JP2002370032A - Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method - Google Patents

Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method

Info

Publication number
JP2002370032A
JP2002370032A JP2001179267A JP2001179267A JP2002370032A JP 2002370032 A JP2002370032 A JP 2002370032A JP 2001179267 A JP2001179267 A JP 2001179267A JP 2001179267 A JP2001179267 A JP 2001179267A JP 2002370032 A JP2002370032 A JP 2002370032A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
alumina
exhaust
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001179267A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
正史 杉山
Kengo Soda
健吾 曽田
Kisao Uekusa
吉幸男 植草
Makoto Nagata
誠 永田
Yasushi Tanaka
康 田中
Takeshi Nagashima
健 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001179267A priority Critical patent/JP2002370032A/en
Publication of JP2002370032A publication Critical patent/JP2002370032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust cleaning catalyst having a high ability to denitrify exhaust containing SOx and water vapor and produced during lean combustion and being excellent in retentivity of that ability, to provide a catalyst molding and a catalyst-coated structure each using the catalyst, and to provide an exhaust cleaning method. SOLUTION: There are provided a catalyst used for cleaning exhaust leaving an internal combustion engine operated in a lean air-fuel ratio and comprising a mixed oxide comprising alumina having a specific surface area of at least 120 m<2> , a bulk density of at least 0.6 g/cm<3> and a true density of at most 2.8 g/cm<3> and silver and tin supported by the alumina, wherein the amount of the supported tin is 0.03-5 wt.% based on the entire catalyst, a catalyst molding and an exhaust-cleaning-catalyst-coated structure each using the catalyst, and an exhaust cleaning method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、ボイラ
ー、ガスエンジン、ガスタービン、船舶などの内燃機関
の燃焼排ガス中に含まれる窒素酸化物の除去に有効な排
ガス浄化用触媒、並びにそれを使用する触媒成形体、触
媒被覆構造体及び排ガス浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst which is effective for removing nitrogen oxides contained in combustion exhaust gas of internal combustion engines such as automobiles, boilers, gas engines, gas turbines and ships, and uses the same. The present invention relates to a catalyst molded body, a catalyst coated structure and an exhaust gas purifying method.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素と共に一酸化窒素や二酸化窒素などの窒素酸
化物(NOx)が含まれている。NOxは人体、特に呼吸
器系に悪影響を及ぼすばかりでなく、地球環境保全の上
から問題視される酸性雨の原因の1つとなっている。そ
のため、これら各種の排ガスから効率よく窒素酸化物を
除去する技術の開発が望まれている。
2. Description of the Related Art Various combustion exhaust gases emitted from internal combustion engines such as automobiles contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide together with water and carbon dioxide as combustion products. Have been. NOx not only has an adverse effect on the human body, especially on the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。該技術は、いわゆる固定発生源であるボイラ
ーやディーゼルエンジンからの排ガス脱硝方法として工
業化されている。しかし、この方法においては未反応の
還元剤の回収処理のために特別な装置を必要とし、また
臭気が強く有害なアンモニアを用いるので自動車などの
移動発生源からの排ガス脱硝技術としては危険性があり
適用できない。
Conventionally, as a method for reducing and removing NOx in an oxygen-excess atmosphere, a technique has been already established in which NH 3 is used as a reducing gas, which is selectively adsorbed to a catalyst even in a small amount. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called stationary sources. However, this method requires a special device to recover the unreacted reducing agent, and uses harmful ammonia that has a strong odor, so there is a danger as a technology for denitration of exhaust gas from mobile sources such as automobiles. Yes, not applicable.

【0004】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この還元反応を促進するための触
媒が種々開発され報告されている。例えば、アルミナや
アルミナに遷移金属を担持した触媒が炭化水素を還元剤
として用いるNOx還元反応に有効であるとする数多く
の報告がある。また、特開平4−284848号公報に
はO.1〜4重量%のCu,Fe,Cr,Zn,Ni,Vを含有
するアルミナあるいはシリカ−アルミナをNOx還元触
媒として使用した例が報告されている。
In recent years, it has been reported that the use of unburned hydrocarbons remaining in a lean burn exhaust gas in an oxygen-excess atmosphere as a reducing agent can promote the NOx reduction reaction. Various catalysts have been developed and reported. For example, there have been many reports that alumina or a catalyst supporting a transition metal on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. JP-A-4-284848 reports an example in which alumina or silica-alumina containing 0.1 to 4% by weight of Cu, Fe, Cr, Zn, Ni, V is used as a NOx reduction catalyst. I have.

【0005】さらに、Ptをアルミナに担持した触媒等
の担持貴金属触媒を用いると、NOx還元反応が200〜3
00℃程度の低温領域で進行することが特開平4−267
946号公報、特開平5−68855号公報、特開平5
−103949号公報などに報告されている。しかしな
がら、これらの担持貴金属触媒を用いた場合、還元剤で
ある炭化水素の燃焼反応が過度に促進されたり、地球温
暖化の原因物質の一つと言われているNOが多量に副
生し、無害なNへの還元反応を選択的に進行させるこ
とが困難であるといった欠点を有していた。
[0005] Further, when a supported noble metal catalyst such as a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction can be 200 to 3 times.
Proceeding in a low temperature region of about 00 ° C.
946, JP-A-5-68855, JP-A-5-6885
This is reported in, for example, JP-A-10-103949. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and N 2 O, which is one of the substances causing global warming, is produced as a by-product. , it is made to proceed the reduction reaction of the harmless N 2 selectively had disadvantage is difficult.

