JPH10118489A - Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby - Google Patents

Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby

Info

Publication number
JPH10118489A
JPH10118489A JP8293211A JP29321196A JPH10118489A JP H10118489 A JPH10118489 A JP H10118489A JP 8293211 A JP8293211 A JP 8293211A JP 29321196 A JP29321196 A JP 29321196A JP H10118489 A JPH10118489 A JP H10118489A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
purifying
pore
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8293211A
Other languages
Japanese (ja)
Inventor
Taiji Sugano
泰治 菅野
Takeshi Naganami
武 長南
Atsushi Kagakui
敦 加岳井
Kunihide Kayano
邦秀 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8293211A priority Critical patent/JPH10118489A/en
Publication of JPH10118489A publication Critical patent/JPH10118489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst layer which can remove NOx in dilute combustion exhaust gas efficiently, a catalyst-coated structure, and a method for purifying exhaust gas using them. SOLUTION: The catalyst A is composed of at least one kind of alkaline earth metal oxide selected from CaO, MgO, and BaO. A catalyst layer for purifying exhaust gas consists of the catalyst A and a catalyst B in which silver is contained in an alumina carrier having such pore structure that when in the relation between pore radii and pore volume measured by a nitrogen gas adsorption method, the total of pore volume occupied by pores whose radii are not exceeding 300 angstrom if made X, the total of pore volume occupied by pores whose radii are 25-100Å is made Y, and the total of pore volume occupied by pores whose radii are 100-300 angstrom is made Z, Y is 70% or more of X, and Z is 20% or less of X.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化用触媒層
および排ガス浄化用触媒被覆構造体に関し、さらに詳細
には希薄燃焼領域で運転される内燃機関から排出された
排ガス中の窒素酸化物を高い空間速度で、かつ高効率で
浄化可能な排ガス浄化用触媒層および排ガス浄化方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. The present invention relates to a purification catalyst layer and an exhaust gas purification catalyst-coated structure, and more specifically, it can purify nitrogen oxides in exhaust gas discharged from an internal combustion engine operated in a lean burn region at a high space velocity and with high efficiency. The present invention relates to an exhaust gas purifying catalyst layer and an exhaust gas purifying method.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素とともに、一酸化窒素や二酸化窒素などの窒
素酸化物(NOx)が含まれている。NOxは人体、特
に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保
全の上からも問題視される酸性雨の原因の1つとなつて
いる。そのため、これら各種の排ガスから効率よく窒素
酸化物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art In a variety of combustion exhaust gas discharged from an internal combustion engine such as an automobile, nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide are included together with water and carbon dioxide as combustion products. include. NOx not only adversely affects the human body, especially the respiratory system, but also becomes one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを、主として白金、ロジウム、パラジウム
およびセリアを含むアルミナ触媒に接触させて有害三成
分を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
Combustion at a controlled stoichiometric ratio near 4.7. For exhaust gas treatment, carbon monoxide, hydrocarbons and NOx in the exhaust gas are converted to alumina mainly containing platinum, rhodium, palladium and ceria. A three-way catalyst system has been employed in which three harmful components are simultaneously removed by contact with a catalyst.

【0004】しかしながらこの三元触媒方式は、エンジ
ンが化学量論比で運転されることが絶対条件であるた
め、希薄空燃比で運転される希薄燃焼ガソリンエンジン
の排ガス浄化には適用することができない。また、ディ
ーゼルエンジンは本来希薄燃焼エンジンであるが、その
排ガスに対しては浮遊粒子状物質とNOxの両方に厳し
い規制がかけられようとしている。
However, this three-way catalyst system cannot be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio because it is an absolute condition that the engine is operated at a stoichiometric ratio. . In addition, diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。この技術は、いわゆる固定発生源であるボイ
ラーやディーゼルエンジンからの排ガス脱硝方法として
工業化されているが、この方法においては末反応の還元
剤の回収処理のための特別な装置を必要とし、また臭気
が強く有害なアンモニアを用いるので、自動車などの移
動発生源からの排ガス脱硝技術としては危険性があり適
用できない。
Conventionally, as a method of reducing removing NOx in an oxygen-rich atmosphere, a technique of using NH 3 also adsorb selectively catalyst small amount as the reducing gas has already been established. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called fixed sources, but this method requires a special device for the recovery treatment of the reducing agent of the end reaction, and also has an odor. Since it uses highly harmful ammonia, it cannot be applied as a technique for denitration of exhaust gas from mobile sources such as automobiles because of its danger.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され報告されている。例えば、アルミナやアル
ミナに遷移金属を担持した触媒が、炭化水素を還元剤と
して用いるNOx還元反応に有効であるとする数多くの
報告がある。また特開平4−284848号公報には、
0.1〜4重量%のCu、Fe、Cr、Zn、Ni、V
を含有するアルミナあるいはシリカ−アルミナをNOx
還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Various catalysts have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. Also, JP-A-4-284848 discloses that
0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V
NOx containing alumina or silica-alumina containing
An example of use as a reduction catalyst has been reported.

【0007】さらに、Ptをアルミナに担持した触媒を
用いると、NOx還元反応が200〜300℃程度の低
温領域で進行することが、特開平4−267946号公
報、特開平5−68855号公報や特開平5−1039
49号公報などに報告されている。しかしながら、これ
らの担持貴金属触媒を用いた場合、還元剤である炭化水
素の燃焼反応が過度に促進されたり、地球温暖化の原因
物質の1つといわれているNOが多量に副生し、無害
なNへの還元反応を選択的に進行させることが困難と
なるといった欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C., as disclosed in JP-A-4-267946 and JP-A-5-68855. JP-A-5-1039
No. 49, for example. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O which is one of the substances causing global warming is by-produced, be advanced reduction reaction to harmless N 2 selectively had disadvantage becomes difficult.

【0008】本出願人の−方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。
The inventor of the present applicant has previously found that the use of a catalyst containing silver as a reducing agent with a hydrocarbon in an oxygen-excess atmosphere allows the NOx reduction reaction to proceed selectively. No. 4-281844.

【0009】この開示が行われた後においても、この公
報記載の技術と類似のNOx還元除去技術が特開平4−
354536号公報、特開平5−92124号公報、特
開平5−92125号公報および特開平6−27745
4号公報などに開示されている。
Even after this disclosure is made, a NOx reduction and removal technology similar to the technology described in this publication is disclosed in Japanese Patent Laid-Open No.
JP-A-354536, JP-A-5-92124, JP-A-5-92125 and JP-A-6-27745
No. 4 and the like.

【0010】[0010]

【発明の解決しようとする課題】しかしながら、これら
従来の公報に記載されたアルミナ担持銀触媒は、SOx
および水蒸気共存下での脱硝性能が実用的には未だ不十
分であった。
However, the alumina-supported silver catalysts described in these conventional publications are not suitable for SOx.
And the denitration performance in the presence of steam was still insufficient for practical use.

【0011】本発明は、上記従来技術の欠点を解決すべ
くなされたものであり、その目的とするところは、希薄
燃焼排ガス中のNOxを効率よく除去することができる
排ガス浄化用触媒層および触媒被覆構造体と、これらを
使用しての希薄燃焼排ガス中のNOxを高効率、高信頼
性をもって浄化する排ガス浄化方法を提供することにあ
る。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an exhaust gas purifying catalyst layer and a catalyst capable of efficiently removing NOx in a lean combustion exhaust gas. An object of the present invention is to provide a coating structure and an exhaust gas purifying method for purifying NOx in lean combustion exhaust gas with high efficiency and high reliability using the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、SOxと
水蒸気が共存する希薄燃焼領域において高い脱硝性能を
有する排ガス浄化用触媒層および触媒被覆構造体と、こ
れらを使用しての排ガス浄化方法について鋭意研究を重
ねた結果、特定のアルカリ土類金属酸化物からなる触媒
Aと特定の細孔構造を有するアルミナに銀を含有させて
なる触媒Bとを使用することにより上記した問題点を解
決できることを見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors have developed an exhaust gas purifying catalyst layer and a catalyst coating structure having high denitration performance in a lean burn region where SOx and water vapor coexist, and an exhaust gas purifying structure using them. As a result of intensive studies on the method, the above-mentioned problems have been solved by using a catalyst A comprising a specific alkaline earth metal oxide and a catalyst B comprising silver in alumina having a specific pore structure. The inventors have found that the present invention can be solved, and have completed the present invention.

【0013】すなわち、上記課題を解決するための本発
明の第1の実施態様は、CaO、MgO、SrO、Ba
Oより選ばれた少なくとも1種のアルカリ土類金属酸化
物からなる触媒Aと、窒素ガス吸着法により測定された
細孔半径と細孔容積の関係が、細孔半径300オングス
トローム以下の細孔の占める細孔容積の合計値をΧと
し、細孔半径25オングストローム以上で100オング
ストローム未満の細孔の占める細孔容積の合計値をYと
し、細孔半径100オングストローム以上で300オン
グストローム以下の細孔の占める細孔容積の合計値をΖ
としたとき、YがΧの70%以上であり、ΖがΧの20
%以下であるような細孔構造を有するアルミナ担体に銀
を含有させてなる触媒Bとより構成される排ガス浄化用
触媒層を特徴とするものである。該触媒層は、粉体また
は成型した状態で排ガスの流通空間に配置するのが好ま
しい。
[0013] That is, a first embodiment of the present invention for solving the above-mentioned problems includes CaO, MgO, SrO, and Ba.
The catalyst A comprising at least one kind of alkaline earth metal oxide selected from O, and the relationship between the pore radius and the pore volume measured by the nitrogen gas adsorption method are as follows. The total value of pore volumes occupied by pores having a pore radius of 25 Å or more and less than 100 Å is defined as Y, and the total value of pore volumes occupied by pores having a pore radius of 25 Å or more and less than 100 Å is defined as Y. The total value of the occupied pore volume is Ζ
Is more than 70% of Χ, and Ζ is 20 of Χ
%, Characterized in that it has a catalyst layer for purifying exhaust gas composed of a catalyst B comprising silver contained in an alumina carrier having a pore structure of not more than 10%. The catalyst layer is preferably disposed in a flow space of the exhaust gas in a powdered or molded state.

【0014】また、本発明の第2の実施態様は、多数の
貫通孔を有する耐火性材料からなる支持基質と、該支持
基質における少なくとも該貫通孔の内表面に上記の触媒
層を区分して被覆した触媒被覆構造体を特徴とするもの
である。
In a second embodiment of the present invention, a support substrate made of a refractory material having a large number of through-holes and the above-mentioned catalyst layer at least on the inner surface of the through-hole in the support substrate are divided. It features a coated catalyst-coated structure.

【0015】またさらに、本発明の第3の実施態様は希
薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有
層と接触させて排ガス中のNOxを除去する方法におい
て、該触媒含有層に含まれる触媒は前記第1の実施態様
における触媒層または第2の実施態様における触媒被覆
構造体であることを特徴とし、また、排ガスの流れ方向
に対して脱硝触媒層に含まれる触媒Aが前段に、触媒B
が後段に区分されて配置されている排ガス浄化方法を特
徴とするものである。
Still further, a third embodiment of the present invention is directed to a method of removing NOx in exhaust gas by bringing combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio into contact with a catalyst-containing layer. The catalyst contained is the catalyst layer of the first embodiment or the catalyst-coated structure of the second embodiment, and the catalyst A contained in the denitration catalyst layer in the exhaust gas flow direction And catalyst B
Are characterized by an exhaust gas purifying method which is divided and arranged at a later stage.

【0016】[0016]

【発明の実施の態様】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。 (触媒の構造およびその製法)本発明の排ガス浄化用触
媒層における触媒Bの主成分の1つであるアルミナは、
例えば鉱物学上べーマイト、擬ベーマイト、バイアライ
ト、あるいはノルストランダイトに分類される水酸化ア
ルミニウムの粉体やゲルを、空気中あるいは真空中30
0〜800℃、好ましくは400〜900℃で加熱脱水
することによって、結晶学的にγ−型、η−型、δ−
型、χ−型あるいはその混合型に分類されるアルミナに
相転移させたものが脱硝性能上好ましい。他の結晶構造
をとるアルミナ、例えばα−型のアルミナは極端に比表
面積が小さく固体酸性にも乏しいので本発明の触媒成分
としては不適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be described more specifically below. (Structure of Catalyst and Production Method Thereof) Alumina, which is one of the main components of catalyst B in the catalyst layer for purifying exhaust gas of the present invention,
For example, an aluminum hydroxide powder or gel classified as boehmite, pseudo-boehmite, vialite, or norstrandite in mineralogy is placed in air or in vacuum.
By heating and dehydrating at 0 to 800 ° C, preferably 400 to 900 ° C, crystallographically, γ-type, η-type, δ-
It is preferable from the viewpoint of denitration performance that a phase transition is made to alumina classified into a type, a χ-type or a mixed type thereof. Alumina having another crystal structure, for example, α-type alumina, is unsuitable as the catalyst component of the present invention because of its extremely small specific surface area and poor solid acidity.

【0017】また、該アルミナは窒素ガス吸着法により
測定された細孔半径が300オングストローム以下の細
孔の占める細孔容積の合計値をΧとし、細孔半径が25
オングストローム以上で100オングストローム未満の
細孔の占める細孔容積の合計値をYとし、細孔半径が1
00オングストローム以上で300オングストローム以
下の細孔の占める細孔容積の合計値をΖとしたとき、Y
がΧの70%以上であり、ΖがΧの20%以下であるよ
うな細孔構造を有するアルミナであることが必要であ
る。細孔構造が、上記した条件を満たさないアルミナを
本発明の触媒Bにおける担体として用いた場合には、こ
れにより構成される排ガス浄化用触媒は水蒸気共存下で
の排ガスの脱硝性能が不十分であった。従って、本発明
の触媒成分として有効なアルミナは、上記した結晶構造
および細孔特性を有するものが適切であるといえる。
The alumina has a pore diameter measured by a nitrogen gas adsorption method having a pore radius of 300 .ANG.
When the total value of the pore volume occupied by pores of not less than 100 Å and not more than 100 Å is Y, the pore radius is 1
When the total value of the pore volume occupied by the pores of not less than 00 Å and not more than 300 Å is represented by Ζ, Y
Is alumina having a pore structure such that ア ル ミ ナ is 70% or more of Χ and Ζ is 20% or less of Χ. In the case where alumina having a pore structure not satisfying the above-mentioned conditions is used as a carrier in the catalyst B of the present invention, the exhaust gas purifying catalyst constituted thereby has insufficient denitration performance of exhaust gas in the presence of steam. there were. Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is appropriate as the alumina effective as the catalyst component of the present invention.

【0018】本発明の排ガス浄化用触媒は、以下のよう
な触媒である。本発明にかかる触媒層は、CaO、Mg
O、SrO、BaOから選ばれた少なくとも1種のアル
カリ土類金属酸化物からなる触媒Aと、上記した結晶構
造および細孔特性を有するアルミナに銀を含有させてな
る触媒Bとから構成され、アルミナに含有される銀の状
態は特に限定されず、金属状態、酸化物状態およびこれ
らの混合状態などが挙げられる。特に、自動車などの内
燃機関の燃焼排ガス組成は運転状態によってその都度変
化するため、触媒は還元雰囲気および酸化雰囲気に曝さ
れる。従って、触媒を構成する活性金属の状態は雰囲気
の変化に伴い変化することが想定される。触媒Bにおけ
る銀の出発原料は特に限定されない。さして、本発明に
おいて触媒Bにおけるアルミナに銀を含有させる方法は
特に限定されず従来から行われている手法、例えば吸着
法、ポアフィリング法、インシピエントウェット法、蒸
発乾固法、スプレー法などの含浸法、混練法、物理混合
法およびこれらの組合わせ法など通常採用されている公
知の方法を任意に採用することができる。
The exhaust gas purifying catalyst of the present invention is as follows. The catalyst layer according to the present invention comprises CaO, Mg
A catalyst A comprising at least one kind of alkaline earth metal oxide selected from O, SrO and BaO, and a catalyst B comprising silver in alumina having the above-mentioned crystal structure and pore characteristics, The state of silver contained in the alumina is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, the composition of the combustion exhaust gas of an internal combustion engine such as an automobile changes each time depending on the operation state, and thus the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes with the change of the atmosphere. The starting material of silver in the catalyst B is not particularly limited. In the present invention, the method for incorporating silver into alumina in the catalyst B is not particularly limited, and any of the conventional methods such as an adsorption method, a pore filling method, an incipient wet method, an evaporation to dryness method, a spray method, and the like. Any known method such as impregnation method, kneading method, physical mixing method and combination thereof can be arbitrarily adopted.

【0019】触媒Bに対する金属換算での銀の含有量
は、特に限定されないが0.l〜10重量%であること
が好ましい。銀の担持量が0.1重量%未満ではその効
果が発揮されず、また、10重量%を超えると還元剤で
ある炭化水素の燃焼反応が優先的に進行し、NOx除去
特性が低下する。
The silver content in terms of metal with respect to the catalyst B is not particularly limited, but is not limited to 0.1. It is preferably 1 to 10% by weight. If the amount of silver carried is less than 0.1% by weight, the effect is not exhibited, and if it exceeds 10% by weight, the combustion reaction of the hydrocarbon as the reducing agent proceeds preferentially, and the NOx removal characteristics deteriorate.

【0020】触媒Bの乾燥温度は、特に限定するもので
はなく通常80〜120℃程度で乾燥する。また、焼成
温度は300〜1000℃、好ましくは400〜900
℃程度である。焼成温度が1000℃を超えると、α−
アルミナへの相変態が起こるので好ましくない。このと
きの雰囲気は特に限定されないが、触媒組成に応じて空
気中、不活性ガス中、酸素中などの各雰囲気を適宜選択
すればよい。また、各雰囲気を一定時間毎に交互に代え
てもよい。
The drying temperature of the catalyst B is not particularly limited, and it is usually dried at about 80 to 120 ° C. The firing temperature is 300 to 1000 ° C., preferably 400 to 900.
It is about ° C. If the firing temperature exceeds 1000 ° C, α-
It is not preferable because phase transformation to alumina occurs. The atmosphere at this time is not particularly limited, but each atmosphere such as in air, in an inert gas, or in oxygen may be appropriately selected according to the catalyst composition. In addition, each atmosphere may be alternately changed at regular intervals.

【0021】本発明の第1の実施態様において、排ガス
浄化用の触媒層を形成するに際し、該触媒層は上記した
触媒を所定の形状に成型または粉末状態のまま目的とす
る排ガスが流通する一定の空間内に充填する。触媒層を
成型体とするに際して、その形状は特に制限されず、例
えば粉状、球状、円筒状、ハニカム状、螺旋状、粒状、
ペレット状、リング状など種々の形状を採用することが
できる。これらの形状、大きさなどは使用条件に応じて
任意に選択すればよい。
In the first embodiment of the present invention, when a catalyst layer for purifying exhaust gas is formed, the catalyst layer is formed into a predetermined shape or a predetermined shape through which a target exhaust gas flows in a powder state. Fill in the space. When forming the catalyst layer into a molded body, the shape is not particularly limited, for example, powder, spherical, cylindrical, honeycomb, spiral, granular,
Various shapes such as a pellet shape and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0022】次に、本発明の第2の実施態様の排ガス浄
化用触媒被覆構造体について説明する。ここでいう触媒
被覆構造体とは、多数の貫通孔を有する耐火性材料で構
成された一体構造の支持基質の少なくとも該貫通孔の内
表面に上記した触媒を区分して被覆した構造を有するも
のである。
Next, an exhaust gas purifying catalyst-coated structure according to a second embodiment of the present invention will be described. Here, the catalyst-coated structure has a structure in which at least the inner surface of the through-hole is coated with the above-mentioned catalyst in a unitary support substrate made of a refractory material having a large number of through-holes. It is.

【0023】該支持基質には、多数の貫通孔が排ガスの
流通方向に沿って設けられるが、その流通方向に垂直な
断面において、通常、開孔率60〜90%、好ましくは
70〜90%であって、その数は1平方インチ(5.0
6cm)当り30〜700個、好ましくは200〜6
00個である。触媒は、少なくとも該貫通孔の内表面上
に被覆されるが、その支持基質の端面や側面に区分して
被覆されていてもよい。
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In a section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. And the number is one square inch (5.0
30 to 700, preferably 200 to 6, 6 cm 2 )
00. The catalyst is coated on at least the inner surface of the through hole, but may be coated separately on the end face or side face of the supporting substrate.

【0024】該耐火性支持基質の材質としては、α−ア
ルミナ、ムライト、コージェライト、シリコンカーバイ
トなどのセラミックスやオーステナイト系、フェライト
系のステンレス鋼などの金属などが使用される。形状も
ハニカムやフォームなどの慣用のものが使用できる。好
ましいものは、コージェライト製やステンレス鋼製のハ
ニカム状の支持基質である。
As the material of the refractory support substrate, ceramics such as α-alumina, mullite, cordierite, and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. Conventional shapes such as honeycombs and foams can be used. Preferred is a honeycomb-shaped support substrate made of cordierite or stainless steel.

【0025】該支持基質への触媒層の被覆方法として
は、−定の粒度に整粒した本発明の触媒をバインダーと
共に、またはバインダーを用いないで前記支持基質の内
表面に区分して被覆する、いわゆる通常のウォッシュコ
ート法やゾル−ゲル法が適用できる。また、触媒Bにお
いては上記の支持基質に予めアルミナを被覆しておい
て、これに本発明の触媒活性物質の担持処理を行って触
媒被覆層を形成してもよい。支持基質への触媒層の被覆
量は特に限定されないが、支持基質単位体積当り50〜
250g/l程度が好ましく、100〜200g/l程
度とすることがより好ましい。
The method for coating the catalyst layer on the support substrate is as follows: the catalyst of the present invention, sized to a fixed particle size, is coated separately on the inner surface of the support substrate with or without a binder. That is, a so-called ordinary wash coat method or sol-gel method can be applied. In the catalyst B, the above-mentioned support substrate may be coated with alumina in advance, and then the catalyst-active substance of the present invention may be subjected to a supporting treatment to form a catalyst coating layer. The coating amount of the catalyst layer on the support substrate is not particularly limited, but may be 50 to 50 per unit volume of the support substrate.
It is preferably about 250 g / l, more preferably about 100 to 200 g / l.

【0026】次に、本発明の第3の実施態様の排ガス浄
化方法について説明する。本発明の第3の実施態様は、
第1の実施態様の触媒層や第2の実施態様の触媒被覆構
造体を使用して、これと排ガス中のCO、ΗCおよびΗ
といった還元性成分をNOxおよびOといった酸化
性成分で完全酸化するに要する化学量論量近傍から過剰
の酸素を含有する排ガスとを接触させることによって、
NOxはNとΗOにまで還元分解されると同時にΗ
Cなどの還元剤もCΟとΗOに酸化させるものであ
る。
Next, an exhaust gas purifying method according to a third embodiment of the present invention will be described. A third embodiment of the present invention provides:
By using the catalyst layer of the first embodiment and the catalyst-coated structure of the second embodiment, CO, ΗC and Η in the exhaust gas are used.
By two such reducing component contacting a flue gas containing excess oxygen from the stoichiometry near required to complete oxidation with oxidizing components such as NOx and O 2,
NOx is reduced and decomposed to N 2 and { 2 O}
Reducing agent such as C are also intended to oxidize the Eta 2 O and CΟ 2.

【0027】本発明において、触媒Aを前段に、触媒B
を後段に配置させる理由は、前段の触媒AでSOxを吸
着除去することにより、トータル触媒システムでのSO
x耐久性を向上させるためである。触媒Aと触媒Bの割
合は、SOx耐久性能とNOx除去性能に応じて任意に
選択すればよい。ディーゼルエンジンの排ガスのよう
に、排ガスそのもののΗC/NOx比が低い場合には、
排ガス中にメタン換算濃度で数百〜数千ppm程度の燃
料ΗCを追加添加した後、本発明の触媒と接触させるシ
ステムを採用すれば充分に高いNOx除去率を達成でき
る。尚、ここでいうΗCとは、パラフィン系炭化水素、
オレフィン系炭化水素および芳香族系炭化水素、アルコ
ール、アルデヒド、ケトン、エーテルなどの含酸素有機
化合物、ガソリン、灯油、軽油、A重油などを含んだも
のを意味する。
In the present invention, the catalyst A is placed before the catalyst B,
Is arranged in the latter stage because SOx is adsorbed and removed by the former catalyst A, so that SO in the total catalyst system is removed.
x It is for improving durability. The ratio between the catalyst A and the catalyst B may be arbitrarily selected according to the SOx durability performance and the NOx removal performance. When the ΔC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine,
A sufficiently high NOx removal rate can be achieved by employing a system in which the fuel ΗC is added to the exhaust gas at a concentration of several hundreds to several thousands ppm in terms of methane and then brought into contact with the catalyst of the present invention. Here, ΔC is a paraffinic hydrocarbon,
It means those containing olefinic hydrocarbons and aromatic hydrocarbons, oxygen-containing organic compounds such as alcohols, aldehydes, ketones, and ethers, gasoline, kerosene, light oil, and heavy oil A.

【0028】本発明による触媒層を用いて、希薄空燃比
の領域で運転される内燃機関の燃焼排ガスを浄化する際
のガス空間速度(SV)は、特に限定されるものではな
いが、SV5,000h−1以上で200,000h
−1以下とすることが好ましい。
The gas space velocity (SV) when purifying the combustion exhaust gas of the internal combustion engine operated in the region of the lean air-fuel ratio using the catalyst layer according to the present invention is not particularly limited. 200,000h over 000h -1
It is preferably set to -1 or less.

【0029】そして、ガス組成を一定とした場合の脱硝
率は触媒の種類とΗCの種類に依存するが、本発明の触
媒層を用いた場合は、例えばC〜Cのパラフィン、
オレフィンおよびC〜Cの芳香族ΗCに対しては4
50〜600℃、C〜Cのパラフインおよびオレフ
ィンに対しては350〜550℃、C10〜C25のパ
ラフィンおよびオレフィンに対しては250〜500℃
で高い脱硝率を示すため触媒層入口温度を100℃以上
で700℃以下、好ましくは200℃以上で600℃以
下にすることが必要である。
The denitration rate when the gas composition is constant depends on the type of catalyst and the type of ΔC. When the catalyst layer of the present invention is used, for example, C 2 to C 6 paraffin,
4 for olefins and C 6 -C 9 aromatic ΔC
50-600 ° C., 350-550 ° C. for C 6 -C 9 paraffins and olefins, 250-500 ° C. for C 10 -C 25 paraffins and olefins.
In order to exhibit a high denitrification rate, it is necessary to set the catalyst layer inlet temperature at 100 ° C. or higher to 700 ° C. or lower, preferably at 200 ° C. or higher to 600 ° C. or lower.

【0030】[0030]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)アルミナの選定 使用アルミナ担体の選定のために、表1に示すような比
表面積と細孔分布を有する種々のγ−アルミナにおい
て、a〜cが本発明の範囲に入るアルミナであり、d〜
gが本発明の範囲外のアルミナである。尚、a〜gのア
ルミナの細孔分布は、カルロエルバ社製のソープトマチ
ックにより測定した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of Alumina In order to select an alumina carrier to be used, in various γ-aluminas having a specific surface area and a pore distribution as shown in Table 1, a to c are aluminas falling within the scope of the present invention; d ~
g is alumina outside the scope of the present invention. In addition, the pore distribution of alumina of a to g was measured by a soapmatic manufactured by Carlo Elba.

【0031】[0031]

【表1】 ─────────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/Χ(%) Ζ/Χ(%) ─────────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ───────────────────────────────[Table 1] ─────────────────────────────── Alumina specific surface area pore distribution (m 2 / g) Y / Χ (%) Ζ / Χ (%) ───────────────────────────────a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ────────────────────────────

【0032】(2)触媒の調製 以下に、本発明の触媒層を構成するための各触媒の調製
についての調製例を参考例として示す。 (イ)触媒Bの製造: 参考例1;表1のγ−アルミナaの前駆体物質であるア
ルミナ水和物100gを、硝酸銀4.0gを含む300
mlの水溶液に10時間浸漬した後、80℃で蒸発乾固
した。これを110℃で通風乾燥後、空気中550℃で
3時間焼成して触媒1を得た。尚、触媒1における金属
換算でのAgの含有量は触媒全体に対して4.5重量%
である。
(2) Preparation of Catalyst Hereinafter, preparation examples of preparation of each catalyst for constituting the catalyst layer of the present invention will be shown as reference examples. (A) Production of Catalyst B: Reference Example 1; 300 g containing 100 g of alumina hydrate, which is a precursor of γ-alumina a in Table 1, containing 4.0 g of silver nitrate
After immersion in 10 ml of an aqueous solution for 10 hours, the mixture was evaporated to dryness at 80 ° C. This was air-dried at 110 ° C., and then calcined in air at 550 ° C. for 3 hours to obtain Catalyst 1. The content of Ag in the catalyst 1 in terms of metal was 4.5% by weight based on the entire catalyst.
It is.

【0033】参考例2〜参考例12;同様に、表1に示
すγ−アルミナb〜gが得られる前駆体物質であるアル
ミナ水和物を用いた以外は、参考例1と同様にしてそれ
ぞれ触媒2(参考例2)、触媒3(参考例3)、触媒4
(参考例4)、触媒5(参考例5)、触媒6(参考例
6)、触媒7(参考例7)を得た。また、参考例1の触
媒1の調製に際し、銀の含有量を0重量%、2重量%、
3重量%、8重量%および12重量%とした以外は参考
例1と同様にして触媒8(参考例8)を、触媒9(参考
例9)、触媒10(参考例10)、触媒11(参考例1
1)および触媒12(参考例12)を得た。
Reference Examples 2 to 12 Similarly, the same procedures as in Reference Example 1 were carried out except that alumina hydrate, which is a precursor substance from which γ-aluminas b to g shown in Table 1, were obtained, was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3), Catalyst 4
(Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), and Catalyst 7 (Reference Example 7) were obtained. In preparing Catalyst 1 of Reference Example 1, the content of silver was 0% by weight, 2% by weight,
Catalyst 8 (Reference Example 8) was replaced by Catalyst 9 (Reference Example 9), Catalyst 10 (Reference Example 10), and Catalyst 11 (Except for 3%, 8% and 12% by weight). Reference Example 1
1) and Catalyst 12 (Reference Example 12) were obtained.

【0034】(ロ)触媒Aの製造: 参考例13〜参考例17;市販の酸化カルシウム、酸化
マグネシウム、酸化ストロンチウム、酸化バリウムおよ
びシリカを、それぞれ触媒13(参考例13)、触媒1
4(参考例14)、触媒15(参考例15)、触媒16
(参考例16)および触媒17(参考例17)として用
いた。
(B) Production of Catalyst A: Reference Examples 13 to 17: Commercially available calcium oxide, magnesium oxide, strontium oxide, barium oxide and silica were respectively converted into Catalyst 13 (Reference Example 13) and Catalyst 1
4 (Reference Example 14), Catalyst 15 (Reference Example 15), Catalyst 16
It was used as (Reference Example 16) and Catalyst 17 (Reference Example 17).

【0035】(ハ)ハニカム触媒の製造: 参考例18および19;上記の触媒13の60gを、シ
リカゾル(SiO固形分20重量%)5gおよび水1
20mlと共にボールミルポットに仕込み、湿式粉砕し
てスラリーを得た。このスラリーの中に、市販の400
cpsi(セル/inch)コージェライトハニカム
基質からくり貫かれた直径1インチ、長さ2.5インチ
の円筒状コアを浸漬し、引き上げた後余分のスラリーを
エアーブローで除去し乾燥した。その後、500℃で3
0分焼成し、ハニカム1L当たりドライ換算で150g
の固形分を被覆してCaO組成ハニカム触媒18(参考
例18)を得た。
(C) Production of honeycomb catalyst: Reference Examples 18 and 19: 60 g of the above catalyst 13 was mixed with 5 g of silica sol (SiO 2 solid content of 20% by weight) and water 1
The mixture was charged into a ball mill pot together with 20 ml, and wet-milled to obtain a slurry. In this slurry, commercially available 400
A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a cpsi (cell / inch 2 ) cordierite honeycomb substrate was immersed, pulled up, and then the excess slurry was removed by air blow and dried. Then, at 500 ° C, 3
Bake for 0 minutes, 150g dry conversion per 1L of honeycomb
To obtain a CaO-containing honeycomb catalyst 18 (Reference Example 18).

【0036】また、上記の粉末触媒1の60gを、それ
ぞれアルミナゾル(Al固形分10重量%)8g
および水120mlと共にボールミルポットに仕込み、
湿式粉砕してスラリーを得た。このスラリーの中に、市
販の400cpsi(セル/inch)コージェライ
トハニカム基質からくり貫かれた直径1インチ、長さ
2.5インチの円筒状コアを浸漬し、引き上げた後余分
のスラリーをエアーブローで除去し乾燥した。その後、
500℃で30分焼成し、ハニカム1L当たりドライ換
算で150gの固形分を被覆して4.5%Αg/A1
組成のハニカム触媒19(参考例19)を得た。
In addition, 60 g of the above-mentioned powder catalyst 1 was mixed with 8 g of alumina sol (Al 2 O 3 solid content: 10% by weight).
And 120 ml of water in a ball mill pot,
The slurry was obtained by wet pulverization. A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate is immersed in the slurry, and the excess slurry is air blown. And dried. afterwards,
Fired at 500 ° C. for 30 minutes, and coated with 150 g of solid content in terms of dry weight per 1 L of honeycomb, 4.5% Αg / A1 2
A honeycomb catalyst 19 having an O 3 composition (Reference Example 19) was obtained.

【0037】以下に上記した参考例1〜19の触媒を用
いて形成した排ガス浄化用触媒層について、種々の条件
下において脱硝性能を評価した結果について述べる。 [実施例1]参考例13の触媒13と参考例1の触媒1
をそれぞれを加圧成型した後、粉砕して粒度を350〜
500μmに整粒し、排ガス流通方向に対して触媒13
が前段に、触媒1が後段になるように内径15mmのス
テンレス製反応管に充填して触媒層を形成し、これを常
圧固定床流通反応装置に装着した。この触媒13と触媒
1の重量比は1:1である。 [性能評価例1]この触媒層に、反応管内の排ガス温度
を425℃に保ち、モデル排ガスとしてNΟ:750p
pm、灯油(C):4500ppm、O:10%、
SO:5ppm、ΗO:10%、残部:Nからな
る混合ガスを空間速度40,000h−1で通過させ
た。反応管出口ガス組成の分析において、NOとNO
の濃度については化学発光式NOx計で測定し、N
濃度はΡorapack Qカラムを装着したガスクロ
マトグラフ・熱伝導度検出器を用いて測定した。脱硝率
を以下の式で定義した。また、本発明のいずれの触媒で
もNOおよびNOは殆ど生成しなかった。
The results of evaluating the denitration performance of the catalyst layers for purifying exhaust gas formed using the catalysts of Reference Examples 1 to 19 under various conditions will be described below. Example 1 Catalyst 13 of Reference Example 13 and Catalyst 1 of Reference Example 1
After pressure molding each, pulverized to a particle size of 350 to
The particles are sized to 500 μm, and the catalyst 13
Was filled in a stainless steel reaction tube having an inner diameter of 15 mm so that the catalyst 1 was placed in the former stage to form a catalyst layer, and this was attached to a normal pressure fixed bed flow reactor. The weight ratio between the catalyst 13 and the catalyst 1 is 1: 1. [Performance Evaluation Example 1] The temperature of the exhaust gas in the reaction tube was maintained at 425 ° C in this catalyst layer.
pm, kerosene (C 1 ): 4500 ppm, O 2 : 10%,
A mixed gas composed of 5 ppm of SO 2 , 10% of Η 2 O, and the balance of N 2 was passed at a space velocity of 40,000 h −1 . In the analysis of the gas composition at the outlet of the reaction tube, NO and NO 2
Was measured with a chemiluminescent NOx meter, and N 2 O
The concentration was measured using a gas chromatograph / thermal conductivity detector equipped with a Ρorapack Q column. The denitration rate was defined by the following equation. Further, N 2 O and NO 2 were hardly produced by any of the catalysts of the present invention.

【0038】[0038]

【式1】 (Equation 1)

【0039】[実施例2〜5および比較例1〜比較例
6]参考例2、3、9〜11の触媒2、3、9〜11お
よび参考例4〜8、12の触媒4〜8、12をそれぞれ
実施例1の触媒1の代わりに用いて、上記と同様の触媒
層を形成し、同様にしてモデルガス評価試験を行った。
触媒2、3、9〜11を用いた触媒層を、それぞれ実施
例2〜6とし、触媒4〜8、12を用いた触媒層を、そ
れぞれ比較例1〜6とした。また、実施例1の触媒13
の代わりに、参考例14〜17の触媒14〜17を用い
て、実施例1と同様の触媒層を形成し、同様にしてモデ
ルガスによる評価試験を行った。触媒14〜16を用い
た触媒層を、それぞれ実施例7〜9とし、触媒17を用
いた触媒層を、比較例7とした。表2に、上記実施例お
よび比較例の触媒について触媒層について初期脱硝率お
よび反応開始8時間後の脱硝率を示す。
Examples 2 to 5 and Comparative Examples 1 to 6 Catalysts 2, 3, 9 to 11 of Reference Examples 2, 3, 9 to 11 and Catalysts 4 to 8 of Reference Examples 4 to 8, 12 A catalyst layer similar to the above was formed using each of the catalysts 12 in place of the catalyst 1 of Example 1, and a model gas evaluation test was performed in the same manner.
The catalyst layers using the catalysts 2, 3, and 9 to 11 were Examples 2 to 6, respectively, and the catalyst layers using the catalysts 4 to 8, 12 were Comparative Examples 1 to 6, respectively. The catalyst 13 of Example 1
Instead of using the catalysts 14 to 17 of Reference Examples 14 to 17, a catalyst layer similar to that of Example 1 was formed, and an evaluation test using a model gas was performed in the same manner. The catalyst layers using catalysts 14 to 16 were Examples 7 to 9, respectively, and the catalyst layer using catalyst 17 was Comparative Example 7. Table 2 shows the initial denitration ratio and the denitration ratio 8 hours after the start of the reaction for the catalyst layers of the catalysts of the above Examples and Comparative Examples.

【0040】[性能評価例2(実施例10)]性能評価
例1において、参考例18のハニカム触媒18と参考例
19のハニカム触媒19をそれぞれ円形状に加工し、排
ガス流れ方向に対してハニカム18が前段に、ハニカム
19が後段になるように内径15mmのステンレス製反
応管に充填した。このハニカム触媒19の触媒層に対し
て、フィードするガスの空間速度を13,000h−1
とした以外は性能評価例1と同様のモデルガスによる評
価試験を行い、その結果を性能評価例1の結果とともに
表2に示す。
Performance Evaluation Example 2 (Embodiment 10) In Performance Evaluation Example 1, the honeycomb catalyst 18 of Reference Example 18 and the honeycomb catalyst 19 of Reference Example 19 were each processed into a circular shape, and the honeycomb was formed in the exhaust gas flow direction. A stainless steel reaction tube having an inner diameter of 15 mm was filled so that 18 was at the front stage and the honeycomb 19 was at the rear stage. The space velocity of the gas to be fed to the catalyst layer of the honeycomb catalyst 19 is 13,000 h -1.
An evaluation test was performed using the same model gas as in Performance Evaluation Example 1 except that the evaluation was made, and the results are shown in Table 2 together with the results of Performance Evaluation Example 1.

【0041】[0041]

【表2】 ──────────────────────────────── 触 媒 層 初期性能 8時間後 前段 後段 脱硝率(%) 脱硝率(%) ──────────────────────────────── 実施例1 触媒13+触媒1 90 85 実施例2 触媒13+触媒2 88 82 実施例3 触媒13+触媒3 88 83 比較例1 触媒13+触媒4 29 …… 比較例2 触媒13+触媒5 12 …… 比較例3 触媒13+触媒6 38 …… 比較例4 触媒13+触媒7 35 …… 比較例5 触媒13+触媒8 24 …… 実施例4 触媒13+触媒9 88 78 実施例5 触媒13+触媒10 93 87 実施例6 触媒13+触媒11 80 76 比較例6 触媒13+触媒12 48 …… 実施例7 触媒14+触媒1 92 84 実施例8 触媒15+触媒1 85 87 実施例9 触媒16+触媒1 93 85 比較例7 触媒17+触媒1 91 68 実施例10 触媒18+触媒19 84 77 ──────────────────────────────── 表2より実施例1〜10および比較例7は、初期脱硝性
能が80%以上であり、比較例1〜6に比べて優れた性
能を示した。また、実施例1〜10は、5ppmSO
共存条件で8時間反応させた後も75%以上の性能を有
し、比較例7よりも優れた性能を示した。
[Table 2] Catalyst layer Initial performance 8 hours after 1st stage 2nd stage Denitration rate (% ) Denitration rate (%) 実 施 Example 1 Catalyst 13 + Catalyst 1 90 85 Example 2 Catalyst 13 + Catalyst 2 88 82 Example 3 Catalyst 13 + Catalyst 3 88 83 Comparative Example 1 Catalyst 13 + Catalyst 4 29 ... Comparative Example 2 Catalyst 13 + Catalyst 5 12 ... Comparative Example 3 Catalyst 13 + Catalyst 6 38 ... Comparative Example 4 Catalyst 13+ Catalyst 7 35 ... Comparative Example 5 Catalyst 13 + Catalyst 8 24 ... Example 4 Catalyst 13 + Catalyst 9 88 78 Example 5 Catalyst 13 + Catalyst 10 93 87 Example 6 Catalyst 13 + Catalyst 11 80 76 Comparative Example 6 Catalyst 13 + Catalyst 12 48 Example 7 Catalyst 14 + Catalyst 1 92 84 Example 8 15 + catalyst 1 85 87 Example 9 catalyst 16 + catalyst 1 93 85 Comparative Example 7 catalyst 17 + catalyst 1 91 68 Example 10 catalyst 18 + catalyst 19 84 77よ り From Table 2, Examples 1 to 10 and Comparative Example 7 have an initial denitration performance of 80% or more, which is superior to Comparative Examples 1 to 6. Indicated. In Examples 1 to 10, 5 ppm SO 2
Even after reacting for 8 hours under the coexistence condition, it had a performance of 75% or more, showing a performance superior to that of Comparative Example 7.

【0042】[0042]

【発明の効果】以上のように、本発明による排ガス浄化
用触媒層および排ガス浄化用触媒被覆構造体と、これら
を用いた排ガス浄化方法によれば、SOxと水蒸気が共
存する希薄燃焼排ガス中に含まれる窒素酸化物を高い脱
硝率で還元浄化できることから内燃機関の燃焼排ガス中
の窒素酸化物の浄化に有用である。
As described above, according to the exhaust gas purifying catalyst layer and the exhaust gas purifying catalyst coating structure of the present invention and the exhaust gas purifying method using the same, the lean combustion exhaust gas in which SOx and water vapor coexist is contained in the lean combustion exhaust gas. Since nitrogen oxides contained therein can be reduced and purified at a high denitration rate, they are useful for purification of nitrogen oxides in combustion exhaust gas of an internal combustion engine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 35/10 301 F01N 3/28 301E F01N 3/28 301 B01D 53/36 102H (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 茅野 邦秀 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社沼津工場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 35/10 301 F01N 3/28 301E F01N 3/28 301 B01D 53/36 102H (72) Inventor Atsushi Katakei Ichikawa, Chiba (18) Inventor Kunihide Chino Kunihide Chino 678 Ipponmatsu, Numazu City, Shizuoka Prefecture N-Chem Cat Co., Ltd. Numazu Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CaO、MgO、SrO、BaOより選
ばれた少なくとも1種のアルカリ土類金属酸化物からな
る触媒Aと、窒素ガス吸着法により測定された細孔半径
と細孔容積の関係が、細孔半径300オングストローム
以下の細孔の占める細孔容積の合計値をXとし、細孔半
径25オングストローム以上で100オングストローム
未満の細孔の占める細孔容積の合計値をYとし、細孔半
径100オングストローム以上で300オングストロー
ム以下の細孔の占める細孔容積の合計値をZとしたと
き、YがXの70%以上であり、ZがXの20%以下で
あるような細孔構造を有するアルミナ担体に銀を含有さ
せてなる触媒Bとから構成されることを特徴とする排ガ
ス浄化用触媒層。
1. A catalyst A comprising at least one kind of alkaline earth metal oxide selected from CaO, MgO, SrO, and BaO, and a relationship between a pore radius and a pore volume measured by a nitrogen gas adsorption method. X is the total value of the pore volume occupied by pores having a pore radius of 300 Å or less, and Y is the total value of pore volume occupied by pores having a pore radius of 25 Å or more and less than 100 Å. When the total value of the pore volume occupied by pores of 100 Å or more and 300 Å or less is Z, the pore structure has a pore structure in which Y is 70% or more of X and Z is 20% or less of X. An exhaust gas purifying catalyst layer comprising: a catalyst B comprising silver contained in an alumina carrier.
【請求項2】 多数の貫通孔を有する耐火性材料からな
る一体構造の支持基質における少なくとも貫通孔の内表
面に請求項1記載の触媒層を区分して被覆してなる排ガ
ス浄化用触媒被覆構造体。
2. A catalyst coating structure for purifying an exhaust gas, wherein at least an inner surface of a through-hole in a support substrate having an integral structure made of a refractory material having a large number of through-holes is divided and coated with the catalyst layer according to claim 1. body.
【請求項3】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記排ガス触
媒含有層に含まれる触媒は請求項1記載の排ガス浄化用
触媒層であることを特徴とする排ガス浄化方法。
3. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the exhaust gas catalyst-containing layer is Item 7. An exhaust gas purifying method comprising the exhaust gas purifying catalyst layer according to Item 1.
【請求項4】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記排ガス浄
化用触媒層に含まれる触媒は請求項2記載の排ガス浄化
用触媒被覆構造体で構成することを特徴とする排ガス浄
化方法。
4. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the exhaust gas-purifying catalyst layer is An exhaust gas purifying method comprising the exhaust gas purifying catalyst-coated structure according to claim 2.
【請求項5】 排ガスの流通方向に対して前記排ガス浄
化用触媒層に含まれる触媒Aが前段に、触媒Bが後段に
区分されて配置されていることを特徴とする請求項3ま
たは4記載の排ガス浄化方法。
5. The exhaust gas purifying catalyst layer according to claim 3, wherein the catalyst A contained in the exhaust gas purifying catalyst layer is disposed at a front stage and the catalyst B is disposed at a rear stage in a flow direction of the exhaust gas. Exhaust gas purification method.
JP8293211A 1996-10-15 1996-10-15 Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby Pending JPH10118489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8293211A JPH10118489A (en) 1996-10-15 1996-10-15 Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8293211A JPH10118489A (en) 1996-10-15 1996-10-15 Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby

Publications (1)

Publication Number Publication Date
JPH10118489A true JPH10118489A (en) 1998-05-12

Family

ID=17791869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8293211A Pending JPH10118489A (en) 1996-10-15 1996-10-15 Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby

Country Status (1)

Country Link
JP (1) JPH10118489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284648A (en) * 2002-11-27 2010-12-24 Volvo Technology Corp Catalyst unit for reduction of nox compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284648A (en) * 2002-11-27 2010-12-24 Volvo Technology Corp Catalyst unit for reduction of nox compound

Similar Documents

Publication Publication Date Title
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH11128688A (en) Purification of waste gas
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH11128689A (en) Purification of waste gas
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH1110002A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst-coated structural body, and exhaust gas purifying method
JPH10235157A (en) Purification of nox in exhaust gas
JPH10165822A (en) Catalyst layer for cleaning of exhaust gas, catalyst coated structure for purification of exhaust gas and purifying method of exhaust gas using them
JPH10137584A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalytic coated structure and exhaust gas purifying method by the same
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JP3155140B2 (en) Denitration catalyst and denitration method
JPH1170338A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure and exhaust purifying process using structure
JPH10118502A (en) Catalyst for purification of exhaust gas, structural body coated with the catalyst and method for purifying exhaust gas