JPH08206494A - Desiccant and use of desiccant - Google Patents

Desiccant and use of desiccant

Info

Publication number
JPH08206494A
JPH08206494A JP1787595A JP1787595A JPH08206494A JP H08206494 A JPH08206494 A JP H08206494A JP 1787595 A JP1787595 A JP 1787595A JP 1787595 A JP1787595 A JP 1787595A JP H08206494 A JPH08206494 A JP H08206494A
Authority
JP
Japan
Prior art keywords
hfc32
desiccant
zeolite
ions
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1787595A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ogawa
小川展弘
Keiji Itabashi
板橋慶治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1787595A priority Critical patent/JPH08206494A/en
Publication of JPH08206494A publication Critical patent/JPH08206494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To provide a novel desiccant which is particularly suitable for drying HFC32. CONSTITUTION: The desiccant comprises a zeolite whose Si/Al ratio is in a range of 2 to 10, or a zeolite whose Si/Al ratio is in a range of 2 to 10 and a binder for connecting such zeolite, and in which a part or the whole of exchange ions comprises potassium ions, rubidium ions or a mixture of these ions. A part or the whole of material, which is dried by means of the desiccant, is a compound of fluorine, hydrogen, and carbon or a compound of fluorine, hydrogen, chlorine, and carbon, and particularly difluoromethane (HFC32).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学的に不安定で分解さ
れ易い化合物を分解することなく乾燥することができる
乾燥剤(脱水剤)に関するものであり、例えば代替フロ
ン冷媒の乾燥剤に関するものである。特にその成分の一
部として少なくともジフルオロメタン(HFC32)を
含有する代替フロン冷媒に対して優れた性能を発揮する
乾燥剤を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desiccant (dehydrating agent) capable of drying a compound which is chemically unstable and is easily decomposed without decomposing, for example, a desiccant for a CFC substitute refrigerant. Is. In particular, the present invention provides a desiccant that exhibits excellent performance with respect to an alternative CFC refrigerant containing at least difluoromethane (HFC32) as a part of its components.

【0002】代替フロンとは、オゾン層破壊による環境
破壊が指摘されている塩素含有フロンに代る物質の総称
であり、塩素を含まず、水素、弗素及び炭素だけからな
る弗化炭化水素をいう。
[0002] The alternative chlorofluorocarbon is a general term for a substance which replaces the chlorine-containing chlorofluorocarbon, which has been pointed out to cause environmental damage due to ozone depletion, and is a fluorohydrocarbon containing only hydrogen, fluorine and carbon without containing chlorine. .

【0003】具体的には、HFC32、HFC125、
HFC134、HFC134a、HFC143、HFC
143a、HFC152a、HFC161、HFC22
7等が有望なものとして挙げられる。この様な代替フロ
ンの中で特にHFC32は冷凍能力が高い反面、化学的
に不安定で分解し易いことが知られている。
Specifically, HFC32, HFC125,
HFC134, HFC134a, HFC143, HFC
143a, HFC152a, HFC161, HFC22
7 is a promising one. Among such alternative CFCs, HFC32 has a high refrigerating capacity, but is known to be chemically unstable and easily decomposed.

【0004】[0004]

【従来の技術】従来、冷凍装置の冷媒としては塩素系フ
ロンが広く用いられてきた。
2. Description of the Related Art Conventionally, chlorine-based CFCs have been widely used as refrigerants for refrigeration systems.

【0005】しかし近年、オゾン層破壊による地球温暖
化の環境問題から、塩素系フロンの撤廃並びに代替冷媒
への転換が進められている。
However, in recent years, due to the environmental problem of global warming due to ozone depletion, elimination of chlorine-based CFCs and conversion to alternative refrigerants have been promoted.

【0006】塩素系フロンの代替冷媒としては、塩素を
含まず、オゾン破壊係数が小さい弗化炭化水素が着目さ
れており、例えばテトラフルオロエタン(HFC134
a)が既に実用化されている。しかしHFC134aは
冷凍能力に劣るため、最近になって、より冷凍能力の高
いジフルオロメタン(HFC32)が注目されている。
As an alternative refrigerant for chlorine-based CFCs, attention has been paid to fluorohydrocarbons that do not contain chlorine and have a low ozone depletion potential. For example, tetrafluoroethane (HFC134).
a) has already been put to practical use. However, since HFC134a is inferior in refrigerating capacity, difluoromethane (HFC32) having a higher refrigerating capacity has recently been attracting attention.

【0007】従来、フロン冷媒を用いる冷凍装置では、
水分による冷凍機油の劣化、及び水分氷結による冷凍機
内ラインの閉塞による機械的トラブルの問題をなくすた
め乾燥剤が用いられてきた。
Conventionally, in a refrigerating apparatus using a Freon refrigerant,
A desiccant has been used in order to eliminate the problem of mechanical troubles due to the deterioration of the refrigerating machine oil due to moisture and the blockage of the refrigerating machine line due to freezing of water.

