JP2007007606A - Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method - Google Patents

Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method Download PDF

Info

Publication number
JP2007007606A
JP2007007606A JP2005194058A JP2005194058A JP2007007606A JP 2007007606 A JP2007007606 A JP 2007007606A JP 2005194058 A JP2005194058 A JP 2005194058A JP 2005194058 A JP2005194058 A JP 2005194058A JP 2007007606 A JP2007007606 A JP 2007007606A
Authority
JP
Japan
Prior art keywords
exhaust gas
engine exhaust
catalyst
nitrogen oxide
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194058A
Other languages
Japanese (ja)
Inventor
Shinriku Katsuta
晨陸 勝田
Mikiro Kumagai
幹郎 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Research and Innovation
Original Assignee
Institute of Research and Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Research and Innovation filed Critical Institute of Research and Innovation
Priority to JP2005194058A priority Critical patent/JP2007007606A/en
Publication of JP2007007606A publication Critical patent/JP2007007606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine exhaust gas cleaning catalyst, a catalytic reactor and an engine exhaust gas cleaning method for removing a substance to be removed such as nitrogen oxide, particulate matter, carbon monoxide and hydrocarbon from engine exhaust gas. <P>SOLUTION: The engine exhaust gas cleaning catalyst is made by covering a network foam structure with a nitrogen oxide reducing catalyst. The catalytic reactor is composed of the nitrogen oxide reducing catalyst and an oxidation catalyst which is arranged on the downstream side of an engine exhaust gas flow from the reducing catalyst. The cleaning method comprises a step of bringing the engine exhaust gas into contact with the nitrogen oxide reducing catalyst in a coexistence with a prescribed amount of hydrocarbon reductant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、エンジン排出ガス中に含まれる窒素酸化物(以下、NOxともいう)、粒子状物質(以下、PMともいう)、一酸化炭素(以下、COともいう)および炭化水素(以下、HCともいう)等の除去対象物質を除去するためのエンジン排出ガス浄化触媒、触媒反応器および浄化方法に関するものである。さらに詳細には、この発明は、酸素過剰なエンジン排出ガスに含まれる窒素酸化物、粒子状物質、一酸化炭素、炭化水素と還元剤として軽油等のエンジン燃料を共存させることにより、上記排出ガス成分を分解して除去する浄化方法に関するものである。   The present invention relates to nitrogen oxide (hereinafter also referred to as NOx), particulate matter (hereinafter also referred to as PM), carbon monoxide (hereinafter also referred to as CO), and hydrocarbon (hereinafter referred to as HC) contained in engine exhaust gas. The present invention relates to an engine exhaust gas purification catalyst, a catalytic reactor, and a purification method for removing a substance to be removed. More specifically, the present invention relates to the above exhaust gas by coexisting nitrogen oxides, particulate matter, carbon monoxide, hydrocarbons and engine fuel such as light oil as a reducing agent contained in oxygen-excess engine exhaust gas. The present invention relates to a purification method for decomposing and removing components.

(1)エンジン排出ガス中に含まれる窒素酸化物、粒子状物質および一酸化炭素は、従来、白金、パラジウム、ロジウム等の物質を担持してなる三元触媒およびエンジン燃焼システムにより除去されている。しかしながら、ディーゼルエンジンなどリーン燃焼機関から排出されるガスのような酸素過剰排出ガスでは、上記三元触媒による除去効率が低く、有効な触媒ではないという欠点があった。   (1) Nitrogen oxides, particulate matter, and carbon monoxide contained in engine exhaust gas are conventionally removed by a three-way catalyst and an engine combustion system that carry materials such as platinum, palladium, and rhodium. . However, oxygen excess exhaust gas such as gas discharged from a lean combustion engine such as a diesel engine has a drawback that the removal efficiency by the above three-way catalyst is low and it is not an effective catalyst.

(2)エンジン排出ガス用浄化触媒としては、γ−アルミナに白金、パラジウム等を担持した触媒成分を、セラミックハニカム体、メタルハニカム体等のモノリス基材に被覆したものが実用化されている。しかしながら、上記浄化触媒では、エンジン排出ガス中の硫黄化合物(以下、SO2ともいう)が酸化されて硫酸塩や亜硫酸塩を生成するため、上記浄化触媒の使用は、触媒被毒の要因になるという欠点があった。 (2) As an engine exhaust gas purification catalyst, a catalyst component in which platinum, palladium or the like is supported on γ-alumina and coated on a monolith substrate such as a ceramic honeycomb body or a metal honeycomb body has been put into practical use. However, in the purification catalyst, a sulfur compound (hereinafter also referred to as SO 2 ) in the engine exhaust gas is oxidized to produce sulfates and sulfites, so that the use of the purification catalyst causes catalyst poisoning. There was a drawback.

(3)酸素過剰の排出ガス中の窒素酸化物浄化方法としては、アンモニア選択還元法がよく知られている。しかしながら、車等の移動発生源では、毒性の高いアンモニアガスの取り扱いが難しく、その代替として尿素選択還元法が提案されているものの、この尿素選択還元法を用いる場合には、尿素水供給インフラ整備に多額の投資が必要となるという欠点があった。   (3) The ammonia selective reduction method is well known as a method for purifying nitrogen oxide in exhaust gas containing excess oxygen. However, it is difficult to handle highly toxic ammonia gas at mobile sources such as cars, and the urea selective reduction method has been proposed as an alternative. However, when this urea selective reduction method is used, the infrastructure for supplying urea water is improved. However, there is a drawback that a large amount of investment is required.

(4)さらに、窒素酸化物吸蔵還元法が小型車を中心に実用化されている。しかしながら、リーン燃焼とリッチ燃焼の交互の運転が必要であり、燃費および運転制御の観点から大型エンジンでは実用化されていないのが現状である。   (4) Furthermore, the nitrogen oxide storage reduction method has been put into practical use mainly in small cars. However, alternating operation of lean combustion and rich combustion is required, and the current situation is that it has not been put into practical use in large engines from the viewpoint of fuel consumption and operation control.

なお、上記背景技術は当業者一般に知られた技術であって、文献公知発明に係るものではない。   The above background art is a technique generally known to those skilled in the art, and does not relate to a known literature invention.

この発明の第1の目的は、エンジン排出ガスとの接触機会を高めるフォーム状窒素酸化物還元触媒を含むエンジン排出ガス浄化触媒を提供することにある。   A first object of the present invention is to provide an engine exhaust gas purification catalyst including a foamed nitrogen oxide reduction catalyst that increases the chance of contact with engine exhaust gas.

この発明の第2の目的は、硫黄酸化物(SO2)による触媒被毒を防止するために添加されるチタンと、窒素酸化物還元のために添加される銀を担持した窒素酸化物還元触媒をフォーム状構造体に被覆(ウォシュコート)してなるフォーム状窒素酸化物還元触媒を含むエンジン排出ガス浄化触媒を提供することにある。 A second object of the present invention is a nitrogen oxide reduction catalyst carrying titanium added to prevent catalyst poisoning by sulfur oxide (SO 2 ) and silver added for nitrogen oxide reduction. Another object is to provide an engine exhaust gas purification catalyst including a foam-like nitrogen oxide reduction catalyst obtained by coating a foam-like structure with a foam-like structure.

