JPH10113559A - Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them - Google Patents

Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them

Info

Publication number
JPH10113559A
JPH10113559A JP8286185A JP28618596A JPH10113559A JP H10113559 A JPH10113559 A JP H10113559A JP 8286185 A JP8286185 A JP 8286185A JP 28618596 A JP28618596 A JP 28618596A JP H10113559 A JPH10113559 A JP H10113559A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
gas purifying
purifying
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8286185A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Taiji Sugano
泰治 菅野
Atsushi Kagakui
敦 加岳井
Masaru Ito
賢 伊藤
Yukio Ozaki
幸雄 小崎
Makoto Nagata
誠 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP8286185A priority Critical patent/JPH10113559A/en
Publication of JPH10113559A publication Critical patent/JPH10113559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst layer and a catalyst coating structural body for removing NOx efficiently in diluted combustion exhaust gas and also provide an exhaust gas purifying process for purifying NOx in diluted combustion exhaust gas with high efficiency and high reliability by using the above-referred layer and the structural body. SOLUTION: An exhaust gas purifying catalyst layer is constituted of a catalyst A composed of alumina and a catalyst B composed of an alumina carrier containing silver having a pore structure in which Y is 70% or more of X, and Z is 20% or less of X when the total value of pore volume of pores of radius of 300 angstrom or smaller is set as X, and the total value of pore volume of pores of radius larger than 25 angstrom and smaller than 100 angstrom is set as Y, and the total value of pore volume of pores of diameter larger than 100 angstrom to smaller than 300 angstrom is set as Z in the relationship of the pore radius and the pore volume measured by the nitrogen gas adsorption process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化用触媒層
および排ガス浄化用触媒被覆構造体に関し、さらに詳細
には希薄燃焼領域で運転される内燃機関から排出された
排ガス中の窒素酸化物を高い空間速度で、かつ高効率で
浄化可能な排ガス浄化用触媒層および排ガス浄化方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. The present invention relates to a purification catalyst layer and an exhaust gas purification catalyst-coated structure, and more specifically, it can purify nitrogen oxides in exhaust gas discharged from an internal combustion engine operated in a lean burn region at a high space velocity and with high efficiency. The present invention relates to an exhaust gas purifying catalyst layer and an exhaust gas purifying method.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素とともに、一酸化窒素や二酸化窒素などの窒
素酸化物(NOx)が含まれている。NOxは人体、特
に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保
全の上からも問題視される酸性雨の原因の1つとなって
いる。そのため、これら各種の排ガスから効率よく窒素
酸化物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art In a variety of combustion exhaust gas discharged from an internal combustion engine such as an automobile, nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide are included together with water and carbon dioxide as combustion products. include. NOx not only adversely affects the human body, particularly the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを、主として白金、ロジウム、パラジウム
およびセリアを含むアルミナ触媒に接触させて有害三成
分を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
Combustion at a controlled stoichiometric ratio near 4.7. For exhaust gas treatment, carbon monoxide, hydrocarbons and NOx in the exhaust gas are converted to alumina mainly containing platinum, rhodium, palladium and ceria. A three-way catalyst system has been employed in which three harmful components are simultaneously removed by contact with a catalyst.

【0004】しかしながらこの三元触媒方式は、エンジ
ンが化学量論比で運転されることが絶対条件であるた
め、希薄空燃比で運転される希薄燃焼ガソリンエンジン
の排ガス浄化には適用することができない。また、ディ
ーゼルエンジンは本来希薄燃焼エンジンであるが、その
排ガスに対しては浮遊粒子状物質とNOxの両方に厳し
い規制がかけられようとしている。
However, this three-way catalyst system cannot be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio because it is an absolute condition that the engine is operated at a stoichiometric ratio. . In addition, diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。この技術は、いわゆる固定発生源であるボイ
ラーやディーゼルエンジンからの排ガス脱硝方法として
工業化されているが、この方法においては末反応の還元
剤の回収処理のための特別な装置を必要とし、また臭気
が強く有害なアンモニアを用いるので、自動車などの移
動発生源からの排ガス脱硝技術としては危険性があり適
用できない。
Conventionally, as a method of reducing removing NOx in an oxygen-rich atmosphere, a technique of using NH 3 also adsorb selectively catalyst small amount as the reducing gas has already been established. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called fixed sources, but this method requires a special device for the recovery treatment of the reducing agent of the end reaction, and also has an odor. Since it uses highly harmful ammonia, it cannot be applied as a technique for denitration of exhaust gas from mobile sources such as automobiles because of its danger.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され報告されている。例えば、アルミナやアル
ミナに遷移金属を担持した触媒が、炭化水素を還元剤と
して用いるNOx還元反応に有効であるとする数多くの
報告がある。また特開平4−284848号公報には、
0.1〜4重量%のCu、Fe、Cr、Zn、Ni、V
を含有するアルミナあるいはシリカ−アルミナをNOx
還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Various catalysts have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. Also, JP-A-4-284848 discloses that
0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V
NOx containing alumina or silica-alumina containing
An example of use as a reduction catalyst has been reported.

【0007】さらに、Ptをアルミナに担持した触媒を
用いると、NOx還元反応が200〜300℃程度の低
温領域で進行することが、特開平4−267946号公
報、特開平5−68855号公報や特開平5−1039
49号公報などに報告されている。しかしながら、これ
らの担持貴金属触媒を用いた場合、還元剤である炭化水
素の燃焼反応が過度に促進されたり、地球温暖化の原因
物質の1つといわれているNOが多量に副生し、無害
なNへの還元反応を選択的に進行させることが困難と
なるといった欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C., as disclosed in JP-A-4-267946 and JP-A-5-68855. JP-A-5-1039
No. 49, for example. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O which is one of the substances causing global warming is by-produced, be advanced reduction reaction to harmless N 2 selectively had disadvantage becomes difficult.

【0008】本出願人の−方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。
The inventor of the present applicant has previously found that the use of a catalyst containing silver as a reducing agent with a hydrocarbon in an oxygen-excess atmosphere allows the NOx reduction reaction to proceed selectively. No. 4-281844.

