics Co Ltd Purification of harmful gas
JP2000093745A (en) * 1998-09-22 2000-04-04 Kashiyama Kogyo Kk Waste gas treatment method and treatment apparatus
JP2004351364A (en) * 2003-05-30 2004-12-16 Ebara Corp Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935540A (en) * 1997-04-25 1999-08-10 Japan Pionics Co., Ltd. Cleaning process for harmful gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128676A (en) * 1997-10-31 1999-05-18 Japan Pionics Co Ltd Purification of harmful gas
JP2000093745A (en) * 1998-09-22 2000-04-04 Kashiyama Kogyo Kk Waste gas treatment method and treatment apparatus
JP2004351364A (en) * 2003-05-30 2004-12-16 Ebara Corp Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134571A (en) * 2017-02-21 2018-08-30 セントラル硝子株式会社 Removal method of iodine compound

Also Published As

Publication number Publication date
KR101343961B1 (en) 2013-12-20
JP5471313B2 (en) 2014-04-16
WO2010067677A1 (en) 2010-06-17
CN102143793A (en) 2011-08-03
CN102143793B (en) 2013-12-18
KR20110069069A (en) 2011-06-22

Similar Documents

Publication Publication Date Title
EP1732669B1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
TWI555702B (en) Method and apparatus for recycling waste sulfuric acid
JPWO2020129726A1 (en) Halogen Fluoride Removal Method, Quantitative Analysis Method of Halogen Fluoride Mixed Gas, Quantitative Analysis Device
JP5471313B2 (en) Methods for removing chlorine trifluoride
CN112206642A (en) Exhaust gas treatment method
KR100830843B1 (en) Process for treatment of halogenate volatile organic compounds using akaline molten salt
WO2017094417A1 (en) Method for treating exhaust gas containing elemental fluorine
WO2017094418A1 (en) Method for treating exhaust gas containing elemental fluorine
JP2007137739A (en) METHOD FOR RECOVERING CaF2
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP2011085566A (en) Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide
JP2022099990A (en) Production method for low-kalium woody biomass ash, kalium reduction method for woody biomass ash, cement production method and method for making the ash into cement resource
JP4698201B2 (en) Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JPH0365218A (en) Removal of harmful effect from nitrogen trifluoride
JP6895623B2 (en) Iodine compound removal method
JP4994746B2 (en) COF2 manufacturing method and apparatus
JP2005187312A (en) Removal method of silicon tetrafluoride
JP4751091B2 (en) Exhaust gas treatment method
JP3649426B2 (en) How to clean harmful gases
JP5639757B2 (en) Gas processing method
JP2010264427A (en) Halogen gas removal agent
JP4498053B2 (en) Method for decomposing nitrogen compounds
JPH07171339A (en) Treatment of nf3
JPH06327935A (en) Removing method of nf3
JP2005185897A (en) Method for treating sulfur hexafluoride gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5471313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250