【0008】フロン冷媒の乾燥剤としてはシリカゲルや
合成ゼオライトが一般的であり、特に金属カチオンとし
てナトリウムイオンを有する4A型ゼオライト、又はナ
トリウムイオンとカリウムイオンを含有する3Aゼオラ
イトが良く知られている。
Silica gel and synthetic zeolite are generally used as a desiccant for CFC refrigerants, and in particular, 4A type zeolite having sodium ion as a metal cation or 3A zeolite containing sodium ion and potassium ion is well known.

【0009】しかし先に示した代替フロン類は化学的に
不安定なため、従来のゼオライト乾燥剤を用いた場合、
ゼオライトの触媒作用によってフロンが分解してしまう
という問題が生じた。特に冷凍能力の高いHFC32で
はその分解が顕著であるため、従来のゼオライトでは直
ちに分解してしまい、これに適用できる乾燥剤の開発が
熱望されていた。
However, since the alternative CFCs shown above are chemically unstable, when a conventional zeolite desiccant is used,
There has been a problem that CFCs are decomposed by the catalytic action of zeolite. In particular, HFC32, which has a high refrigerating capacity, is prominently decomposed, so that conventional zeolite is immediately decomposed, and there has been earnestly desired to develop a desiccant applicable to this.

【0010】冷凍能力の高いジフルオロメタン(以下、
HFC32と記述)は、化学的に不安定であるため、従
来の乾燥剤を用いると分解してしまい、冷凍機の機械的
トラブルとなるという問題を有していた。
Difluoromethane having a high refrigerating capacity (hereinafter,
Since HFC32 is chemically unstable, it decomposes when a conventional desiccant is used, which causes a mechanical trouble of the refrigerator.

【0011】本発明者らは先にHFC32が吸着されに
くい乾燥剤としてゼオライトの細孔をHFC32の分子
サイズより小さく制御した乾燥剤を既に提案している
(特願平6ー265077)。しかし、ゼオライトの細
孔径は結晶の格子振動によって常に変動しているため、
HFC32分子をゼオライト中に全く入らないように制
御することは困難であった。
The present inventors have previously proposed a desiccant in which the pores of zeolite are controlled to be smaller than the molecular size of HFC32 as a desiccant in which HFC32 is hard to be adsorbed (Japanese Patent Application No. 6-265077). However, since the pore size of zeolite is constantly changing due to the lattice vibration of the crystal,
It has been difficult to control 32 HFC molecules so that they do not enter the zeolite at all.

【0012】またゼオライト乾燥剤を珪酸アルカリに含
浸して細孔径を制御するという公知の手法(特公昭38
−18824明細書内第1頁12行)を用いた乾燥剤
(特開平6−327968)も再提案されているが、こ
れも同様にHFC32分子をゼオライト中に全く入らな
いように制御することは困難であった。
Further, a known method of impregnating a zeolite desiccant in an alkali silicate to control the pore size (Japanese Patent Publication No. 38/38).
Although a desiccant (Japanese Patent Laid-Open No. 6-327968) using -18824, page 1, line 12) has been re-proposed, it is also possible to control HFC32 molecules so that they do not enter the zeolite at all. It was difficult.

【0013】[0013]

【発明が解決しようとする課題】本願発明の目的は、上
記問題点を解決する新規な乾燥剤、特にHFC32の乾
燥に適する新規な乾燥剤を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel desiccant which solves the above problems, particularly a novel desiccant suitable for drying HFC32.

【0014】[0014]

【課題を解決するための手段】本発明者は、HFC32
とゼオライトの物性に関して鋭意検討を重ねた結果、ゼ
オライト中でのHFC32の分解は、ゼオライト中の交
換イオンによって引き起こされることを見出し、Si/
Al原子比が高くすることにより単位重量当りの交換イ
オン数を少なくしたゼオライト(ハイシリカゼオライ
ト)では、HFC32の分解が低減できることを見出
し、また交換イオンとして特にカリウムイオン、ルビジ
ウムイオン、又はそれらの混合イオンにおいて優れた特
性が得られることを見出し本発明を完成するに至ったも
のである。
The present inventor has found that HFC32
As a result of intensive studies on the physical properties of zeolite and zeolite, it was found that the decomposition of HFC32 in zeolite was caused by exchange ions in zeolite, and Si /
It has been found that a zeolite (high silica zeolite) in which the number of exchange ions per unit weight is decreased by increasing the Al atomic ratio can reduce the decomposition of HFC32, and particularly potassium ions, rubidium ions, or a mixture thereof as exchange ions. The inventors have found that excellent characteristics can be obtained with ions, and have completed the present invention.

【0015】本発明の乾燥剤のゼオライトはSi/Al
原子比が2以上10以下であり、かつ水分を吸着し得る
ゼオライトであれば何でもよく、合成ゼオライトでも良
いし、また天然ゼオライトでも使用できる。
The desiccant zeolite of the present invention is Si / Al.
Any zeolite having an atomic ratio of 2 or more and 10 or less and capable of adsorbing water may be used, and synthetic zeolite or natural zeolite may be used.