【0009】この開示が行われた後においても、この公
報記載の技術と類似のNOx還元除去技術が特開平4−
354536号公報、特開平5−92124号公報、特
開平5−92125号公報および特開平6−27745
4号公報などに開示されている。
Even after this disclosure is made, a NOx reduction and removal technology similar to the technology described in this publication is disclosed in Japanese Patent Laid-Open No.
JP-A-354536, JP-A-5-92124, JP-A-5-92125 and JP-A-6-27745
No. 4 and the like.

【0010】[0010]

【発明の解決しようとする課題】しかしながら、これら
従来の公報に記載されたアルミナ担持銀触媒は、SOx
および水蒸気共存下での脱硝性能が実用的には未だ不十
分であった。
However, the alumina-supported silver catalysts described in these conventional publications are not suitable for SOx.
And the denitration performance in the presence of steam was still insufficient for practical use.

【0011】本発明は、上記従来技術の欠点を解決すべ
くなされたものであり、その目的とするところは、希薄
燃焼排ガス中のNOxを効率よく除去することができる
排ガス浄化用触媒層および触媒被覆構造体と、これらを
使用しての希薄燃焼排ガス中のNOxを高効率、高信頼
性をもって浄化する排ガス浄化方法を提供することにあ
る。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an exhaust gas purifying catalyst layer and a catalyst capable of efficiently removing NOx in a lean combustion exhaust gas. An object of the present invention is to provide a coating structure and an exhaust gas purifying method for purifying NOx in lean combustion exhaust gas with high efficiency and high reliability using the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、水蒸気と
SOxが共存する希薄燃焼領域において高い脱硝性能を
有する排ガス浄化用触媒層および排ガス浄化用触媒被覆
構造体と、これらを使用しての排ガス浄化方法について
鋭意研究を重ねた結果、排ガスの流通方向に対してアル
ミナからなる触媒Aを前段に、特定の細孔構造を有する
アルミナに銀を含有する触媒Bを後段になるように区分
して配置させることにより上記した問題点を解決できる
ことを見出し本発明を完成するに至った。
Means for Solving the Problems The present inventors have developed an exhaust gas purifying catalyst layer and an exhaust gas purifying catalyst coating structure having high denitration performance in a lean burn region where steam and SOx coexist, and using these. As a result of intensive studies on the exhaust gas purification method, the catalyst A composed of alumina was placed in the first stage in the flow direction of exhaust gas, and the catalyst B containing silver in alumina having a specific pore structure was placed in the second stage. It has been found that the above problems can be solved by arranging them, and the present invention has been completed.

【0013】すなわち、上記課題を解決するための本発
明の第1の実施態様は、アルミナからなる触媒Aと、窒
素ガス吸着法により測定された細孔半径と細孔容積の関
係が、細孔半径300オングストローム以下の細孔の占
める細孔容積の合計値をΧとし、細孔半径25オングス
トローム以上で100オングストローム未満の細孔の占
める細孔容積の合計値をYとし、細孔半径100オング
ストローム以上で300オングストローム以下の細孔の
占める細孔容積の合計値をΖとしたとき、YがΧの70
%以上であり、ΖがΧの20%以下であるような細孔構
造を有するアルミナ担体に銀を含有させてなる触媒Bと
より構成することを特徴とする排ガス浄化用触媒層であ
る。該触媒層は、粉体または成型した状態で排ガスの流
通空間に配置するのが好ましい。
That is, a first embodiment of the present invention for solving the above-mentioned problem is that the relationship between the catalyst A made of alumina and the pore radius and the pore volume measured by the nitrogen gas adsorption method is as follows. The total value of the pore volume occupied by pores having a radius of 300 Å or less is defined as 、, the total value of pore volume occupied by pores having a pore radius of 25 Å or more and less than 100 Å is defined as Y, and a pore radius of 100 Å or more is defined. When the total value of the pore volume occupied by pores of 300 Å or less is defined as Ζ, Y is 70
% Or more and Ζ is 20% or less of Χ. The exhaust gas-purifying catalyst layer is constituted by a catalyst B comprising silver contained in an alumina carrier having a pore structure. The catalyst layer is preferably disposed in a flow space of the exhaust gas in a powdered or molded state.

【0014】また、本発明の第2の実施態様は、多数の
貫通孔を有する耐火性材料からなる支持基質と、該支持
基質における少なくとも該貫通孔の内表面に上記の触媒
を区分して被覆した触媒被覆構造体を特徴とするもので
ある。
In a second embodiment of the present invention, a support substrate made of a refractory material having a large number of through-holes, and the above-mentioned catalyst is coated on at least the inner surface of the through-holes of the support substrate. The present invention is characterized by the catalyst coated structure described above.

【0015】またさらに、本発明の第3の実施態様は希
薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有
層と接触させて排ガス中のNOxを除去する方法におい
て、該触媒含有層に含まれる触媒は前記第1の実施態様
における触媒層または第2の実施態様における触媒被覆
構造体であり、排ガスの流通方向に対して触媒Aが前段
に、触媒Bが後段になるようにして区分して配置されて
いる排ガス浄化方法を特徴とするものである。
Still further, a third embodiment of the present invention is directed to a method of removing NOx in exhaust gas by bringing combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio into contact with a catalyst-containing layer. The catalyst contained is the catalyst layer in the first embodiment or the catalyst-coated structure in the second embodiment, and is divided such that the catalyst A is at the front stage and the catalyst B is at the rear stage in the flow direction of the exhaust gas. It is characterized by an exhaust gas purification method arranged in a manner as described above.

【0016】[0016]

【発明の実施の態様】以下、本発明の詳細およびその作
用についてさらに具体的に説明する。 (触媒の構造およびその製法)本発明の排ガス浄化用触
媒層の触媒Aと触媒Bの主成分の1つであるアルミナ
は、例えば鉱物学上べーマイト、擬ベーマイト、バイア
ライト、あるいはノルストランダイトに分類される水酸
化アルミニウムの粉体やゲルを、空気中あるいは真空中
300〜800℃、好ましくは400〜900℃で加熱
脱水することによって、結晶学的にγ−型、η−型、δ
−型、χ−型あるいはその混合型に分類されるアルミナ
に相転移させたものが脱硝性能上好ましい。他の結晶構
造をとるアルミナ、例えばα−型のアルミナは極端に比
表面積が小さく固体酸性にも乏しいので本発明の触媒成
分としては不適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be described more specifically below. (Catalyst Structure and Method for Producing the Same) Alumina, which is one of the main components of the catalyst A and the catalyst B in the exhaust gas purifying catalyst layer of the present invention, is, for example, boehmite, pseudoboehmite, vialite or norstrandite in terms of mineralogy. The aluminum hydroxide powder or gel classified in the above is heated and dehydrated in air or vacuum at 300 to 800 ° C., preferably 400 to 900 ° C. to crystallographically γ-type, η-type, δ
Those obtained by phase transition to alumina classified into-type, χ-type or a mixed type thereof are preferable from the viewpoint of denitration performance. Alumina having another crystal structure, for example, α-type alumina, is unsuitable as the catalyst component of the present invention because of its extremely small specific surface area and poor solid acidity.

【0017】また、特に触媒Bのアルミナは窒素ガス吸
着法により測定された細孔半径が300オングストロー
ム以下の細孔の占める細孔容積の合計値をΧとし、細孔
半径が25オングストローム以上で100オングストロ
ーム未満の細孔の占める細孔容積の合計値をYとし、細
孔半径が100オングストローム以上で300オングス
トローム以下の細孔の占める細孔容積の合計値をΖとし
たとき、YがΧの70%以上であり、ΖがΧの20%以
下であるような細孔構造を有するアルミナであることが
必要である。細孔構造が、上記した条件を満たさないア
ルミナを本発明の触媒Bにおける担体として用いた場合
には、これにより構成される排ガス浄化用触媒は水蒸気
共存下での排ガスの脱硝性能が不十分であった。従っ
て、本発明の触媒Bの成分として有効なアルミナは、上
記した結晶構造および細孔特性を有するものが適切であ
るといえる。
In particular, the alumina of the catalyst B is defined as the sum of the pore volume occupied by pores having a pore radius of 300 angstroms or less as measured by a nitrogen gas adsorption method, and 100% when the pore radius is 25 angstroms or more. When the total value of the pore volume occupied by pores smaller than Å is defined as Y, and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is defined as Ζ, Y is 70 of Χ. % Or more and Ζ is 20% or less of Χ. In the case where alumina having a pore structure not satisfying the above-mentioned conditions is used as a carrier in the catalyst B of the present invention, the exhaust gas purifying catalyst constituted thereby has insufficient denitration performance of exhaust gas in the presence of steam. there were. Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is suitable as the alumina effective as a component of the catalyst B of the present invention.

【0018】本発明の排ガス浄化用触媒層は、以下のよ
うな触媒である。本発明にかかる触媒層は、アルミナか
らなる触媒Aと、上記した結晶構造および細孔特性を有
するアルミナに銀を含有させてなる触媒Bとから構成さ
れるものである。触媒Bのアルミナに含有される銀の状
態は特に限定されず、金属状態、酸化物状態およびこれ
らの混合状態などが挙げられる。特に、自動車などの内
燃機関の燃焼排ガス組成は運転状態によってその都度変
化するため、触媒は還元雰囲気および酸化雰囲気に曝さ
れる。従って、触媒を構成する活性金属の状態は雰囲気
の変化に伴い変化することが想定される。触媒Bにおけ
る銀の出発原料は特に限定されない。
The exhaust gas purifying catalyst layer of the present invention is the following catalyst. The catalyst layer according to the present invention is composed of a catalyst A made of alumina and a catalyst B made of alumina having the above-mentioned crystal structure and pore characteristics containing silver. The state of silver contained in the alumina of the catalyst B is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, the composition of the combustion exhaust gas of an internal combustion engine such as an automobile changes each time depending on the operation state, and thus the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes with the change of the atmosphere. The starting material of silver in the catalyst B is not particularly limited.

【0019】そして、本発明にかかる触媒Bにおけるア
ルミナに銀を含有させる方法は特に限定されず従来から
行われている手法、例えば吸着法、ポアフィリング法、
インシピエントウェットネス法、蒸発乾固法、スプレー
法などの含浸法、混練法、物理混合法およびこれらの組
み合わせ法など通常採用されている公知の方法を任意に
採用することができる。この場合、アルミナはアルミナ
前駆体物質に銀塩を担持させた後、乾燥、焼成する。ま
た、前記のような特定の細孔構造をとるアルミナまたは
アルミナ担体の製造時に活性金属を含有させてなる触媒
製造法、例えば、アルミニウムアルコキシドのアルコー
ル溶液と銀塩のアルコール溶液を混合後、加熱し加水分
解させるアルコキシド法や、アルミニウム塩と銀塩の混
合水溶液にアルカリを添加して沈殿させる共沈法も適用
できる。触媒Bにおけるアルミナに対する金属換算での
銀の含有量は特に限定されないが、0.1〜10重量%
の範囲が好ましい。銀の担持量が0.1重量%未満では
その効果が発揮されず、また10重量%を超えると還元
剤である炭化水素の燃焼反応が優先的に進行し、NOx
除去特性が低下する。
The method of incorporating silver into alumina in the catalyst B according to the present invention is not particularly limited, and any of the conventional methods such as an adsorption method, a pore filling method,
Any known method such as an impregnating method such as an incipient wetness method, an evaporation to dryness method, and a spray method, a kneading method, a physical mixing method, and a combination thereof can be arbitrarily adopted. In this case, the alumina is dried and fired after the silver salt is supported on the alumina precursor material. Further, a method for producing a catalyst containing an active metal at the time of producing alumina or an alumina carrier having a specific pore structure as described above, for example, mixing an alcohol solution of aluminum alkoxide and an alcohol solution of silver salt, followed by heating. An alkoxide method for hydrolysis and a coprecipitation method in which an alkali is added to a mixed aqueous solution of an aluminum salt and a silver salt for precipitation are also applicable. The content of silver in terms of metal relative to alumina in catalyst B is not particularly limited, but is 0.1 to 10% by weight.
Is preferable. If the amount of silver carried is less than 0.1% by weight, the effect is not exhibited, and if it exceeds 10% by weight, the combustion reaction of hydrocarbons as a reducing agent proceeds preferentially, and NOx
The removal characteristics deteriorate.

【0020】触媒Bの乾燥温度は、特に限定するもので
はなく通常80〜120℃程度で乾燥する。また、焼成
温度は300〜1000℃、好ましくは400〜900
℃程度である。焼成温度が1000℃を超えると、α−
アルミナへの相変態が起こるので好ましくない。このと
きの雰囲気は特に限定されないが、触媒組成に応じて空
気中、不活性ガス中、酸素中などの各雰囲気を適宜選択
すればよい。また、各雰囲気を一定時間毎に交互に代え
てもよい。
The drying temperature of the catalyst B is not particularly limited, and it is usually dried at about 80 to 120 ° C. The firing temperature is 300 to 1000 ° C., preferably 400 to 900.
It is about ° C. If the firing temperature exceeds 1000 ° C, α-
It is not preferable because phase transformation to alumina occurs. The atmosphere at this time is not particularly limited, but each atmosphere such as in air, in an inert gas, or in oxygen may be appropriately selected according to the catalyst composition. In addition, each atmosphere may be alternately changed at regular intervals.

【0021】本発明の第1の実施態様において、排ガス
浄化用の触媒層を形成するに際し、該触媒層は上記した
触媒を所定の形状に成型または粉末状態のまま目的とす
る排ガスが流通する一定の空間内に充填する。触媒層を
成型体とするに際して、その形状は特に制限されず、例
えば粉状、球状、円筒状、ハニカム状、螺旋状、粒状、
ペレット状、リング状など種々の形状を採用することが
できる。これらの形状、大きさなどは使用条件に応じて
任意に選択すればよい。
In the first embodiment of the present invention, when a catalyst layer for purifying exhaust gas is formed, the catalyst layer is formed into a predetermined shape or a predetermined shape through which a target exhaust gas flows in a powder state. Fill in the space. When forming the catalyst layer into a molded body, the shape is not particularly limited, for example, powder, spherical, cylindrical, honeycomb, spiral, granular,
Various shapes such as a pellet shape and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0022】次に、本発明の第2の実施態様の排ガス浄
化用触媒被覆構造体について説明する。ここでいう触媒
被覆構造体とは、多数の貫通孔を有する耐火性材料で構
成された一体構造の支持基質の少なくとも該貫通孔の内
表面に前記した触媒を区分して被覆した構造を有するも
のである。
Next, an exhaust gas purifying catalyst-coated structure according to a second embodiment of the present invention will be described. The catalyst-coated structure referred to here has a structure in which at least the inner surface of the through-hole is coated with the above-mentioned catalyst in a support substrate having an integral structure made of a refractory material having a large number of through-holes. It is.

【0023】該支持基質には、多数の貫通孔が排ガスの
流通方向に沿って設けられるが、その流通方向に垂直な
断面において、通常、開孔率60〜90%、好ましくは
70〜90%であって、その数は1平方インチ(5.0
6cm)当り30〜700個、好ましくは200〜6
00個である。触媒は、少なくとも該貫通孔の内表面上
に被覆されるが、その支持基質の端面や側面に区分して
被覆されていてもよい。
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In a section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. And the number is one square inch (5.0
30 to 700, preferably 200 to 6, 6 cm 2 )
00. The catalyst is coated on at least the inner surface of the through hole, but may be coated separately on the end face or side face of the supporting substrate.

【0024】該耐火性支持基質の材質としては、α−ア
ルミナ、ムライト、コージェライト、シリコンカーバイ
トなどのセラミックスやオーステナイト系、フェライト
系のステンレス鋼などの金属などが使用される。形状も
ハニカムやフォームなどの慣用のものが使用できる。好
ましいものは、コージェライト製やステンレス鋼製のハ
ニカム状の支持基質である。
As the material of the refractory support substrate, ceramics such as α-alumina, mullite, cordierite, and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. Conventional shapes such as honeycombs and foams can be used. Preferred is a honeycomb-shaped support substrate made of cordierite or stainless steel.

【0025】該支持基質への触媒の被覆方法としては、
−定の粒度に整粒した本発明の触媒をバインダーと共
に、またはバインダーを用いないで前記支持基質の内表
面に区分して被覆する、いわゆる通常のウォッシュコー
ト法やゾル−ゲル法が適用できる。また、上記の支持基
質に予めアルミナを被覆しておいて、これに本発明の触
媒活性物質の担持処理を行って触媒被覆層を形成しても
よい。支持基質への触媒層の被覆量は限定されないが、
支持基質単位体積当り50〜250g/l程度が好まし
く、100〜200g/l程度とすることがより好まし
い。
The method of coating the support substrate with a catalyst includes:
A so-called ordinary wash coat method or a sol-gel method, in which the catalyst of the present invention sized to a predetermined particle size is coated separately with or without a binder on the inner surface of the support substrate, can be applied. Alternatively, the support substrate may be coated with alumina in advance, and then the catalyst active layer of the present invention may be subjected to a treatment to form a catalyst coating layer. The coating amount of the catalyst layer on the supporting substrate is not limited,
It is preferably about 50 to 250 g / l, more preferably about 100 to 200 g / l, per unit volume of the supporting substrate.

【0026】次に、本発明の第3の実施態様の排ガス浄
化方法について説明する。本発明の第3の実施態様は、
第1の実施態様の触媒層や第2の実施態様の触媒被覆構
造体を使用して、これと排ガス中のCO、ΗCおよびΗ
といった還元性成分をNOxおよびOといった酸化
性成分で完全酸化するに要する化学量論量近傍から過剰
の酸素を含有する排ガスとを接触させることによって、
NOxはNとΗOにまで還元分解されると同時にΗ
Cなどの還元剤もCΟとΗOに酸化される。
Next, an exhaust gas purifying method according to a third embodiment of the present invention will be described. A third embodiment of the present invention provides:
By using the catalyst layer of the first embodiment and the catalyst-coated structure of the second embodiment, CO, ΗC and Η in the exhaust gas are used.
By two such reducing component contacting a flue gas containing excess oxygen from the stoichiometry near required to complete oxidation with oxidizing components such as NOx and O 2,
NOx is reduced and decomposed to N 2 and { 2 O}
Reducing agent such as C are also oxidized to Eta 2 O and CΟ 2.

【0027】また本発明において触媒Aを前段に、触媒
Bを後段に配置させる理由は、前段の触媒AでSOxを
吸着除去することにより、トータル触媒システムでのS
Ox耐久性を向上させるためである。触媒Aと触媒Bの
割合は、SOx耐久性能とNOx除去性能に応じて任意
に選択すればよい。ディーゼルエンジンの排ガスのよう
に、排ガスそのもののΗC/NOx比が低い場合には、
排ガス中にメタン換算濃度で数百〜数千ppm程度の燃
料ΗCを追加添加した後、本発明の触媒と接触させるシ
ステムを採用すれば充分に高いNOx除去率を達成でき
る。尚、ここでいうΗCとは、パラフィン系炭化水素、
オレフィン系炭化水素および芳香族系炭化水素、アルコ
ール、アルデヒド、ケトン、エーテルなどの含酸素有機
化合物、ガソリン、灯油、軽油、A重油などを含んだも
のを意味する。
In the present invention, the reason why the catalyst A is disposed at the front stage and the catalyst B is disposed at the rear stage is that SOx is adsorbed and removed by the catalyst A at the front stage, so that S in the total catalyst system is removed.
This is for improving the Ox durability. The ratio between the catalyst A and the catalyst B may be arbitrarily selected according to the SOx durability performance and the NOx removal performance. When the ΔC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine,
A sufficiently high NOx removal rate can be achieved by employing a system in which the fuel ΗC is added to the exhaust gas at a concentration of several hundreds to several thousands ppm in terms of methane and then brought into contact with the catalyst of the present invention. Here, ΔC is a paraffinic hydrocarbon,
It means those containing olefinic hydrocarbons and aromatic hydrocarbons, oxygen-containing organic compounds such as alcohols, aldehydes, ketones, and ethers, gasoline, kerosene, light oil, and heavy oil A.

【0028】本発明による触媒層を用いて、希薄空燃比
の領域で運転される内燃機関の燃焼排気ガスを浄化する
際のガス空間速度(SV)は、特に限定されるものでは
ないが、SV5,000h−1以上で200,000h
−1以下とすることが好ましい。
The gas space velocity (SV) when purifying the combustion exhaust gas of the internal combustion engine operated in the region of the lean air-fuel ratio using the catalyst layer according to the present invention is not particularly limited. 200,000h over 000h -1
It is preferably set to -1 or less.

【0029】そして、ガス組成を一定とした場合の脱硝
率は触媒の種類とΗCの種類に依存するが、本発明の触
媒層を用いた場合は、例えばC〜Cのパラフィン、
オレフィンおよびC〜Cの芳香族ΗCに対しては4
50〜600℃、C〜Cのパラフインおよびオレフ
ィンに対しては350〜550℃、C10〜C25のパ
ラフィンおよびオレフィンに対しては250〜500℃
で高い脱硝率を示すため触媒層入口温度を100℃以上
で700℃以下、好ましくは200℃以上で600℃以
下にすることが必要である。
The denitration rate when the gas composition is constant depends on the type of catalyst and the type of ΔC. When the catalyst layer of the present invention is used, for example, C 2 to C 6 paraffin,
4 for olefins and C 6 -C 9 aromatic ΔC
50-600 ° C., 350-550 ° C. for C 6 -C 9 paraffins and olefins, 250-500 ° C. for C 10 -C 25 paraffins and olefins.
In order to exhibit a high denitrification rate, it is necessary to set the catalyst layer inlet temperature at 100 ° C. or higher to 700 ° C. or lower, preferably at 200 ° C. or higher to 600 ° C. or lower.

【0030】[0030]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)触媒Bのアルミナの選定:触媒Bの使用アルミナ
担体の選定のために、表1に示すような比表面積と細孔
分布を有する種々のγ−アルミナにおいて、a〜cが本
発明の範囲に入るアルミナであり、d〜gが本発明の範
囲外のアルミナである。尚、a〜gのアルミナの細孔分
布は、カルロエルバ社製のソープトマチックにより測定
した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of alumina for catalyst B: In order to select an alumina carrier to be used for catalyst B, a to c of various γ-aluminas having a specific surface area and a pore distribution as shown in Table 1 correspond to the present invention. Alumina falling within the range, and d to g are aluminas outside the scope of the present invention. In addition, the pore distribution of alumina of a to g was measured by a soapmatic manufactured by Carlo Elba.

【0031】[0031]

【表1】 ──────────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/Χ(%) Ζ/Χ(%) ──────────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ───────────────────────────────[Table 1] ア ル ミ ナ Alumina specific surface area pore distribution (m 2 / g) Y / Χ (%) Ζ / Χ (%) aa 241 83.2 2. 4b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7} ──────────────────────────────

【0032】(2)触媒層の調製:以下に、本発明の触
媒層を構成するための各触媒の調製についての調製例を
参考例として示す。 [参考例1]表1のγ−アルミナaの前駆体物質である
アルミナ水和物300gを、硝酸銀16.1gを含む9
00mlの水溶液に浸漬した後、撹拌しながら加熱し水
分を蒸発させた。これを110℃で通風乾燥後、空気中
600℃で3時間焼成して触媒1を得た。尚、触媒1に
おける金属換算でのAgの含有量はアルミナに対して
4.5重量%である。
(2) Preparation of catalyst layer: Preparation examples of each catalyst for constituting the catalyst layer of the present invention are shown below as reference examples. REFERENCE EXAMPLE 1 300 g of alumina hydrate, which is a precursor of γ-alumina a in Table 1, was mixed with 16.1 g of silver nitrate.
After being immersed in a 00 ml aqueous solution, the mixture was heated with stirring to evaporate water. This was air-dried at 110 ° C., and then calcined in air at 600 ° C. for 3 hours to obtain Catalyst 1. The content of Ag in the catalyst 1 in terms of metal was 4.5% by weight with respect to alumina.

【0033】[参考例2〜参考例11]同様に、表1に
示すγ−アルミナb〜gが得られる前駆体物質であるア
ルミナ水和物を用いた以外は、参考例1と同様にしてそ
れぞれ触媒2(参考例2)、触媒3(参考例3)、触媒
4(参考例4)、触媒5(参考例5)、触媒6(参考例
6)、触媒7(参考例7)を得た。また、参考例1の触
媒1の調製に際し、銀の含有量を0重量%、1重量%、
3重量%、8重量%とした以外は参考例1と同様にして
触媒8(参考例8)を、触媒9(参考例9)、触媒10
(参考例10)、触媒11(参考例11)を得た。
Reference Examples 2 to 11 Similarly to Reference Example 1, except that alumina hydrate, which is a precursor substance from which γ-alumina b to g shown in Table 1, was obtained, was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3), Catalyst 4 (Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), and Catalyst 7 (Reference Example 7) were obtained. Was. Further, in preparing Catalyst 1 of Reference Example 1, the content of silver was 0% by weight, 1% by weight,
Catalyst 8 (Reference Example 8) was replaced with Catalyst 9 (Reference Example 9) and Catalyst 10 in the same manner as in Reference Example 1 except that 3% by weight and 8% by weight were used.
(Reference Example 10) and Catalyst 11 (Reference Example 11) were obtained.

【0034】[参考例12および13] ハニカム触媒の製造:上記の粉末触媒1の60gを、ア
ルミナゾル(Al固形分10重量%)8gおよび
水120mlと共にボールミルポットに仕込み、湿式粉
砕してスラリーを得た。このスラリーの中に、市販の4
00cpsi(セル/inch)コージェライトハニ
カム基質からくり貫かれた直径1インチ、長さ2.5イ
ンチの円筒状コアを浸漬し、引き上げた後余分のスラリ
ーをエアーブローで除去し乾燥した。その後、500℃
で30分焼成し、ハニカム1L当たりドライ換算で15
0gの固形分を被覆して4.5%Αg/A1組成
のハニカム触媒12(参考例12)を得た。また、表1
のアルミナaのみからなる触媒8(参考例8)を用いた
以外は、前記と同様のハニカム触媒調製法にてA1
組成のハニカム触媒13(参考例13)を得た。
Reference Examples 12 and 13 Production of honeycomb catalyst: 60 g of the above powdered catalyst 1 was charged into a ball mill pot together with 8 g of alumina sol (Al 2 O 3 solid content of 10% by weight) and 120 ml of water, and wet-pulverized. A slurry was obtained. In this slurry, commercially available 4
A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a 00 cpsi (cell / inch 2 ) cordierite honeycomb substrate was immersed, pulled up, and then the excess slurry was removed by air blow and dried. After that, 500 ° C
For 30 minutes at a dry conversion rate of 15L / L honeycomb
By covering the solid content of 0 g, a honeycomb catalyst 12 (Reference Example 12) having a composition of 4.5% Αg / A1 2 O 3 was obtained. Table 1
A1 2 O was prepared in the same manner as in the above-mentioned honeycomb catalyst preparation method except that the catalyst 8 comprising only alumina a (Reference Example 8) was used.
A honeycomb catalyst 13 having three compositions (Reference Example 13) was obtained.

【0035】以下に上記した参考例1〜13の触媒を用
いて形成した排ガス用触媒層について、種々の条件下に
おいて脱硝性能を評価した結果について述べる。
Hereinafter, the results of evaluating the denitration performance of the exhaust gas catalyst layer formed using the catalysts of Reference Examples 1 to 13 under various conditions will be described.

【0036】[実施例1]表1のアルミナaのみからな
る触媒8(参考例8)と参考例1の触媒1をそれぞれ加
圧成型した後、粉砕して粒度を350〜500μmに整
粒し、排ガス流通方向に対して触媒8が前段に、触媒1
が後段になるように内径21mmのステンレス製反応管
に充填して触媒層を形成し、これを常圧固定床流通反応
装置に装着した。なお、触媒8と触媒1の重量比は1:
1である。
Example 1 A catalyst 8 consisting solely of alumina a shown in Table 1 (Reference Example 8) and a catalyst 1 of Reference Example 1 were each subjected to pressure molding, and then pulverized and sized to a particle size of 350 to 500 μm. The catalyst 8 is located upstream of the exhaust gas flow direction,
Was filled in a stainless steel reaction tube having an inner diameter of 21 mm so as to form a catalyst layer, and this was attached to a normal-pressure fixed-bed flow reactor. The weight ratio between the catalyst 8 and the catalyst 1 was 1:
It is one.

【0037】[性能評価例1]この触媒層に、モデル排
ガスとしてNΟ:750ppm、灯油(C):450
0ppm、O:10%、ΗO:10%、残部:N
からなる混合ガスを空間速度78,000h−1で通過
させた。反応管出口ガス組成の分析において、NOとN
の濃度については化学発光式NOx計で測定し、N
O濃度はΡorapack Qカラムを装着したガス
クロマトグラフ・熱伝導度検出器を用いて測定した。触
媒層入口温度を100〜700℃の範囲の所定温度に設
定し、各所定温度毎に反応管出口ガス組成が安定した時
点の値を用い、脱硝率を以下の式で定義した。また、本
発明のいずれの触媒でもNOおよびNOは殆ど生成
しなかった。
[Performance Evaluation Example 1] In this catalyst layer, as a model exhaust gas, NΟ: 750 ppm, kerosene (C 1 ): 450
0 ppm, O 2 : 10%, Δ 2 O: 10%, balance: N 2
Was passed at a space velocity of 78,000 h -1 . In the analysis of the gas composition at the outlet of the reaction tube, NO and N
The concentration of O 2 was measured with a chemiluminescent NOx meter,
The 2O concentration was measured using a gas chromatograph / thermal conductivity detector equipped with a Ρorapack Q column. The catalyst layer inlet temperature was set to a predetermined temperature in the range of 100 to 700 ° C., and the value at the time when the gas composition at the outlet of the reaction tube became stable at each predetermined temperature was used to define the denitration rate by the following equation. Further, N 2 O and NO 2 were hardly produced by any of the catalysts of the present invention.

【0038】[0038]

【式1】 (Equation 1)

【0039】[実施例2〜7および比較例1〜6]触媒
8を前段とし、参考例2、3、9〜11の触媒2、3、
9〜11および参考例4〜7、8の触媒4〜7、8をそ
れぞれ実施例1の触媒1の代わりに後段に用いて、上記
と同様にしてモデルガスによる評価試験を行った。触媒
2、3、9〜11を後段に用いた触媒層を、それぞれ実
施例2〜6とし、触媒4〜7、8を後段に用いた触媒層
を、それぞれ比較例1〜5とした。また、表1のアルミ
ナfのみからなる触媒14と市販のシリカからなる触媒
14をそれぞれ実施例1の触媒8の代わりに前段に用い
て、上記と同様の触媒層を形成し、同様にしてモデルガ
スによる評価試験を行った。触媒14および触媒15を
用いた触媒層を、それぞれ実施例7および比較例6とし
た。表2に、上記実施例および比較例の触媒層について
触媒温度425℃の時の脱硝率C425(%)を示す。
本発明の実施例の触媒層は、比較例の触媒層に比べ70
%以上の高い脱硝性能を示した。
[Examples 2 to 7 and Comparative Examples 1 to 6] The catalyst 8 was used as the first stage, and the catalysts 2, 3, and 9 of Reference Examples 2, 3, and 9 to 11
Evaluation tests using model gases were performed in the same manner as above, except that the catalysts 4 to 7 and 8 of Reference Examples 9 to 11 and Reference Examples 4 to 7 and 8 were used instead of the catalyst 1 of Example 1. Catalyst layers using catalysts 2, 3, and 9 to 11 at the subsequent stage were referred to as Examples 2 to 6, respectively, and catalyst layers using catalysts 4 to 7, 8 at the subsequent stage were referred to as Comparative Examples 1 to 5, respectively. Further, a catalyst layer similar to the above was formed by using the catalyst 14 consisting only of alumina f and the catalyst 14 consisting of commercially available silica in the preceding stage instead of the catalyst 8 of Example 1, respectively. An evaluation test using gas was performed. The catalyst layers using the catalysts 14 and 15 were Example 7 and Comparative Example 6, respectively. Table 2 shows the denitration ratio C 425 (%) at the catalyst temperature of 425 ° C. for the catalyst layers of the above Examples and Comparative Examples.
The catalyst layer of the example of the present invention was 70 times larger than the catalyst layer of the comparative example.
% Or higher denitration performance.

【0040】[性能評価例2]性能評価例1において、
参考例13のハニカム触媒13と参考例12のハニカム
触媒12をそれぞれ直径1.5cm、長さ3.2cmの
円筒状に加工し、排ガス流通方向に対してハニカム触媒
13が前段に、ハニカム触媒12が後段になるように内
径15mmのステンレス製反応管に充填した(実施例
8)。該後段の触媒層に対して、フィードするガスの空
間速度を13,000h−1とした以外は性能評価例1
と同様のモデルガスによる評価試験を行なってその結果
を性能評価例1の結果とともに表2に示す。表2に示す
ように、ハニカム触媒層でも70%以上の高い脱硝性能
を示すことがわかる。
[Performance Evaluation Example 2]
The honeycomb catalyst 13 of Reference Example 13 and the honeycomb catalyst 12 of Reference Example 12 were each processed into a cylindrical shape having a diameter of 1.5 cm and a length of 3.2 cm, and the honeycomb catalyst 13 was positioned upstream in the exhaust gas flow direction. Was filled in a stainless steel reaction tube having an inner diameter of 15 mm so as to be a subsequent stage (Example 8). Performance evaluation example 1 except that the space velocity of the gas to be fed to the latter catalyst layer was 13,000 h -1.
An evaluation test was performed using the same model gas as in Example 1 and the results are shown in Table 2 together with the results of Performance Evaluation Example 1. As shown in Table 2, it can be seen that the honeycomb catalyst layer also shows high denitration performance of 70% or more.

【0041】[0041]

【表2】 ──────────────────────────── 触 媒 層 前段 後段 脱硝率(%) ──────────────────────────── 実施例1 触媒8 触媒1 78.7 実施例2 触媒8 触媒2 74.9 実施例3 触媒8 触媒3 74.2 比較例1 触媒8 触媒4 17.6 比較例2 触媒8 触媒5 2.5 比較例3 触媒8 触媒6 27.1 比較例4 触媒8 触媒7 23.1 比較例5 触媒8 触媒8 33.7 実施例4 触媒8 触媒9 83.1 実施例5 触媒8 触媒10 87.3 実施例6 触媒8 触媒11 75.9 実施例7 触媒14 触媒1 74.2 比較例6 触媒15 触媒1 86.8 実施例8 触媒13 触媒12 70.1 ────────────────────────────[Table 2] ──────────────────────────── Catalyst layer First stage Second stage Denitration rate (%) ──────── ──────────────────── Example 1 Catalyst 8 Catalyst 1 78.7 Example 2 Catalyst 8 Catalyst 2 74.9 Example 3 Catalyst 8 Catalyst 3 74.2 Comparative Example 1 Catalyst 8 Catalyst 4 17.6 Comparative Example 2 Catalyst 8 Catalyst 5 2.5 Comparative Example 3 Catalyst 8 Catalyst 6 27.1 Comparative Example 4 Catalyst 8 Catalyst 7 23.1 Comparative Example 5 Catalyst 8 Catalyst 8 33.7 Example 4 Catalyst 8 Catalyst 9 83.1 Example 5 Catalyst 8 Catalyst 10 87.3 Example 6 Catalyst 8 Catalyst 11 75.9 Example 7 Catalyst 14 Catalyst 1 74.2 Comparative Example 6 Catalyst 15 Catalyst 1 86.8 Example 8 Catalyst 13 Catalyst 12 70.1

【0042】[性能評価例3]実施例1、実施例7およ
び比較例6の触媒層について、性能評価例1のガス組成
にさらにSOを50ppm共存させて1時間反応を行
った。表3に、1時間後の触媒層温度425℃での脱硝
率C425(%)を示す。本発明の実施例の触媒は、比
較例の触媒に比べ55%以上の活性を維持した。
[Performance Evaluation Example 3] The catalyst layers of Examples 1, 7 and Comparative Example 6 were reacted for 1 hour in the gas composition of Performance Evaluation Example 1 in the presence of 50 ppm of SO 2 . Table 3 shows the denitration ratio C 425 (%) at a catalyst layer temperature of 425 ° C. after one hour. The catalysts of the examples of the present invention maintained an activity of 55% or more as compared with the catalyst of the comparative example.

【0043】[0043]

【表3】 ─────────────────── 触媒層 性能評価例3 ─────────────────── 実施例1 61.6 実施例7 57.9 比較例6 43.6 ───────────────────[Table 3] 触媒 Catalyst layer performance evaluation example 3 ─────────────────── Example 1 61.6 Example 7 57.9 Comparative Example 6 43.6

【0044】[0044]

【発明の効果】以上のように、本発明による排ガス浄化
用触媒層および排ガス浄化用触媒被覆構造体と、これら
を用いた排ガス浄化方法によれば、水蒸気が共存する希
薄燃焼排ガス中に含まれる窒素酸化物を高い脱硝率で還
元浄化できること、またSOx耐久性を有することから
内燃機関の燃焼排ガス中の窒素酸化物の浄化に有用であ
る。
As described above, according to the exhaust gas purifying catalyst layer and the exhaust gas purifying catalyst coating structure of the present invention and the exhaust gas purifying method using the same, water vapor is contained in the lean combustion exhaust gas coexisting. Since it can reduce and purify nitrogen oxides with a high denitration rate and has SOx durability, it is useful for purifying nitrogen oxides in combustion exhaust gas of an internal combustion engine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/28 301 B01D 53/36 102H 102B (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 伊藤 賢 東京都港区浜松町2−4−1 エヌ・イー ケムキャット株式会社内 (72)発明者 小崎 幸雄 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社内 (72)発明者 永田 誠 千葉県市川市中国分3−19−3 エヌ・イ ーケムキャット株式会社市川研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F01N 3/28 301 B01D 53/36 102H 102B (72) Inventor Atsushi Katakei 3-18-5 Chugoku-ku, Ichikawa-shi, Chiba Inside the Central Research Laboratory, Metal Mining Co., Ltd. (72) Inventor Ken Ito 2-4-1 Hamamatsucho, Minato-ku, Tokyo NE Chemcat Corporation (72) Inventor Yukio Ozaki 678 Ipponmatsu Numazu City, Shizuoka Prefecture Within the Company (72) Inventor Makoto Nagata 3-19-3, Chugoku, Ichikawa, Chiba Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナからなる触媒Aと、窒素ガス吸
着法により測定された細孔半径と細孔容積の関係が、細
孔半径300オングストローム以下の細孔の占める細孔
容積の合計値をXとし、細孔半径25オングストローム
以上で100オングストローム未満の細孔の占める細孔
容積の合計値をYとし、細孔半径100オングストロー
ム以上で300オングストローム以下の細孔の占める細
孔容積の合計値をZとしたとき、YがXの70%以上で
あり、ZがXの20%以下であるような細孔構造を有す
るアルミナ担体に銀を含有させてなる触媒Bとから構成
されることを特徴とする排ガス浄化用触媒層。
1. The relationship between the catalyst A made of alumina and the pore radius and pore volume measured by a nitrogen gas adsorption method is expressed by the following formula: X is the total value of the pore volume occupied by pores having a pore radius of 300 Å or less. And the total value of the pore volume occupied by pores having a pore radius of 25 Å or more and less than 100 Å is Y, and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is Z. Wherein Y is 70% or more of X and Z is 20% or less of X. The catalyst B comprises silver in an alumina carrier having a pore structure having a pore structure. Exhaust gas purifying catalyst layer.
【請求項2】 多数の貫通孔を有する耐火性材料からな
る一体構造の支持基質における少なくとも貫通孔の内表
面に請求項1記載の触媒を区分して被覆してなる排ガス
浄化用触媒被覆構造体。
2. A catalyst-coated structure for purifying an exhaust gas, wherein at least the inner surface of the through-hole is coated with the catalyst according to claim 1 in a support substrate having an integral structure made of a refractory material having a large number of through-holes. .
【請求項3】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記排ガス触
媒含有層に含まれる触媒は請求項1記載の排ガス浄化用
触媒層であることを特徴とする排ガス浄化方法。
3. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the exhaust gas catalyst-containing layer is Item 7. An exhaust gas purifying method comprising the exhaust gas purifying catalyst layer according to Item 1.
【請求項4】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記排ガス浄
化用触媒層に含まれる触媒は請求項2記載の排ガス浄化
用触媒被覆構造体で構成することを特徴とする排ガス浄
化方法。
4. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer, wherein the catalyst contained in the exhaust gas-purifying catalyst layer is An exhaust gas purifying method comprising the exhaust gas purifying catalyst-coated structure according to claim 2.
【請求項5】 排ガスの流通方向に対して前記排ガス浄
化用触媒層に含まれる触媒Aが前段に、触媒Bが後段に
区分されて配置されていることを特徴とする請求項3ま
たは4記載の排ガス浄化方法。
5. The exhaust gas purifying catalyst layer according to claim 3, wherein the catalyst A contained in the exhaust gas purifying catalyst layer is disposed at a front stage and the catalyst B is disposed at a rear stage in a flow direction of the exhaust gas. Exhaust gas purification method.
JP8286185A 1996-10-08 1996-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them Pending JPH10113559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8286185A JPH10113559A (en) 1996-10-08 1996-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8286185A JPH10113559A (en) 1996-10-08 1996-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them

Publications (1)

Publication Number Publication Date
JPH10113559A true JPH10113559A (en) 1998-05-06

Family

ID=17701055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8286185A Pending JPH10113559A (en) 1996-10-08 1996-10-08 Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them

Country Status (1)

Country Link
JP (1) JPH10113559A (en)

Similar Documents

Publication Publication Date Title
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH11128688A (en) Purification of waste gas
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JPH11128689A (en) Purification of waste gas
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH1110002A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst-coated structural body, and exhaust gas purifying method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10137584A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalytic coated structure and exhaust gas purifying method by the same
JPH10118502A (en) Catalyst for purification of exhaust gas, structural body coated with the catalyst and method for purifying exhaust gas
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JPH1170338A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure and exhaust purifying process using structure
JPH10128070A (en) Exhaust gas purifying catalytic layer, exhaust gas purifying catalyst coated structure and exhaust gas purifying method thereby
JPH10174887A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH10235157A (en) Purification of nox in exhaust gas
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas