JPS637826A - Removing method for nitrous oxide in gas mixture - Google Patents
Removing method for nitrous oxide in gas mixtureInfo
- Publication number
- JPS637826A JPS637826A JP61151775A JP15177586A JPS637826A JP S637826 A JPS637826 A JP S637826A JP 61151775 A JP61151775 A JP 61151775A JP 15177586 A JP15177586 A JP 15177586A JP S637826 A JPS637826 A JP S637826A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nitrous oxide
- gas mixture
- oxide
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 25
- 239000001272 nitrous oxide Substances 0.000 title claims description 19
- 239000000203 mixture Substances 0.000 title claims description 14
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 230000000737 periodic effect Effects 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 238000011049 filling Methods 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 39
- 238000006243 chemical reaction Methods 0.000 description 13
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000000295 fuel oil Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 NO2 and NO2 Chemical compound 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L magnesium sulphate Substances [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はガス混合物中の窒素酸化物、特に亜酸化窒素の
除去方法−関する。特に本発F3AFi各檀の工業及び
産業における排ガス及び自動車の排ガス中の窒X[化物
の除去処理の一環として実りするに適当な微量の亜酸化
窒素を含有する排ガスからの亜酸化窒素の除去方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for removing nitrogen oxides, in particular nitrous oxide, from gas mixtures. In particular, a method for removing nitrous oxide from exhaust gas containing trace amounts of nitrous oxide, suitable for use as part of the removal process of nitrogen X [compounds] in industrial exhaust gases and automobile exhaust gases in various industries and automobiles. It is related to.
従来の技術及び問題点
従来各種の工業及び産業における排ガス及び自動車の排
ガスの大気中への放出については公害防止の観点から法
的その他の規制装置がとられており、特に窒素酸化物に
ついては酸性雨や光化学スモッグの原因物質としてその
排出は厳しく制限されている。Conventional Technologies and Problems Conventionally, legal and other regulatory measures have been taken to prevent the release of exhaust gas from various industries and automobiles into the atmosphere from the perspective of pollution prevention. As a cause of rain and photochemical smog, its emissions are strictly restricted.
ところで、従来排出規制の対象とされている排ガス中の
窒素酸化vlJ(NOx)は主として一酸化窒素(No
)及び二酸化窒素(NO2)であり、したがって従来の
排ガスの脱硝技術もまた主として一酸化窒素及び二酸化
窒素の除去を対象としておシ、たとえばアンモニア添加
による還元法、触媒を使用する還元法、放射線照射法等
が提案されている。By the way, nitrogen oxide vlJ (NOx) in exhaust gas, which has traditionally been subject to emission regulations, is mainly composed of nitrogen monoxide (NOx).
) and nitrogen dioxide (NO2), therefore conventional exhaust gas denitrification techniques are also mainly aimed at removing nitrogen monoxide and nitrogen dioxide, such as reduction methods by adding ammonia, reduction methods using catalysts, radiation irradiation. Laws, etc. have been proposed.
−方、排ガス中の亜酸化窒素(N20 )は、勿論NO
やNO2と同様窒素は化物に属するものではあるが、こ
れまで法的な排出規制値はなく、また日本工業規格(J
IS)のような公的な測定も定められておらず、脱硝装
置の評価において実質的に無視されてきたのが実状であ
る。これは大気中のN20d度がNo +NO2濃度に
比較して一定濃度で推移しておシ、他の物質への変換が
なく安定と云われていたため及びN20の物性が十分に
判明していなかったためである◇
ところが、上述したごとき従来技術に従う脱硝方法にお
いては、使用される脱硝Wc&の運転条件によってId
NO,NO2及びNH,等の反応によりN20が比較的
高碌度で生成することが認められておシ、さらに近年、
N20が成層圏で分解してN。-On the other hand, nitrous oxide (N20) in exhaust gas is, of course, NO.
Nitrogen, like NO2 and NO2, belongs to chemical substances, but until now there has been no legal emission regulation value, and the Japanese Industrial Standards (J
Official measurements such as IS) have not been established, and the reality is that they have been virtually ignored in the evaluation of denitrification equipment. This was because the N20d degree in the atmosphere remained constant compared to the No + NO2 concentration, and was said to be stable as it did not convert into other substances, and the physical properties of N20 were not fully understood. ◇ However, in the denitrification method according to the conventional technology as described above, Id
It has been recognized that N20 is produced at a relatively high rate through the reaction of NO, NO2, NH, etc., and in recent years,
N20 decomposes in the stratosphere and becomes N.
