JP3474514B2 - Low temperature denitration catalyst and low temperature denitration method - Google Patents

Low temperature denitration catalyst and low temperature denitration method

Info

Publication number
JP3474514B2
JP3474514B2 JP2000068077A JP2000068077A JP3474514B2 JP 3474514 B2 JP3474514 B2 JP 3474514B2 JP 2000068077 A JP2000068077 A JP 2000068077A JP 2000068077 A JP2000068077 A JP 2000068077A JP 3474514 B2 JP3474514 B2 JP 3474514B2
Authority
JP
Japan
Prior art keywords
compound
low
temperature denitration
titanium oxide
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000068077A
Other languages
Japanese (ja)
Other versions
JP2001252562A (en
Inventor
正紀 中村
憲摂 今村
賀敬 梶畠
誠一 洲河
弘憲 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000068077A priority Critical patent/JP3474514B2/en
Publication of JP2001252562A publication Critical patent/JP2001252562A/en
Application granted granted Critical
Publication of JP3474514B2 publication Critical patent/JP3474514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却排ガス、
その他各種排ガスに含まれる窒素酸化物を150℃前後
の低温で、かつN2 O等の副生物を抑制しながら、アン
モニア等の還元剤の共存下で還元・除去する低温脱硝触
媒及びこの触媒を用いる低温脱硝方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a waste incineration exhaust gas,
In addition, a low-temperature denitration catalyst that reduces and removes nitrogen oxides contained in various exhaust gases at a low temperature around 150 ° C. and suppresses by-products such as N 2 O in the presence of a reducing agent such as ammonia, and this catalyst The present invention relates to a low temperature denitration method used.

【0002】[0002]

【従来の技術】近年、世界的に環境汚染が問題視されて
おり、汚染防止の対策が種々提案され、同時に廃水、排
ガスの排出基準も見直され検討されている。燃焼排ガス
中には主要な大気汚染物質である窒素酸化物(NOx)
が含まれる。NOx対策として各種脱硝技術が提案さ
れ、実用化されている。脱硝装置として、現在最も多く
採用されている方式は選択的触媒還元装置(SCR)
で、触媒はチタン酸化物担体にバナジウム酸化物を担持
したものが用いられ、共存するアンモニアとの反応によ
りNOxを還元して無害な水と窒素を生成するものであ
る。
2. Description of the Related Art In recent years, environmental pollution has been regarded as a problem worldwide, and various measures for preventing pollution have been proposed, and at the same time, wastewater and exhaust gas emission standards have been reviewed and studied. Nitrogen oxide (NOx), which is a major air pollutant in the combustion exhaust gas
Is included. Various NOx removal technologies have been proposed and put to practical use as measures against NOx. The most widely used denitration system is the selective catalytic reduction system (SCR).
As the catalyst, a titanium oxide carrier carrying vanadium oxide is used, and NOx is reduced by reaction with coexisting ammonia to produce harmless water and nitrogen.

【0003】この従来触媒は、200〜400℃の高温
において活性を示すので、適当な脱硝性能を得るために
脱硝触媒装置は200℃を越える温度で操業されてい
る。そのため、図2に示すように、バグフィルタ等の除
塵設備10から出てくる、一旦150℃程度まで冷却さ
れた排ガスを、排ガス加熱器12で脱硝装置14の入口
で200℃を越える温度、望ましくは210℃以上に再
加熱する必要があり、多大な熱エネルギーを消費してい
た。
Since this conventional catalyst is active at a high temperature of 200 to 400 ° C., the denitration catalyst device is operated at a temperature exceeding 200 ° C. in order to obtain an appropriate denitration performance. Therefore, as shown in FIG. 2, the exhaust gas coming out of the dust removing equipment 10 such as a bag filter and once cooled to about 150 ° C., at a temperature exceeding 200 ° C. at the inlet of the denitration device 14 in the exhaust gas heater 12, is desirable. Had to be reheated to 210 ° C. or higher and consumed a great deal of heat energy.

【0004】また、従来、バナジウム系触媒が知られて
いるが、このバナジウム系触媒を用いたシステムで脱硝
装置を200℃未満で操業した場合、触媒活性が低いた
め大量の触媒が必要となる。また、バナジウム系触媒自
体が高コストである。
Conventionally, a vanadium-based catalyst has been known, but when a denitration apparatus is operated at a temperature of less than 200 ° C. in a system using this vanadium-based catalyst, a large amount of catalyst is required due to its low catalytic activity. In addition, the vanadium-based catalyst itself is expensive.

【0005】特開平8−131828号公報には、二酸
化チタンに酸化マンガンと酸化セリウムを担持させた窒
素酸化物除去用触媒が記載されている。また、特開平9
−155190号公報には、チタン酸化物を担体とし、
これにマンガンを硝酸塩で混練及び/又は含浸担持し、
焼成した窒素酸化物除去用触媒が記載されている。
Japanese Unexamined Patent Publication No. 8-131828 discloses a nitrogen oxide removing catalyst in which titanium dioxide is supported with manganese oxide and cerium oxide. In addition, JP-A-9
Japanese Patent Publication No. 155190 discloses that titanium oxide is used as a carrier,
Manganese is kneaded and / or impregnated and supported with nitrate,
A calcined nitrogen oxide removal catalyst is described.

【0006】[0006]

【発明が解決しようとする課題】これらの公報記載のマ
ンガン系触媒は、150℃前後の低温である程度高活性
を示すが、地球温暖化物質であるN2 Oを副生する特性
があるという問題点がある。
The manganese-based catalysts described in these publications show some high activity at low temperatures around 150 ° C., but have the property of producing N 2 O, which is a global warming substance, as a by-product. There is a point.

