JPH11128688A - Purification of waste gas - Google Patents

Purification of waste gas

Info

Publication number
JPH11128688A
JPH11128688A JP9312587A JP31258797A JPH11128688A JP H11128688 A JPH11128688 A JP H11128688A JP 9312587 A JP9312587 A JP 9312587A JP 31258797 A JP31258797 A JP 31258797A JP H11128688 A JPH11128688 A JP H11128688A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
exhaust gas
pore
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9312587A
Other languages
Japanese (ja)
Inventor
Taiji Sugano
泰治 菅野
Takeshi Naganami
武 長南
Atsushi Kagakui
敦 加岳井
Masaki Funabiki
正起 船曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9312587A priority Critical patent/JPH11128688A/en
Publication of JPH11128688A publication Critical patent/JPH11128688A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying waste gas by which NOx of a low conc. in waste combustion gas after burning can be removed with high efficiency and high reliability and superior durability is ensured. SOLUTION: Waste combustion gas from an internal combustion engine operated in a lean air-fuel ratio is brought into contact with a catalyst-contg. layer and NOx is removed with kerosene or gasoline as a reducing agent. The catalyst contained in the catalyst-contg. layer is a catalyst layer consisting of alumina and silver or a catalyst coated structure obtd. by coating the inner surfaces of at least through holes in a substrate having a monolithic structure made of a refractory material having many through holes with a catalyst consisting of alumina and silver. The alumina has a porous structure in which the relation between pore radius and pore diameter measured by a gaseous nitrogen adsorption method represents a specified value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化方法に関
し、さらに詳細には希薄空燃比で運転される内燃機関か
ら排出される排ガス中の窒素酸化物を高い空間速度で、
かつ高効率で浄化し得る排ガス浄化方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. Regarding the purification method, more specifically, nitrogen oxides in exhaust gas discharged from an internal combustion engine operated at a lean air-fuel ratio at a high space velocity,
The present invention also relates to an exhaust gas purification method capable of purifying with high efficiency.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素と共に一酸化窒素や二酸化窒素などの窒素酸
化物(NOx)が含まれている。NOxは人体、特に呼
吸器系に悪影響を及ぼすばかりでなく、地球環境保全の
上からも問題視される酸性雨の原因の1つとなってい
る。そのため、これら各種の排ガスから効率よく窒素酸
化物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art Various combustion exhaust gases emitted from internal combustion engines such as automobiles contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide together with water and carbon dioxide as combustion products. Have been. NOx not only adversely affects the human body, particularly the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを、主として白金、ロジウム、パラジウム
およびセリアを含むアルミナ触媒に接触させて有害三成
分を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
Combustion at a controlled stoichiometric ratio near 4.7. For exhaust gas treatment, carbon monoxide, hydrocarbons and NOx in the exhaust gas are converted to alumina mainly containing platinum, rhodium, palladium and ceria. A three-way catalyst system has been employed in which three harmful components are simultaneously removed by contact with a catalyst.

【0004】しかしながら、この三元触媒方式は、エン
ジンが化学量論比で運転されることが絶対条件であるた
め希薄空燃比で運転される希薄燃焼ガソリンエンジンの
排ガス浄化には適用することができない。また、ディー
ゼルエンジンは本来希薄燃焼エンジンであるが、その排
ガスに対しては浮遊粒子状物質とNOxの両方に厳しい
規制がかけられようとしている。
However, the three-way catalyst system cannot be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio because it is an absolute condition that the engine is operated at a stoichiometric ratio. . In addition, diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れ、この技術は、いわゆる固定発生源であるボイラーや
ディーゼルエンジンからの排ガス脱硝方法として工業化
されている。しかしながらこの方法においては未反応の
還元剤を回収処理するための特別な装置を必要とし、ま
た臭気が強く有害なアンモニアを用いるので、特に自動
車などの移動発生源からの排ガス脱硝技術としては危険
性があり適用できない。
Conventionally, as a method of reducing and removing NOx in an oxygen-excess atmosphere, a technique of using NH 3 that is selectively adsorbed on a catalyst even in a small amount as a reducing gas has already been established. It is industrialized as a method for denitration of exhaust gas from boilers and diesel engines that are the source. However, this method requires a special device to recover unreacted reducing agent and uses ammonia, which has a strong odor and is harmful, which is particularly dangerous as a technology for denitration of exhaust gas from mobile sources such as automobiles. There is no applicable.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され、報告されている。例えば、アルミナやア
ルミナに遷移金属を担持した触媒が、炭化水素を還元剤
として用いるNOx還元反応に有効であるとする数多く
の報告がある。また、特開平4−284848号公報に
はO.1〜4重量%のCu、Fe、Cr、Zn、Ni、
Vを含有するアルミナあるいはシリカ−アルミナをNO
x還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. Also, Japanese Patent Application Laid-Open No. 4-284848 discloses O.M. 1-4% by weight of Cu, Fe, Cr, Zn, Ni,
V-containing alumina or silica-alumina
An example of use as an x reduction catalyst has been reported.

【0007】さらに、Ptをアルミナに担持した触媒を
用いると、NOx還元反応が200〜300℃程度の低
温領域で進行することが特開平4−267946号公
報、特開平5−68855号公報や特開平5−1039
49号公報などに報告されている。しかし、これらの担
持貴金属触媒を用いた場合、還元剤である炭化水素の燃
焼反応が過度に促進されたり、地球温暖化の原因物質の
1つといわれているNOが多量に副生し、無害なN
への還元反応を選択的に進行させることが困難であると
いった欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C., as disclosed in JP-A-4-267946 and JP-A-5-68855. Kaihei 5-1039
No. 49, for example. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O which is one of the substances causing global warming is produced as a by-product, Harmless N 2
However, it has a drawback that it is difficult to selectively advance the reduction reaction to.