【0016】使用できる一般的なゼオライトとしては例
えば、アナルサイム、ビキタイト、ブリューステライ
ト、チャバサイト、クリノプチロライト、エピスチルバ
イト、エリオナイト、フォージャサイト、フェリエライ
ト、ガロナイト、グメリナイト、ハーモナイト、ヒュー
ランダイト、L型、ルーモンタイト、レビナイト、メソ
ライト、モルデナイト、ナトライト、オフェレタイト、
Ω型、P型、ポーリンガイト、フィリプサイト、スコレ
サイト、スチルバイト、T型、W型、Y型、ユガワララ
イト、ZSM−5等が例示できる。
Examples of general zeolites that can be used include analcime, bikitite, brewsterite, chabazite, clinoptilolite, epistilbite, erionite, faujasite, ferrierite, gallonite, gmelinite, harmonite, huran. Dite, L-type, Rumontite, Levinite, Mesolite, Mordenite, Natrite, Oferethite,
Ω type, P type, polingite, philipsite, scolesite, stillbite, T type, W type, Y type, yugawaralite, ZSM-5 and the like can be exemplified.

【0017】一方、これらのゼオライト種に属しても合
成条件等によってSi/Al原子比が2未満、又は10
を超える物は用いることができない。何故ならば、Si
/Al原子比が10以上では単位重量当りの交換イオン
量は低減するが、各イオン交換サイトのHFC32との
反応性が増大し、HFC32の分解量が増加するからで
あり、一方、Si/Al原子比が2未満では、単位重量
当りの交換イオン数が多くなり、HFC32の分解量が
増加するからである。特に好ましいSi/Al原子比
は、4以上8以下である。
On the other hand, even if they belong to these zeolite species, the Si / Al atomic ratio is less than 2 or 10 depending on the synthesis conditions.
You cannot use more than. Because Si
When the / Al atomic ratio is 10 or more, the amount of exchanged ions per unit weight decreases, but the reactivity of each ion exchange site with HFC32 increases and the amount of decomposition of HFC32 increases, while Si / Al This is because if the atomic ratio is less than 2, the number of exchanged ions per unit weight increases and the amount of decomposition of HFC32 increases. A particularly preferable Si / Al atomic ratio is 4 or more and 8 or less.

【0018】本発明のゼオライト種の交換イオンは特に
限定されないが、HFC32の分解性の低いイオンとし
て、カリウムイオン、ルビジウムイオン、又はそれらの
混合イオンによって一部、又は全部が交換されているこ
とが好ましい。
The exchange ion of the zeolite species of the present invention is not particularly limited, but as the ion having low decomposability of HFC32, a part or all of it may be exchanged by potassium ion, rubidium ion, or a mixed ion thereof. preferable.

【0019】本発明の剤の用途は乾燥剤であるため、水
分の吸着能力を持つことが必要であり、特に温度25
℃、湿度80%における飽和水分吸着量が0.5重量%
以上あることが好ましい。水分吸着量が0.5重量%未
満では乾燥剤としては性能が不十分である。水分吸着量
の上限はゼオライト種、イオン交換種によって異なる
が、例えばSi/Al原子比が6のK交換L型ゼオライ
トでは9%、Si/Al原子比が5.5のK交換Y型ゼ
オライトでは16%等である。
Since the use of the agent of the present invention is a desiccant, it is necessary to have a moisture adsorbing ability.
0.5% by weight of saturated moisture adsorption at 80 ℃ and 80% humidity
It is preferable to have the above. If the water adsorption amount is less than 0.5% by weight, the performance as a desiccant is insufficient. The upper limit of the amount of adsorbed water varies depending on the type of zeolite and the type of ion exchange. For example, K-exchanged L-type zeolite with a Si / Al atomic ratio of 6 is 9% and K-exchanged Y-type zeolite with a Si / Al atomic ratio of 5.5 is 16%, etc.

【0020】温度25℃、湿度80%に於ける飽和水分
吸着量の測定方法は、温度25℃、湿度80%の雰囲
気、例えば過飽和の塩化アンモニウム水溶液の飽和蒸気
圧を入れた真空デシケーター中に本発明の乾燥剤を入
れ、減圧後16時間以上放置した後の重量をA、次に水
分を吸着した該乾燥剤を900℃で完全脱水した後の重
量をBとし、計算式 (A−B)×100/Bで算出さ
れる値で表される。
The method for measuring the saturated moisture adsorption amount at a temperature of 25 ° C. and a humidity of 80% is as follows. A weight after the desiccant of the invention was left for 16 hours or more after depressurization was reduced to A, and a weight after the desiccant adsorbing moisture was completely dehydrated at 900 ° C. was taken as B (calculation formula (AB)) It is represented by a value calculated by × 100 / B.