【0006】本出願人の一方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、本技
術を特開平4−281844号公報に開示した。この開
示の後、銀を含有する触媒を用いる類似のNOx還元除
去技術が特開平4−354536号公報、特開平5−9
2124号公報、特開平5−92125号公報及び特開
平6−277454号公報などに開示されている。
One of the present applicants has previously found that the use of a catalyst containing silver with a hydrocarbon as a reducing agent in an oxygen-excess atmosphere causes the NOx reduction reaction to proceed selectively. -281844. After this disclosure, similar NOx reduction and removal techniques using a catalyst containing silver are disclosed in JP-A-4-354536 and JP-A-5-9.
No. 2,124, JP-A-5-92125, JP-A-6-277454, and the like.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらの公報
に記載されたアルミナ担持銀触媒を用いた排ガス浄化方
法では、水蒸気及びSOx共存下での脱硝性能が実用的
にまだ不十分で、しかもその脱硝性能の寿命が短く耐久
性が劣るものであった。
However, in the exhaust gas purifying method using an alumina-supported silver catalyst described in these publications, the denitration performance in the coexistence of steam and SOx is still insufficient for practical use, and moreover, The service life of the denitration performance was short and the durability was poor.

【0008】本発明は、上記従来技術の問題を解決すべ
くなされたものであり、その目的とするところは、SOx
と水蒸気が共存する希薄燃焼排ガスに対して高い脱硝性
能を有し、かつ耐久性に優れる排ガス浄化用触媒を提供
すること、並びに該触媒を使用する触媒成形体、触媒被
覆構造体、及び該触媒を使用し、SOxと水蒸気が共存す
る希薄燃焼排ガス中のNOxを高効率、高信頼性で除去
することができる排ガス浄化方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art.
Provided is an exhaust gas purifying catalyst having high denitration performance and excellent durability for lean combustion exhaust gas in which water and steam coexist, and a molded catalyst, a catalyst coated structure using the catalyst, and the catalyst An object of the present invention is to provide an exhaust gas purifying method that can remove NOx in lean combustion exhaust gas in which SOx and water vapor coexist with high efficiency and high reliability.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意研究を
重ねた結果、特定の物性を有するアルミナに銀と錫を担
持してなる触媒を使用することにより上記した課題を解
決できることを見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by using a catalyst comprising silver and tin supported on alumina having specific physical properties. Thus, the present invention has been completed.

【0010】すなわち、本発明は、第一に、比表面積が
120m2/g以上、嵩密度が0.6g/cm3以上、そして真密度
が2.8g/cm3以下であるアルミナと、該アルミナに担持
されてなる銀及び錫とを有してなり、錫の触媒全体に対
する担持量が金属元素換算で0.03重量%以上5重量%以
下であることを特徴とする希薄空燃比で運転される内燃
機関からの排ガス浄化用触媒を提供する。また、本発明
は、第二に、上記の触媒が一定形状に成形されてなる触
媒成形体を提供する。本発明は、第三に、多数の貫通孔
を有する耐火性材料からなる一体構造の支持基質と、該
支持基質の少なくとも貫通孔の内表面に層状に被覆され
た上記の触媒とを有することを特徴とする排ガス浄化用
触媒被覆構造体を提供するものである。
That is, according to the present invention, first, the specific surface area is
120 m 2 / g or more, a bulk density of 0.6 g / cm 3 or more, and a true density of 2.8 g / cm 3 or less, comprising silver and tin supported on the alumina; Provided is a catalyst for purifying exhaust gas from an internal combustion engine operated at a lean air-fuel ratio, characterized in that the carried amount with respect to the entire catalyst is 0.03% by weight or more and 5% by weight or less in terms of a metal element. In addition, the present invention secondly provides a catalyst molded body obtained by molding the above-mentioned catalyst into a fixed shape. Thirdly, the present invention has a support substrate having an integral structure made of a refractory material having a large number of through-holes, and the above-described catalyst coated on at least the inner surface of the through-hole of the support substrate in a layered manner. An object of the present invention is to provide an exhaust gas purifying catalyst-coated structure.

【0011】さらに、本発明は、第四に、希薄空燃比で
運転される内燃機関からの排ガスを、炭化水素存在下で
上記の排ガス浄化用触媒と接触させることを特徴とする
排ガス浄化方法を提供するものである。
Furthermore, the present invention fourthly provides an exhaust gas purifying method characterized by contacting exhaust gas from an internal combustion engine operated at a lean air-fuel ratio with the above-mentioned exhaust gas purifying catalyst in the presence of a hydrocarbon. To provide.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0013】(触媒およびその製法)本発明の排ガス浄
化用触媒は、担体である特定のアルミナに銀と錫が担持
されてなるものである。使用されるアルミナは、例えば
鉱物学上ベーマイト、擬ベーマイト、バイアライトある
いはノルストランダイトに分類される水酸化アルミニウ
ムの粉体やゲルを、空気中あるいは真空中300〜800℃、
好ましくは400〜900℃で加熱脱水することによって、結
晶学的にγ−型、η−型、δ−型、χ−型あるいはその
混合型に分類されるアルミナに相転移させたものが脱硝
性能上好ましい。
(Catalyst and Method for Producing the Catalyst) The exhaust gas purifying catalyst of the present invention is a catalyst in which silver and tin are supported on a specific alumina as a carrier. The alumina used is, for example, a powder or gel of aluminum hydroxide classified as boehmite, pseudoboehmite, vialite or norstrandite in mineralogy, at 300 to 800 ° C. in air or vacuum,
Preferably, by dehydrating by heating at 400 to 900 ° C., a phase transition to alumina which is crystallographically classified into γ-type, η-type, δ-type, χ-type or a mixed type thereof has a denitration performance. Above.