【0008】本出願人の一方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。この
開示がなされた後においても、銀を含有する触媒を用い
る類似のNOx還元除去技術が特開平4−354536
号公報、特開平5−92124号公報、特開平5−92
125号公報、特開平5−317647号公報、特開平
6−182156号公報および特開平6−277454
号公報などに開示されている。
One of the present applicants has previously found that the use of a catalyst containing silver with a hydrocarbon as a reducing agent in an oxygen-excess atmosphere causes the NOx reduction reaction to proceed selectively. -281844. Even after this disclosure was made, a similar NOx reduction and removal technique using a catalyst containing silver was disclosed in JP-A-4-354536.
JP-A-5-92124, JP-A-5-92124
No. 125, JP-A-5-317647, JP-A-6-182156 and JP-A-6-277454
No., for example.

【0009】[0009]

【発明の解決しようとする課題】しかしながら、これら
従来の公報に記載されたアルミナ担持銀触媒およびこれ
を使用しての排ガス浄化方法では、還元剤にプロピレ
ン、軽油などを使用していることからSOxおよび水蒸
気共存下での脱硝性能が実用的に未だ不十分であり、ま
た耐久性にも問題があった。さらに還元剤にアルコール
を使用した場合はSOxおよび水蒸気共存下での耐久性
能は高いが、副反応による生成物処理の問題やコスト高
といった欠点を有していた。
However, in the alumina-supported silver catalyst and the exhaust gas purifying method using the same described in these conventional publications, propylene, light oil and the like are used as a reducing agent, so that SOx In addition, the denitration performance in the coexistence of water vapor is still insufficient for practical use, and there is also a problem in durability. Further, when alcohol is used as the reducing agent, the durability performance in the coexistence of SOx and steam is high, but there are drawbacks such as a problem of a product treatment by a side reaction and a high cost.

【0010】本発明は上記従来技術の欠点を解決すべく
なされたものであり、その目的とするところは、希薄燃
焼排ガス中のNOxを高効率、高信頼性をもって除去す
ることができるとともに、耐久性に優れた排ガス浄化方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art. It is an object of the present invention to remove NOx in lean combustion exhaust gas with high efficiency and high reliability, and to improve durability. An object of the present invention is to provide an exhaust gas purifying method having excellent performance.

【0011】[0011]

【課題を解決するための手段】本発明者らは、SOxと
水蒸気が共存する希薄燃焼領域において高い脱硝性能を
有し、かつ耐久性に優れた排ガス浄化方法について鋭意
研究を重ねた結果、灯油もしくはガソリンを還元剤とし
て、アルミナと銀からなる触媒層またはその触媒被覆構
造体から構成される触媒含有層と窒素酸化物を含む排ガ
スを接触させることによって問題点を解決できることを
見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for purifying exhaust gas having high denitration performance and excellent durability in a lean combustion region where SOx and steam coexist. Alternatively, the present inventors have found that the problem can be solved by contacting a catalyst layer composed of alumina and silver or a catalyst-containing layer composed of the catalyst-coated structure thereof with an exhaust gas containing nitrogen oxides using gasoline as a reducing agent. It was completed.

【0012】すなわち、上記課題を解決するための本発
明における第1の実施態様は、希薄空燃比で運転される
内燃機関の燃焼排ガスを触媒含有層と接触させて、灯油
もしくはガソリンを還元剤として窒素酸化物を除去する
方法であって、前記触媒含有層に含まれる触媒はアルミ
ナと銀からなる触媒層である排ガス浄化方法を特徴とす
るものである。
That is, in a first embodiment of the present invention for solving the above-mentioned problems, a combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio is brought into contact with a catalyst-containing layer to convert kerosene or gasoline as a reducing agent. A method for removing nitrogen oxides, wherein the catalyst contained in the catalyst-containing layer is an exhaust gas purification method in which the catalyst is a catalyst layer composed of alumina and silver.

【0013】また、本発明の第2の実施態様は、希薄空
燃比で運転される内燃機関の燃焼排ガスを触媒含有層と
接触させて、灯油もしくはガソリンを還元剤として窒素
酸化物を除去する方法であって、前記触媒含有層に含ま
れる触媒は多数の貫通孔を有する耐火性材料からなる一
体構造の支持基質における少なくとも貫通孔の内表面に
アルミナと銀からなる触媒を被覆させた触媒被覆構造体
で構成されている排ガス浄化方法を特徴とするものであ
る。
A second embodiment of the present invention is a method of removing nitrogen oxides by using kerosene or gasoline as a reducing agent by bringing combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio into contact with a catalyst-containing layer. Wherein the catalyst contained in the catalyst-containing layer is a catalyst-coated structure in which at least the inner surface of the through-hole is coated with a catalyst made of alumina and silver in a support substrate having an integral structure made of a refractory material having many through-holes. It is characterized by an exhaust gas purification method composed of a body.

【0014】またさらに、本発明の第3の実施態様は、
前記第1および第2の実施態様に用いられるアルミナ
が、窒素ガス吸着法により測定された細孔半径と細孔容
積の関係が、細孔半径300オングストローム以下の細
孔の占める細孔容積の合計値をXとし、細孔半径25オ
ングストローム以上で100オングストローム未満の細
孔の占める細孔容積の合計値をYとし、細孔半径100
オングストローム以上で300オングストローム以下の
細孔の占める細孔容積の合計値をΖとしたとき、YがX
の70%以上であり、ΖがXの20%以下であるような
細孔構造を有する排ガス浄化方法を特徴とするものであ
る。
Still further, a third embodiment of the present invention provides:
The alumina used in the first and second embodiments is characterized in that the relationship between the pore radius and the pore volume measured by the nitrogen gas adsorption method is the sum of the pore volumes occupied by pores having a pore radius of 300 Å or less. Let X be the value, and let Y be the total value of the pore volume occupied by pores having a pore radius of 25 Å or more and less than 100 Å, and a pore radius of 100
When the total value of the pore volume occupied by the pores not less than Å and not more than 300 Å is defined as Ζ, Y is X
And an exhaust gas purifying method having a pore structure in which Ζ is 20% or less of X.

【0015】[0015]

【発明の実施の形態】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be more specifically described below.

【0016】[触媒の構造およびその製法]本発明の排
ガス浄化方法に用いる触媒の主成分の1つであるアルミ
ナは、例えば鉱物学上ベーマイト、擬ベーマイト、バイ
アライト、あるいはノルストランダイトに分類される水
酸化アルミニウムの粉体やゲルを、空気中あるいは真空
中300〜800℃、好ましくは400〜900℃で加
熱脱水することによって、結晶学的にγ−型、η−型、
δ−型、χ−型あるいはその混合型に分類されるアルミ
ナに相転移させたものが脱硝性能上好ましい。他の結晶
構造をとるアルミナ、例えばα−型のアルミナは極端に
比表面積が小さく固体酸性にも乏しいので本発明に用い
る触媒成分としては不適当である。
[Structure of Catalyst and Production Method Thereof] Alumina, which is one of the main components of the catalyst used in the exhaust gas purification method of the present invention, is classified, for example, into boehmite, pseudoboehmite, vialite, or norstrandite in terms of mineralogy. The aluminum hydroxide powder or gel is heated and dehydrated in air or vacuum at 300 to 800 ° C., preferably 400 to 900 ° C., to obtain crystallographically γ-type, η-type,
It is preferable from the viewpoint of denitration performance that the phase transition is made to alumina classified into δ-type, χ-type or a mixed type thereof. Alumina having another crystal structure, for example, α-type alumina, has an extremely small specific surface area and poor solid acidity, and is therefore unsuitable as a catalyst component used in the present invention.

【0017】また該アルミナは、窒素ガス吸着法により
測定された細孔半径と細孔容積の関係が、細孔半径30
0オングストローム以下の細孔の占める細孔容積の合計
値をXとし、細孔半径25オングストローム以上で10
0オングストローム未満の細孔の占める細孔容積の合計
値をYとし、細孔半径100オングストローム以上で3
00オングストローム以下の細孔の占める細孔容積の合
計値をΖとしたとき、YがXの70%以上であり、Ζが
Xの20%以下であるような細孔構造を有することが必
要である。上記した条件を満たさないアルミナを本発明
に係る方法に使用する触媒における担体として用いた場
合には、これにより構成される触媒のSOxと水蒸気共
存下での脱硝性能が不十分であった。したがって、本発
明において触媒の成分として有効なアルミナは、上記し
た結晶構造および細孔特性を有するものが適切であると
いえる。
In the alumina, the relationship between the pore radius and the pore volume measured by the nitrogen gas adsorption method is as follows.
Let X be the total value of the pore volume occupied by pores of 0 Å or less, and 10 if the pore radius is 25 Å or more.
The total value of the pore volume occupied by pores smaller than 0 Å is defined as Y, and 3 for a pore radius of 100 Å or more.
Assuming that the total value of the pore volume occupied by pores of not more than 00 Å is Ζ, it is necessary to have a pore structure in which Y is 70% or more of X and Ζ is 20% or less of X. is there. When alumina not satisfying the above conditions was used as a carrier in the catalyst used in the method according to the present invention, the catalyst constituted by this was insufficient in denitration performance in the presence of SOx and steam. Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is suitable as the alumina effective as a component of the catalyst in the present invention.

【0018】本発明に係る排ガス浄化方法に用いる触媒
は、以下のような触媒である。本発明における触媒は、
上記した特定の細孔構造を有するアルミナと銀からなる
触媒であり、触媒に含有される銀の状態は、特に限定さ
れず、金属状態、酸化物状態およびこれらの混合状態な
どが挙げられる。特に、自動車などの内燃機関の燃焼排
ガス組成は運転状態によってその都度変化するため、触
媒は還元雰囲気および酸化雰囲気に曝される。したがっ
て触媒を構成する活性金属の状態は雰囲気により変化す
ることが想定される。銀の出発原料は特に限定されな
い。
The catalyst used in the exhaust gas purifying method according to the present invention is as follows. The catalyst in the present invention,
The catalyst is a catalyst composed of alumina and silver having the specific pore structure described above. The state of silver contained in the catalyst is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, the composition of the combustion exhaust gas of an internal combustion engine such as an automobile changes each time depending on the operation state, and thus the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes depending on the atmosphere. The starting material of silver is not particularly limited.

【0019】そして、アルミナと銀からなる触媒の製造
方法は、特に限定されず従来から行われている手法、例
えば吸着法、ポアフィリング法、インシピエントウェッ
トネス法、蒸発乾固法、スプレー法などの含浸法や混練
法および物理混合法ならびにこれらの組み合わせ法など
通常採用されている公知の方法を任意に採用することが
できる。この場合、アルミナあるいはアルミナ前駆体物
質に銀源を担持させた後、乾燥、焼成する。また前記の
ような特定の細孔構造をとるアルミナまたはアルミナ担
体の製造時に活性金属種を含有させる触媒製造法、例え
ばアルミニウムアルコキジドのアルコール溶液と銀源の
アルコール溶液を混合後、加熱し加水分解させるアルコ
キシド法や、アルミニウム源と銀源の混合水溶液にアル
カリを添加して沈殿させる共沈法も適用できる。
The method for producing the catalyst comprising alumina and silver is not particularly limited, and any of the conventional methods such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, and a spray method Any known method such as an impregnation method, a kneading method, a physical mixing method, and a combination thereof can be arbitrarily adopted. In this case, after a silver source is supported on alumina or an alumina precursor substance, drying and firing are performed. Further, a method for producing a catalyst containing an active metal species at the time of producing alumina or an alumina carrier having a specific pore structure as described above, for example, mixing an alcohol solution of aluminum alkoxide and an alcohol solution of a silver source, followed by heating and adding water An alkoxide method for decomposition or a coprecipitation method in which an alkali is added to an aqueous solution of a mixture of an aluminum source and a silver source to cause precipitation are applicable.

【0020】上記触媒の金属換算での銀の含有量は特に
限定されないが、脱硝性能上1〜10重量%、好ましく
は2〜8重量%である。銀の担持量が1重量%未満では
脱硝性能効果が不十分であり、また10重量%を超える
と還元剤である灯油またはガソリンの燃焼反応が優先的
に進行し、NOx除去性能が低下する。
The content of silver in the above catalyst in terms of metal is not particularly limited, but is 1 to 10% by weight, preferably 2 to 8% by weight in terms of denitration performance. If the amount of silver carried is less than 1% by weight, the effect of the denitration performance is insufficient, and if it exceeds 10% by weight, the combustion reaction of kerosene or gasoline as a reducing agent proceeds preferentially, and the NOx removal performance decreases.

【0021】乾燥温度は、特に限定されるものではな
く、通常80〜120℃程度で乾燥する。また、焼成温
度は300〜1000℃、好ましくは400〜900℃
程度である。このときの雰囲気は特に限定されないが、
触媒組成に応じて空気中、不活性ガス中、酸素中などの
各雰囲気を適宜選択すればよい。また、各雰囲気を一定
時間毎に交互に代えてもよい。
The drying temperature is not particularly limited, and drying is usually performed at about 80 to 120 ° C. The firing temperature is 300 to 1000 ° C, preferably 400 to 900 ° C.
It is about. The atmosphere at this time is not particularly limited,
Each atmosphere such as in air, inert gas, or oxygen may be appropriately selected according to the catalyst composition. In addition, each atmosphere may be alternately changed at regular intervals.

【0022】本発明の第1の実施態様において、排ガス
浄化用の触媒含有層を形成するに際し、該触媒含有層は
上記した触媒を所定の形状に成型または粉末状態のまま
目的とする排ガスが流通する一定の空間内に充填する。
触媒を成型体とするに際して、その形状は特に制限され
ず、例えば球状、円筒状、ハニカム状、螺旋状、粒状、
ペレット状、リング状など種々の形状を採用することが
できる。これらの形状、大きさなどは使用条件に応じて
任意に選択すればよい。
In the first embodiment of the present invention, when a catalyst-containing layer for purifying exhaust gas is formed, the catalyst-containing layer is formed by molding the above-mentioned catalyst into a predetermined shape or flowing a desired exhaust gas in a powder state. Filling a certain space.
When forming the catalyst into a molded body, the shape is not particularly limited, for example, spherical, cylindrical, honeycomb, spiral, granular,
Various shapes such as a pellet shape and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0023】つぎに本発明の第2の実施態様における触
媒含有層について説明する。ここでいう触媒含有層と
は、多数の貫通孔を有する耐火性材料で構成された一体
構造の支持基質の少なくとも貫通孔の内表面にアルミナ
担体に銀を含有してなる触媒を被覆した触媒被覆構造体
である。
Next, the catalyst-containing layer according to the second embodiment of the present invention will be described. The catalyst-containing layer referred to here is a catalyst coating in which at least the inner surface of the through-hole of a refractory material having a large number of through-holes is coated with a catalyst containing silver on an alumina carrier. It is a structure.

【0024】該支持基質には、多数の貫通孔が排ガスの
流通方向に沿って設けられるが、その流通方向に垂直な
断面において、通常、開孔率60〜90%、好ましくは
70〜90%であって、その数は1平方インチ(5.0
6cm)当り30〜700個、好ましくは200〜6
00個である。触媒は、少なくとも該貫通孔の内表面に
被覆されるが、その支持基質の端面や側面に被覆されて
いてもよい。
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In a cross section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. And the number is one square inch (5.0
30 to 700, preferably 200 to 6, 6 cm 2 )
00. The catalyst is coated on at least the inner surface of the through-hole, but may be coated on the end face or side face of the supporting substrate.

【0025】該耐火性支持基質の材質としては、α−型
のアルミナ、ムライト、コージェライト、シリコンカー
バイトなどのセラミックスやオーステナイト系、フェラ
イト系のステンレス鋼などの金属などが使用される。形
状もハニカムやフォームなどの慣用のものが使用できる
が、コージェライト製やステンレス鋼製のハニカム状の
支持基質が好ましい。
As the material of the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. The shape may be a conventional one such as a honeycomb or a foam, but a honeycomb-shaped supporting substrate made of cordierite or stainless steel is preferred.

【0026】該支持基質への触媒の被覆方法としては、
一定の粒度に整粒した本発明の触媒をバインダーと共
に、またはバインダーを用いないで前記支持基質の内表
面に被覆する、いわゆる通常のウォッシュコート法やゾ
ル−ゲル法が適用できる。また、上記の支持基質に予め
アルミナを被覆しておいて、これに本発明の触媒活性物
質の担持処理を行って触媒被覆層を形成してもよい。支
持基質ヘの触媒層の被覆量は特に限定されないが、支持
基質単位体積当り50〜250g/リットル程度が好ま
しく、100〜200g/リットル程度とすることがよ
り好ましい。
As a method for coating the support substrate with a catalyst,
A so-called ordinary wash coat method or a sol-gel method, in which the catalyst of the present invention sized to a certain particle size is coated on the inner surface of the support substrate with or without a binder, can be applied. Alternatively, the support substrate may be coated with alumina in advance, and then the catalyst active layer of the present invention may be subjected to a treatment to form a catalyst coating layer. The amount of the catalyst layer coated on the support substrate is not particularly limited, but is preferably about 50 to 250 g / liter, more preferably about 100 to 200 g / liter per unit volume of the support substrate.

【0027】本発明の第1〜第3の実施態様における排
ガス浄化方法について説明する。本発明の排ガス浄化方
法は、触媒含有層として第1の実施態様の触媒層や第2
の実施態様の触媒被覆構造体を使用して、これと排ガス
中の一酸化炭素、灯油もしくはガソリンおよび水素とい
った還元成分をNOxおよび酸素といった酸化成分で完
全酸化するに要する化学量論量近傍から過剰の酸素を含
有する排ガスを接触させることによってNOxは窒素と
水にまで還元分解されると同時に、灯油もしくはガソリ
ンも水と二酸化炭素に酸化される。還元剤として用いる
灯油もしくはガソリンの使用状態は、エンジン燃料の未
燃焼分、外部添加またはそれらの併用でもよい。またデ
ィーゼルエンジン排ガスのように、排ガスそのもののH
C/NOx比が低い場合には、排ガス中に灯油を外部添
加した後、本発明の触媒含有層と接触させるシステムを
採用すれば高いNOx除去率を達成できる。なお、ここ
でいう炭化水素とは、ディーゼルエンジンの燃料となる
ものであれば何れの物質でも用いることができる。
An exhaust gas purifying method according to the first to third embodiments of the present invention will be described. According to the exhaust gas purification method of the present invention, the catalyst layer of the first embodiment or the second
Using the catalyst-coated structure of the embodiment of the present invention and the excess from near the stoichiometric amount required to completely oxidize the reducing components such as carbon monoxide, kerosene or gasoline and hydrogen in the exhaust gas with the oxidizing components such as NOx and oxygen. NOx is reduced and decomposed into nitrogen and water by contacting the exhaust gas containing oxygen, and kerosene or gasoline is also oxidized to water and carbon dioxide. The usage state of kerosene or gasoline used as the reducing agent may be the unburned portion of the engine fuel, external addition, or a combination thereof. Also, like diesel engine exhaust gas, the H
When the C / NOx ratio is low, a high NOx removal rate can be achieved by using a system in which kerosene is externally added to exhaust gas and then brought into contact with the catalyst-containing layer of the present invention. Here, any hydrocarbon can be used as long as it is a fuel for a diesel engine.

【0028】外部から添加する灯油またはガソリンの量
は、排ガス中のNOx濃度により適宜選択すればよい
が、通常はメタン換算濃度でHC/NOモル比が1〜2
0、好ましくは2〜15程度である。
The amount of kerosene or gasoline to be added from the outside may be appropriately selected depending on the NOx concentration in the exhaust gas.
0, preferably about 2 to 15.

【0029】本発明による排ガス浄化方法において、希
薄空燃比の領域で運転される内燃機関の燃焼排ガスを浄
化する際のガス空間速度(SV)は、特に限定されるも
のではないが、SV5,000h−1以上で200,0
00h−1以下とすることが好ましい。
In the exhaust gas purification method according to the present invention, the gas space velocity (SV) for purifying the combustion exhaust gas of the internal combustion engine operated in the lean air-fuel ratio range is not particularly limited, but is SV5,000 h. 200,0 if -1 or more
It is preferably at most 00h -1 .

【0030】そして、本発明の排ガス浄化方法におい
て、触媒含有層の入口温度は、300℃以上で550℃
以下にすることが好ましい。300℃未満では、還元剤
の燃焼が不十分であり、SOxによる劣化が大きい。一
方、550℃を超えると炭化水素の酸化反応が優先的に
進むため、NOxの還元活性が低下する。
[0030] In the exhaust gas purifying method of the present invention, the inlet temperature of the catalyst-containing layer is 300 ° C or higher and 550 ° C.
It is preferable to set the following. If the temperature is lower than 300 ° C., the combustion of the reducing agent is insufficient, and the deterioration due to SOx is large. On the other hand, if the temperature exceeds 550 ° C., the oxidation reaction of hydrocarbons proceeds preferentially, so that the NOx reduction activity decreases.

【0031】[0031]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)排ガス浄化用触媒のアルミナの選定 使用アルミナ担体の選定のために、表1に示すような比
表面積と細孔分布を有する種々のγ−型のアルミナにお
いて、a〜cが本発明の触媒の範囲に入るアルミナであ
り、d〜gが本発明の範囲外のアルミナである。なおa
〜gのアルミナの細孔分布は、カルロエルバ社製のソー
プトマチックにより測定した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of Alumina for Exhaust Gas Purifying Catalyst In order to select an alumina carrier to be used, a to c of the present invention are used for various γ-type aluminas having specific surface areas and pore distributions as shown in Table 1. Alumina falling within the range of the catalyst, and d to g are aluminas outside the scope of the present invention. Note that a
The pore distribution of gg of alumina was measured by a soapmatic manufactured by Carlo Elba.

【0032】[0032]

【表1】 ───────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/X(%) Z/X(%) ───────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ─────────────────────────────[Table 1] ───────────────────────────── Alumina specific surface area pore distribution (m 2 / g) Y / X ( %) Z / X (%) ─────────────────────────────a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7} ──────────────────────

【0033】(2)触媒層の調製 以下に、本発明の触媒層を構成するための各触媒の調製
についての調製例を参考例として示す。 (イ)触媒の製造: [参考例1]表1におけるγ−型のアルミナaの前駆体
物質であるアルミナ水和物100gを、硝酸銀5.36
gを含む300ミリリットル水溶液に10時間浸漬した
後、80℃で蒸発乾固した。これを110℃で通風乾燥
後、空気中550℃で3時間焼成して触媒1(参考例
1)を得た。なお触媒1における金属換算でのAgの含
有量は、触媒全体に対して4.5重量%である。
(2) Preparation of Catalyst Layer Hereinafter, preparation examples of preparation of each catalyst for constituting the catalyst layer of the present invention are shown as reference examples. (A) Production of catalyst: [Reference Example 1] 100 g of alumina hydrate, which is a precursor of γ-type alumina a in Table 1, was prepared by adding silver nitrate to 5.36.
After immersing in a 300 ml aqueous solution containing g for 10 hours, the mixture was evaporated to dryness at 80 ° C. This was air-dried at 110 ° C. and then calcined in air at 550 ° C. for 3 hours to obtain Catalyst 1 (Reference Example 1). The metal content of Ag in the catalyst 1 was 4.5% by weight with respect to the entire catalyst.

【0034】[参考例2〜参考例11]同様に、表1に
示すγ−型のアルミナb〜gが得られる前駆体物質であ
るアルミナ水和物を用いた以外は、参考例1と同様にし
てそれぞれ触媒2(参考例2)、触媒3(参考例3)、
触媒4(参考例4)、触媒5(参考例5)、触媒6(参
考例6)、触媒7(参考例7)を得た。また、参考例1
の触媒1の調製に際し、銀の含有量を0重量%、2重量
%、3重量%および8重量%とした以外は参考例1と同
様にして、それぞれ触媒8(参考例8)、触媒9(参考
例9)、触媒10(参考例10)および触媒11(参考
例11)を得た。
Reference Examples 2 to 11 Similarly to Reference Example 1 except that alumina hydrate which is a precursor substance from which γ-type aluminas b to g shown in Table 1 were obtained was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3),
Catalyst 4 (Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), and Catalyst 7 (Reference Example 7) were obtained. Reference Example 1
Catalyst 8 (Reference Example 8) and Catalyst 9 were prepared in the same manner as in Reference Example 1 except that the silver content was changed to 0% by weight, 2% by weight, 3% by weight, and 8% by weight. (Reference Example 9), Catalyst 10 (Reference Example 10) and Catalyst 11 (Reference Example 11) were obtained.

【0035】(ロ)ハニカム触媒の製造: [参考例12]上記の粉末触媒1の60gを、アルミナ
ゾル(Al固形分10重量%)8gおよび水12
0ミリリットルと共にボールミルポットに仕込み、湿式
粉砕してスラリーを得た。このスラリーの中に、市販の
400cpsi(セル/inch)コージェライトハ
ニカム基質からくり貫かれた直径1インチ、長さ2.5
インチの円筒状コアを浸漬し、引き上げた後余分のスラ
リーをエアーブローで除去し乾燥した。その後、500
℃で30分焼成し、ハニカム1リットル当たりドライ換
算で150gの固形分を被覆して4.5%Ag/Al
組成のハニカム触媒12(参考例12)を得た。
(B) Preparation of honeycomb catalyst: [Reference Example 12] 60 g of the above-mentioned powder catalyst 1 was mixed with 8 g of alumina sol (Al 2 O 3 solid content 10% by weight) and water 12
The mixture was charged into a ball mill pot together with 0 ml and wet-pulverized to obtain a slurry. Into this slurry, a 1 inch diameter, 2.5 inch length bored from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate
After immersing the inch-shaped cylindrical core and pulling it up, excess slurry was removed by air blow and dried. Then 500
Baked at 30 ° C. for 30 minutes, coated with 150 g of solid content in terms of dry weight per liter of honeycomb, and 4.5% Ag / Al 2
A honeycomb catalyst 12 having an O 3 composition (Reference Example 12) was obtained.

【0036】以下に上記した参考例1〜12の触媒を用
いて形成した排ガス浄化用触媒層について、種々の条件
下において脱硝性能を評価した結果について述べる。 [実施例1]触媒1を加圧成型した後、粉砕して粒度を
350〜500μmに整粒し、内径15mmのステンレ
ス製反応管に充填して触媒層を形成し、これを常圧固定
床流通反応装置に装着した。
The results of evaluating the denitration performance of the catalyst layers for purifying exhaust gas formed using the catalysts of Reference Examples 1 to 12 under various conditions will be described below. Example 1 After the catalyst 1 was molded under pressure, it was pulverized and sized to a particle size of 350 to 500 μm, filled in a stainless steel reaction tube having an inner diameter of 15 mm to form a catalyst layer, and this was fixed under a normal pressure fixed bed. It was mounted on a flow reactor.

【0037】[性能評価例1]この触媒層に、反応管内
の排ガス温度を420℃に保ち、モデル排ガスとしてN
O:750ppm、灯油(C):4500ppm、O
:10%、SO:lppm、HO:10%、残
部:Nからなる混合ガスを空間速度75,000h
−1で通過させた。反応管出口ガス組成の分析におい
て、NOとNOの濃度については化学発光式NOx計
で測定し、NO濃度はPorapack Qカラムを
装着したガスクロマトグラフ・熱伝導度検出器を用いて
測定した。脱硝率を以下の式1で定義した。また、本発
明のいずれの触媒層でもNOおよびNOは殆ど生成
しなかった。
[Performance Evaluation Example 1] The temperature of the exhaust gas in the reaction tube was maintained at 420 ° C.
O: 750 ppm, kerosene (C 1 ): 4500 ppm, O
2: 10%, SO 2: lppm, H 2 O: 10%, the balance space, a mixed gas consisting of N 2 velocity 75,000h
-1 . In the analysis of the gas composition at the outlet of the reaction tube, the concentrations of NO and NO 2 were measured with a chemiluminescence NOx meter, and the N 2 O concentration was measured with a gas chromatograph / thermal conductivity detector equipped with a Porapak Q column. . The denitration rate was defined by the following equation 1. Further, N 2 O and NO 2 were hardly generated in any of the catalyst layers of the present invention.

【0038】[0038]

【式1】 (Equation 1)

【0039】[実施例2〜6および比較例1〜5]参考
例2、3、9〜11の触媒2、3、9〜11および参考
例4〜8の触媒4〜8をそれぞれ実施例1の触媒1の代
わりに用いて、同様にしてモデルガスによる評価試験を
行った。触媒2、3、9〜11を用いた触媒層を、それ
ぞれ実施例2〜6とし、触媒4〜8を用いた触媒層を、
それぞれ比較例1〜5とした。表2に上記実施例1〜6
および比較例1〜5の触媒層について初期脱硝性能を脱
硝率(%)として示す。
[Examples 2 to 6 and Comparative Examples 1 to 5] The catalysts 2, 3, and 9 to 11 of Reference Examples 2, 3, and 9 to 11 and the catalysts 4 to 8 of Reference Examples 4 to 8 were used in Example 1, respectively. An evaluation test using a model gas was performed in the same manner as above, except that the catalyst 1 was used. Catalyst layers using catalysts 2, 3, and 9 to 11 are referred to as Examples 2 to 6, respectively, and catalyst layers using catalysts 4 to 8 are referred to as:
These were Comparative Examples 1 to 5, respectively. Table 2 shows Examples 1 to 6 above.
The initial denitration performance of the catalyst layers of Comparative Examples 1 to 5 is shown as a denitration rate (%).

【0040】[性能評価例2(実施例7)]性能評価例
1において、参考例12のハニカム触媒12を直径15
mm、長さ24mmの円筒状に加工し、内径15mmの
ステンレス製反応管に充填した。フィードするガスの空
間速度を13,000h−1とした以外は性能評価例1
と同様のモデルガス評価試験を行い、これを実施例7と
した。その結果を性能評価例1の結果とともに表2に示
す。
[Performance Evaluation Example 2 (Example 7)] In the performance evaluation example 1, the honeycomb catalyst 12 of Reference Example 12
It was machined into a cylindrical shape having a length of 24 mm and a length of 24 mm, and filled in a stainless steel reaction tube having an inner diameter of 15 mm. Performance evaluation example 1 except that the space velocity of the gas to be fed was 13,000 h -1
A model gas evaluation test similar to that described above was performed, and this was designated as Example 7. The results are shown in Table 2 together with the results of Performance Evaluation Example 1.

【0041】[0041]

【表2】 ────────────────────────────── 実施例および比較例 触媒 脱硝率(%) ────────────────────────────── 実施例1 触媒1 93 実施例2 触媒2 86 実施例3 触媒3 86 比較例1 触媒4 34 比較例2 触媒5 22 比較例3 触媒6 43 比較例4 触媒7 44 比較例5 触媒8 46 実施例4 触媒9 91 実施例5 触媒10 93 実施例6 触媒11 84 実施例7 触媒12 90 ──────────────────────────────[Table 2] ────────────────────────────── Examples and comparative examples Catalyst Denitration rate (%) ───── 1 Example 1 Catalyst 1 93 Example 2 Catalyst 2 86 Example 3 Catalyst 3 86 Comparative Example 1 Catalyst 4 34 Comparison Example 2 Catalyst 5 22 Comparative Example 3 Catalyst 6 43 Comparative Example 4 Catalyst 7 44 Comparative Example 5 Catalyst 8 46 Example 4 Catalyst 9 91 Example 5 Catalyst 10 93 Example 6 Catalyst 11 84 Example 7 Catalyst 12 90 ───────────────────────────

【0042】表2より実施例1〜7は、初期性能が80
%以上であり、比較例1〜5に比べて優れた性能を示し
た。
Table 2 shows that Examples 1 to 7 have an initial performance of 80.
% Or more, showing excellent performance as compared with Comparative Examples 1 to 5.

【0043】[性能評価例3(実施例8および比較例6
〜8)]性能評価例1において還元剤である灯油
(C)を、ガソリンに代えた以外は同様の活性試験を
行い、これを実施例8とした。また、性能評価例1にお
いて還元剤である灯油を、軽油、プロパンおよびプロピ
レンに代えた以外は同様の活性試験を行い、それぞれ比
較例6〜8とした。
[Performance Evaluation Example 3 (Example 8 and Comparative Example 6)
-8)] A similar activity test was performed in Example 1 except that kerosene (C 1 ) as a reducing agent was changed to gasoline in Example 1 of performance evaluation. In addition, the same activity test was carried out except that kerosene as a reducing agent was replaced with light oil, propane and propylene in Performance Evaluation Example 1, and Comparative Examples 6 to 8 were obtained.

【0044】[0044]

【表3】 ─────────────────────── 還元剤 脱硝率(%) ─────────────────────── 実施例1 灯油 93 実施例8 ガソリン 94 比較例6 軽油 68 比較例7 プロパン 12 比較例8 プロピレン 35 ─────────────────────── 還元剤として灯油を使用した実施例1とガソリンを使用
した実施例8は還元剤として軽油、プロパンおよびプロ
ピレンを用いた比較例6〜8に比べ、高い性能を有する
ことが分かった。
[Table 3] ─────────────────────── Reducing agent Denitration rate (%) ──────────────── Example 1 Kerosene 93 Example 8 Gasoline 94 Comparative Example 6 Light Oil 68 Comparative Example 7 Propane 12 Comparative Example 8 Propylene 35分 か っ It can be seen that Example 1 using kerosene as the reducing agent and Example 8 using gasoline have higher performance than Comparative Examples 6 to 8 using gas oil, propane and propylene as the reducing agent. Was.

【0045】[0045]

【発明の効果】以上述べた通り、本発明による排ガス浄
化方法によれば、希薄燃焼排ガス中に含まれる窒素酸化
物を高い脱硝率で還元浄化でき、かつ耐久性能に優れる
ことから、内燃機関から排出される燃焼排ガス中の窒素
酸化物の浄化に有用である。
As described above, according to the exhaust gas purifying method of the present invention, nitrogen oxides contained in lean combustion exhaust gas can be reduced and purified at a high denitration rate and excellent in durability performance. It is useful for purifying nitrogen oxides in the discharged combustion exhaust gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 船曳 正起 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社沼津工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Katakei 3-18-5, Chugoku, Ichikawa-shi, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Masaki Funabiki 678 Ichihonmatsu, Numazu-shi, Shizuoka N・ Echem Cat Co., Ltd. Numazu Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させて、灯油もしくはガソリ
ンを還元剤として窒素酸化物を除去する方法であって、
前記触媒含有層に含まれる触媒はアルミナと銀からなる
触媒層であることを特徴とする排ガス浄化方法。
1. A method for removing nitrogen oxides by contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer using kerosene or gasoline as a reducing agent,
An exhaust gas purifying method, wherein the catalyst contained in the catalyst-containing layer is a catalyst layer made of alumina and silver.
【請求項2】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させて、灯油もしくはガソリ
ンを還元剤として窒素酸化物を除去する方法であって、
前記触媒含有層に含まれる触媒は多数の貫通孔を有する
耐火性材料からなる一体構造の支持基質における少なく
とも貫通孔の内表面にアルミナと銀からなる触媒を被覆
させた触媒被覆構造体で構成されていることを特徴とす
る排ガス浄化方法。
2. A method for removing nitrogen oxides by bringing combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio into contact with a catalyst-containing layer and using kerosene or gasoline as a reducing agent.
The catalyst contained in the catalyst-containing layer is constituted by a catalyst-coated structure in which at least the inner surface of the through-hole is coated with a catalyst made of alumina and silver in an integral support substrate made of a refractory material having a large number of through-holes. An exhaust gas purification method characterized in that:
【請求項3】 前記アルミナは、窒素ガス吸着法により
測定された細孔半径と細孔容積の関係が、細孔半径30
0オングストローム以下の細孔の占める細孔容積の合計
値をXとし、細孔半径25オングストローム以上で10
0オングストローム未満の細孔の占める細孔容積の合計
値をYとし、細孔半径100オングストローム以上で3
00オングストローム以下の細孔の占める細孔容積の合
計値をZとしたとき、YがXの70%以上であり、Zが
Xの20%以下であるような細孔構造を有することを特
徴とする請求項1または2記載の排ガス浄化方法。
3. The alumina has a relationship between a pore radius and a pore volume measured by a nitrogen gas adsorption method, the pore radius of which is 30.
Let X be the total value of the pore volume occupied by pores of 0 Å or less, and 10 if the pore radius is 25 Å or more.
The total value of the pore volume occupied by pores smaller than 0 Å is defined as Y, and 3 for a pore radius of 100 Å or more.
When the total value of the pore volume occupied by the pores of not more than 00 Å is Z, Y has a pore structure of 70% or more of X and Z has a pore structure of 20% or less of X, The exhaust gas purifying method according to claim 1 or 2, wherein
JP9312587A 1997-10-29 1997-10-29 Purification of waste gas Pending JPH11128688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312587A JPH11128688A (en) 1997-10-29 1997-10-29 Purification of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312587A JPH11128688A (en) 1997-10-29 1997-10-29 Purification of waste gas

Publications (1)

Publication Number Publication Date
JPH11128688A true JPH11128688A (en) 1999-05-18

Family

ID=18031004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312587A Pending JPH11128688A (en) 1997-10-29 1997-10-29 Purification of waste gas

Country Status (1)

Country Link
JP (1) JPH11128688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598293B1 (en) 1999-06-23 2003-07-29 Yazaki Corporation Connecting method of covered wire
JP2006320893A (en) * 2005-04-18 2006-11-30 Tokyo Univ Of Agriculture & Technology Selective reduction catalyst for nitrogen oxide
JP2008018374A (en) * 2006-07-14 2008-01-31 Honda Motor Co Ltd Catalyst and apparatus for cleaning exhaust gas
WO2022202020A1 (en) 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598293B1 (en) 1999-06-23 2003-07-29 Yazaki Corporation Connecting method of covered wire
JP2006320893A (en) * 2005-04-18 2006-11-30 Tokyo Univ Of Agriculture & Technology Selective reduction catalyst for nitrogen oxide
JP2008018374A (en) * 2006-07-14 2008-01-31 Honda Motor Co Ltd Catalyst and apparatus for cleaning exhaust gas
WO2022202020A1 (en) 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint

Similar Documents

Publication Publication Date Title
JPH11128688A (en) Purification of waste gas
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH11128689A (en) Purification of waste gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JP2000153133A (en) Exhaust gas purification
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH1170338A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure and exhaust purifying process using structure
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JP3358274B2 (en) Denitration catalyst and denitration method
JP3155140B2 (en) Denitration catalyst and denitration method
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH10235157A (en) Purification of nox in exhaust gas
JPH10118502A (en) Catalyst for purification of exhaust gas, structural body coated with the catalyst and method for purifying exhaust gas
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JP2002370032A (en) Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method
JPH10137584A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalytic coated structure and exhaust gas purifying method by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071004