この発明の第3の目的は、上記フォーム状窒素酸化物還元触媒と、白金またはパラジウムを担持したフォーム状酸化触媒とを組み合わせた触媒反応器を提供することにある。   A third object of the present invention is to provide a catalytic reactor in which the above foamed nitrogen oxide reduction catalyst and a foamed oxidation catalyst supporting platinum or palladium are combined.

この発明の第4の目的は、エンジン排出ガスから窒素酸化物、粒子状物質、一酸化炭素および炭化水素等の除去対象物質を効率よく除去するエンジン排出ガス浄化方法を提供することにある。   A fourth object of the present invention is to provide an engine exhaust gas purification method that efficiently removes substances to be removed such as nitrogen oxides, particulate matter, carbon monoxide, and hydrocarbons from engine exhaust gas.

この発明の請求項1記載の発明は、エンジン排出ガス浄化触媒であって、網目状のフォーム構造体に窒素酸化物還元触媒を被覆してなることを特徴とするものである。   The invention according to claim 1 of the present invention is an engine exhaust gas purifying catalyst, wherein a network-like foam structure is coated with a nitrogen oxide reduction catalyst.

この発明の請求項2記載の発明は、上記窒素酸化物還元触媒を、担体としてのγ−アルミナにチタンを担持し、このチタン上にさらに銀を担持してなる複合触媒としたことを特徴とするものである。   The invention according to claim 2 of the present invention is characterized in that the nitrogen oxide reduction catalyst is a composite catalyst in which titanium is supported on γ-alumina as a support and silver is further supported on the titanium. To do.

この発明の請求項3記載の発明は、触媒反応器であって、上記窒素酸化物還元触媒と、この窒素酸化物還元触媒の排出ガスフロー下流側に配置されると共に、網目状のフォーム構造体上にγ−アルミナ担体を形成し、その上に白金またはパラジウムのうちいずれか一方を担持してなる酸化触媒とを含むことを特徴とするものである。   The invention according to claim 3 of the present invention is a catalytic reactor, which is disposed on the downstream side of the exhaust gas flow of the nitrogen oxide reduction catalyst and the nitrogen oxide reduction catalyst, and has a mesh-like foam structure. A γ-alumina support is formed thereon, and an oxidation catalyst formed by supporting either platinum or palladium thereon is included.

この発明の請求項4記載の発明は、エンジン排出ガス浄化方法であって、理論空燃比より過剰の酸素を含むエンジン排出ガス中に含まれる窒素酸化物と、この窒素酸化物の重量に対して0.5〜3重量比の炭化水素還元剤との共存下で、上記エンジン排出ガスを、請求項1または請求項2に記載の窒素酸化物還元触媒に接触させるステップを含むことを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a method for purifying an engine exhaust gas, the nitrogen oxide contained in the engine exhaust gas containing oxygen in excess of the stoichiometric air-fuel ratio, and the weight of the nitrogen oxide. The method includes the step of bringing the engine exhaust gas into contact with the nitrogen oxide reduction catalyst according to claim 1 or 2 in the presence of a hydrocarbon reducing agent in a ratio of 0.5 to 3 by weight. Is.

この発明の請求項5記載の発明は、エンジン排出ガス浄化方法であって、理論空燃比より過剰の酸素を含むエンジン排出ガス中に含まれる窒素酸化物と、この窒素酸化物の重量に対して0.5〜3重量比の炭化水素還元剤との共存下で、上記エンジン排出ガスを、上記窒素酸化物還元触媒を接触させるステップと、上記エンジン排出ガスと上記窒素酸化物還元触媒との接触後に、上記エンジン排出ガスを上記窒素酸化物還元触媒の排出ガスフロー下流側に配置された酸化触媒に接触させるステップを含むことを特徴とするものである。   The invention according to claim 5 of the present invention is a method for purifying engine exhaust gas, wherein the nitrogen oxide contained in the engine exhaust gas containing oxygen in excess of the stoichiometric air-fuel ratio and the weight of the nitrogen oxide Contacting the engine exhaust gas with the nitrogen oxide reduction catalyst in the presence of a 0.5 to 3 weight ratio hydrocarbon reducing agent; and contacting the engine exhaust gas with the nitrogen oxide reduction catalyst. The method further comprises contacting the engine exhaust gas with an oxidation catalyst disposed downstream of the exhaust gas flow of the nitrogen oxide reduction catalyst.

この発明の請求項6記載の発明は、エンジン排出ガス浄化方法であって、エンジン排出ガス中の粒子状物質のうち、可溶性有機成分(SOF)を窒素酸化物の除去時に、上記炭化水素還元剤の一部として用いることを特徴とするものである。   The invention according to claim 6 of the present invention is an engine exhaust gas purification method, wherein the hydrocarbon reducing agent is removed from the particulate matter in the engine exhaust gas when the soluble organic component (SOF) is removed from the nitrogen oxides. It is characterized by using as a part of.

この発明によれば、フォーム状窒素酸化物還元触媒を含むように構成したので、この還元触媒とエンジン排出ガスとの接触機会を高めることができ、エンジン排出ガスから窒素酸化物、粒子状物質、炭化水素、一酸化炭素等の除去対象物質を効率よく除去することができるという効果がある。   According to this invention, since it comprised so that the foam-like nitrogen oxide reduction catalyst was included, the contact opportunity of this reduction catalyst and engine exhaust gas can be raised, and nitrogen oxide, particulate matter, There is an effect that a substance to be removed such as hydrocarbon and carbon monoxide can be efficiently removed.

この発明によれば、上記窒素酸化物還元触媒を、担体としてのγ−アルミナにチタンを担持し、このチタン上にさらに銀を担持してなる複合触媒とするように構成したので、銀およびチタンの作用により硫黄酸化物から難分解性の硫酸アルミニウムの生成を抑制し、これにより触媒被毒をも回避することができるという効果がある。   According to the present invention, the nitrogen oxide reduction catalyst is configured to be a composite catalyst in which titanium is supported on γ-alumina as a support and silver is further supported on the titanium. Due to this action, the production of hardly decomposable aluminum sulfate from the sulfur oxide is suppressed, and there is an effect that catalyst poisoning can be avoided.

この発明によれば、触媒反応器を、上記窒素酸化物還元触媒と、この窒素酸化物還元触媒の排出ガスフロー下流側に配置されると共に、網目状のフォーム構造体上にγ−アルミナ担体を形成し、その上に白金またはパラジウムのうちいずれか一方を担持してなる酸化触媒とを含むように構成したので、まず窒素酸化物還元触媒によりエンジン排出ガス中の硫黄酸化物による触媒被毒を回避することができ、次に酸化触媒によりエンジン排出ガス中に添加した軽油等の炭化水素還元剤の未反応物とエンジン排出ガス中の粒子状物質(煤)との燃焼および一酸化炭素の酸化を行うことで、共に炭酸ガスと水に分解してエンジン排出ガスの浄化を図ることができるという効果がある。   According to the present invention, the catalytic reactor is disposed on the downstream side of the nitrogen oxide reduction catalyst and the exhaust gas flow of the nitrogen oxide reduction catalyst, and the γ-alumina support is placed on the network foam structure. And the catalyst is poisoned by sulfur oxides in the engine exhaust gas by a nitrogen oxide reduction catalyst. Combustion of unreacted hydrocarbon reducing agent such as light oil added to engine exhaust gas by oxidation catalyst and particulate matter (soot) in engine exhaust gas and oxidation of carbon monoxide By performing the above, there is an effect that the engine exhaust gas can be purified by decomposing both into carbon dioxide gas and water.

この発明によれば、エンジン排出ガス浄化方法を、理論空燃比より過剰の酸素を含むエンジン排出ガス中に含まれる窒素酸化物と、この窒素酸化物の重量に対して0.5〜3重量比の炭化水素還元剤との共存下で、上記エンジン排出ガスを、上記窒素酸化物還元触媒を接触させるステップと、上記エンジン排出ガスと上記窒素酸化物還元触媒との接触後に、上記エンジン排出ガスを上記窒素酸化物還元触媒の排出ガスフロー下流側に配置された酸化触媒に接触させるステップを含むように構成したので、まず窒素酸化物還元触媒によりエンジン排出ガス中の硫黄酸化物による触媒被毒を回避することができ、次に酸化触媒によりエンジン排出ガス中に添加した軽油等の炭化水素還元剤の未反応物とエンジン排出ガス中の粒子状物質(煤)との燃焼および一酸化炭素の酸化を行うことで、共に炭酸ガスと水に分解してエンジン排出ガスの浄化を図ることができるという効果がある。   According to the present invention, the engine exhaust gas purification method is performed by using a nitrogen oxide contained in an engine exhaust gas containing oxygen in excess of the stoichiometric air-fuel ratio and a weight ratio of 0.5 to 3 to the weight of the nitrogen oxide. The engine exhaust gas is contacted with the nitrogen oxide reduction catalyst in the presence of the hydrocarbon reducing agent, and after the engine exhaust gas and the nitrogen oxide reduction catalyst are contacted, the engine exhaust gas is Since it is configured to include the step of contacting the oxidation catalyst disposed downstream of the exhaust gas flow of the nitrogen oxide reduction catalyst, first, the catalyst poisoning by the sulfur oxide in the engine exhaust gas is performed by the nitrogen oxide reduction catalyst. Next, the unreacted substance of hydrocarbon reducing agent such as light oil added to the engine exhaust gas by the oxidation catalyst and particulate matter (soot) in the engine exhaust gas By performing the oxidation of the baked and carbon monoxide, there is an effect that both can be decomposed into carbon dioxide and water promote purification of engine exhaust gases.

この発明によれば、エンジン排出ガス浄化方法において、エンジン排出ガス中の粒子状物質のうち、可溶性有機成分(SOF)を窒素酸化物の除去時に、上記炭化水素還元剤の一部として用いるように構成したので、この炭化水素還元剤とエンジン排出ガス中の粒子状物質(煤)との燃焼および一酸化炭素の酸化を効率よく行うことができると共に、触媒温度範囲が広く、燃料である軽油を炭化水素還元剤とする窒素酸化物還元方法という点で、移動発生源である、例えば自動車に対して有利に適用することができるという効果がある。   According to this invention, in the engine exhaust gas purification method, the soluble organic component (SOF) among the particulate matter in the engine exhaust gas is used as a part of the hydrocarbon reducing agent when removing the nitrogen oxides. As a result, combustion of this hydrocarbon reducing agent and particulate matter (soot) in engine exhaust gas and oxidation of carbon monoxide can be performed efficiently, and the catalyst temperature range is wide, and light oil as a fuel can be used. In terms of a nitrogen oxide reduction method using a hydrocarbon reducing agent, there is an effect that it can be advantageously applied to, for example, automobiles that are mobile sources.

実施の形態1.
この発明の実施の形態1によるエンジン排出ガス浄化触媒は、網目状のフォーム構造体に窒素酸化物還元触媒を被覆してなり、上記窒素酸化物還元触媒は、担体としてのγ−アルミナにチタンを担持し、このチタン上にさらに銀を担持してなる複合触媒としたものである。
Embodiment 1 FIG.
The engine exhaust gas purifying catalyst according to Embodiment 1 of the present invention is obtained by coating a nitrogenous oxide reduction catalyst on a network-like foam structure, and the nitrogen oxide reduction catalyst comprises titanium on γ-alumina as a carrier. The composite catalyst is formed by supporting and further supporting silver on the titanium.

(フォーム状構造体)
この実施の形態1で用いられるフォーム状構造体としては特に限定するものではなく、例えば、金属発泡体、ウレタンフォーム基材にセラミック成分をコートしたのち、焼成処理により形成されたセラミックフォーム体、ウレタンフォーム基材に対して、鉄、ニッケル、クロムなどの一種類または二種類をメッキ処理した金属フォーム体などを使用することができる。このようなフォーム状構造体は、90%以上の高気孔率および連結空孔により比表面積が相対的に高い多孔質材料であり、実質的に網目状となることから、一種のフィルタとして利用することができるものである。また、このフォーム状構造体は、この構造体に対してガス流体を供給することで、ガス流体に乱流状態を形成させ、排出ガス成分と触媒金属との接触効果を大きくすることができる点で、従来の浄化触媒より格段に有利である。
(Foam-like structure)
The foam-like structure used in the first embodiment is not particularly limited. For example, a ceramic foam body or urethane formed by firing a metal foam or urethane foam base material after coating a ceramic component. A metal foam body or the like obtained by plating one or two types of iron, nickel, chromium and the like on the foam base material can be used. Such a foam-like structure is a porous material having a relatively high specific surface area due to a high porosity of 90% or more and connected pores, and has a substantially mesh shape, so that it is used as a kind of filter. It is something that can be done. In addition, the foam-like structure can form a turbulent state in the gas fluid by supplying a gas fluid to the structure, thereby increasing the contact effect between the exhaust gas component and the catalyst metal. Therefore, it is much more advantageous than the conventional purification catalyst.

(触媒担体)
触媒の担体としては、アルミナ、シリカ、シリカ・アルミナ、ゼオライト、チタニア等の多孔質体を使用することができる。そのうち、この発明に好適に用いられる担体としては、耐熱性や触媒金属の分散性が高く、またフォーム状構造体との加工が容易なγ−アルミナを挙げることができる。このγ−アルミナは、アルミナが70%以上、好ましくは95%以上の含有するものであり、特に好ましくは、Na2O、K2Oなどの不純物を含まない方がよい。また、触媒の担体としてのγ−アルミナは、一次粒子または二次粒子の状態で使用してもよい。ここで、アルミナ粒子は、アルミナ原料または製造条件(pH、乾燥・焼成温度等)などにより粒径等の性質が異なる。例えば、Al・アルコキシドでは、10〜50Å(1Å=10-10m)、Al塩では1μ(1μ=10-6m)以上の極微粒子(一次粒子)が調製される。また、この一次粒子を造粒加工して得られる二次粒子は10〜1000μの粒径を有しており、これも一次粒子と組み合わせて、あるいは単独で使用することができる。また、上記γ−アルミナは、適当なモノリス基材に被覆して用いることもできる。例えば、金属およびコージェライト製ハニカム材にアルミナゾルなどの接着剤でγ−アルミナを被覆し、乾燥・焼成処理によりハニカム担体を成形することができる。
(Catalyst carrier)
As the catalyst carrier, porous materials such as alumina, silica, silica / alumina, zeolite, titania and the like can be used. Among them, examples of the carrier suitably used in the present invention include γ-alumina, which has high heat resistance and high dispersibility of the catalyst metal and can be easily processed into a foam-like structure. This γ-alumina contains 70% or more of alumina, preferably 95% or more, and particularly preferably does not contain impurities such as Na 2 O and K 2 O. Moreover, you may use (gamma) -alumina as a support | carrier of a catalyst in the state of a primary particle or a secondary particle. Here, the alumina particles have different properties such as particle size depending on the alumina raw material or production conditions (pH, drying / calcination temperature, etc.). For example, ultrafine particles (primary particles) of 10 to 50 Å (1 Å = 10 -10 m) are prepared with Al alkoxide and 1 µ (1 µ = 10 -6 m) or more with Al salt. Moreover, the secondary particle obtained by granulating this primary particle has a particle size of 10-1000 micrometers, and this can also be used alone or in combination with the primary particle. Moreover, the said (gamma) -alumina can also be coat | covered and used for a suitable monolith base material. For example, a honeycomb carrier can be formed by coating a metal and cordierite honeycomb material with γ-alumina with an adhesive such as alumina sol, and drying and firing.