【0014】また、該アルミナは比表面積が120m2/g以
上であり、嵩密度が0.6g/cm3以上であり、真密度が2.8
g/cm3以下である。この条件を満たさないアルミナを担
体として用いた場合には、これにより構成される排ガス
浄化用触媒は水蒸気共存下での排ガスの脱硝性能が不十
分である。該アルミナの比表面積、嵩密度及び真密度の
測定方法は特に限定されないが、例えば、比表面積の測
定方法としては窒素ガス吸着法が挙げられ、また、嵩密
度及び真密度は水銀圧入法により測定が可能である。
The alumina has a specific surface area of 120 m 2 / g or more, a bulk density of 0.6 g / cm 3 or more, and a true density of 2.8
g / cm 3 or less. If alumina that does not satisfy this condition is used as a carrier, the exhaust gas purifying catalyst constituted by the catalyst has insufficient denitration performance of exhaust gas in the presence of steam. The method for measuring the specific surface area, bulk density and true density of the alumina is not particularly limited. Examples of the method for measuring the specific surface area include a nitrogen gas adsorption method, and the bulk density and the true density are measured by a mercury intrusion method. Is possible.

【0015】ここで、水銀圧入法とは多孔体を水銀中に
入れ、水銀面に圧力を加えると、水銀が径の大きな細孔
から順次侵入していき、水銀を圧入する圧力から細孔径
を、圧入量から細孔の容積を求めるものであるが、水銀
圧入法により測定される嵩密度とは、試料重量と大気圧
での水銀初期注入時における試料容積とから求められ
る。つまり、水銀圧入前に多孔体が入れられた試料容器
の隙間を埋めるために大気圧で水銀を注入し、この時の
水銀注入量、水銀密度と試料容器の容積から試料容積が
求められ、試料重量/試料容積で嵩密度が算出される。
また、水銀圧入法により測定される真密度とは、水銀圧
入法による測定時の最大圧力で水銀を圧入して求められ
る細孔容積をもとに、嵩密度と同様の計算をして求めら
れるものである。
Here, the mercury intrusion method is as follows. When a porous body is put into mercury and pressure is applied to the mercury surface, mercury intrudes sequentially from the pores of larger diameter, and the pore diameter is reduced from the pressure at which mercury is injected. The volume density of the pores is determined from the amount of intrusion, and the bulk density measured by the mercury intrusion method is determined from the sample weight and the sample volume at the time of initial injection of mercury at atmospheric pressure. In other words, before mercury injection, mercury is injected at atmospheric pressure to fill the gap in the sample container in which the porous body is placed, and the sample volume is determined from the amount of mercury injected at this time, the mercury density, and the volume of the sample container. The bulk density is calculated by weight / sample volume.
The true density measured by the mercury intrusion method is obtained by performing the same calculation as the bulk density based on the pore volume obtained by injecting mercury at the maximum pressure at the time of measurement by the mercury intrusion method. Things.

【0016】上記の特定の物性を有するアルミナに担持
される銀と錫の状態は特に限定されず、例えば金属状
態、酸化物状態およびこれらの混合状態などが挙げられ
る。特に自動車などの内燃機関の燃焼排ガス組成は運転
状態によって都度変化するため、触媒は還元雰囲気およ
び酸化雰囲気に曝される。従って、触媒を構成する活性
金属の状態は雰囲気で変化することが考えられる。
The state of silver and tin supported on alumina having the above-mentioned specific properties is not particularly limited, and examples thereof include a metal state, an oxide state, and a mixed state thereof. In particular, since the composition of the combustion exhaust gas of an internal combustion engine such as an automobile changes depending on the operating conditions, the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is considered that the state of the active metal constituting the catalyst changes in the atmosphere.

【0017】アルミナに銀および錫を担持する方法は特
に限定されず、従来から行われている手法、例えば吸着
法、ポアフィリング法、インシピエントウェットネス
法、蒸発乾固法、スプレー法などの含浸法や混練法およ
び物理的混合法、ならびにこれらの組み合わせ法など通
常採用されている公知の方法を任意に採用することがで
きる。触媒成分が実質的に同じものであれば、同等の効
果を有するものが得られる。例えば、アルミナあるいは
アルミナ前駆体物質、例えば、ベーマイト、擬ベーマイ
トなどの水酸化アルミニウムに銀と錫の塩を同時に担持
させた後、乾燥、焼成してもよいし、銀と錫の塩を逐次
的に担持させた後、乾燥、焼成してもよい。また、前記
のように特定の物性を有するアルミナの製造時に活性金
属種を含有させる触媒製造法、例えばアルミニウムアル
コキシドのアルコール溶液を、銀塩と錫塩のアルコール
溶液と混合した後、加熱し加水分解するアルコキシド法
やアルミニウム塩と銀塩と錫塩の混合水溶液にアルカリ
を添加して沈殿させる共沈法により得た沈殿物を乾燥・
焼成する方法も適用できる。
The method of supporting silver and tin on alumina is not particularly limited, and conventional methods such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, a spray method, and the like can be used. Any commonly used known method such as an impregnation method, a kneading method, a physical mixing method, and a combination method thereof can be arbitrarily adopted. If the catalyst components are substantially the same, one having the same effect can be obtained. For example, alumina or alumina precursor substances, for example, boehmite, silver and tin salts are simultaneously supported on aluminum hydroxide such as pseudo-boehmite, and then dried and calcined. , And then dried and fired. Further, as described above, a method for producing a catalyst containing an active metal species at the time of producing alumina having specific physical properties as described above, for example, an alcohol solution of aluminum alkoxide is mixed with an alcohol solution of silver salt and tin salt, and then heated and hydrolyzed. The precipitate obtained by the alkoxide method or the coprecipitation method in which an alkali is added to a mixed aqueous solution of an aluminum salt, a silver salt and a tin salt to cause precipitation is dried.
A firing method is also applicable.

【0018】触媒全体における金属換算での銀の含有量
は特に限定されないが、脱硝性能上0.1〜10重量%の範
囲が好ましく、1.5〜8重量%の範囲が特に好ましい。ま
た、触媒全体に対する金属換算での錫の含有量は、0.03
重量%以上5重量%以下とする必要がある。錫の含有量
が5重量%を超えると銀が持つ性能が発揮されず脱硝性
能が低下する。一方、錫の含有量が0.03重量%未満の場
合、錫の添加による相乗効果が十分に発揮されないので
上記範囲とする必要がある。
The silver content in terms of metal in the entire catalyst is not particularly limited, but is preferably in the range of 0.1 to 10% by weight, and particularly preferably in the range of 1.5 to 8% by weight in terms of denitration performance. Further, the content of tin in terms of metal with respect to the entire catalyst is 0.03
It is necessary to be not less than 5% by weight and not more than 5% by weight. If the tin content exceeds 5% by weight, the performance of silver is not exhibited and the denitration performance is reduced. On the other hand, when the content of tin is less than 0.03% by weight, the synergistic effect due to the addition of tin is not sufficiently exhibited, so that the content needs to be in the above range.

【0019】触媒の乾燥温度は特に限定されるものでは
なく、通常80〜120℃程度で乾燥する。また、焼成温度
は300〜1000℃、好ましくは400〜900℃程度である。焼
成温度が1000℃を越えると、触媒の比表面積が極端に小
さくなるので好ましくない。このときの雰囲気は特に限
定されないが、触媒組成に応じて空気中、不活性ガス
中、酸素中、水蒸気中などの各雰囲気を適宜選択すれば
よく、また各雰囲気を一定時間毎に交互に代えてもよ
い。本発明の触媒は粉末状態のまま一定の空間内に充填
して使用することもできるし、以下に説明するようにし
て使用することもできる。
The drying temperature of the catalyst is not particularly limited, and it is usually dried at about 80 to 120 ° C. Further, the firing temperature is about 300 to 1000 ° C, preferably about 400 to 900 ° C. If the firing temperature exceeds 1000 ° C., the specific surface area of the catalyst becomes extremely small, which is not preferable. The atmosphere at this time is not particularly limited, but each atmosphere such as air, inert gas, oxygen, or steam may be appropriately selected according to the catalyst composition, and the atmospheres are alternately changed at regular intervals. You may. The catalyst of the present invention can be used by filling it into a certain space in a powder state, or can be used as described below.

【0020】(触媒成形体)本発明の触媒成形体は、上
記触媒を所定の形状に成形してなるものである。該触媒
成形体は浄化されるべき排ガスがその内部を流通するよ
うに構成される。触媒体を成形体とする場合は、成形体
の形状は特に制限されず、例えば、層状(シート状ない
しは被膜状)、球状、円筒状、ハニカム状、ラセン状、
粒状、ペレット状、リング状など種々の形状が挙げられ
る。これらの形状、大きさなどは使用条件に応じて任意
に選択すればよい。
(Catalyst molded article) The catalyst molded article of the present invention is obtained by molding the above-mentioned catalyst into a predetermined shape. The shaped catalyst body is configured such that the exhaust gas to be purified flows through it. When the catalyst body is a molded body, the shape of the molded body is not particularly limited, and may be, for example, a layered (sheet or coated), spherical, cylindrical, honeycomb, spiral,
Various shapes such as a granular shape, a pellet shape, and a ring shape are exemplified. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0021】粉末状の触媒を所望形状の触媒成形体に成
形する方法としては特に制限されず、粉末状触媒を適当
なバインダーと混合し、あるいはバインダーなしで、所
望の形状のダイスを有する成形機により押出し成形す
る。バインダーとしては、例えば、メチルセルロース、
ポリビニルアルコール、ポリエチレングリコール等が挙
げられる。そして、この触媒成形体を例えば両端にステ
ンレス製金網などを設けた所望形状の容器に充填して使
用する。
The method of forming the powdered catalyst into a desired shaped catalyst molded body is not particularly limited, and a molding machine having a desired shaped die with the powdered catalyst mixed with an appropriate binder or without a binder. Extrusion molding. As the binder, for example, methyl cellulose,
Examples include polyvinyl alcohol and polyethylene glycol. The molded catalyst is used by filling it in a container having a desired shape provided with, for example, a stainless steel mesh at both ends.

【0022】(触媒被覆構造体)本発明の触媒被覆構造
体とは、多数の貫通孔を有する耐火性材料で構成された
一体構造の支持基質の少なくとも貫通孔の内表面に上記
した触媒を被覆してなるものである。該触媒被覆構造体
に用いられる支持基質には、多数の貫通孔が設けられて
おり、使用時に該貫通孔が排ガスの流通方向に沿うよう
に配置される。その流通方向に垂直な断面において、通
常、開孔率60〜90%、好ましくは70〜90%であって、そ
の数は5.06cm(1平方インチ)当り通常30〜700個、好
ましくは200〜600個である。触媒は、少なくとも該貫通
孔の内表面上に被覆されるが、その支持基質の端面や側
面に被覆されていてもよい。
(Catalyst-Coated Structure) The catalyst-coated structure of the present invention is to coat the above-mentioned catalyst on at least the inner surfaces of the through-holes of a support substrate having an integral structure composed of a refractory material having a large number of through-holes. It is made. A large number of through-holes are provided in the support substrate used for the catalyst-coated structure, and the through-holes are arranged so as to be along the flow direction of the exhaust gas during use. In a cross section perpendicular to its flow direction, usually the hole area ratio 60% to 90%, preferably a 70% to 90%, the number is 5.06cm 2 (1 square inch) per usually 30 to 700 pieces, preferably 200 ~ 600 pieces. The catalyst is coated on at least the inner surface of the through hole, but may be coated on the end surface or side surface of the supporting substrate.

【0023】該耐火性支持基質の材質としては、α−型
のアルミナ、ムライト、コージェライト、シリコンカー
バイド等のセラミックスやオーステナイト系、フェライ
ト系のステンレス鋼等の金属等が使用される。形状もハ
ニカム状や連続フォーム状等の慣用のものが使用でき
る。好ましい支持基質は、コージェライト製又はステン
レス鋼製でハニカム状のものである。
As the material of the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite, and silicon carbide, and metals such as austenitic and ferritic stainless steel are used. Conventional shapes such as a honeycomb shape and a continuous foam shape can be used. Preferred supporting substrates are cordierite or stainless steel honeycomb.

【0024】該支持基質への触媒の被覆方法としては、
一定の粒度に整粒した本発明の触媒をバインダーと共に
又はバインダーを用いないで前記支持基質の内表面に被
覆する、いわゆる通常のウォッシュコート法やゾルーゲ
ル法が適用できる。バインダーとしては、例えば、アル
ミナゾル、シリカゾル、チタニアゾル等が挙げられる。
また、上記の支持基質の所定表面に予めアルミナを被覆
しておいて、これに本発明の触媒活性物質である銀成分
の担持処理を行って触媒被覆層を形成してもよい。支持
基質への触媒層の被覆量は限定されないが、支持基質単
位体積(見掛けの体積)当り50〜250g/L程度が好まし
く、100〜200g/L程度とすることがより好ましい。
The method of coating the support substrate with a catalyst includes:
A so-called ordinary wash coat method or sol-gel method, in which the catalyst of the present invention sized to a certain particle size is coated on the inner surface of the support substrate with or without a binder, can be applied. Examples of the binder include alumina sol, silica sol, titania sol and the like.
Further, a predetermined surface of the above-mentioned support substrate may be coated with alumina in advance, and a catalyst coating layer may be formed by carrying out a treatment for supporting a silver component which is a catalytically active substance of the present invention. The coating amount of the catalyst layer on the support substrate is not limited, but is preferably about 50 to 250 g / L, more preferably about 100 to 200 g / L per unit volume (apparent volume) of the support substrate.

【0025】(排ガス浄化方法)本発明の排ガス浄化方
法は希薄空燃比で運転される内燃機関からの排ガスを前
述の本発明の排ガス浄化用触媒と接触させることを特徴
とし、これにより排ガス中のNOxを除去し排ガスを浄
化するものである。排ガスと接触させられる浄化触媒の
形態は何ら限定されない。触媒は上述した触媒体の形態
であってもよいし、上記の触媒被覆構造体に設けられた
被覆触媒層の形態であってもよい。
(Exhaust Gas Purification Method) The exhaust gas purification method of the present invention is characterized in that exhaust gas from an internal combustion engine operated at a lean air-fuel ratio is brought into contact with the above-mentioned exhaust gas purification catalyst of the present invention. It removes NOx and purifies exhaust gas. The form of the purification catalyst that is brought into contact with the exhaust gas is not limited at all. The catalyst may be in the form of the catalyst body described above, or may be in the form of a coated catalyst layer provided on the catalyst coated structure.

【0026】希薄空燃比で燃焼される内燃機関からの排
ガスは、一般に、CO,HC(炭化水素)及びHとい
った還元性成分と、NOx及びOといった酸化性成分
とを含有するが、両者相互の完全な酸化還元反応に必要
な化学量論量よりも過剰量の酸素を含有している。本発
明の排ガス浄化方法によれば、このような酸素過剰の条
件下で排ガスが本発明の触媒と接触させられる結果、N
OxはNとHOにまで還元分解されると同時にHC
などの還元剤もCOとHOに完全酸化されるという
効果が得られる。
The exhaust gas from an internal combustion engine to be burned in a lean air-fuel ratio, generally, CO, HC and reducing component such as (hydrocarbons) and H 2, although containing an oxidizing component such as NOx and O 2, both It contains oxygen in excess of the stoichiometric amount required for mutual complete redox reactions. According to the exhaust gas purifying method of the present invention, the exhaust gas is brought into contact with the catalyst of the present invention under such an oxygen-excess condition.
Ox is reduced and decomposed to N 2 and H 2 O,
Is also completely oxidized to CO 2 and H 2 O.

【0027】ディーゼルエンジンの排ガスのように排ガ
スそのもののHC/NOx比が低い場合には、排ガス中
にメタン換算濃度で数百〜数千ppm程度の燃料HC等
を外部添加した後、本発明の触媒と接触させる方法を採
用すれば、十分に高いNOx除去率を達成できる。な
お、ここでいうHCとは、パラフィン系炭化水素、オレ
フィン系炭化水素及び芳香族炭化水素、アルコール、ア
ルデヒド、ケトン、エーテルなどの含酸素有機化合物、
ガソリン、灯油、軽油、A重油などを含んだものを意味
する。
When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, after adding about several hundreds to several thousand ppm of fuel HC or the like in terms of methane concentration in the exhaust gas, the present invention is applied. If a method of contacting with a catalyst is adopted, a sufficiently high NOx removal rate can be achieved. Here, HC refers to oxygen-containing organic compounds such as paraffinic hydrocarbons, olefinic hydrocarbons and aromatic hydrocarbons, alcohols, aldehydes, ketones, and ethers.
It includes gasoline, kerosene, light oil, heavy oil A, etc.

【0028】本発明による触媒を用いて、希薄空燃比の
領域で運転される内燃機関の燃焼排ガスを浄化する際の
ガス空間速度(SV)は特に限定されるものではないが、
SV5,OOOh-1以上で200,O00h-1以下とすることが好ま
しい。
The gas space velocity (SV) when purifying the combustion exhaust gas of the internal combustion engine operated in the lean air-fuel ratio range using the catalyst according to the present invention is not particularly limited,
SV5, oooh 200 -1 or more, it is preferable to O00h -1 or less.

【0029】[0029]

【実施例】以下に実施例および比較例により、本発明を
更に具体的に説明する。しかし、本発明は下記実施例に
限定されるものでない。 (1)アルミナ担体の選定 使用アルミナ選定のために、比表面積(窒素ガス吸着
法)および嵩密度(水銀圧入法)の測定を行い、表1に
示すような種々のγ−型アルミナを得た。a〜cが本発明
の範囲に入るアルミナであり、d〜fが本発明の範囲外の
アルミナである。
The present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to the following examples. (1) Selection of alumina carrier In order to select the alumina to be used, specific surface area (nitrogen gas adsorption method) and bulk density (mercury intrusion method) were measured to obtain various γ-type aluminas as shown in Table 1. . a to c are aluminas falling within the scope of the present invention, and d to f are aluminas outside the scope of the present invention.

【0030】[0030]

【表1】 [Table 1]

【0031】(2)触媒の調製 [実施例1]表1のγ−型アルミナa300gを、硝酸銀1
7.2gを含む500mLの水溶液に浸漬した後、撹拌しながら
加熱し水分を蒸発させた。これを110℃で通風乾燥後、
空気中600℃で3時間焼成してAg/Al2O3を得た。つぎ
に、このAg/Al2O3を塩化第二錫1.84gを含む500mLの水
溶液に浸漬した後、前記とAg/Al2O3と同様の方法にて
触媒1を得た。尚、触媒1における金属換算でのAgおよび
Snの含有量は、触媒全体に対してそれぞれ3.5重量%、
0.2重量%である。
(2) Preparation of catalyst Example 1 300 g of γ-type alumina a shown in Table 1 was replaced with silver nitrate 1
After being immersed in a 500 mL aqueous solution containing 7.2 g, the mixture was heated with stirring to evaporate water. After drying this with air at 110 ° C,
To obtain a Ag / Al 2 O 3 and then calcined 3 hours at 600 ° C. in air. Next, this Ag / Al 2 O 3 was immersed in a 500 mL aqueous solution containing 1.84 g of stannic chloride, and then a catalyst 1 was obtained in the same manner as in the above and Ag / Al 2 O 3 . Incidentally, Ag and metal in terms of metal in the catalyst 1
The Sn content was 3.5% by weight based on the entire catalyst,
0.2% by weight.

【0032】[実施例2〜7および比較例1〜6]銀お
よび錫の含有量、また、使用するγ−型アルミナ担体を
それぞれ変えた以外は実施例1と同様の手順で、触媒2
(実施例2)、触媒3(実施例3)、触媒4(比較例
1)、触媒5(比較例2)、触媒6(比較例3)、触媒7
(実施例4)、触媒8(実施例5)、触媒9(比較例
4)、触媒10(比較例5)、触媒11(比較例6)、触媒
12(実施例6)および触媒13(実施例7)を得た。各触
媒の銀及び錫の触媒全体における担持量(重量%)およ
びアルミナ担体を表2に示す。
Examples 2 to 7 and Comparative Examples 1 to 6 The same procedure as in Example 1 was carried out except that the contents of silver and tin and the γ-type alumina carrier used were changed.
(Example 2), Catalyst 3 (Example 3), Catalyst 4 (Comparative Example 1), Catalyst 5 (Comparative Example 2), Catalyst 6 (Comparative Example 3), Catalyst 7
(Example 4), Catalyst 8 (Example 5), Catalyst 9 (Comparative Example 4), Catalyst 10 (Comparative Example 5), Catalyst 11 (Comparative Example 6), Catalyst
12 (Example 6) and catalyst 13 (Example 7) were obtained. Table 2 shows the supported amounts (% by weight) of silver and tin in the whole catalyst and the alumina carrier of each catalyst.

【0033】[0033]

【表2】 [Table 2]

【0034】次に、上記実施例1〜7および比較例1〜
6によって得られた表2の触媒1〜13について以下に示
す条件で脱硝性能の評価を行った。
Next, the above Examples 1 to 7 and Comparative Examples 1 to
The denitration performance of the catalysts 1 to 13 of Table 2 obtained in Table 6 was evaluated under the following conditions.

【0035】[性能評価例1]実施例1〜7および比較
例1〜6の各触媒を加圧成型した後、粉砕して粒度を35
0〜500μmに整粒し、内径15mmのステンレス製反応管に
充填して触媒床を形成し、これを常圧固定床流通反応装
置に装着した。この触媒床に、反応管内の排ガス温度を
400℃に保ち、モデル排ガスとしてNO:750ppm、O2:10
%、軽油(C1):4500ppm、H2O:10%、SOx:5ppm、残
部:N2からなる混合ガスを空間速度75,000h-1で10時間
通過させ、脱硝性能を評価した。反応管出口ガス組成の
分析において、NOとN2の濃度については化学発光式NOx
計で測定し、N2Oの濃度はPorapackQカラムを装着したガ
スクロマトグラフ・熱伝導度検出器を用いて測定した。
脱硝率を以下の式:
[Performance Evaluation Example 1] Each of the catalysts of Examples 1 to 7 and Comparative Examples 1 to 6 was molded under pressure and then pulverized to a particle size of 35.
The mixture was sized to 0 to 500 μm, filled in a stainless steel reaction tube having an inner diameter of 15 mm to form a catalyst bed, and this was attached to a normal pressure fixed bed flow reactor. The temperature of the exhaust gas in the reaction tube is
Maintained at 400 ° C., NO as a model exhaust gas: 750ppm, O 2: 10
%, Light oil (C1): 4500ppm, H 2 O: 10%, SOx: 5ppm, the balance of the mixed gas of N 2 was passed at a space velocity of 75,000h -1 10 hours to evaluate the denitration performance. In the analysis of the reaction tube exit gas composition, chemiluminescence NOx is the concentration of NO and N 2
The concentration of N 2 O was measured using a gas chromatograph / thermal conductivity detector equipped with a PorapackQ column.
The denitration rate is calculated by the following formula:

【0036】[0036]

【数1】 (Equation 1)

【0037】にしたがって求めた。尚、本発明のいずれ
の触媒でもN2OおよびNO2は殆ど生成しなかった。表3に
初期脱硝性能およびモデル排ガス流通開始10時間後の脱
硝性能を示す。
Was determined according to the following formula: Incidentally, N 2 O and NO 2 were hardly produced by any of the catalysts of the present invention. Table 3 shows the initial denitration performance and the denitration performance 10 hours after the start of model exhaust gas distribution.

【0038】[実施例8] ハニカム触媒の製造:上記の粉末触媒1の60gを、アルミ
ナゾル(Al2O3固形分10重量%)8gおよび水120mLと共に
ボールミルポットに仕込み、湿式粉砕してスラリーを得
た。このスラリーの中に、市販の400cpsi(セル/inc
h2)コージェライトハニカム基質からくり貫かれた直径
1インチ、長さ2.5インチの円筒状コアを浸漬し、引き上
げた後余分のスラリーをエアーブローで除去し乾燥し
た。その後、500℃で30分焼成し、ハニカム1リットル当
たりドライ換算で150gの固形分を被覆してハニカム触媒
14(実施例8)を得た。
Example 8 Production of Honeycomb Catalyst: 60 g of the above-mentioned powdered catalyst 1 was charged into a ball mill pot together with 8 g of alumina sol (Al 2 O 3 solid content of 10% by weight) and 120 mL of water, and wet-milled to obtain a slurry. Obtained. A commercially available 400 cpsi (cell / inc.)
h 2 ) diameter cut out from cordierite honeycomb substrate
A cylindrical core having a length of 1 inch and a length of 2.5 inches was immersed and pulled up, and then excess slurry was removed by air blow and dried. After that, it was baked at 500 ° C for 30 minutes, and coated with 150 g of solid content in terms of dry weight per liter of honeycomb to form a honeycomb catalyst.
14 (Example 8) was obtained.

【0039】[性能評価例2]上記ハニカム触媒14を、
直径15mm、長さ32mmの円筒状に加工し、内径15mmのステ
ンレス製反応管に充填した。該触媒層に対して、供給す
るガスの空間速度を40,000h-1とした以外は性能評価例
1と同様のモデルガスによる評価試験を行った。その結
果を性能評価例1による評価結果と併せて表3に示す。
[Performance Evaluation Example 2] The honeycomb catalyst 14 was
It was processed into a cylindrical shape having a diameter of 15 mm and a length of 32 mm, and filled into a stainless steel reaction tube having an inner diameter of 15 mm. An evaluation test was performed on the catalyst layer using the same model gas as in Performance Evaluation Example 1 except that the space velocity of the supplied gas was 40,000 h -1 . The results are shown in Table 3 together with the results of the performance evaluation example 1.

【0040】[0040]

【表3】 [Table 3]

【0041】表3の結果より実施例1〜8の触媒は比較
例1〜6の触媒に比べて初期脱硝性能が高く、また該脱
硝性能の耐久性にも優れることがわかった。
From the results shown in Table 3, it was found that the catalysts of Examples 1 to 8 had higher initial denitration performance than the catalysts of Comparative Examples 1 to 6 and also had excellent durability of the denitration performance.

【0042】[0042]

【発明の効果】以上から明らかなように、本発明の排ガ
ス浄化用触媒、並びにそれを使用する触媒成形体及び触
媒被覆構造体、及び排ガス浄化方法によれば、SOxと水
蒸気が共存する希薄燃焼排ガス中に含まれる窒素酸化物
を高い転化率で還元浄化でき、かつ該脱硝性能は耐久性
に優れている。したがって本発明の排ガス浄化用触媒、
並びにそれを使用する触媒成形体、触媒被覆構造体、及
び排ガス浄化方法は希薄空燃比で燃焼される内燃機関か
らの排ガス浄化に有用である。
As is apparent from the above description, according to the exhaust gas purifying catalyst of the present invention, the catalyst molded body and the catalyst coating structure using the same, and the exhaust gas purifying method, the lean combustion in which SOx and steam coexist is provided. Nitrogen oxides contained in the exhaust gas can be reduced and purified at a high conversion rate, and the denitration performance is excellent in durability. Therefore, the exhaust gas purifying catalyst of the present invention,
Further, the molded catalyst, the catalyst coated structure, and the method for purifying exhaust gas using the same are useful for purifying exhaust gas from an internal combustion engine burned at a lean air-fuel ratio.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 ZAB 102H (72)発明者 曽田 健吾 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 植草 吉幸男 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 永田 誠 静岡県沼津市一本松678 エヌ・イー ケ ムキャット株式会社沼津工場内 (72)発明者 田中 康 静岡県沼津市一本松678 エヌ・イー ケ ムキャット株式会社沼津工場内 (72)発明者 長島 健 静岡県沼津市一本松678 エヌ・イー ケ ムキャット株式会社沼津工場内 Fターム(参考) 3G091 AA02 AA12 AA19 AB05 BA01 BA07 BA14 GA17 GA18 GB01W GB05W 4D048 AA06 AA13 AA18 AB07 BA03X BA21X BA34X BA41X BB02 BB17 4G069 AA01 AA03 AA08 BA01A BA01B BC22A BC22B BC32A BC32B CA03 CA13 CA14 CA15 DA06 EA19 EC03X EC03Y EC04X EC05X EC21X EC22Y FA01 FA02 FA03 FB14 FB23 FC08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 B01D 53/36 ZAB 102H (72) Inventor Kengo Soda 3-18 Chugoku, Ichikawa, Chiba −5 Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Yoshiyuki Uekusa 3-18-5 China, Ichikawa City, Chiba Prefecture Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Makoto Nagata Ichimotomatsu 678, Numazu City, Shizuoka Prefecture Inside N-Cumcat Corporation Numazu Plant (72) Inventor Yasushi Yasushi 678 Ipponmatsu, Numazu-shi, Shizuoka Prefecture N-Emcat Corporation Inside Numazu Plant (72) Inventor Ken Takeshi Nagashima 678, Ipponmatsu, Numazu-shi, Shizuoka Prefecture F-term (reference) in the Numazu Plant of Mcat Corporation 3G091 AA02 AA12 AA19 AB05 BA01 BA07 BA14 GA17 GA18 GB01W GB05W 4D048 AA06 AA13 AA18 AB07 BA03X BA21X BA34X BA41X BB02 BB17 4G069 AA01 AA03 AA08 BA01A BA01B BC22A BC22B BC32A BC32B CA03 CA13 CA14 CA15 DA06 EA19 EC03X EC03Y EC04 EC03 FA03 EC02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】比表面積が120m2/g以上、嵩密度が0.6g/
cm3以上、そして真密度が2.8g/cm3以下であるアルミナ
と、該アルミナに担持されてなる銀及び錫とを有してな
り、錫の触媒全体に対する担持量が金属元素換算で0.03
重量%以上5重量%以下であることを特徴とする希薄空
燃比で運転される内燃機関からの排ガス浄化用触媒。
1. A specific surface area of at least 120 m 2 / g and a bulk density of 0.6 g / g
cm 3 or more, and alumina true density of 2.8 g / cm 3 or less, it has a silver and tin comprising supported on the alumina, supporting amount on the entire catalyst of tin in terms of metal element 0.03
A catalyst for purifying exhaust gas from an internal combustion engine that is operated at a lean air-fuel ratio, wherein the catalyst is not less than 5% by weight and not more than 5% by weight.
【請求項2】前記比表面積が窒素ガス吸着法により測定
された値であり、前記嵩密度及び真密度が水銀圧入法に
より測定された値であることを特徴とする請求項1に記
載の排気ガス浄化用触媒。
2. The exhaust gas according to claim 1, wherein the specific surface area is a value measured by a nitrogen gas adsorption method, and the bulk density and the true density are values measured by a mercury intrusion method. Gas purification catalyst.
【請求項3】請求項1又は2に記載の触媒が一定形状に
成形されてなる触媒成形体。
3. A catalyst molded article obtained by molding the catalyst according to claim 1 or 2 into a fixed shape.
【請求項4】多数の貫通孔を有する耐火性材料からなる
一体構造の支持基質と、該支持基質の少なくとも貫通孔
の内表面に層状に被覆された請求項1記載の触媒とを有
することを特徴とする排ガス浄化用触媒被覆構造体。
4. A support substrate having an integral structure made of a refractory material having a large number of through holes, and the catalyst according to claim 1 coated on at least the inner surface of the through hole of the support substrate in a layered manner. A catalyst coated structure for purifying exhaust gas.
【請求項5】希薄空燃比で運転される内燃機関からの排
ガスを、炭化水素存在下で請求項1又は2に記載の排ガ
ス浄化用触媒と接触させることを特徴とする排ガス浄化
方法。
5. An exhaust gas purifying method comprising contacting exhaust gas from an internal combustion engine operated at a lean air-fuel ratio with the exhaust gas purifying catalyst according to claim 1 in the presence of a hydrocarbon.
【請求項6】前記触媒が請求項3に記載の触媒成形体又
は請求項3に記載の触媒構造体に設けられた層状の被覆
触媒の形態にあることを特徴とする請求項5記載の排ガ
ス浄化方法。
6. The exhaust gas according to claim 5, wherein the catalyst is in the form of a layered coated catalyst provided on the catalyst molded article according to claim 3 or the catalyst structure according to claim 3. Purification method.
JP2001179267A 2001-06-13 2001-06-13 Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method Pending JP2002370032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179267A JP2002370032A (en) 2001-06-13 2001-06-13 Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179267A JP2002370032A (en) 2001-06-13 2001-06-13 Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method

Publications (1)

Publication Number Publication Date
JP2002370032A true JP2002370032A (en) 2002-12-24

Family

ID=19019851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179267A Pending JP2002370032A (en) 2001-06-13 2001-06-13 Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method

Country Status (1)

Country Link
JP (1) JP2002370032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541010B2 (en) 2003-12-19 2009-06-02 Caterpillar Inc. Silver doped catalysts for treatment of exhaust
US8501662B2 (en) 2007-03-20 2013-08-06 Denso Corporation Catalyst material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541010B2 (en) 2003-12-19 2009-06-02 Caterpillar Inc. Silver doped catalysts for treatment of exhaust
US8501662B2 (en) 2007-03-20 2013-08-06 Denso Corporation Catalyst material

Similar Documents

Publication Publication Date Title
JP2006289211A (en) Ammonia oxidation catalyst
JP2002370032A (en) Exhaust cleaning catalyst, catalyst molding and catalyst-coated structure each using the catalyst, and exhaust cleaning method
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH11128688A (en) Purification of waste gas
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPH0558775B2 (en)
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP2000153133A (en) Exhaust gas purification
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JPH11128689A (en) Purification of waste gas
JP3155140B2 (en) Denitration catalyst and denitration method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JP2000070675A (en) Exhaust gas cleaning method
JP2000282856A (en) Emission control method
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JP2003284951A (en) Catalyst for cleaning burned exhaust gas and method for cleaning burned exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213