を生成することが明らかと々す、またN20とオゾン層
との係わシについても一部で議論されるようになる等、
N20の排出問題についても注目されてきつつある。こ
のような状況から、大気中のN200発生源である各種
の排ガス、特に現在排ガス中の鼠素酸化物の除去のため
に使用されている櫨々の脱硝装置から生成するNOx除
去後の排ガスからN20の除去を行なう必要性が生じて
きた。It has become clear that N20 produces
The issue of N20 emissions is also attracting attention. Under these circumstances, various exhaust gases that are the source of N200 in the atmosphere, especially exhaust gas after NOx removal generated from the Hakashi denitrification equipment currently used to remove nitric oxides from exhaust gas. A need has arisen for N20 removal.
間ね点を解決するための手段2作用及び効果本発明はガ
ス混合・物、特に種々の排ガス中に含まれる窒素酸化物
のうち亜酸化窒素を除去することを目的とするものであ
る。Means for solving the problem 2 Functions and effects The present invention aims at removing nitrous oxide from among the nitrogen oxides contained in gas mixtures, especially various exhaust gases.
本発明に従えば、亜酸化窒素を含有するガス混合物を元
素の周期律表Htb族又は第1族の金属又は該金属の酸
化物あ石いは複合酸化物を含有してなる触媒と接触せし
めることKよシ亜酸化窒素を分解除去することを特徴と
するガス混合物中の亜叡化窒素の除去方法が提供される
。According to the invention, a gas mixture containing nitrous oxide is brought into contact with a catalyst comprising a metal of Group Htb or Group 1 of the Periodic Table of the Elements or an oxide agglomerate or composite oxide of said metal. A method for removing nitrous oxide in a gas mixture is provided, which comprises decomposing and removing nitrous oxide.
本発明の方法によれば、亜酸化窒素を含有するガス混合
物、特に排ガスを単に上記触媒と接触せしめるのみでそ
の中に含まれる亜酸化窒素は窒素及び酸素に分解されて
無害化することができる。According to the method of the present invention, the nitrous oxide contained therein can be decomposed into nitrogen and oxygen and rendered harmless by simply contacting a gas mixture containing nitrous oxide, particularly exhaust gas, with the above catalyst. .
したがって特に排ガスの場合、反応生成物はさらに処理
する心安なく大気中に放出せしめ得る。Particularly in the case of exhaust gases, the reaction products can therefore be released into the atmosphere without concern for further treatment.
本発明の実施に使用するに特’/C1jfましい触媒は
活性成分としてパラジウム、ニッケル、鉄、コバルト又
は銅又はこれらの金属の酸化物あるいは複合酸化物を含
有するものである。触媒は通常担体上に保持された担持
触媒の形態で使用するのが好都合である。担体としては
活性成分の触媒作用を発揮せしめ得る適度な細孔を有し
、排ガス成分。Particularly preferred catalysts for use in the practice of the present invention are those containing palladium, nickel, iron, cobalt or copper, or oxides or composite oxides of these metals, as active ingredients. It is convenient to use the catalyst in the form of a supported catalyst, usually carried on a support. As a carrier, it has appropriate pores that allow the active ingredient to exhibit its catalytic action, and is an exhaust gas component.
たとえばイオウ酸化物(SOx)と反応せずかつ耐熱性
に優れたものであれば任意のものを使用し得るが、%に
多孔性セラミックスの使用が好ましい。For example, any material can be used as long as it does not react with sulfur oxides (SOx) and has excellent heat resistance, but porous ceramics are preferably used.
触媒担体として使用される多孔性セラミックスは原料と
して珪砂+ At20s t at CI TjN
H513N4 +TiO2等の一種又はそれ以上を適宜
組合せてそれ自体周知の製造法に従って製造することが
できる。The porous ceramics used as the catalyst carrier is made of silica sand + At20s t at CI TjN as the raw material.
It can be manufactured by suitably combining one or more of H513N4 +TiO2, etc., according to a well-known manufacturing method.
触媒活性成分の担体への担持、すなわち担持触媒の製造
はそれ自体慣用の任意の方法、もっとも−船釣には触媒
金属の水浴性塩の水溶液を担体に含浸させた後焼成処理
する方法によって行なうことができる。The supporting of the catalytic active component on the carrier, that is, the production of the supported catalyst, can be carried out by any conventional method; however, for boat fishing, the carrier is impregnated with an aqueous solution of a bath salt of the catalytic metal, and then calcined. be able to.
たとえば、PdをAt20s に担持させδ否決(Pd
/At20.触媒の製造法)#:j、窒累雰囲気で60
0’Cにて5時間加熱したγ−At20sを硝酸パラジ
ウム水浴液に浸漬して硝酸パラジウムを吸着させた恢、
空気雰囲気中で110’C,24時間乾燥させ、さらに
窒素雰囲気で600’Cの温度で5時間焼成することか
らなる。For example, when Pd is supported on At20s, δ is rejected (Pd
/At20. Catalyst manufacturing method) #:j, 60 in nitrogen atmosphere
γ-At20s heated at 0'C for 5 hours was immersed in a palladium nitrate water bath solution to adsorb palladium nitrate,
This consists of drying in an air atmosphere at 110'C for 24 hours, and then firing in a nitrogen atmosphere at a temperature of 600'C for 5 hours.
別の例として、PdをTiO2に担持させ8法(Pd/
TiO2触媒の製造法〕は、屋素雰囲気で300℃にて
5時間加熱したアナターゼ型TiO2を硝酸パラジウム
水溶液に浸漬して硝酸パラジウムを吸着させた後、上記
と同様に乾燥及び焼成処理を行うことからなる。As another example, method 8 (Pd/
[Method for producing TiO2 catalyst] is to immerse anatase-type TiO2 heated at 300°C in an indoor atmosphere for 5 hours in a palladium nitrate aqueous solution to adsorb palladium nitrate, and then dry and calcinate it in the same manner as above. Consisting of
触媒活性成分の担持量は特に臨界的ではないが、−般に
使用担体に基づき金属として計算して2〜30重jtチ
の範囲である。The amount of catalytically active component supported is not particularly critical, but generally ranges from 2 to 30 parts by weight, based on the carrier used and calculated as metal.
本発明の方法は上述したとおり、亜酸化窒素を含有する
任意のガス混合物、特に微量の亜酸化窒素を含有するガ
ス混合物、特に排ガス、したがって広範囲の工業及びそ
の他産業における排ガス及び自動車の排ガスならびKこ
れら排ガスに一部精製処理、たとえば脱硝、脱硫等の処
理を施したものに、適用することができる。As mentioned above, the method of the present invention can be applied to any gas mixture containing nitrous oxide, in particular to gas mixtures containing traces of nitrous oxide, in particular to exhaust gases, and thus to exhaust gases in a wide range of industrial and other industries as well as motor vehicle exhaust gases and K. The present invention can be applied to exhaust gases that have been partially purified, such as denitrification and desulfurization.
本発明の代表的な実施態様に従えば、本発明の方法は亜
酸化窒素を含有するガス混合物流を元素の周期律表第r
b族又は第1族の金属又は該金属の酸化物あるいは複合
酸化物を担体上に担持してなる触媒の充填層に通送せし
める様式で達成される。In accordance with an exemplary embodiment of the present invention, the method of the present invention comprises supplying a gas mixture stream containing nitrous oxide to
This is achieved by passing a Group B or Group 1 metal or an oxide or composite oxide of the metal to a packed bed of a catalyst supported on a carrier.
か\る固定触媒床への気相接触反応方式は当業者に周知
の形式であシ、個々特定の処理に適する触媒の種類、形
状、触媒充填層の形状(*造)2反応条件、たとえばガ
ス空間速度及び触媒床温度等は必要ならば簡単な実験に
よって当業者には容易に決定し得るものである。Such a gas phase catalytic reaction method using a fixed catalyst bed is of a type well known to those skilled in the art, and depends on the type and shape of the catalyst suitable for each particular treatment, the shape of the catalyst packed bed, and the reaction conditions, e.g. Gas hourly space velocities, catalyst bed temperatures, etc. can be readily determined by those skilled in the art by simple experimentation, if necessary.
触媒の形状の典型的な具体例としては嵌状1球状、リン
グ状1円柱状、板状、ハニカム状等が挙げられ、また触
媒充填層の形状としては板状触媒のパッケージ形、ハニ
カム触媒の積層体あるいは金網中に粒状触媒を充填した
ものをびょうぶ形に構成した触媒床等を例示することが
でき、これらをガス混合物中の除去すべき成分、すなわ
ち亜酸化窒素の含量等に応じて適宜選定使用するものと
する。Typical examples of the shape of the catalyst include a spherical shape, a ring shape, a columnar shape, a plate shape, a honeycomb shape, etc., and the shape of the catalyst packed bed includes a package shape of a plate catalyst, a package shape of a honeycomb catalyst, etc. An example is a catalyst bed in which a granular catalyst is packed in a stacked body or a wire mesh in a cylindrical shape. It shall be used selectively.
触媒充填層の温度は用いる触媒の種類、充填量。The temperature of the catalyst packed bed depends on the type and amount of catalyst used.
効果、経済性等に応じて異なるが、−船釣には250〜
600℃の範囲内の任意の温度範囲を使用でき、たとえ
ばPd/A120g触媒では250〜450°Cの範囲
が好ましい。It varies depending on effectiveness, economy, etc., but - 250~ for boat fishing.
Any temperature range within the range of 600°C can be used, e.g. for a Pd/A 120g catalyst a range of 250-450°C is preferred.
被処理ガスの触媒床への空間速度〔SV (hr−’
):1も触媒のa[類、効果、経済性等によシ異なるが
、−般に空間速度は3,000 (hr )以上、通z
s、oo。Space velocity of the gas to be treated to the catalyst bed [SV (hr-'
): 1 also varies depending on the type, effect, economy, etc. of the catalyst, but generally the space velocity is 3,000 (hr) or more,
s,oo.
(hr−1)以上、好ましくは8,000 (hr−’
)以上である。(hr-1) or more, preferably 8,000 (hr-'
) That's it.
つぎに本発明の方法を重油燃焼炉から発生する重油燃焼
排ガスの慣用の脱硝装置から生成するN20の処理に適
用する一具体例の概念図を第1図に示す。Next, FIG. 1 shows a conceptual diagram of a specific example in which the method of the present invention is applied to the treatment of N20 generated from a conventional denitrification device for heavy oil combustion exhaust gas generated from a heavy oil combustion furnace.
重油燃焼炉1から平均NOx (NO及びNO2の合計
)濃度250 ppmで排出される排ガスをまず通常の
脱硝装置2で脱硝処理してNOxを除去した後、ここで
生成するN20を触媒充填層4にて分解後、無害化され
た排ガスをファン5を介して煙突6から排出する。Exhaust gas discharged from the heavy oil combustion furnace 1 with an average NOx (total of NO and NO2) concentration of 250 ppm is first treated with a normal denitrification device 2 to remove NOx, and then the N20 produced here is transferred to the catalyst packed bed 4. After decomposition, the detoxified exhaust gas is discharged from the chimney 6 via the fan 5.
脱硝装置2での脱硝は、排ガス中のNOx濃度に対して
化学量論値の0.7〜00g当量のアンモニア(NHs
) 3を添加することによシ行われる。Denitrification in the denitrification device 2 is carried out using ammonia (NHs) with a stoichiometric value of 0.7 to 00 g equivalent to the NOx concentration in the exhaust gas.
) is carried out by adding 3.
脱硝装[2の後流の排ガス中のNOx 濃度は50pp
mであるが、NOxの1部はN20に変換してお9、こ
こでのN20J%度は45 ppmである。The NOx concentration in the exhaust gas downstream of the denitrification system [2] is 50pp
However, part of the NOx is converted to N209, and the N20J% degree here is 45 ppm.
ここで脱硝率を算出すると、従来のような脱硝装置入口
及び出口のNOx 濃度のみに着目した場合の脱硝率は
80%(25oX100)となる。つぎKN20に看目
し、N20讃度をNOx濃度に換算しく 45 ppm
N20は90 ppm Noに相当する〕、NOx濃
度としてN20からのNOxを加えた場合の脱硝率は
脱硝装置の後流のN20は、触媒充填層4゛にてN2及
び02に分解される。If the denitrification rate is calculated here, the denitrification rate will be 80% (25oX100) when focusing only on the NOx concentration at the inlet and outlet of the denitrification equipment as in the conventional case. Next, look at KN20 and convert the N20 concentration to NOx concentration: 45 ppm
N20 corresponds to 90 ppm No], and the denitrification rate when NOx from N20 is added as the NOx concentration.
触媒充填層4は本発明の特徴とするN20の分解用触媒
が充填された反応器である。The catalyst packed bed 4 is a reactor filled with a catalyst for decomposing N20, which is a feature of the present invention.
第1図に示した実施態様の触媒充填層4は、通常の脱硝
装置2の後流に別途設置した場合であるが、通常の脱硝
装置2と触媒充填層4を一体化させて行うこともできる
ことは言うまでもない。実用的には経済性(装置全体が
小型化する)等から一体化が好ましい。The catalyst packed bed 4 in the embodiment shown in FIG. 1 is installed separately downstream of a normal denitrification device 2, but it is also possible to integrate the normal denitrification device 2 and the catalyst packed bed 4. It goes without saying that it can be done. Practically speaking, integration is preferable from the economical point of view (the entire device becomes smaller).
上記例示からも明らかなごとく、本発明に従ってN20
の分解用触媒を排ガス通路内に設置することにより、特
に下記■及び■の効果が達成される。As is clear from the above examples, according to the present invention, N20
In particular, by installing the decomposition catalyst in the exhaust gas passage, the following effects (1) and (2) can be achieved.
すなわち、
■ 排ガス中のN20が無害かつ安定なN2及び02に
分解された。That is, (1) N20 in the exhaust gas was decomposed into harmless and stable N2 and 02.
■ N20が分解され、実質的に脱硝率が向上した。■ N20 was decomposed and the denitrification rate was substantially improved.
すなわち、従来の脱硝率は、脱硝装置入口のNOx濃度
と出口のNOx濃度の比較であシ、出口での生成N20
rlt度は考慮しておらず、N20濃度を考慮した(
NOxと見なして)脱硝率はN20濃度分だけ低下して
いた。In other words, the conventional denitrification rate is determined by comparing the NOx concentration at the inlet of the denitrification equipment and the NOx concentration at the exit.
The rlt degree was not considered, but the N20 concentration was considered (
The denitrification rate (regarded as NOx) was reduced by the N20 concentration.
実施例 つぎに本発明を実施例によってさらに説明する。Example Next, the present invention will be further explained by examples.
実施例1
〜i素雰囲気中で600℃にて5時間加熱したγ−アル
ミナを硝酸パラジウム水浴液に浸漬して硝酸パラジウム
を吸着させた後、空気雰囲気中で110℃で24時間乾
燥させ、さらに窒素雰囲気中で600’Cの温度で5時
間焼成して還元触媒を調製した。Example 1 - i γ-Alumina heated at 600°C for 5 hours in an elementary atmosphere was immersed in a palladium nitrate water bath solution to adsorb palladium nitrate, then dried at 110°C for 24 hours in an air atmosphere, and further A reduced catalyst was prepared by firing in a nitrogen atmosphere at a temperature of 600'C for 5 hours.
このようにして得られた触媒をPd/At2esと略記
する。The catalyst thus obtained is abbreviated as Pd/At2es.
溶液を用いることによシ得られた触媒をそれぞれNi/
At20s + Fe/Al2O5+ Co/At20
s及びCu/At20sと略記する。The catalysts obtained by using a solution were each
At20s + Fe/Al2O5+ Co/At20
It is abbreviated as s and Cu/At20s.
得られた触媒はそれぞれの金属の酸化物がアルミナ担体
上に担持されたものである。The obtained catalyst has oxides of the respective metals supported on an alumina carrier.
酸化物の結晶形及びjk(重!に%)は表1のとおシで
ある。The crystal form and jk (% by weight) of the oxide are as shown in Table 1.
結晶形は、−X#!回折分析によシ同定したものである
。The crystal form is -X#! This was identified by diffraction analysis.
衆1 酸化物の結晶型及びt
これらの触媒25−をそれぞれ内径40.0朋の石英管
に充填し、60 ppm N20/空気バランス(調製
ガス)を通過させた。任意の反応温度(石英管中の触媒
の充積部温度)において触媒充填部後流のN20を測定
し、反応率を調べた。Crystal type of oxide and t These catalysts 25- were each filled in a quartz tube with an inner diameter of 40.0 mm, and 60 ppm N20/air balance (preparation gas) was passed through. At a given reaction temperature (temperature of the catalyst packed part in the quartz tube), N20 downstream of the catalyst packed part was measured to examine the reaction rate.
結果
表2に、空間速度6.000 (hr−’ ) Kおけ
る各触媒の反応温度とN20反応率を示す。Results Table 2 shows the reaction temperature and N20 reaction rate of each catalyst at a space velocity of 6.000 (hr-')K.
なお N20反応率は下式で算出した。Note that the N20 reaction rate was calculated using the following formula.
表2のごとく、空間速度(SV) t 6,000 (
hr−’ )とした場合のN20の反応率と反応温度の
関係を直交座標上にプロットすると第2図に示すごとく
である。As shown in Table 2, space velocity (SV) t 6,000 (
When the relationship between the reaction rate of N20 and the reaction temperature is plotted on orthogonal coordinates, it is as shown in FIG. 2.
実施例2
実施例1と同様の加熱をアナターゼ型二酸化チタン(T
i02)を使用して行い、同様に各水浴液を浸漬吸着さ
せ空気中で乾燥後、望素中で焼成を行い、同様に試験し
た。Example 2 The same heating as in Example 1 was applied to anatase titanium dioxide (T
i02), and the respective water bath liquids were immersed and adsorbed in the same manner, dried in the air, and then fired in a vacuum, and tested in the same manner.
結果は実験例1と同等の効果が得られた。As a result, the same effect as in Experimental Example 1 was obtained.
Pd/TiO2の結果を第2図に示す。The results for Pd/TiO2 are shown in FIG.
実施例3
触媒装着車の自動車排ガスの排気口に実施例1に示した
触媒を充填し、N20の反応率を調べた。Example 3 The catalyst shown in Example 1 was filled into the exhaust port of a vehicle equipped with a catalyst, and the reaction rate of N20 was examined.
なお、自動車は45Km/時定速走行状態とした。Note that the car was running at a constant speed of 45 km/hour.
本触媒を充填しない場合のN20m度は26ppm(平
均値)であった。When the present catalyst was not filled, the N20m degree was 26 ppm (average value).
融媒充填部の温度は350℃又は400’C噂SVは5
.000 (hr” )とした。反応率は実施例1と同
様に算出し、結果を表3に示す。The temperature of the melting medium filling part is 350℃ or 400'C rumored SV is 5
.. 000 (hr"). The reaction rate was calculated in the same manner as in Example 1, and the results are shown in Table 3.
第1図は本発明の方法を重油燃焼炉から発生する排ガス
の慣用の脱硝装置から生成するN20含有排ガスの処理
に適用する一具体例の概略フローシートであシ、第2図
は実施例1及び2の各操業についてN20の反応率と反
応温度の関係を直交座標上にプロットしたグラフである
。
第1図において、1−・・重油燃焼炉、 2・・・慣用
の脱硝装置、 3・・・アンモニア槽、 4・・・本発
明の触媒充填層、 5・・・ファ/、 6・・・煙突で
ある。FIG. 1 is a schematic flow sheet of a specific example in which the method of the present invention is applied to the treatment of N20-containing exhaust gas generated from a conventional denitrification device for exhaust gas generated from a heavy oil combustion furnace, and FIG. 2 is a schematic flow sheet of Example 1. It is a graph in which the relationship between the reaction rate of N20 and the reaction temperature is plotted on orthogonal coordinates for each operation of No. 2 and No. 2. In FIG. 1, 1-... Heavy oil combustion furnace, 2... Conventional denitration equipment, 3... Ammonia tank, 4... Catalyst packed bed of the present invention, 5... F/, 6...・It is a chimney.
Claims (1)
第 I b族又は第VIII族の金属又は該金属の酸化物ある
いは複合酸化物を含有してなる触媒と接触せしめること
により亜酸化窒素を分解除去することを特徴とするガス
混合物中の亜酸化窒素の除去方法。 2、触媒の活性成分の金属がパラジウム、ニッケル、鉄
、コバルト及び銅から選んだ一種又はそれ以上である特
許請求の範囲第1項記載の方法。 3、触媒を担体上に保持した担持触媒の形態で使用する
特許請求の範囲第1項又は第2項記載の方法。 4、担体が多孔性セラミックスである特許請求の範囲第
3項記載の方法。 5、触媒の担持量が担体に基づき金属として2〜30重
量%である特許請求の範囲第3項又は第4項記載の方法
。 6、ガス混合物を担持触媒の充填層に3000〔SV(
hr^−^1)〕以上の空間速度で通送する特許請求の
範囲第1項ないし第5項のいずれかに記載の方法。 7、ガス混合物と触媒との接触を250〜600℃の温
度で行う特許請求の範囲第1項ないし第6項のいずれか
に記載の方法。 8、ガス混合物が微量の亜酸化窒素を含有する排ガスで
ある特許請求の範囲第1項ないし第7項のいずれかに記
載の方法。[Claims] 1. Contacting a gas mixture containing nitrous oxide with a catalyst containing a metal of Group Ib or Group VIII of the Periodic Table of Elements, or an oxide or composite oxide of the metal. 1. A method for removing nitrous oxide in a gas mixture, comprising decomposing and removing nitrous oxide by allowing the nitrous oxide to evaporate. 2. The method according to claim 1, wherein the metal of the active component of the catalyst is one or more selected from palladium, nickel, iron, cobalt and copper. 3. The method according to claim 1 or 2, wherein the catalyst is used in the form of a supported catalyst held on a carrier. 4. The method according to claim 3, wherein the carrier is a porous ceramic. 5. The method according to claim 3 or 4, wherein the amount of catalyst supported is 2 to 30% by weight as metal based on the carrier. 6. Transfer the gas mixture to the packed bed of supported catalyst at 3000 [SV (
hr^-^1)] The method according to any one of claims 1 to 5, wherein the method is carried out at a space velocity of at least hr^-^1)]. 7. The method according to any one of claims 1 to 6, wherein the contact between the gas mixture and the catalyst is carried out at a temperature of 250 to 600°C. 8. The method according to any one of claims 1 to 7, wherein the gas mixture is an exhaust gas containing trace amounts of nitrous oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151775A JPS637826A (en) | 1986-06-30 | 1986-06-30 | Removing method for nitrous oxide in gas mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61151775A JPS637826A (en) | 1986-06-30 | 1986-06-30 | Removing method for nitrous oxide in gas mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS637826A true JPS637826A (en) | 1988-01-13 |
Family
ID=15526026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61151775A Pending JPS637826A (en) | 1986-06-30 | 1986-06-30 | Removing method for nitrous oxide in gas mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS637826A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03236510A (en) * | 1990-02-14 | 1991-10-22 | Mitsubishi Heavy Ind Ltd | Method of reducing nitrous oxide in combustion exhaust gas |
US5612009A (en) * | 1991-08-29 | 1997-03-18 | Basf Aktiengesellschaft | Catalytic decomposition of dinitrogen monoxide |
JP2007152263A (en) * | 2005-12-07 | 2007-06-21 | Nippon Shokubai Co Ltd | Catalyst for nitrous oxide decomposition and method for purifying nitrous oxide-containing gas |
JP2007185574A (en) * | 2006-01-12 | 2007-07-26 | Mitsui Zosen Plant Engineering Inc | Catalyst for decomposing nitrous oxide |
JPWO2008142765A1 (en) * | 2007-05-18 | 2010-08-05 | 株式会社日本触媒 | Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas |
JP2011095229A (en) * | 2009-11-02 | 2011-05-12 | Horiba Ltd | Dilution air refining device |
JP2011106999A (en) * | 2009-11-18 | 2011-06-02 | Horiba Ltd | Dilution air refining method and dilution air refining device |
JP2011224552A (en) * | 2010-03-29 | 2011-11-10 | Hokkaido Univ | Treatment method and treatment apparatus for nitrous oxide containing-gas |
JP2012157803A (en) * | 2011-01-31 | 2012-08-23 | Idemitsu Kosan Co Ltd | Activated alumina catalyst and method of removing nitrous oxide |
JP2014089216A (en) * | 2014-02-17 | 2014-05-15 | Sumitomo Metal Mining Engineering Co Ltd | Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531463A (en) * | 1978-08-29 | 1980-03-05 | Kuraray Co Ltd | Treatment method and apparatus for excess anesthetic gas |
JPS5547933A (en) * | 1978-10-03 | 1980-04-05 | Fuji Kiko Co Ltd | Emergency locking retractor |
JPS5554960A (en) * | 1978-10-17 | 1980-04-22 | Kuraray Co | Method of treating surplus anesthetic gas and its device |
JPS55129134A (en) * | 1979-03-29 | 1980-10-06 | Kuraray Co Ltd | Treating method and treating apparatus of laughing gas in excess anesthetic gas |
JPS6022922A (en) * | 1983-07-20 | 1985-02-05 | Babcock Hitachi Kk | Denitration method by reduction with ammonia and its apparatus |
-
1986
- 1986-06-30 JP JP61151775A patent/JPS637826A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531463A (en) * | 1978-08-29 | 1980-03-05 | Kuraray Co Ltd | Treatment method and apparatus for excess anesthetic gas |
JPS5547933A (en) * | 1978-10-03 | 1980-04-05 | Fuji Kiko Co Ltd | Emergency locking retractor |
JPS5554960A (en) * | 1978-10-17 | 1980-04-22 | Kuraray Co | Method of treating surplus anesthetic gas and its device |
JPS55129134A (en) * | 1979-03-29 | 1980-10-06 | Kuraray Co Ltd | Treating method and treating apparatus of laughing gas in excess anesthetic gas |
JPS6022922A (en) * | 1983-07-20 | 1985-02-05 | Babcock Hitachi Kk | Denitration method by reduction with ammonia and its apparatus |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03236510A (en) * | 1990-02-14 | 1991-10-22 | Mitsubishi Heavy Ind Ltd | Method of reducing nitrous oxide in combustion exhaust gas |
US5612009A (en) * | 1991-08-29 | 1997-03-18 | Basf Aktiengesellschaft | Catalytic decomposition of dinitrogen monoxide |
JP2007152263A (en) * | 2005-12-07 | 2007-06-21 | Nippon Shokubai Co Ltd | Catalyst for nitrous oxide decomposition and method for purifying nitrous oxide-containing gas |
JP4672540B2 (en) * | 2005-12-07 | 2011-04-20 | 株式会社日本触媒 | Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas |
JP2007185574A (en) * | 2006-01-12 | 2007-07-26 | Mitsui Zosen Plant Engineering Inc | Catalyst for decomposing nitrous oxide |
JPWO2008142765A1 (en) * | 2007-05-18 | 2010-08-05 | 株式会社日本触媒 | Nitrous oxide decomposition catalyst and purification method of nitrous oxide-containing gas |
JP2011095229A (en) * | 2009-11-02 | 2011-05-12 | Horiba Ltd | Dilution air refining device |
JP2011106999A (en) * | 2009-11-18 | 2011-06-02 | Horiba Ltd | Dilution air refining method and dilution air refining device |
CN102101016A (en) * | 2009-11-18 | 2011-06-22 | 株式会社堀场制作所 | Method for refining dilution air and dilution air refinery |
JP2011224552A (en) * | 2010-03-29 | 2011-11-10 | Hokkaido Univ | Treatment method and treatment apparatus for nitrous oxide containing-gas |
JP2012157803A (en) * | 2011-01-31 | 2012-08-23 | Idemitsu Kosan Co Ltd | Activated alumina catalyst and method of removing nitrous oxide |
JP2014089216A (en) * | 2014-02-17 | 2014-05-15 | Sumitomo Metal Mining Engineering Co Ltd | Dilution air refining method, dilution air refining device, constant capacity sampling device, and exhaust gas sampling analysis system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4438082A (en) | Platinum gold catalyst for removing NOx and NH3 from gas streams | |
JP5354903B2 (en) | Catalyst and nitrogen oxide reduction method | |
JP2005177570A (en) | Scr catalyst excellent in characteristic at high temperature | |
JP2006289211A (en) | Ammonia oxidation catalyst | |
JPS637826A (en) | Removing method for nitrous oxide in gas mixture | |
JP3474514B2 (en) | Low temperature denitration catalyst and low temperature denitration method | |
CN112536031B (en) | Catalyst for treating industrial waste gas and preparation method thereof | |
JP3994862B2 (en) | Exhaust gas purification catalyst and purification method | |
JPS5820307B2 (en) | Catalyst for vehicle exhaust gas purification | |
EP0605237A1 (en) | Exhaust gas cleaner | |
JPH06198187A (en) | Catalyst for decomposition of nitrous oxide | |
JPH05115751A (en) | Method and catalyst for treating gas combustion exhaust gas | |
JPH11128688A (en) | Purification of waste gas | |
JPH08150336A (en) | Waste gas purification material and method for purifying waste gas | |
JPH10174886A (en) | Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method | |
JP2010184171A (en) | Catalyst and method for purification of exhaust gas | |
JPH06154602A (en) | Catalyst for removal of nitrogen oxide | |
JP3854325B2 (en) | Exhaust gas purification material and exhaust gas purification method | |
JPH0975739A (en) | Waste gas purification material and method for purifying waste gas | |
JPH06210171A (en) | Denitration catalyst | |
JPH11128689A (en) | Purification of waste gas | |
JP2000153133A (en) | Exhaust gas purification | |
JP2002370032A (en) | Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method | |
JPH06198173A (en) | Catalyst for purifying waste gas and purifying method for nitrogen oxide | |
JP2002370031A (en) | Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method |