(触媒金属および担持方法)
この実施の形態1における窒素酸化物還元触媒を得る際には、γ−アルミナ担体にチタンおよび銀を担持させるために、金属塩溶液に0.5〜50μmのγ−アルミナ担体を加え、撹拌しながら担持し、固液分離後、120℃の温度で10〜15時間ほど乾燥し、500〜600℃で空気下の焼成を1〜3時間ほど行う方法を使用することができる。ここで、使用する金属化合物としては、チタン化合物として、三塩化チタン、四塩化チタン、チタンテトライソプロポキシド(チタンアルコキシド類)などを挙げることができ、また銀化合物としては硝酸銀、酢酸銀などを挙げることができる。用いられる金属塩溶液の濃度は0.05〜1mol/L程度とされるが、これに限定されるものはでない。
(Catalyst metal and loading method)
In obtaining the nitrogen oxide reduction catalyst in the first embodiment, 0.5-50 μm of γ-alumina support is added to the metal salt solution and stirred in order to support titanium and silver on the γ-alumina support. However, after solid-liquid separation, a method of drying at 120 ° C. for about 10 to 15 hours and firing in air at 500 to 600 ° C. for about 1 to 3 hours can be used. Here, examples of the metal compound to be used include titanium trichloride, titanium tetrachloride, titanium tetraisopropoxide (titanium alkoxides) and the like as titanium compounds, and silver compounds include silver nitrate and silver acetate. Can be mentioned. Although the density | concentration of the metal salt solution used shall be about 0.05-1 mol / L, it is not limited to this.

上記担持方法により、γ−アルミナ担体には、まずチタン層が形成され、そのチタン層の上に銀層が形成される。チタン層としては、三塩化チタン、四塩化チタン、チタンアルコキシドのいずれかを用い、γ−アルミナ担体との固液比が2(v/v)になるように加えて撹拌しながら担持する。担持操作後、アンモニア水の中和処理により水酸化チタンを生成させ、固液分離後、120℃の温度で10時間の乾燥、550℃の温度で空気雰囲気にて2〜3時間の焼成を行う。ここで、チタンの化学形態はアナターゼ型が主成分である。なお、窒素酸化物還元触媒に対するチタン担持量は、0.2〜1重量%とされる。   By the above loading method, a titanium layer is first formed on the γ-alumina carrier, and a silver layer is formed on the titanium layer. As the titanium layer, any one of titanium trichloride, titanium tetrachloride, and titanium alkoxide is used, and the solid-liquid ratio with respect to the γ-alumina carrier is 2 (v / v) and supported while stirring. After the loading operation, titanium hydroxide is generated by neutralization with ammonia water, and after solid-liquid separation, drying is performed at a temperature of 120 ° C. for 10 hours, and baking is performed at a temperature of 550 ° C. in an air atmosphere for 2 to 3 hours. . Here, the chemical form of titanium is mainly anatase type. The amount of titanium supported on the nitrogen oxide reduction catalyst is 0.2 to 1% by weight.

銀層は、硝酸銀または酢酸銀溶液に上記チタン担持したものを加えて撹拌しながら担持する。担持後の操作は、チタン層形成と同様に乾燥、焼成を行う。なお、窒素酸化物還元触媒に対する銀担持量は、0.1〜2重量%とされる。   The silver layer is supported with stirring by adding the above-mentioned titanium supported to a silver nitrate or silver acetate solution. In the operation after loading, drying and firing are performed in the same manner as the titanium layer formation. In addition, the silver carrying amount with respect to a nitrogen oxide reduction catalyst shall be 0.1 to 2 weight%.

フォーム状窒素酸化物還元触媒を得るに際して、上記窒素酸化物還元触媒を接着剤としてのアルミナゾル液に撹拌しながら加え、ボールミルで8〜10時間の撹拌を行い、触媒スラリーを調製する。次に、モノリス構造体としてのセラミックフォームまたは金属フォームに対して5〜30重量%の触媒スラリーをウォシュコートし、余分のスラリーは空気で吹き飛ばした後、120℃の温度で10時間の乾燥を行い、550℃の温度で空気雰囲気にて2〜3時間の焼成を行うものをフォーム状窒素酸化物還元触媒とする。   In obtaining the foamed nitrogen oxide reduction catalyst, the nitrogen oxide reduction catalyst is added to the alumina sol solution as an adhesive while stirring, and the mixture is stirred for 8 to 10 hours by a ball mill to prepare a catalyst slurry. Next, 5-30% by weight of catalyst slurry is wash-coated on the ceramic foam or metal foam as a monolith structure, and the excess slurry is blown off with air, followed by drying at a temperature of 120 ° C. for 10 hours. A foamed nitrogen oxide reduction catalyst is obtained by performing calcination in an air atmosphere at a temperature of 550 ° C. for 2 to 3 hours.

このようにして得られた窒素酸化物還元触媒をエンジン排出ガス浄化触媒として用いることで、窒素酸化物と軽油燃料などの有機化合物との共存下で、酸素過剰雰囲気のエンジン排出ガス中の窒素酸化物が除去されると共に、粒子状物質(PM)中の可溶性有機成分(SOF)も窒素酸化物還元剤として作用するために、窒素酸化物と粒子状物質(PM)がエンジン排出ガスから同時に除去される。また、触媒の被毒物質であるエンジン排出ガス中の硫黄酸化物(SO2)が、上記銀の酸化作用により亜硫酸または硫酸に変換され、チタンと反応して硫酸チタンを生成するが、窒素酸化物の還元反応温度が450〜550℃付近に達すると、硫酸チタンが分解されて硫黄酸化物(SO2)として排出されるため、難分解である硫酸アルミニウムの生成が抑制され、触媒被毒も回避できる。特に、触媒温度が400℃以下でも触媒活性の低下がなく、上記触媒による窒素酸化物の除去活性が維持される。 By using the nitrogen oxide reduction catalyst thus obtained as an engine exhaust gas purification catalyst, nitrogen oxidation in engine exhaust gas in an oxygen-excess atmosphere in the presence of nitrogen oxide and an organic compound such as light oil fuel. As the product is removed, the soluble organic component (SOF) in the particulate matter (PM) also acts as a nitrogen oxide reducing agent, so the nitrogen oxide and particulate matter (PM) are simultaneously removed from the engine exhaust gas. Is done. In addition, sulfur oxide (SO 2 ) in engine exhaust gas, which is a poison for the catalyst, is converted to sulfurous acid or sulfuric acid by the oxidation action of silver, and reacts with titanium to produce titanium sulfate. When the reduction reaction temperature of the product reaches around 450 to 550 ° C., titanium sulfate is decomposed and discharged as sulfur oxide (SO 2 ), so that the production of difficult-to-decompose aluminum sulfate is suppressed, and catalyst poisoning is also reduced. Can be avoided. In particular, even when the catalyst temperature is 400 ° C. or lower, the catalyst activity does not decrease, and the nitrogen oxide removal activity by the catalyst is maintained.

以上のように、この実施の形態1によれば、フォーム状窒素酸化物還元触媒を含むように構成したので、この還元触媒とエンジン排出ガスとの接触機会を高めることができ、エンジン排出ガスから窒素酸化物、粒子状物質、炭化水素、一酸化炭素等の除去対象物質を効率よく除去することができるという効果がある。   As described above, according to the first embodiment, since it is configured to include the foam-like nitrogen oxide reduction catalyst, the contact opportunity between the reduction catalyst and the engine exhaust gas can be increased. There is an effect that substances to be removed such as nitrogen oxides, particulate substances, hydrocarbons, and carbon monoxide can be efficiently removed.

この実施の形態1によれば、上記窒素酸化物還元触媒を、担体としてのγ−アルミナにチタンを担持し、このチタン上にさらに銀を担持してなる複合触媒とするように構成したので、銀およびチタンの作用により硫黄酸化物から難分解性の硫酸アルミニウムの生成を抑制し、これにより触媒被毒をも回避することができるという効果がある。   According to the first embodiment, the nitrogen oxide reduction catalyst is configured to be a composite catalyst in which titanium is supported on γ-alumina as a support and silver is further supported on the titanium. By the action of silver and titanium, it is possible to suppress the production of hardly decomposable aluminum sulfate from sulfur oxide, thereby avoiding catalyst poisoning.

なお、この実施の形態1では、モノリス構造体として網目状の金属製のフォーム構造体を用いているが、この発明はこれに限定されるものではなく、他に、セラミックス製のフォーム構造体を用いることもできる。   In the first embodiment, a net-like metal foam structure is used as the monolith structure. However, the present invention is not limited to this, and in addition, a ceramic foam structure is used. It can also be used.

実施の形態2.
この発明の実施の形態2による触媒反応器は、窒素酸化物還元触媒と、この窒素酸化物還元触媒の排出ガスフロー下流側に配置されると共に、網目状のフォーム構造体上にγ−アルミナ担体を形成し、その上に白金またはパラジウムのうちいずれか一方を担持してなる酸化触媒とを含むものである。この触媒反応器では、エンジン側から窒素酸化物還元触媒、酸化触媒の順に配置した構造を採用する。エンジン排出ガス中の窒素酸化物および粒子状物質(可溶性有機成分)はフォーム状窒素酸化物還元触媒で除去され、炭化水素、一酸化炭素および粒子状物質(煤)は酸化触媒で除去される。
Embodiment 2. FIG.
The catalytic reactor according to Embodiment 2 of the present invention is arranged on the downstream side of the exhaust gas flow of the nitrogen oxide reduction catalyst and the nitrogen oxide reduction catalyst, and on the network foam structure, the γ-alumina carrier And an oxidation catalyst formed by supporting either platinum or palladium thereon. This catalytic reactor employs a structure in which a nitrogen oxide reduction catalyst and an oxidation catalyst are arranged in this order from the engine side. Nitrogen oxides and particulate matter (soluble organic components) in the engine exhaust gas are removed with a foam-like nitrogen oxide reduction catalyst, and hydrocarbons, carbon monoxide and particulate matter (soot) are removed with an oxidation catalyst.

酸化触媒の担体は、アルミナゾル(固形分60%以上)と10%相当の硝酸セリウムの混合ゾルを調製し、次にフォーム状基材に対して5〜30重量%の混合ゾルをウォシュコートしたのち、120℃の温度で12時間の乾燥と500℃の温度で空気雰囲気にて2〜3時間程度の焼成を行ってフォーム状アルミナ担体とする。ここで、使用される金属化合物は、テトラアンミン白金水酸塩またはテトラアンミンパラジウム水酸塩を用いてフォーム状アルミナ担体に担持し、120℃の温度で10時間の乾燥、500℃の温度で2時間の焼成したものをフォーム状白金またはパラジウム酸化触媒とする。なお、酸化触媒に対する白金またはパラジウムの担持量は、0.1〜1重量%とされる。   After preparing a mixed sol of alumina sol (solid content of 60% or more) and cerium nitrate equivalent to 10% as the support for the oxidation catalyst, and then wash-coating 5 to 30% by weight of the mixed sol on the foam substrate. Then, drying at 120 ° C. for 12 hours and firing at 500 ° C. in an air atmosphere for about 2 to 3 hours to obtain a foam-like alumina carrier. Here, the metal compound used is supported on a foam-like alumina support using tetraammineplatinum hydrochloride or tetraamminepalladium hydroxide, dried at 120 ° C. for 10 hours, and heated at 500 ° C. for 2 hours. The fired product is used as foamed platinum or palladium oxidation catalyst. The supported amount of platinum or palladium with respect to the oxidation catalyst is 0.1 to 1% by weight.

以上のように、この実施の形態2によれば、窒素酸化物還元触媒と、この窒素酸化物還元触媒の排出ガスフロー下流側に配置された酸化触媒を含むように構成したので、まず窒素酸化物還元触媒によりエンジン排出ガス中の硫黄酸化物による触媒被毒を回避することができ、次に酸化触媒によりエンジン排出ガス中に添加した軽油等の炭化水素還元剤の未反応物とエンジン排出ガス中の粒子状物質(煤)との燃焼および一酸化炭素の酸化を行うことで、共に炭酸ガスと水に分解してエンジン排出ガスの浄化を図ることができるという効果がある。   As described above, according to the second embodiment, the nitrogen oxide reduction catalyst and the oxidation catalyst arranged on the downstream side of the exhaust gas flow of the nitrogen oxide reduction catalyst are configured. The catalyst reduction by sulfur oxides in the engine exhaust gas can be avoided by the product reduction catalyst, and then the unreacted substances such as light oil and other hydrocarbon reducing agents added to the engine exhaust gas by the oxidation catalyst and the engine exhaust gas. Combustion with the particulate matter (soot) in the inside and oxidation of carbon monoxide have the effect that both can be decomposed into carbon dioxide gas and water to purify the engine exhaust gas.

実施の形態3.
この発明の実施の形態3によるエンジン排出ガス浄化方法は、上記フォーム状還元触媒と上記フォーム状酸化触媒を組み合わせた触媒反応器を、エンジンに接続された排気管の途中に設置し、エンジン排出ガスと接触させることにより実施される。このエンジン排出ガスはディーゼルエンジンなどの理論燃焼量より過剰な酸素を含む排出ガスである。
Embodiment 3 FIG.
In the engine exhaust gas purification method according to Embodiment 3 of the present invention, a catalyst reactor in which the foam-like reduction catalyst and the foam-like oxidation catalyst are combined is installed in the middle of an exhaust pipe connected to the engine, and engine exhaust gas is obtained. It is carried out by contacting with. This engine exhaust gas is an exhaust gas containing oxygen in excess of the theoretical combustion amount of a diesel engine or the like.

この実施の形態2による触媒反応器とエンジン排出ガスとの接触に際して、還元剤として燃料や有機化合物を排出ガス中に添加する。還元剤添加量は、排出ガス中の窒素酸化物の重量に対して0.5〜3(重量比)が好ましい。ここで、0.5重量比未満では、上記還元剤の添加効果が低下する一方、3重量比を超えると、上記還元剤の添加効果が頭打ちとなるという理由から、上記添加範囲が設定されている。   When the catalyst reactor according to the second embodiment is brought into contact with the engine exhaust gas, a fuel or an organic compound is added to the exhaust gas as a reducing agent. The reducing agent addition amount is preferably 0.5 to 3 (weight ratio) with respect to the weight of nitrogen oxides in the exhaust gas. Here, when the ratio is less than 0.5 weight ratio, the effect of adding the reducing agent is reduced, whereas when the weight ratio exceeds 3 weight ratio, the addition effect of the reducing agent reaches a peak, so the addition range is set. Yes.

触媒反応器の具体的な運転方法では、排出ガス温度が350℃に達すると、還元剤の添加が開始されて排出ガス中の窒素酸化物がフォーム状窒素酸化物還元触媒により窒素と酸素に分解され、この時に粒子状物質(可溶性有機成分)も還元剤として作用されるために炭酸ガスと水に分解される。次に、フォーム状窒素酸化物還元触媒を通過した排出ガス中に残存する未反応還元剤や一酸化炭素、粒子状物質(煤)がフォーム状酸化触媒と接触することにより炭酸ガスと水に分解される。   In a specific operation method of the catalytic reactor, when the exhaust gas temperature reaches 350 ° C., the addition of the reducing agent is started, and the nitrogen oxide in the exhaust gas is decomposed into nitrogen and oxygen by the foamed nitrogen oxide reduction catalyst. At this time, the particulate matter (soluble organic component) is also decomposed into carbon dioxide gas and water because it acts as a reducing agent. Next, unreacted reducing agent, carbon monoxide, and particulate matter (soot) remaining in the exhaust gas that has passed through the foamed nitrogen oxide reduction catalyst are decomposed into carbon dioxide and water by contacting the foamed catalyst. Is done.

このように、この実施の形態3によるエンジン排出ガス浄化方法では、酸素過剰雰囲気の排出ガス中の窒素酸化物、粒子状物質、炭化水素および一酸化炭素を、従来の浄化触媒よりも効率よく除去し、上記排出ガスを確実に浄化することができる。特に、窒素酸化物と粒子状物質を効率よく、同時に除去することができる。   Thus, in the engine exhaust gas purification method according to Embodiment 3, nitrogen oxides, particulate matter, hydrocarbons, and carbon monoxide in exhaust gas in an oxygen-excess atmosphere are removed more efficiently than conventional purification catalysts. In addition, the exhaust gas can be reliably purified. In particular, nitrogen oxides and particulate matter can be efficiently and simultaneously removed.

以下の実施例により、この発明をさらに詳細に説明する。ただし、以下の実施例によりこの発明が限定されるものではない。
実施例1
(NOx還元触媒)
γ−アルミナ(水沢化学工業製)を0.5〜30μmの粒度に破砕したものを担体とした。この担体を、三塩化チタン溶液(0.06mol/L)に固液比2(v/v)の割合になるように加え、50℃の温度で1時間撹拌しながら担持した。固液分離後、固体(担体)の2倍量のイオン交換水で3回の水洗を行い、次に、50℃の2倍量の水中に移し、撹拌しながらアンモニア水を加えて中和(pH=7)したのち、120℃で12時間の乾燥および550℃で3時間の空気下での焼成を行い、γ−アルミナ上にチタン担持層を形成した。次に、このチタン担持物を硝酸銀溶液(0.12mol/L)に加え、撹拌しながら30℃で40分間の担持操作を行い、固液分離後、2倍量のイオン交換水で1回、水洗した後、120℃で12時間の乾燥および550℃で1時間の空気下での焼成を行った。このようにして得られた粉末状NOx還元触媒の金属担持量は、チタン量が0.17重量%、銀量が0.6重量%であった。
The following examples illustrate the invention in more detail. However, the present invention is not limited to the following examples.
Example 1
(NOx reduction catalyst)
A carrier obtained by crushing γ-alumina (manufactured by Mizusawa Chemical Co., Ltd.) to a particle size of 0.5 to 30 μm was used. This carrier was added to a titanium trichloride solution (0.06 mol / L) at a solid-liquid ratio of 2 (v / v) and supported while stirring at a temperature of 50 ° C. for 1 hour. After solid-liquid separation, it is washed three times with twice the amount of ion-exchanged water of the solid (carrier), then transferred to twice the amount of water at 50 ° C., and neutralized by adding aqueous ammonia while stirring ( After pH = 7), drying at 120 ° C. for 12 hours and firing at 550 ° C. for 3 hours in air were performed to form a titanium support layer on γ-alumina. Next, this titanium-supported product is added to a silver nitrate solution (0.12 mol / L), and a supporting operation is performed at 30 ° C. for 40 minutes with stirring. After solid-liquid separation, once with twice the amount of ion-exchanged water, After washing with water, drying at 120 ° C. for 12 hours and baking at 550 ° C. for 1 hour in air were performed. The amount of metal supported on the powdered NOx reduction catalyst thus obtained was 0.17% by weight of titanium and 0.6% by weight of silver.

NOx還元触媒のフォーム状成形は、粉末状NOx還元触媒50容、アルミナゾル13容、メチルセルロース0.5容、水170容の割合で500ccのボールミルに入れ、回転数80rpm、6時間の条件で混合して触媒スラリーを調製した。この触媒スラリーを、セル数30ヶ/インチ(孔径0.8mm)、体積40ccの金属(ニッケル)フォームに対して120g/Lの割合になるように被覆(ウォシュコート)し、120℃で6時間の乾燥および500℃で90分の空気下での焼成を行った。   The NOx reduction catalyst in the form of foam is placed in a 500 cc ball mill at a ratio of 50 parts of powdered NOx reduction catalyst, 13 parts of alumina sol, 0.5 part of methylcellulose and 170 parts of water, and mixed under conditions of a rotation speed of 80 rpm and 6 hours. A catalyst slurry was prepared. This catalyst slurry was coated (wash coated) at a rate of 120 g / L with respect to a metal (nickel) foam having a cell number of 30 / inch (pore diameter: 0.8 mm) and a volume of 40 cc, and was heated at 120 ° C. for 6 hours. Were dried and calcined in air at 500 ° C. for 90 minutes.

NOx除去性能試験は、酸素10%、NOx濃度600ppm、水分濃度7%、SO2濃度10ppm、バランスガスを窒素ガスとする模擬排出ガスを用い、固定床流通式で空間速度(SV)が20,000/hを行った。このときの還元剤としては軽油を用い、NOx量に対して1倍量(軽油/NOx=1(w/w))を添加した。なお、連続試験の触媒温度を350℃、400℃、450℃および500℃とした上で、それぞれの温度ごとに触媒反応器前後のNOx濃度比から常圧化学発光法により算出したNOx除去率を表1に示した。

Figure 2007007606
The NOx removal performance test uses a simulated exhaust gas with oxygen 10%, NOx concentration 600 ppm, moisture concentration 7%, SO 2 concentration 10 ppm, balance gas nitrogen gas, and a fixed bed flow type with a space velocity (SV) of 20, 000 / h. At this time, light oil was used as a reducing agent, and 1-fold amount (light oil / NOx = 1 (w / w)) was added to the amount of NOx. The catalyst temperature in the continuous test was set to 350 ° C., 400 ° C., 450 ° C., and 500 ° C., and the NOx removal rate calculated by the atmospheric pressure chemiluminescence method from the NOx concentration ratio before and after the catalyst reactor for each temperature. It is shown in Table 1.
Figure 2007007606

比較例1
実施例1の粉末状NOx還元触媒を300セル/インチ2のメタルハニカム基材(直径36mm、高さ50m)に、実施例1と同様の触媒スラリーを重量比で20%のウォシュコートし、ハニカム状NOx還元触媒を調製した。NOx除去性能試験は、酸素10%、NOx濃度600ppm、水分濃度7%、SO2濃度10ppm、バランスガスは窒素ガスとする模擬排出ガスを用い、固定床流通式で空間速度(SV)が20,000/hを行った。このときの還元剤は軽油を用い、NOx量に対して1倍量(軽油/NOx=1(w/w))を添加した。なお、連続試験の触媒温度は実施例1と同様である。また、常圧化学発光法にて触媒反応器前後のNOx濃度比からNOx除去率を算出し、その結果を表2に示した。

Figure 2007007606
Comparative Example 1
The powdered NOx reduction catalyst of Example 1 was applied to a metal honeycomb substrate (diameter 36 mm, height 50 m) of 300 cells / inch 2 , and the catalyst slurry similar to Example 1 was wash-coated at a weight ratio of 20%. A NOx reduction catalyst was prepared. The NOx removal performance test was conducted using a simulated exhaust gas in which oxygen is 10%, NOx concentration is 600 ppm, moisture concentration is 7%, SO 2 concentration is 10 ppm, and the balance gas is nitrogen gas, and the space velocity (SV) is 20, 000 / h. At this time, gas oil was used as the reducing agent, and 1-fold amount (light oil / NOx = 1 (w / w)) was added to the NOx amount. The catalyst temperature in the continuous test is the same as in Example 1. Further, the NOx removal rate was calculated from the NOx concentration ratio before and after the catalytic reactor by the atmospheric pressure chemiluminescence method, and the results are shown in Table 2.
Figure 2007007606

実施例1による表1のフォーム状NOx還元触媒のNOx除去率は、比較例1による表2のハニカム状NOx還元触媒と比較すると、400℃以上のNOx除去活性が約10%強高く、また350℃では約20%も高かった。また50時間経過後のNOx除去率を見ると、いずれの触媒温度においても除去率の低下が認められなかった。   The NOx removal rate of the foam-like NOx reduction catalyst of Table 1 according to Example 1 is about 10% higher than that of the honeycomb-like NOx reduction catalyst of Table 2 according to Comparative Example 1 by about 10%, and 350 At 20 ° C., it was about 20% higher. In addition, when the NOx removal rate after 50 hours had elapsed, no reduction in the removal rate was observed at any catalyst temperature.

このように、網目構造を持つフォーム状NOx還元触媒では、触媒層内の排ガスは乱流を形成するために、反応効率が高く、ハニカム状触媒よりも有利であることがわかる。   Thus, it can be seen that in the foam-like NOx reduction catalyst having a network structure, the exhaust gas in the catalyst layer forms a turbulent flow, so that the reaction efficiency is high and it is more advantageous than the honeycomb catalyst.

実施例2
(酸化触媒)
セル数50ヶ/インチ (孔径0.5mm)、体積20ccの金属(ニッケル)フォームにアルミナゾルと硝酸セリウム7容の混合物の10重量%相当をウォシュコートし、120℃の温度の6時間乾燥、500℃で2時間の空気下での焼成を行い、γ−アルミナ担体を調製した。この担体をテトラアンミン白金水酸塩(0.1mol/L)に浸積し、120℃で4時間の乾燥、500℃で2時間の焼成を行って、フォーム状白金触媒を調製した。この時の白金担持量は0.5重量%であった。
Example 2
(Oxidation catalyst)
A metal (nickel) foam of 50 cells / inch (pore diameter 0.5 mm) and a volume of 20 cc was wash-coated with 10% by weight of a mixture of alumina sol and 7 parts of cerium nitrate, dried at 120 ° C. for 6 hours, 500 Firing was performed in air at 2 ° C. for 2 hours to prepare a γ-alumina carrier. This support was immersed in tetraammineplatinum hydrochloride (0.1 mol / L), dried at 120 ° C. for 4 hours, and calcined at 500 ° C. for 2 hours to prepare a foam-like platinum catalyst. The platinum loading at this time was 0.5% by weight.

実施例3
(触媒反応器)
ステンレス製触媒反応器(直径36mm、長さ30cm)内に、まずエンジン側に実施例1および実施例2で調製したフォーム状NOx還元触媒40ccを充填し、この還元触媒よりも排出ガスフローの下流側に白金触媒20ccを充填し、エンジン排出ガス中の窒素酸化物(NOx)、黒煙、炭化水素(HC)および一酸化炭素(CO)の各濃度の触媒温度に対する除去率を調べ、触媒反応器の性能を確認した。
Example 3
(Catalytic reactor)
In a stainless steel catalyst reactor (diameter 36 mm, length 30 cm), first, 40 cc of the foam-like NOx reduction catalyst prepared in Example 1 and Example 2 was charged on the engine side, and the exhaust gas flow was more downstream than this reduction catalyst. 20cc of platinum catalyst is packed on the side, and the removal rate of each concentration of nitrogen oxide (NOx), black smoke, hydrocarbon (HC) and carbon monoxide (CO) in the engine exhaust gas with respect to the catalyst temperature is investigated, and the catalytic reaction The performance of the vessel was confirmed.

用いたエンジンは、直接噴射式燃料ポンプ、排気量2400ccのディーゼルエンジンに交流式発電機を付けたものであり、触媒反応器は排気管の途中から分岐したところに設置した。エンジン排出ガスの組成は、NOx:600〜700ppm、酸素:8〜10%、CO:90〜110ppm、HC:160〜400ppm、水分:4〜7%であった。   The engine used was a direct-injection fuel pump, a diesel engine with a displacement of 2400 cc and an AC generator, and the catalytic reactor was installed at a position branched from the middle of the exhaust pipe. The composition of the engine exhaust gas was NOx: 600 to 700 ppm, oxygen: 8 to 10%, CO: 90 to 110 ppm, HC: 160 to 400 ppm, and moisture: 4 to 7%.

性能試験条件は、NOx還元触媒がSV20,000/h、白金触媒がSV40,000/h、触媒温度が350〜500℃の範囲で50℃ごとに変えた。還元剤は軽油燃料をNOx量に対して1倍量(w/w)を触媒反応器の直前に添加した。成分分析では、NOxは化学発光法、酸素は磁気風式、COは非分散赤外分光法(NDIR)、HCは水素炎イオン化(FID)、水分が重量法、黒煙濃度はJISZ8808(排ガス中のダスト濃度の測定方法)で行い、各成分の除去率は触媒反応器前後の濃度比から算出し、その結果を表3に示した。

Figure 2007007606
The performance test conditions were changed every 50 ° C. within the range of SV20,000 / h for NOx reduction catalyst, SV40,000 / h for platinum catalyst and 350 to 500 ° C. catalyst temperature. As a reducing agent, a light oil fuel was added in an amount 1 time (w / w) to the amount of NOx immediately before the catalytic reactor. In component analysis, NOx is chemiluminescence, oxygen is magnetic wind, CO is non-dispersive infrared spectroscopy (NDIR), HC is flame ionization (FID), moisture is gravimetric, and black smoke concentration is JISZ 8808 (in exhaust gas) The removal rate of each component was calculated from the concentration ratio before and after the catalytic reactor, and the results are shown in Table 3.
Figure 2007007606

表3より、NOx還元触媒と白金触媒を組み合わせた触媒反応器の除去性能を見ると、窒素酸化物(NOx)は50%強を示し、実施例1と同等性能であった。黒煙はほぼ全量が燃焼していることがわかる。また、炭化水素(HC)と一酸化炭素(CO)も同様にほぼ全量が酸化している。このことから、この実施例3による触媒反応器では、窒素酸化物(NOx)還元反応と同時に余剰軽油還元剤や黒煙、炭化水素(HC)および一酸化炭素(CO)の燃焼が起こり、エンジン排出ガス中の多成分を同時に浄化することができることがわかる。   From Table 3, the removal performance of the catalytic reactor in which the NOx reduction catalyst and the platinum catalyst were combined was observed. Nitrogen oxide (NOx) showed a little over 50%, which was equivalent to Example 1. It can be seen that almost all of the black smoke is burning. Similarly, almost all hydrocarbons (HC) and carbon monoxide (CO) are oxidized. From this, in the catalytic reactor according to Example 3, combustion of surplus light oil reducing agent, black smoke, hydrocarbon (HC) and carbon monoxide (CO) occurs simultaneously with the nitrogen oxide (NOx) reduction reaction, and the engine It can be seen that multiple components in the exhaust gas can be purified simultaneously.

Claims (6)

網目状のフォーム構造体に窒素酸化物還元触媒を被覆してなることを特徴とするエンジン排出ガス浄化触媒。   An engine exhaust gas purification catalyst comprising a mesh-like foam structure coated with a nitrogen oxide reduction catalyst. 上記窒素酸化物還元触媒は、担体としてのγ−アルミナにチタンを担持し、このチタン上にさらに銀を担持してなる複合触媒であることを特徴とする請求項1記載のエンジン排出ガス浄化触媒。   2. The engine exhaust gas purification catalyst according to claim 1, wherein the nitrogen oxide reduction catalyst is a composite catalyst in which titanium is supported on γ-alumina as a carrier and silver is further supported on the titanium. . 請求項1または請求項2に記載の窒素酸化物還元触媒と、この窒素酸化物還元触媒の排出ガスフロー下流側に配置されると共に、網目状のフォーム構造体上にγ−アルミナ担体を形成し、その上に白金またはパラジウムのうちいずれか一方を担持してなる酸化触媒とを含むことを特徴とする触媒反応器。   A nitrogen oxide reduction catalyst according to claim 1 or 2, and a γ-alumina support formed on a network-like foam structure while being arranged downstream of the exhaust gas flow of the nitrogen oxide reduction catalyst. And an oxidation catalyst formed by supporting either platinum or palladium thereon. 理論空燃比より過剰の酸素を含むエンジン排出ガス中に含まれる窒素酸化物と、この窒素酸化物の重量に対して0.5〜3重量比の炭化水素還元剤との共存下で、上記エンジン排出ガスを、請求項1または請求項2に記載の窒素酸化物還元触媒に接触させるステップを含むことを特徴とするエンジン排出ガス浄化方法。   In the coexistence of nitrogen oxides contained in engine exhaust gas containing oxygen in excess of the stoichiometric air-fuel ratio and a hydrocarbon reducing agent in a weight ratio of 0.5 to 3 with respect to the weight of the nitrogen oxides, A method for purifying engine exhaust gas, comprising the step of bringing the exhaust gas into contact with the nitrogen oxide reduction catalyst according to claim 1 or 2. 理論空燃比より過剰の酸素を含むエンジン排出ガス中に含まれる窒素酸化物と、この窒素酸化物の重量に対して0.5〜3重量比の炭化水素還元剤との共存下で、上記エンジン排出ガスを、請求項1または請求項2に記載の窒素酸化物還元触媒を接触させるステップと、上記エンジン排出ガスと上記窒素酸化物還元触媒との接触後に、上記エンジン排出ガスを上記窒素酸化物還元触媒の排出ガスフロー下流側に配置された酸化触媒に接触させるステップを含むことを特徴とする請求項4記載のエンジン排出ガス浄化方法。   In the coexistence of nitrogen oxides contained in engine exhaust gas containing oxygen in excess of the stoichiometric air-fuel ratio and a hydrocarbon reducing agent in a weight ratio of 0.5 to 3 with respect to the weight of the nitrogen oxides, The step of bringing the exhaust gas into contact with the nitrogen oxide reduction catalyst according to claim 1 or 2, and the contact between the engine exhaust gas and the nitrogen oxide reduction catalyst, the engine exhaust gas is converted into the nitrogen oxide. 5. The engine exhaust gas purification method according to claim 4, further comprising the step of contacting an oxidation catalyst disposed downstream of the exhaust gas flow of the reduction catalyst. エンジン排出ガス中の粒子状物質のうち、可溶性有機成分を窒素酸化物の除去時に、上記炭化水素還元剤の一部として用いることを特徴とする請求項5記載のエンジン排出ガス浄化方法。   6. The engine exhaust gas purification method according to claim 5, wherein a soluble organic component of particulate matter in the engine exhaust gas is used as a part of the hydrocarbon reducing agent when removing nitrogen oxides.
JP2005194058A 2005-07-01 2005-07-01 Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method Pending JP2007007606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194058A JP2007007606A (en) 2005-07-01 2005-07-01 Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194058A JP2007007606A (en) 2005-07-01 2005-07-01 Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method

Publications (1)

Publication Number Publication Date
JP2007007606A true JP2007007606A (en) 2007-01-18

Family

ID=37746757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194058A Pending JP2007007606A (en) 2005-07-01 2005-07-01 Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method

Country Status (1)

Country Link
JP (1) JP2007007606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052679A (en) * 2009-09-02 2011-03-17 Hyundai Motor Co Ltd Exhaust gas aftertreatment device for diesel engine
JP2011101872A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst
JP2017221868A (en) * 2016-06-13 2017-12-21 株式会社豊田中央研究所 Exhaust gas purifying catalyst and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052679A (en) * 2009-09-02 2011-03-17 Hyundai Motor Co Ltd Exhaust gas aftertreatment device for diesel engine
JP2011101872A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst
JP2017221868A (en) * 2016-06-13 2017-12-21 株式会社豊田中央研究所 Exhaust gas purifying catalyst and method for producing the same

Similar Documents

Publication Publication Date Title
CN107921416B (en) Nitrous oxide removal catalyst for exhaust system
KR102483435B1 (en) Nitrous oxide removal catalysts for exhaust systems
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
KR20170018914A (en) Exhaust gas treatment system
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP3805079B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3771608B2 (en) Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method using the same
JP2001058131A (en) Catalyst for exhaust gas treatment
JP2005169280A (en) Catalyst for cleaning exhaust gas
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11128688A (en) Purification of waste gas
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JPH0462779B2 (en)
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH11128689A (en) Purification of waste gas
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JP2003120265A (en) Catalyst for oxidizing and removing exhaust gas of diesel powered automobile, producing method thereof an using method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071010