【0021】本発明の乾燥剤はゼオライト単身、又はゼ
オライトを成形したものいずれでも良い。ゼオライトの
成型にはバインダーとして粘土系バインダー又はシリカ
バインダーを用いることが一般的である。粘土系バイン
ダーとしてはカオリン系粘土が例示でき、カオリン鉱
物、蛇紋石鉱物、チャモサイト、アメサイト、グリーナ
ライト、クロンステダイト、加水ハロイサイト、ハロイ
サイト、カオリナイト、ディッカイト、ナクライト、ク
リソタイル、アンチゴライト、ゼットリッツカオリン、
コーンウオールカオリン、ジョージアカオリン、香港カ
オリン、朝鮮カオリン、復州粘土、木櫛粘土、蛙目粘
土、勢多カオリン、岩手カオリン、肘折カオリン、指宿
カオリン、関白カオリン等、あるいはこれらから選択さ
れる2種以上の混合物を例示することができる。また用
いる粘土バインダーがカオリン粘土に限定されるもので
ないことはいうまでもない。
The desiccant of the present invention may be a zeolite alone or a zeolite molded product. It is general to use a clay-based binder or a silica binder as a binder for molding zeolite. Examples of clay-based binders include kaolin-based clays, kaolin minerals, serpentine minerals, chamosites, amesites, greenalite, clonstedite, hydrohalloysites, halloysites, kaolinite, dickite, nacrite, chrysotile, antigorite, Zet Ritz Kaolin,
Cornwall Kaolin, Georgia Kaolin, Hong Kong Kaolin, Chosen Kaolin, Fuzhou Clay, Wood Comb Clay, Frog Eye Clay, Soda Kaolin, Iwate Kaolin, Hijiori Kaolin, Ibusuki Kaolin, Kanhaku Kaolin, etc., or two selected from these The above mixture can be illustrated. Needless to say, the clay binder used is not limited to kaolin clay.

【0022】乾燥剤の形状も特に限定されず、円柱状、
角柱状、球状等が例示できる。
The shape of the desiccant is not particularly limited either, and it may be cylindrical,
Examples thereof include prismatic shapes and spherical shapes.

【0023】またゼオライトと粘土の混練比率も特に限
定はないが、ゼオライトに対する粘土の比率が1重量%
から40重量%、特に20重量%から40重量%程度が
一般的である。
The mixing ratio of zeolite and clay is not particularly limited, but the ratio of clay to zeolite is 1% by weight.
To 40% by weight, especially about 20% to 40% by weight.

【0024】バインダーに天然粘土を乾燥剤は、そのま
ま用いても良いが、天然の粘土鉱物をバインダーとして
用いた場合、粘土がHFC32の分解性を促進する場合
があるため、乾燥剤を珪酸アルカリに含浸処理し、粘土
表面をHFC32の分解について不活性化することが好
ましい。乾燥剤を珪酸アルカリに含浸して用いることは
公知の手法である(特公昭38ー18824)。
Although the natural clay may be used as the binder as the binder as it is, when the natural clay mineral is used as the binder, the clay may promote the decomposability of HFC32. It is preferred to impregnate and inactivate the clay surface for the decomposition of HFC32. It is a known method to impregnate a desiccant with an alkali silicate and use it (Japanese Patent Publication No. 38-18824).

【0025】また乾燥剤を水蒸気雰囲気で熱処理し、ゼ
オライトの細孔径を低減させ、ゼオライトへのHFC3
2の吸着量を低減させることも可能である。
Further, the desiccant is heat-treated in a steam atmosphere to reduce the pore size of the zeolite, and HFC3 to zeolite is reduced.
It is also possible to reduce the adsorption amount of 2.

【0026】[0026]

【発明の効果】本発明の乾燥剤は、HFC32の分解性
が低く、かつ十分な水分吸着量を有するため、HFC3
2を含む冷媒の乾燥剤として優れた性能を発揮する。ま
た乾燥される物質としてHFC32に限らず、化学的に
不安定で分解され易い化合物全般について使用できる乾
燥剤となり得るものである。
EFFECT OF THE INVENTION The desiccant of the present invention has a low degradability of HFC32 and has a sufficient water adsorption amount.
It exhibits excellent performance as a desiccant for a refrigerant containing 2. Further, the substance to be dried is not limited to HFC32 and can be a desiccant which can be used for all compounds that are chemically unstable and easily decomposed.

【0027】[0027]

【実施例】次に本発明を具体的な実施例により説明する
が、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will now be described with reference to specific examples, but the present invention is not limited to these examples.

【0028】実施例1 Si/Al原子比が6であるゼオライトL(東ソー株式
会社製 商品名 HSZ500KOA)粉末1.0gを
1気圧のヘリウム雰囲気中、HFC32ガス分圧15m
mHg、温度300℃において石英製密閉容器内で1時
間接触させ、HFC32の分解率(濃度低下)を測定し
た。HFC32ガスの濃度測定はガスクロ法により測定
した。HFC32は300℃ではゼオライトがなくても
若干分解するため、分解率はゼオライトなしの場合の分
解率をさし引いた値とした。 該粉末は水分吸着量9
%、HFC32分解率は7%であった。該粉末は十分な
水分吸着量を有し、かつHFC32の分解性が低いため
HFC32乾燥用ゼオライトとして適していた。
Example 1 1.0 g of zeolite L (trade name HSZ500KOA manufactured by Tosoh Corporation) powder having an Si / Al atomic ratio of 6 was added to a HFC32 gas partial pressure of 15 m in a helium atmosphere at 1 atm.
The decomposition rate (decrease in concentration) of HFC32 was measured by contacting in a quartz closed container at mHg and temperature of 300 ° C. for 1 hour. The HFC32 gas concentration was measured by the gas chromatography method. Since HFC32 decomposes slightly at 300 ° C. even without zeolite, the decomposition rate is the value obtained by subtracting the decomposition rate without zeolite. The powder has a moisture adsorption amount of 9
%, The decomposition rate of HFC32 was 7%. The powder was suitable as a zeolite for drying HFC32 because it had a sufficient water adsorption amount and had a low degradability of HFC32.

【0029】実施例2 実施例で用いたSi/Al原子比が6のゼオライトLに
カオリン粘土を20部添加し、転動造粒によって直径2
mmのビーズを調製した。次に20%珪酸カリウム水溶
液に含浸した後、乾燥し、600℃で熱処理し乾燥剤と
した。該乾燥剤を用い、冷媒用乾燥剤の耐久試験として
一般的なシールドチューブテストを実施した。
Example 2 20 parts of kaolin clay was added to zeolite L having an Si / Al atomic ratio of 6 used in the example, and a diameter of 2 was obtained by rolling granulation.
mm beads were prepared. Then, it was impregnated with an aqueous 20% potassium silicate solution, dried, and heat-treated at 600 ° C. to obtain a desiccant. Using this desiccant, a general shield tube test was conducted as a durability test of the desiccant for refrigerant.

【0030】乾燥剤ビーズ1g、HFC32冷媒4gを
容積35ccの密閉ガラス管に封入し、65℃で30日
保持した。テスト後の乾燥剤内のF濃度を測定したとこ
ろ、900ppmであり、HFC32はほとんど分解し
ていなかった。
1 g of desiccant beads and 4 g of HFC32 refrigerant were sealed in a closed glass tube having a volume of 35 cc and kept at 65 ° C. for 30 days. When the F concentration in the desiccant after the test was measured, it was 900 ppm, and HFC32 was hardly decomposed.

【0031】実施例3 Si/Al原子比が5.5であるゼオライトY(東ソー
株式会社製 商品名HSZ320NAA)粉末1.0g
を1Nの塩化カリウム水溶液でイオン交換し、交換率5
0%のカリウム交換Y型ゼオライトを調製した。該粉末
を乾燥し、600℃で脱水処理した後、実施例1と同様
の条件でHFC32の分解率(濃度低下)を評価した。
Example 3 1.0 g powder of zeolite Y (trade name HSZ320NAA manufactured by Tosoh Corporation) having an Si / Al atomic ratio of 5.5
Is ion-exchanged with a 1N potassium chloride aqueous solution to obtain an exchange rate of 5
A 0% potassium exchanged Y-zeolite was prepared. After the powder was dried and dehydrated at 600 ° C., the decomposition rate (decrease in concentration) of HFC32 was evaluated under the same conditions as in Example 1.

【0032】該粉末は水分吸着量16%、HFC32分
解率は6%であった。該粉末は十分な水分吸着量を有
し、かつHFC32の分解性が低いためHFC32乾燥
用ゼオライトとして適していた。
The powder had a moisture adsorption amount of 16% and a HFC32 decomposition rate of 6%. The powder was suitable as a zeolite for drying HFC32 because it had a sufficient water adsorption amount and had a low degradability of HFC32.

【0033】実施例4 実施例3で用いたゼオライトを用い、実施例2と同様の
方法で乾燥剤ビーズを調製し、シールドチューブテスト
を実施した。シールドチューブテスト条件は実施例2と
同様とした。
Example 4 Using the zeolite used in Example 3, desiccant beads were prepared in the same manner as in Example 2 and a shield tube test was conducted. The shield tube test conditions were the same as in Example 2.

【0034】テスト後の乾燥剤内のF濃度を測定したと
ころ、1000ppmであり、HFC32はほとんど分
解していなかった。
After the test, the F concentration in the desiccant was measured and found to be 1000 ppm, indicating that HFC32 was hardly decomposed.

【0035】実施例5 Si/Al原子比が2.0であるチャバサイト型ゼオラ
イト粉末1.0gを1Nの塩化カリウム水溶液でイオン
交換し、交換率94.5%のカリウム交換チャバサイト
型ゼオライトを調製した。該粉末を乾燥し、600℃で
脱水処理した後、実施例1と同様の条件でHFC32の
分解率(濃度低下)を評価した。
Example 5 1.0 g of a chabazite-type zeolite powder having an Si / Al atomic ratio of 2.0 was ion-exchanged with a 1N potassium chloride aqueous solution to obtain a potassium-exchanged chabazite-type zeolite having an exchange rate of 94.5%. Prepared. After the powder was dried and dehydrated at 600 ° C., the decomposition rate (decrease in concentration) of HFC32 was evaluated under the same conditions as in Example 1.

【0036】該粉末は水分吸着量7%、HFC32分解
率は15%であった。該粉末は十分な水分吸着量を有
し、かつHFC32の分解性が低いためHFC32乾燥
用ゼオライトとして適していた。
The powder had a water adsorption amount of 7% and a HFC32 decomposition rate of 15%. The powder was suitable as a zeolite for drying HFC32 because it had a sufficient water adsorption amount and had a low degradability of HFC32.

【0037】実施例6 実施例5で用いたゼオライトを用い、実施例2と同様の
方法で乾燥剤ビーズを調製し、シールドチューブテスト
を実施した。シールドチューブテスト条件は実施例2と
同様とした。
Example 6 Using the zeolite used in Example 5, desiccant beads were prepared in the same manner as in Example 2 and a shield tube test was conducted. The shield tube test conditions were the same as in Example 2.

【0038】テスト後の乾燥剤内のF濃度を測定したと
ころ、2000ppmであり、HFC32はほとんど分
解していなかった。
After the test, the F concentration in the desiccant was measured and found to be 2000 ppm, and HFC32 was hardly decomposed.

【0039】実施例7 Si/Al原子比が8.0であるフェリエライト(東ソ
ー株式会社製 商品名HSZ720KOA)粉末1.0
gを1Nの塩化カリウム水溶液でイオン交換し、交換率
60%のカリウム交換フェリエライト型ゼオライトを調
製した。該粉末を乾燥し、600℃で脱水処理した後、
実施例1と同様の条件でHFC32の分解率(濃度低
下)を評価した。
Example 7 Ferrierite (trade name HSZ720KOA manufactured by Tosoh Corporation) powder having an Si / Al atomic ratio of 8.0 1.0
g was ion-exchanged with a 1N potassium chloride aqueous solution to prepare a potassium-exchanged ferrierite-type zeolite with an exchange rate of 60%. After the powder was dried and dehydrated at 600 ° C.,
The decomposition rate (concentration decrease) of HFC32 was evaluated under the same conditions as in Example 1.

【0040】該粉末は水分吸着量8%、HFC32分解
率は20%であった。該粉末は十分な水分吸着量を有
し、かつHFC32の分解性が低いためHFC32乾燥
用ゼオライトとして適していた。
The powder had a water adsorption amount of 8% and a HFC32 decomposition rate of 20%. The powder was suitable as a zeolite for drying HFC32 because it had a sufficient water adsorption amount and had a low degradability of HFC32.

【0041】実施例8 実施例7で用いたゼオライトを用い、実施例2と同様の
方法で乾燥剤ビーズを調製し、シールドチューブテスト
を実施した。シールドチューブテスト条件は実施例2と
同様とした。
Example 8 Using the zeolite used in Example 7, desiccant beads were prepared in the same manner as in Example 2 and a shield tube test was conducted. The shield tube test conditions were the same as in Example 2.

【0042】テスト後の乾燥剤内のF濃度を測定したと
ころ、3000ppmであり、HFC32はほとんど分
解していなかった。
After the test, the F concentration in the desiccant was measured and found to be 3000 ppm, and HFC32 was hardly decomposed.

【0043】比較例1 Si/Al原子比が12のフェリエライト(東ソー株式
会社製 商品名HSZ720KOA)を用い、実施例1
と同様の方法でHFC32分解試験を行った。該粉末は
水分吸着量は7%で乾燥能力は十分であったが、HFC
32の分解率は35%で、HFC32の乾燥用には不適
当であった。
Comparative Example 1 Ferrierite having an Si / Al atomic ratio of 12 (trade name HSZ720KOA manufactured by Tosoh Corporation) was used, and Example 1 was used.
A HFC32 decomposition test was conducted in the same manner as in. The powder had a moisture adsorption amount of 7% and had a sufficient drying capacity, but HFC
The decomposition rate of 32 was 35%, which was unsuitable for drying HFC32.

【0044】比較例2 比較例1の粉末を実施例2と同様の方法で成形し、シー
ルドチュブテストを行った。テスト条件は実施例2と同
様とした。テスト後の乾燥剤中のF濃度は1.3%で、
HFC32が多く分解されていた。
Comparative Example 2 The powder of Comparative Example 1 was molded in the same manner as in Example 2 and a shield tube test was conducted. The test conditions were the same as in Example 2. The F concentration in the desiccant after the test was 1.3%,
A large amount of HFC32 was decomposed.

【0045】比較例3 Si/Al原子比が17のフェリエライト(東ソー株式
会社製 商品名HSZ720KOA)を用い、実施例1
と同様の方法でHFC32分解試験を行った。該粉末は
水分吸着量は5%で乾燥能力は十分であったが、HFC
32の分解率は30%で、HFC32の乾燥用には不適
当であった。
Comparative Example 3 Ferrierite having an Si / Al atomic ratio of 17 (trade name HSZ720KOA manufactured by Tosoh Corporation) was used and Example 1 was used.
A HFC32 decomposition test was conducted in the same manner as in. The powder had a moisture adsorption amount of 5% and had a sufficient drying capacity, but HFC
The decomposition rate of 32 was 30%, which was unsuitable for drying HFC32.

【0046】比較例4 比較例3の粉末を実施例2と同様の方法で成形し、シー
ルドチュブテストを行った。テスト条件は実施例2と同
様とした。テスト後の乾燥剤中のF濃度は1.3%で、
HFC32が多く分解されていた。
Comparative Example 4 The powder of Comparative Example 3 was molded in the same manner as in Example 2 and a shield tube test was conducted. The test conditions were the same as in Example 2. The F concentration in the desiccant after the test was 1.3%,
A large amount of HFC32 was decomposed.

【0047】比較例5 Si/Al原子比が1のK交換A型ゼオライトを用い、
実施例1と同様の方法でHFC32分解試験を行った。
該粉末は水分吸着量は25%で乾燥能力は十分であった
が、HFC32の分解率は45%で、HFC32の乾燥
用には不適当であった。
Comparative Example 5 Using a K-exchanged A-type zeolite having an Si / Al atomic ratio of 1,
A HFC32 decomposition test was conducted in the same manner as in Example 1.
The powder had a moisture adsorption amount of 25% and a sufficient drying ability, but the decomposition rate of HFC32 was 45%, which was unsuitable for drying HFC32.

【0048】比較例6 比較例5の粉末を実施例2と同様の方法で成形し、シー
ルドチュブテストを行った。テスト条件は実施例2と同
様とした。
Comparative Example 6 The powder of Comparative Example 5 was molded in the same manner as in Example 2 and a shield tube test was conducted. The test conditions were the same as in Example 2.

【0049】テスト後の乾燥剤中のF濃度は1.5%
で、HFC32が多く分解されていた。
The F concentration in the desiccant after the test was 1.5%
Then, a large amount of HFC32 was decomposed.

【0050】比較例7 Si/Al原子比が1.25のK交換X型ゼオライトを
用い、実施例1と同様の方法でHFC32分解試験を行
った。該粉末は水分吸着量は33%で乾燥能力は十分で
あったが、HFC32の分解率は69%で、HFC32
の乾燥用には不適当であった。
Comparative Example 7 A HFC32 decomposition test was conducted in the same manner as in Example 1 using K-exchanged X-type zeolite having an Si / Al atomic ratio of 1.25. The powder had a moisture adsorption amount of 33% and a sufficient drying ability, but the decomposition rate of HFC32 was 69%, and
Was not suitable for drying.

【0051】比較例8 比較例7の粉末を実施例2と同様の方法で成形し、シー
ルドチュブテストを行った。テスト条件は実施例2と同
様とした。
Comparative Example 8 The powder of Comparative Example 7 was molded in the same manner as in Example 2 and a shield tube test was conducted. The test conditions were the same as in Example 2.

【0052】テスト後の乾燥剤中のF濃度は1.5%
で、HFC32が多く分解されていた。
The F concentration in the desiccant after the test was 1.5%
Then, a large amount of HFC32 was decomposed.

【0053】以上の実施例1〜8及び比較例1〜8の結
果を、以下の表1にまとめて示す。
The results of Examples 1 to 8 and Comparative Examples 1 to 8 are summarized in Table 1 below.

【0054】[0054]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Si/Al原子比が2以上10以下のゼオ
ライトからなる乾燥剤。
1. A desiccant comprising a zeolite having an Si / Al atomic ratio of 2 or more and 10 or less.
【請求項2】Si/Al原子比が2以上10以下のゼオ
ライトとそれを結合するバインダーからなる乾燥剤。
2. A desiccant comprising a zeolite having an Si / Al atomic ratio of 2 or more and 10 or less and a binder binding the zeolite.
【請求項3】交換イオンの一部又は全部が、カリウムイ
オン、ルビジウムイオン、又はそれらの混合イオンから
なる請求項1または請求項2に記載の乾燥剤。
3. The desiccant according to claim 1 or 2, wherein a part or all of the exchange ions consist of potassium ions, rubidium ions, or mixed ions thereof.
【請求項4】乾燥剤により乾燥される物質の一部又は全
部がふっ素、水素及び炭素、又はふっ素、水素、塩素及
び炭素からなる化合物である請求項1〜請求項3のいず
れかに記載の乾燥剤。
4. A part or all of the substance dried by the desiccant is fluorine, hydrogen and carbon, or a compound consisting of fluorine, hydrogen, chlorine and carbon. desiccant.
【請求項5】ふっ素、水素、炭素からなる化合物がジフ
ルオロメタン(HFC32)である、又は少なくともジ
フルオロメタン(HFC32)を含む混合物である請求
項4に記載の乾燥剤。
5. The desiccant according to claim 4, wherein the compound consisting of fluorine, hydrogen and carbon is difluoromethane (HFC32), or a mixture containing at least difluoromethane (HFC32).
JP1787595A 1995-02-06 1995-02-06 Desiccant and use of desiccant Pending JPH08206494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1787595A JPH08206494A (en) 1995-02-06 1995-02-06 Desiccant and use of desiccant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1787595A JPH08206494A (en) 1995-02-06 1995-02-06 Desiccant and use of desiccant

Publications (1)

Publication Number Publication Date
JPH08206494A true JPH08206494A (en) 1996-08-13

Family

ID=11955868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1787595A Pending JPH08206494A (en) 1995-02-06 1995-02-06 Desiccant and use of desiccant

Country Status (1)

Country Link
JP (1) JPH08206494A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017136A1 (en) * 1998-09-22 2000-03-30 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoro-propane and/or 1-chloro-3,3,3-trifluoropropene
US6101818A (en) * 1997-11-10 2000-08-15 Alliedsignal Inc. Process for separating water from chemical mixtures
US6589444B2 (en) 1997-11-10 2003-07-08 Honeywell International Inc. Process for separating water from chemical mixtures
JP2010137174A (en) * 2008-12-12 2010-06-24 Tosoh Corp Detoxifying agent for halogen gas and method for detoxifying halogen gas using the same
WO2021107046A1 (en) * 2019-11-28 2021-06-03 ダイキン工業株式会社 Dehydration method for fluorine-based hydrocarbon compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101818A (en) * 1997-11-10 2000-08-15 Alliedsignal Inc. Process for separating water from chemical mixtures
US6589444B2 (en) 1997-11-10 2003-07-08 Honeywell International Inc. Process for separating water from chemical mixtures
WO2000017136A1 (en) * 1998-09-22 2000-03-30 Daikin Industries, Ltd. Process for producing 1,1,1,3,3-pentafluoro-propane and/or 1-chloro-3,3,3-trifluoropropene
JP2010137174A (en) * 2008-12-12 2010-06-24 Tosoh Corp Detoxifying agent for halogen gas and method for detoxifying halogen gas using the same
WO2021107046A1 (en) * 2019-11-28 2021-06-03 ダイキン工業株式会社 Dehydration method for fluorine-based hydrocarbon compound
JP2021091668A (en) * 2019-11-28 2021-06-17 ダイキン工業株式会社 Dehydration method of fluorine-based hydrocarbon compound
CN114746385A (en) * 2019-11-28 2022-07-12 大金工业株式会社 Method for dehydrating fluorine-containing hydrocarbon compound
EP4067326A4 (en) * 2019-11-28 2024-01-03 Daikin Ind Ltd Dehydration method for fluorine-based hydrocarbon compound

Similar Documents

Publication Publication Date Title
JP6107466B2 (en) Method for purifying trans-1,3,3,3-tetrafluoropropene
US9587202B2 (en) Process for reducing the total acidity of refrigerating compositions
US5013335A (en) Process for sequestering ammonia and the odor associated therewith
RU2380151C2 (en) Zeolite adsorbent composition, method of preparing said adsorbent and use thereof in removing h2o and/or co2 and/or h2s from gaseous or liquid mixtures
JP3078850B2 (en) Adsorption composition containing zeolite and adsorption decomposition composition containing this adsorption composition
EP1243328B1 (en) Argon/Oxygen selective x-zeolite
ES2804448T3 (en) Zeolitic adsorbents in the form of aggregates, their method of preparation and their uses
US3899310A (en) Alumina-zeolite composite adsorbents for refrigerants
BR112015013745B1 (en) ZEOLYTIC ADSORBENTS, THEIR PREPARATION PROCESS AND THEIR USES
JP2021000633A (en) Gas dehydrator
US5347822A (en) Process for drying CH2 F2 refrigerant utilizing zeolite
CA2013530A1 (en) Process for the purification of bulk gases using chabazite adsorbents
US5045295A (en) Silicate treatment of molecular sieve agglomerates
JPH08206494A (en) Desiccant and use of desiccant
KR0153347B1 (en) Refrigeration cycle and apparatus using hydrofluoro-carbon composition
JP7132485B2 (en) Method for producing 1,1,1,3,3,3-hexafluoroisopropyl methyl ether, solid-liquid heterogeneous composition and 1,1,1,3,3,3-hexafluoroisopropyl methyl ether product
US5160499A (en) Purification of 1,1,1,2-tetrafluoroethane
JP7135319B2 (en) xenon adsorbent
US6090738A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing methane from a gaseous mixture
JPH08173799A (en) Desiccating agent and manufacture and use thereof
JPH08206493A (en) Desiccant and its use
JPH08206495A (en) Desiccant and use thereof
CN1033801C (en) Purification of 1,1,1,2-tetrafluoroethane
US11952322B2 (en) Stabilization of 1-chloro-3,3,3-trifluoropropene
Jänchen et al. Adsorption properties of aluminophosphate molecular sieves–potential applications for low temperature heat utilization