【0007】本発明は上記の点に鑑みなされたもので、
本発明の目的は、200℃以下、望ましくは180℃以
下の低温で、従来の触媒より高活性で、かつN2 Oの副
生を抑制することができ、しかも低コスト化を図ること
ができる低温脱硝触媒及びこの触媒を用いた低温脱硝方
法を提供することにある。
The present invention has been made in view of the above points,
An object of the present invention is to have a higher activity than conventional catalysts at a low temperature of 200 ° C. or lower, preferably 180 ° C. or lower, suppress the by-production of N 2 O, and reduce the cost. It is to provide a low temperature denitration catalyst and a low temperature denitration method using this catalyst.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の低温脱硝触媒は、酸化チタン担体に、マ
ンガン化合物、並びにモリブデン化合物及びクロム化合
物の少なくともいずれかを担持させてなるように構成さ
れる。この触媒において、さらに、セリウム化合物を担
持させる場合もある。また、本発明の低温脱硝触媒は、
酸化チタン担体に、マンガン化合物及びタングステン化
合物を担持させ、さらに、セリウム化合物を担持させて
なることを特徴としている。また、このセリウム化合物
を担持させたものに、さらに、銅化合物及び白金族金属
化合物の少なくともいずれかを担持させる場合もある。
また、本発明の低温脱硝触媒は、酸化チタン担体に、マ
ンガン化合物及びタングステン化合物を担持させ、さら
に、銅化合物及び白金族金属化合物の少なくともいずれ
かを担持させてなることを特徴としている。
To achieve the above object, according to the Invention The low-temperature denitration catalyst of the present invention, the titanium oxide carrier, manganese compounds, by supporting at least one of arrangement in motor Ribuden compounds and chromium compounds Is configured to be. In this catalyst, a cerium compound may be further supported. Further, the low temperature denitration catalyst of the present invention,
Titanium oxide carrier, manganese compound and tungsten
Compound, and then a cerium compound.
It is characterized by becoming. Further, there is a case where at least one of a copper compound and a platinum group metal compound is further supported on the support of the cerium compound.
In addition, the low temperature denitration catalyst of the present invention has a titanium oxide support and a matrix.
The gangan compound and the tungsten compound.
And at least one of a copper compound and a platinum group metal compound
It is characterized in that it is carried.

【0009】また、本発明の低温脱硝触媒は、酸化チタ
ン担体に、マンガン化合物及び銅化合物を担持させてな
ることを特徴としている。この触媒において、さらに、
セリウム化合物を担持させる場合もある。また、本発明
の低温脱硝触媒は、酸化チタン担体に、マンガン化合物
及び白金族金属化合物を担持させ、さらに、セリウム化
合物を担持させてなることを特徴としている。本願明細
書における「低温」とは、広義には130〜200℃、
狭義には150〜180℃の範囲を言う。
The low temperature denitration catalyst of the present invention is characterized in that a manganese compound and a copper compound are supported on a titanium oxide carrier. In this catalyst,
A cerium compound may be supported. Also, the present invention
The low temperature denitration catalyst of is a manganese compound on a titanium oxide support.
And a platinum group metal compound supported, and further cerium
It is characterized by supporting a compound. The "low temperature" in the present specification is, in a broad sense, 130 to 200 ° C,
In a narrow sense, it means a range of 150 to 180 ° C.

【0010】本発明の低温脱硝方法は、上記の低温脱硝
触媒のいずれかを用いた触媒装置に、窒素酸化物を含有
する130〜200℃の排ガスを還元剤とともに導入し
て、排ガス中の窒素酸化物を還元・除去することを特徴
としている。また、本発明の低温脱硝方法は、上記の低
温脱硝触媒のいずれかを用いた触媒装置に、窒素酸化物
を含有する150〜180℃の排ガスを還元剤とともに
導入して、排ガス中の窒素酸化物を還元・除去すること
を特徴としている。還元剤としてはアンモニア、尿素等
が用いられる。また、触媒は、粒状体、ハニカム形状体
等として充填される。粒状体を充填する場合は、固定層
又は移動層とされる。
In the low temperature denitration method of the present invention, the exhaust gas at 130 to 200 ° C. containing nitrogen oxides is introduced together with a reducing agent into a catalyst device using any of the above low temperature denitration catalysts, and nitrogen in the exhaust gas is introduced. It is characterized by reducing and removing oxides. Further, the low-temperature denitration method of the present invention introduces an exhaust gas of 150 to 180 ° C. containing nitrogen oxides together with a reducing agent into a catalyst device using any of the above low-temperature denitration catalysts to perform nitrogen oxidation in the exhaust gas. It is characterized by reducing and removing things. Ammonia, urea, etc. are used as the reducing agent. Moreover, the catalyst is filled as a granular body, a honeycomb-shaped body, or the like. When filling the granular material, it is used as a fixed bed or a moving bed.

【0011】担体としての酸化チタンは硫酸法、気相
法、ゾルゲル法等、一般的な方法により製造される。そ
の比表面積は、好ましくは10m2/g 以上あればよい。
酸化チタンの比表面積が10m2/g 未満の場合は充分な
触媒活性が得られない。触媒活性成分のマンガン化合物
は、2価、3価、4価のいずれかのマンガン酸化物、無
機塩酸、有機塩酸を用いて上記酸化チタンに担持され
る。一般的には硝酸マンガンや硫酸マンガンや蓚酸マン
ガンを用いる。担持はスプレー法、浸漬含浸法、混練
法、析出沈殿法、スパッタリング法等の公知の方法で行
われる。例えば、マンガン化合物を水等の可溶溶媒に溶
解し、その溶液中に酸化チタンを浸漬した後、室温〜2
00℃で乾燥し、その後、空気中100〜600℃で焼
成してマンガン担持酸化チタンとする。
Titanium oxide as a carrier is produced by a general method such as a sulfuric acid method, a gas phase method, a sol-gel method or the like. Its specific surface area is preferably 10 m 2 / g or more.
When the specific surface area of titanium oxide is less than 10 m 2 / g, sufficient catalytic activity cannot be obtained. The manganese compound which is the catalytically active component is supported on the titanium oxide by using divalent, trivalent or tetravalent manganese oxide, inorganic hydrochloric acid or organic hydrochloric acid. Generally, manganese nitrate, manganese sulfate or manganese oxalate is used. The supporting is performed by a known method such as a spray method, a dipping impregnation method, a kneading method, a precipitation method, a sputtering method and the like. For example, a manganese compound is dissolved in a soluble solvent such as water, and titanium oxide is immersed in the solution, and then the temperature is adjusted to room temperature to 2
It is dried at 00 ° C. and then calcined in air at 100 to 600 ° C. to obtain manganese-supported titanium oxide.

【0012】上記のように担持したマンガン化合物は最
終的に担体上においては酸化物と推定される。マンガン
担持量はマンガン元素基準で0.1〜30wt%で、好ま
しくは1〜20wt%である。担持量が0.1wt%未満で
あれば十分な脱硝性能が得られず、また30wt%を越え
る場合は触媒の比表面積が低下するため逆効果となり充
分な脱硝性能が得られない。
It is presumed that the manganese compound supported as described above is finally an oxide on the carrier. The supported amount of manganese is 0.1 to 30 wt%, preferably 1 to 20 wt% based on the manganese element. If the supported amount is less than 0.1 wt%, sufficient denitration performance cannot be obtained, and if it exceeds 30 wt%, the specific surface area of the catalyst decreases, which has the opposite effect and sufficient denitration performance cannot be obtained.

【0013】他の触媒活性成分である6A族元素、すな
わちタングステン、モリブデン又は/及びクロムは2
価、3価、4価、5価、6価のいずれかの酸化物、無機
塩酸、有機塩酸を用いて上記酸化チタンに担持される。
一般的には、パラタングステン酸アンモニウム、モリブ
デン酸アンモニウム、硝酸クロムが用いられる。担持は
スプレー法、浸漬含浸法、混練法、析出沈殿法、スパッ
タリング法等の公知の方法で行われる。例えば、タング
ステン化合物を水等の可溶溶媒に溶解し、その溶液中に
酸化チタンを浸漬した後、室温〜200℃で乾燥し、そ
の後、空気中100〜600℃で焼成してタングステン
担持酸化チタンとする。
The other catalytically active component of the Group 6A element, namely tungsten, molybdenum or / and chromium, is 2
It is supported on the titanium oxide using any one of trivalent, trivalent, tetravalent, pentavalent and hexavalent oxides, inorganic hydrochloric acid and organic hydrochloric acid.
Generally, ammonium paratungstate, ammonium molybdate, and chromium nitrate are used. The supporting is performed by a known method such as a spray method, a dipping impregnation method, a kneading method, a precipitation method, a sputtering method and the like. For example, a tungsten compound is dissolved in a soluble solvent such as water, titanium oxide is immersed in the solution, dried at room temperature to 200 ° C., and then baked in air at 100 to 600 ° C. to carry tungsten oxide on titanium. And

【0014】上記のように担持したタングステン化合物
は最終的に担体上においては酸化物と推定される。タン
グステン担持量は元素基準で0.1〜30wt%で、好ま
しくは1〜20wt%である。担持量が0.1wt%未満で
あれば十分な脱硝性能、N2O抑制効果が得られず、ま
た30wt%を越える場合は触媒の比表面積が低下するた
め逆効果となり充分な脱硝性能が得られない。
The tungsten compound supported as described above is presumed to be an oxide finally on the carrier. The amount of tungsten supported is 0.1 to 30% by weight, preferably 1 to 20% by weight, based on the elements. If the supported amount is less than 0.1 wt%, sufficient denitration performance and N 2 O suppressing effect cannot be obtained, and if it exceeds 30 wt%, the specific surface area of the catalyst decreases, which is the opposite effect and sufficient denitration performance is obtained. I can't.

【0015】他の触媒活性成分であるセリウムは2価、
3価、4価のいずれかの酸化物、無機塩酸、有機塩酸を
用いて上記酸化チタンに担持される。一般的には硝酸セ
リウムが用いられる。担持はスプレー法、浸漬含浸法、
混練法、析出沈殿法、スパッタリング法等の公知の方法
で行われる。例えば、セリウム化合物を水等の可溶溶媒
に溶解し、その溶液中に酸化チタンを浸漬した後、室温
〜200℃で乾燥し、その後空気中100〜600℃で
焼成してセリウム担持酸化チタンとする。
Cerium, which is another catalytically active component, is divalent,
It is supported on the titanium oxide by using any one of trivalent and tetravalent oxides, inorganic hydrochloric acid and organic hydrochloric acid. Cerium nitrate is generally used. Supporting is spray method, immersion impregnation method,
It is carried out by a known method such as a kneading method, a precipitation-precipitation method, or a sputtering method. For example, a cerium compound is dissolved in a soluble solvent such as water, titanium oxide is immersed in the solution, dried at room temperature to 200 ° C., and then baked in air at 100 to 600 ° C. to obtain cerium-supported titanium oxide. To do.

【0016】上記のように担持したタングステン化合物
は最終的に担体上においては酸化物と推定される。セリ
ウム担持量は元素基準で0.1〜30wt%で、好ましく
は1〜20wt%である。担持量が0.1wt%未満であれ
ば十分な脱硝性能が得られず、また30wt%を越える場
合は触媒の比表面積が低下するため逆効果となり充分な
脱硝性能が得られない。
The tungsten compound supported as described above is presumed to be an oxide finally on the carrier. The amount of cerium supported is 0.1 to 30% by weight, preferably 1 to 20% by weight based on the elements. If the supported amount is less than 0.1 wt%, sufficient denitration performance cannot be obtained, and if it exceeds 30 wt%, the specific surface area of the catalyst decreases, which has the opposite effect and sufficient denitration performance cannot be obtained.

【0017】上記の触媒成分の他に、さらに触媒成分と
して銅化合物、又は/及び白金族金属化合物、即ちルテ
ニウム、ロジウム、パラジウム、オスミウム、イリジウ
ム、白金の化合物を担持することができる。銅化合物は
1価、2価いずれかの銅の酸化物、無機酸、有機酸を用
いて上記酸化チタンに担持される。一般的には、硝酸銅
が用いられる。担持はスプレー法、浸漬含浸法、混練
法、析出沈殿法、スパッタリング法等の公知の方法で行
われる。例えば、銅化合物を水等の可溶溶媒に溶解し、
その溶液中に酸化チタンを浸漬した後、室温〜200℃
で乾燥し、その後、空気中100〜600℃で焼成して
銅担持酸化チタンとする。上記のように担持した銅化合
物は最終的に担体上においては酸化物と推定される。銅
担持量は元素基準で0.0001〜30wt%で、好まし
くは0.01〜20wt%である。担持量が0.0001
wt%未満であれば十分な脱硝性能効果が得られず、また
30wt%を越える場合は触媒の比表面積が低下するため
逆効果となり充分な脱硝性能が得られない。
In addition to the above catalyst component, a copper compound and / or a platinum group metal compound, that is, a compound of ruthenium, rhodium, palladium, osmium, iridium or platinum can be supported as a catalyst component. The copper compound is supported on the titanium oxide using a monovalent or divalent copper oxide, an inorganic acid or an organic acid. Generally, copper nitrate is used. The supporting is performed by a known method such as a spray method, a dipping impregnation method, a kneading method, a precipitation method, a sputtering method and the like. For example, a copper compound is dissolved in a soluble solvent such as water,
After immersing titanium oxide in the solution, room temperature to 200 ° C
And then baked in air at 100 to 600 ° C. to obtain copper-supported titanium oxide. The copper compound supported as described above is presumed to be an oxide finally on the carrier. The amount of supported copper is 0.0001 to 30% by weight, preferably 0.01 to 20% by weight, based on the element. Carrying amount 0.0001
If it is less than wt%, sufficient denitration performance effect cannot be obtained, and if it exceeds 30 wt%, the specific surface area of the catalyst decreases, which has an adverse effect and sufficient denitration performance cannot be obtained.

【0018】白金族金属(元素)化合物は各種価数の酸
化物、無機酸、有機酸を用いて上記酸化チタンに担持さ
れる。一般的には、硝酸銅が用いられる。担持はスプレ
ー法、浸漬含浸法、混練法、析出沈殿法、スパッタリン
グ法等の公知の方法で行われる。例えば、白金化合物を
水等の可溶溶媒に溶解させ、その溶液中に酸化チタンを
浸漬した後、室温〜200℃で乾燥し、その後、空気中
100〜600℃で焼成して白金担持酸化チタンとす
る。白金担持量は元素基準で0.0001〜30wt%
で、好ましくは0.01〜20wt%である。担持量が
0.0001wt%未満であれば十分な脱硝性能効果が得
られず、また30wt%を越える場合は触媒の比表面積が
低下するため逆効果となり充分な脱硝性能が得られな
い。以上の各化合物の担持の順序はいずれでもよく、ま
た同時に担持してもよい。
The platinum group metal (element) compound is supported on the titanium oxide by using oxides of various valences, inorganic acids and organic acids. Generally, copper nitrate is used. The supporting is performed by a known method such as a spray method, a dipping impregnation method, a kneading method, a precipitation method, a sputtering method and the like. For example, a platinum compound is dissolved in a soluble solvent such as water, titanium oxide is immersed in the solution, dried at room temperature to 200 ° C., and then baked in air at 100 to 600 ° C. to carry platinum-supported titanium oxide. And Platinum loading is 0.0001-30wt% based on element
And preferably 0.01 to 20 wt%. If the supported amount is less than 0.0001 wt%, a sufficient denitration performance effect cannot be obtained, and if it exceeds 30 wt%, the specific surface area of the catalyst decreases, which is an adverse effect and sufficient denitration performance cannot be obtained. The above compounds may be loaded in any order, or may be loaded simultaneously.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明は下記の実施の形態に何ら限定さ
れるものではなく、適宜変更して実施することができる
ものである。図1は本発明の実施の第1形態による低温
脱硝方法を実施する装置を示している。排ガス、例えば
ごみ焼却場からの排ガスが減温装置(図示略)で減温さ
れてバグフィルタ20に導入される。この場合、バグフ
ィルタの耐用温度以下とするために、排ガス温度は20
0℃以下、望ましくは180℃以下とされる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments, and can be appropriately modified and implemented. FIG. 1 shows an apparatus for carrying out a low temperature denitration method according to a first embodiment of the present invention. Exhaust gas, for example, exhaust gas from a refuse incineration plant, is cooled by a temperature reducing device (not shown) and introduced into the bag filter 20. In this case, the exhaust gas temperature is set to 20 in order to keep the bag filter service temperature below.
The temperature is 0 ° C or lower, preferably 180 ° C or lower.

【0020】バグフィルタ20の直前で、排ガスに活性
炭、消石灰(又は生石灰)等の薬剤が添加され、活性炭
でダイオキシン類が、消石灰(又は生石灰)でHCl、
SOx等の酸性成分が除去される。バグフィルタ20を
出た200℃以下、望ましくは180℃以下、例えば1
50℃の排ガスは、還元剤、例えばアンモニアととも
に、そのまま脱硝装置22に導入され、排ガス中のNO
x、NH3 、O2 が反応してH2 O、N2 に還元され無
害化される。このように、本実施形態においては、図2
に示すような従来必要としていた排ガス加熱器12が不
要になるので、熱エネルギーの少ない脱硝プロセスを構
築することができる。
Immediately before the bag filter 20, chemicals such as activated carbon and slaked lime (or quick lime) are added to the exhaust gas so that dioxins are activated carbon and HCl is slaked lime (or quick lime).
Acidic components such as SOx are removed. 200 ° C. or less, preferably 180 ° C. or less, which exits the bag filter 20, for example, 1
The exhaust gas at 50 ° C. is introduced into the NOx removal device 22 as it is together with the reducing agent, for example, ammonia, and NO in the exhaust gas is discharged.
x, NH 3 and O 2 react to reduce to H 2 O and N 2 to render them harmless. Thus, in the present embodiment, as shown in FIG.
Since the exhaust gas heater 12 which has been conventionally required as shown in (3) is no longer required, it is possible to construct a denitration process with less thermal energy.

【0021】脱硝装置22には、本発明の低温脱硝触媒
が粒状又はハニカム状等で充填されている。粒状体の充
填の場合は、固定層でも移動層でもよい。脱硝装置22
へ導入される排ガスの温度は、下限が130℃、望まし
くは150℃、上限は200℃、望ましくは180℃で
ある。排ガス温度が下限値未満であると触媒の活性が低
くなり、一方、排ガス温度が上限を越えるとバグフィル
タ20が損焼するので好ましくない。なお、バグフィル
タ20において、排ガス温度は、若干降下するが、本実
施形態では温度降下分は無視して説明している。
The denitration device 22 is filled with the low temperature denitration catalyst of the present invention in the form of particles or a honeycomb. In the case of filling the granular material, it may be a fixed bed or a moving bed. Denitration device 22
The lower limit of the temperature of the exhaust gas introduced into the chamber is 130 ° C, preferably 150 ° C, and the upper limit is 200 ° C, preferably 180 ° C. If the exhaust gas temperature is below the lower limit, the activity of the catalyst will be low, while if the exhaust gas temperature exceeds the upper limit, the bag filter 20 will be burnt, which is not preferable. Although the exhaust gas temperature slightly drops in the bag filter 20, the temperature drop is ignored in the description of the present embodiment.

【0022】[0022]

【実施例】以下に実施例及び比較例を示し、本発明の特
徴とするところをより一層明確にする。 比較例1 4.6g (以下、同じ担持量)のメタバナジン酸アンモ
ニウム(NH4 VO3、以下同じバナジウム化合物を使
用)を蓚酸で還元してバナジウムイオン水溶液を調製
し、38g の酸化チタン(日本アエロジル製、商品名P
−25、以下同じ酸化チタンを使用)と混練した。次い
で混練物を110℃の乾燥器内で一晩乾燥させた後に、
破砕して2〜3mm径に整粒した。次いでこれを電気炉で
空気中400℃下で3時間焼成した(乾燥、整粒、焼成
条件は以下同じ)。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention. Comparative Example 1 4.6 g (hereinafter, the same supported amount) of ammonium metavanadate (NH 4 VO 3 , the same vanadium compound will be used hereinafter) was reduced with oxalic acid to prepare an aqueous vanadium ion solution, and 38 g of titanium oxide (Japan Aerosil Made, product name P
-25, the same titanium oxide will be used hereinafter). Then, after drying the kneaded product in a dryer at 110 ° C. overnight,
It was crushed and sized to a diameter of 2-3 mm. Next, this was baked in an electric furnace at 400 ° C. for 3 hours in air (drying, sizing, baking conditions are the same below).

【0023】比較例2 メタバナジン酸アンモニウムと5.7g のタングステン
酸アンモニウム((NH4 101241・5H2 O=3
132.52、以下同じタングステン化合物を使用)を
蓚酸で還元してバナジウム及びタングステンイオン水溶
液を調製し、34g の酸化チタンと混練し、乾燥、整
粒、焼成した。
[0023] Comparative Example 2 Ammonium metavanadate and ammonium tungstate 5.7g ((NH 4) 10 W 12 O 41 · 5H 2 O = 3
132.52 (the same tungsten compound is used hereinafter) was reduced with oxalic acid to prepare an aqueous solution of vanadium and tungsten ions, which was kneaded with 34 g of titanium oxide, dried, sized and calcined.

【0024】比較例3 メタバナジン酸アンモニウムと5.7g のタングステン
酸アンモニウムを蓚酸で還元してバナジウム及びタング
ステンイオン水溶液を調製した。この水溶液及び0.2
g のコロイダルシリカ(日産化学製、スノーテックス4
0)を34g の酸化チタンと混練し、乾燥、整粒、焼成
した。
Comparative Example 3 Ammonium metavanadate and 5.7 g of ammonium tungstate were reduced with oxalic acid to prepare vanadium and tungsten ion aqueous solutions. This aqueous solution and 0.2
g colloidal silica (Snowtex 4 manufactured by Nissan Kagaku)
0) was kneaded with 34 g of titanium oxide, dried, sized and calcined.

【0025】比較例4 26.1g の硝酸マンガン6水和物(Mn(NO)3
6H2 O、以下同じマンガン化合物を使用)を蒸留水に
溶解し、45g の酸化チタンに加え、混練し、乾燥、整
粒、焼成した。
Comparative Example 4 26.1 g of manganese nitrate hexahydrate (Mn (NO) 3 .multidot.
6H 2 O (hereinafter the same manganese compound was used) was dissolved in distilled water, added to 45 g of titanium oxide, kneaded, dried, sized and calcined.

【0026】比較例5 硝酸マンガン6水和物及び15.5g の硝酸セリウム6
水和物(Ce(NO3)・6H2 O)を蒸留水に溶解
し、40g の酸化チタンに加え、混練し、乾燥、整粒、
焼成した。
Comparative Example 5 Manganese nitrate hexahydrate and 15.5 g of cerium nitrate 6
The hydrate (Ce (NO 3 ) .6H 2 O) was dissolved in distilled water, added to 40 g of titanium oxide, kneaded, dried, sized,
Baked.

【0027】試験例1 硝酸マンガン6水和物を蒸留水に溶解し、またタングス
テン酸アンモニウムを7.1g 蒸留水に溶解した。次い
でこれらを同時に40g の酸化チタンに加え、混練し
た。これを110℃の乾燥器内で一晩乾燥させた後に、
破砕して2〜3mm径に整粒した。次いでこれを電気炉で
空気中300℃下で3時間焼成した(乾燥、整粒、焼成
条件は以下同じ)。
Test Example 1 Manganese nitrate hexahydrate was dissolved in distilled water, and ammonium tungstate was dissolved in 7.1 g of distilled water. Then, these were simultaneously added to 40 g of titanium oxide and kneaded. After drying this in a 110 ° C. oven overnight,
It was crushed and sized to a diameter of 2-3 mm. Then, this was fired in an electric furnace at 300 ° C. for 3 hours in air (drying, sizing, firing conditions are the same below).

【0028】実施例 硝酸マンガン6水和物を蒸留水に溶解し、またモリブデ
ン酸アンモニウム((NH4 6 Mo7 24・4H2
=1235.86)を64.4g 蒸留水に溶解した。次
いでこれらを同時に40g の酸化チタンに加え、混練
し、乾燥、整粒、焼成した。
[0028] Example 1 of manganese nitrate hexahydrate was dissolved in distilled water, and ammonium molybdate ((NH 4) 6 Mo 7 O 24 · 4H 2 O
= 123.86) was dissolved in 64.4 g of distilled water. Then, these were simultaneously added to 40 g of titanium oxide, kneaded, dried, sized, and fired.

【0029】実施例 硝酸マンガン6水和物を蒸留水に溶解し、また硝酸クロ
ム9水和物(Cr(NO3 3 ・9H2 O=400.1
5)を38.5g 蒸留水に溶解した。この水溶液を40
g の酸化チタンに加え、混練し、乾燥、整粒、焼成し
た。
[0029] EXAMPLE 2 manganese nitrate hexahydrate was dissolved in distilled water, and chromium nitrate nonahydrate (Cr (NO 3) 3 · 9H 2 O = 400.1
5) was dissolved in 38.5 g of distilled water. 40 parts of this aqueous solution
In addition to g of titanium oxide, kneaded, dried, sized, and fired.

【0030】実施例 硝酸マンガン6水和物を蒸留水に溶解し、また硝酸銅3
水和物(Cu(NO32 ・3H2 O=241.60)
を19g 蒸留水に溶解した。この水溶液を40g の酸化
チタンに加え、混練し、乾燥、整粒、焼成した。
Example 3 Manganese nitrate hexahydrate was dissolved in distilled water, and copper nitrate 3 was added.
Hydrate (Cu (NO 3) 2 · 3H 2 O = 241.60)
Was dissolved in 19 g of distilled water. This aqueous solution was added to 40 g of titanium oxide, kneaded, dried, sized, and fired.

【0031】試験 硝酸マンガン6水和物を蒸留水に溶解し、また塩化白金
酸(H2 PtCl6 ・H2 O=517.90)を1.3
g 蒸留水に溶解した。この水溶液を44.5gの酸化チ
タンに加え、混練し、乾燥、整粒、焼成した。
Test Example 2 Manganese nitrate hexahydrate was dissolved in distilled water, and chloroplatinic acid (H 2 PtCl 6 .H 2 O = 517.90) was added to 1.3.
g Dissolved in distilled water. This aqueous solution was added to 44.5 g of titanium oxide, kneaded, dried, sized, and fired.

【0032】試験 硝酸マンガン6水和物を蒸留水に溶解し、また硝酸パラ
ジウム(Pd(NO32 =230.43)を1.1g
蒸留水に溶解した。この水溶液を44.5g の酸化チタ
ンに加え、混練し、乾燥、整粒、焼成した。
Test Example 3 Manganese nitrate hexahydrate was dissolved in distilled water, and 1.1 g of palladium nitrate (Pd (NO 3 ) 2 = 230.43) was added.
It was dissolved in distilled water. This aqueous solution was added to 44.5 g of titanium oxide, kneaded, dried, sized, and fired.

【0033】試験 硝酸マンガン6水和物を蒸留水に溶解し、また塩化ルテ
ニウム(RuCl3 =207.43)を1g 蒸留水に溶
解した。この水溶液を44.5g の酸化チタンに加え、
混練し、乾燥、整粒、焼成した。
Test Example 4 Manganese nitrate hexahydrate was dissolved in distilled water, and ruthenium chloride (RuCl 3 = 207.43) was dissolved in 1 g of distilled water. Add this aqueous solution to 44.5 g of titanium oxide,
The mixture was kneaded, dried, sized, and fired.

【0034】試験 硝酸マンガン6水和物を蒸留水に溶解し、また塩化ロジ
ウム3水和物(RhCl3 ・3H2 O)を1g 蒸留水に
溶解した。この水溶液を44.5g の酸化チタンに加
え、混練し、乾燥、整粒、焼成した。
Test Example 5 Manganese nitrate hexahydrate was dissolved in distilled water, and rhodium chloride trihydrate (RhCl 3 .3H 2 O) was dissolved in 1 g of distilled water. This aqueous solution was added to 44.5 g of titanium oxide, kneaded, dried, sized, and fired.

【0035】試験 硝酸マンガン6水和物を蒸留水に溶解し、また塩化イリ
ジウム(IrCl3 )を0.8g 蒸留水に溶解した。こ
の水溶液を44.5g の酸化チタンに加え、混練し、乾
燥、整粒、焼成した。
Test Example 6 Manganese nitrate hexahydrate was dissolved in distilled water, and iridium chloride (IrCl 3 ) was dissolved in 0.8 g of distilled water. This aqueous solution was added to 44.5 g of titanium oxide, kneaded, dried, sized, and fired.

【0036】実施例14 以下各々、マンガン、タングステン、モリブデン、クロ
ム、銅、白金、セリウムの各元素を比較例5、試験例
1、2、実施例1〜3と同じ化合物、担持量により水溶
液を調製し、各元素が上記の例と同じ担持率となるよう
に調整した量の酸化チタンと混練し、乾燥、整粒、焼成
した結果、表1に示す成分を含む触媒を得た。なお、
「調整した量の酸化チタン」とは、担持する元素が増え
る分、酸化チタンを減らし、触媒全体中のマンガン等の
割合を一定にするようにした場合の酸化チタンのことで
ある。また、比較例1〜5、試験例1〜6、実施例1〜
の触媒成分も表1に示している。
Examples 4 to 14 Each of manganese, tungsten, molybdenum, chromium, copper, platinum, and cerium was used as a comparative example 5 and a test example.
1, 2, the same compound as in Examples 1 to 3 was used to prepare an aqueous solution, and each element was kneaded with an amount of titanium oxide adjusted to have the same loading ratio as in the above example, followed by drying, sizing, As a result of calcination, a catalyst containing the components shown in Table 1 was obtained. In addition,
The “adjusted amount of titanium oxide” is titanium oxide in the case where the amount of supported elements increases and the amount of titanium oxide is reduced so that the proportion of manganese and the like in the entire catalyst is kept constant. Moreover, Comparative Examples 1-5, Test Examples 1-6, and Example 1-
The catalyst components of 3 are also shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例15 実施例1〜14、試験例1〜6及び比較例1〜5の触媒
10mlを各々、反応器に充填し反応器の入口と出口で検
出されるNOx濃度を測定した。測定条件は温度150
℃、SV6700(1/h )、ガス組成NOx100pp
m 、アンモニア110ppm 、酸素10%、水15%、窒
素Balanceとした。なお脱硝率は以下のように定
義した。結果を表1に示す。 脱硝率(%)=(入口NOx濃度(ppm )−出口NOx
濃度(ppm ))/入口NOx濃度(ppm )×100
Example 15 10 ml of the catalysts of Examples 1 to 14, Test Examples 1 to 6 and Comparative Examples 1 to 5 were filled in a reactor, and the NOx concentration detected at the inlet and outlet of the reactor was measured. Measurement conditions are temperature 150
℃, SV6700 (1 / h), gas composition NOx100pp
m 2, ammonia 110 ppm, oxygen 10%, water 15%, and nitrogen balance. The denitration rate was defined as follows. The results are shown in Table 1. Denitration rate (%) = (NOx concentration at inlet (ppm) -NOx at outlet)
Concentration (ppm)) / Inlet NOx concentration (ppm) x 100

【0039】表1に示す各種脱硝触媒の性能の結果か
ら、試験例1、実施例1、2より、W、Mo、Crを添
加することで、Mn系触媒の活性を維持しながら、N2
Oの副生が抑えられることがわかる。実施例3、試験例
2〜6より、Cu〜Irを添加した触媒は活性が向上す
ることが分かる。実施例より、Ceを添加した触
媒は実施例1〜3、試験例1、2と比べると、活性が向
上している。実施例9、10より、Wを添加した触媒は
実施例3、試験例2と比べると副生N2 Oが抑制されて
いる。実施例1114は活性が最も高く、副生するN
2 Oも比較的少ないということがわかる。
From the performance results of various denitration catalysts shown in Table 1, from Test Example 1, Examples 1 and 2 , by adding W, Mo and Cr, N 2 was maintained while maintaining the activity of the Mn-based catalyst.
It can be seen that the by-product of O can be suppressed. Example 3, test example
From 2 to 6 , it can be seen that the activity of the catalyst added with Cu to Ir is improved. From Examples 4 to 8 , the activity of the catalyst to which Ce was added was improved as compared with Examples 1 to 3 and Test Examples 1 and 2 . According to Examples 9 and 10 , the catalyst to which W is added is suppressed in by-product N 2 O as compared with Example 3 and Test Example 2 . Examples 11 to 14 have the highest activity and N as a by-product.
It can be seen that 2 O is also relatively small.

【0040】[0040]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 本発明の触媒は、200℃以下、望ましくは1
80℃以下の低温で、従来の触媒より高活性であり、コ
ンパクトな触媒脱硝システム構築することができ、か
つ熱ロスを少なくすることができる。 (2) 地球温暖化物質であるN2 Oの副生を抑制する
ことができる。 (3) 主活性成分をマンガンにすることで、従来のバ
ナジウム系触媒よりも低コストな触媒を得ることができ
る。
Since the present invention is configured as described above, it has the following effects. (1) The catalyst of the present invention has a temperature of 200 ° C. or lower, preferably 1
At a low temperature of 80 ° C. or less, it is possible to construct a compact catalyst denitration system which has higher activity than conventional catalysts and can reduce heat loss. (2) Byproducts of N 2 O, which is a global warming substance, can be suppressed. (3) By using manganese as the main active component, it is possible to obtain a catalyst at a lower cost than conventional vanadium-based catalysts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態による低温脱硝方法を
実施する装置を示す系統的概略構成図である。
FIG. 1 is a systematic schematic configuration diagram showing an apparatus for carrying out a low-temperature denitration method according to a first embodiment of the present invention.

【図2】従来の脱硝方法を実施する装置の一例を示す系
統的概略構成図である。
FIG. 2 is a systematic schematic configuration diagram showing an example of an apparatus for performing a conventional denitration method.

【符号の説明】[Explanation of symbols]

10 除塵設備 12 排ガス加熱器 14、22 脱硝装置 20 バグフィルタ 10 Dust removal equipment 12 Exhaust gas heater 14, 22 Denitration equipment 20 bug filters

フロントページの続き (72)発明者 洲河 誠一 兵庫県明石市川崎町1番1号 川崎重工 業株式会社 明石工場内 (72)発明者 尾崎 弘憲 神戸市中央区東川崎町1丁目1番3号 川崎重工業株式会社 神戸本社内 (56)参考文献 特開 昭63−319049(JP,A) 特表 平6−509273(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86,53/94 (72) Inventor Seiichi Sugawa 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi factory (72) Hironori Ozaki 1-3-3 Higashikawasaki-cho, Chuo-ku, Kobe Kawasaki Heavy Industry Co., Ltd. Kobe Head Office (56) Reference Japanese Patent Laid-Open No. 63-319049 (JP, A) Table 6-509273 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-38/74 B01D 53 / 86,53 / 94

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化チタン担体に、マンガン化合物、並
にモリブデン化合物及びクロム化合物の少なくともい
ずれかを担持させてなることを特徴とする低温脱硝触
媒。
To 1. A titanium oxide carrier, manganese compound, the low-temperature denitration catalyst, characterized by comprising by supporting at least one of parallel <br/> beauty the motor Ribuden compounds and chromium compounds.
【請求項2】 酸化チタン担体に、マンガン化合物及び
銅化合物を担持させてなることを特徴とする低温脱硝触
媒。
2. A low-temperature denitration catalyst comprising a titanium oxide carrier on which a manganese compound and a copper compound are supported.
【請求項3】 さらに、セリウム化合物を担持させた請
求項1記載の低温脱硝触媒。
3. The low-temperature denitration catalyst according to claim 1, which further carries a cerium compound.
【請求項4】 さらに、セリウム化合物を担持させた請
求項2記載の低温脱硝触媒。
4. The low-temperature denitration catalyst according to claim 2, which further carries a cerium compound.
【請求項5】 酸化チタン担体に、マンガン化合物及び5. A titanium oxide carrier, a manganese compound and
タングステン化合物を担持させ、さらに、セリウム化合A tungsten compound is supported on the cerium compound.
物を担持させてなることを特徴とする低温脱硝触媒。A low-temperature denitration catalyst characterized by supporting a substance.
【請求項6】 酸化チタン担体に、マンガン化合物及び6. A titanium oxide carrier, a manganese compound, and
タングステン化合物を担持させ、さらに、銅化合物及びA tungsten compound is supported, and a copper compound and
白金族金属化合物の少なくともいずれかを担持させてなDo not support at least one of the platinum group metal compounds.
ることを特徴とする低温脱硝触媒。A low-temperature denitration catalyst characterized by the following.
【請求項7】 酸化チタン担体に、マンガン化合物及び7. A titanium oxide carrier, a manganese compound and
白金族金属化合物を担持させ、さらに、セリウム化合物Platinum group metal compound supported, and further cerium compound
を担持させてなることを特徴とする低温脱硝触媒。A low-temperature denitration catalyst, characterized in that
【請求項8】 さらに、銅化合物及び白金族金属化合物
の少なくともいずれかを担持させた請求項3又は5記載
の低温脱硝触媒。
8. Further, according to claim 3 or 5 low denitration catalyst according was supported at least one of a copper compound and a platinum group metal compound.
【請求項9】 請求項1〜のいずれかに記載の低温脱
硝触媒を用いた触媒装置に、窒素酸化物を含有する13
0〜200℃の排ガスを還元剤とともに導入して、排ガ
ス中の窒素酸化物を還元・除去することを特徴とする低
温脱硝方法。
9. The catalytic device using a low temperature denitration catalyst according to any one of claims 1-8, contains nitrogen oxides 13
A low-temperature denitration method comprising introducing exhaust gas at 0 to 200 ° C. together with a reducing agent to reduce and remove nitrogen oxides in the exhaust gas.
【請求項10】 請求項1〜のいずれかに記載の低温
脱硝触媒を用いた触媒装置に、窒素酸化物を含有する1
50〜180℃の排ガスを還元剤とともに導入して、排
ガス中の窒素酸化物を還元・除去することを特徴とする
低温脱硝方法。
To the catalytic converter using a low-temperature denitration catalyst according to any one of claims 10] according to claim 1-8, 1 containing nitrogen oxides
A low-temperature denitration method comprising introducing exhaust gas at 50 to 180 ° C. together with a reducing agent to reduce and remove nitrogen oxides in the exhaust gas.
JP2000068077A 2000-03-13 2000-03-13 Low temperature denitration catalyst and low temperature denitration method Expired - Fee Related JP3474514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068077A JP3474514B2 (en) 2000-03-13 2000-03-13 Low temperature denitration catalyst and low temperature denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068077A JP3474514B2 (en) 2000-03-13 2000-03-13 Low temperature denitration catalyst and low temperature denitration method

Publications (2)

Publication Number Publication Date
JP2001252562A JP2001252562A (en) 2001-09-18
JP3474514B2 true JP3474514B2 (en) 2003-12-08

Family

ID=18587183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068077A Expired - Fee Related JP3474514B2 (en) 2000-03-13 2000-03-13 Low temperature denitration catalyst and low temperature denitration method

Country Status (1)

Country Link
JP (1) JP3474514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080566A (en) * 2015-08-17 2015-11-25 中国石油大学(北京) Flue gas denitrification powder catalyst as well as preparation method and application thereof
CN105214679A (en) * 2015-08-17 2016-01-06 中国石油大学(北京) A kind of water resistant sulfur resistive type denitrating flue gas powder catalyst, preparation method and its usage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164821B2 (en) * 2008-12-16 2013-03-21 テイカ株式会社 Nitrogen oxide selective catalytic reduction catalyst
KR101367023B1 (en) * 2012-03-20 2014-02-25 이상문 MANGANESE/TITANIA-BASED CATALYST, METHOD OF PREPARING THE SAME AND METHOD OF REMOVING NOx BY USING THE SAME
KR101891233B1 (en) * 2015-08-20 2018-08-28 주식회사 에코프로 Catalyst for removing nitrogen oxide comprising catalyst layer formed on the body surface, a preparation method and use thereof
CN105727985B (en) * 2016-01-27 2018-05-29 中国建筑材料科学研究总院 Honeycomb monolith low-temperature denitration catalyst and preparation method thereof
CN111495186A (en) * 2020-06-02 2020-08-07 北京赛博宇科技发展有限公司 Flue gas heat exchange heating desulfurization and denitrification system of hot rolled steel heat accumulating type heating furnace
CN112495372B (en) * 2020-11-16 2022-03-29 华南理工大学 W-Mn bimetallic oxide composite denitration catalyst and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105080566A (en) * 2015-08-17 2015-11-25 中国石油大学(北京) Flue gas denitrification powder catalyst as well as preparation method and application thereof
CN105214679A (en) * 2015-08-17 2016-01-06 中国石油大学(北京) A kind of water resistant sulfur resistive type denitrating flue gas powder catalyst, preparation method and its usage

Also Published As

Publication number Publication date
JP2001252562A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
JPH064126B2 (en) Exhaust gas purification method
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
EP0661089A2 (en) Device and method for cleaning exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
EP1293250A1 (en) A titanium, molybdenum and vanadium containing catalyst for removing organohalogen compounds, its process of production and use
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
KR102241948B1 (en) Low Temperature SCR Catalyst with Improved Sulfur Resistance and Preparation Method Thereof
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JP2005313161A (en) Method for manufacturing denitration catalyst
JP2015100758A (en) Exhaust gas treatment system
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP3860734B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP4895090B2 (en) NOX selective reduction catalyst
JPH03213145A (en) Ozone decomposing catalyst
JP2011230043A (en) Nitrogen oxide-removing catalyst and nitrogen oxide-removing device using the same
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JPH08168650A (en) Material and method for purifying exhaust gas
JP2003275596A (en) Catalyst for treating waste gas and waste gas treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees