JP5164821B2 - Nitrogen oxide selective catalytic reduction catalyst - Google Patents

Nitrogen oxide selective catalytic reduction catalyst Download PDF

Info

Publication number
JP5164821B2
JP5164821B2 JP2008319810A JP2008319810A JP5164821B2 JP 5164821 B2 JP5164821 B2 JP 5164821B2 JP 2008319810 A JP2008319810 A JP 2008319810A JP 2008319810 A JP2008319810 A JP 2008319810A JP 5164821 B2 JP5164821 B2 JP 5164821B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
cerium
manganese
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008319810A
Other languages
Japanese (ja)
Other versions
JP2010142688A (en
Inventor
俊治 出井
佳明 桝永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2008319810A priority Critical patent/JP5164821B2/en
Publication of JP2010142688A publication Critical patent/JP2010142688A/en
Application granted granted Critical
Publication of JP5164821B2 publication Critical patent/JP5164821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、排出ガス中に含まれる窒素酸化物NO(主にNOおよびNO)をアンモニアを還元剤として用いて無害な窒素Nに還元するための触媒に関する。この触媒は、特に自動車エンジンからの排気ガスの浄化に有用であるが、工場プラントからの排煙の浄化にも有用である。 The present invention relates to a catalyst for reducing nitrogen oxides NO x (mainly NO and NO 2 ) contained in exhaust gas to harmless nitrogen N 2 using ammonia as a reducing agent. This catalyst is particularly useful for purifying exhaust gas from automobile engines, but is also useful for purifying flue gas from factory plants.

自動車排気ガスや工場プラントからの排煙に含まれる窒素酸化物(NO)を取除く技術(脱硝技術)の一つとして、選択的接触還元法(SCR)がある。この方法はNOを含むガスに還元剤としてアンモニアを添加し、触媒を使ってNOをNに還元する方法である。これまで多種類のSCR触媒が知られ、一部は実用化されているが、要求される重要な性能、すなわち低温域(<350℃)および高温域(>350℃)の両方において高いNO転化率を示し、水蒸気の存在下においてもNO転化率が低下せず、そして高温域において亜酸化窒素NOの生成が少ない要求の全部を満足させることは困難であった。 One of the technologies for removing nitrogen oxides (NO x ) contained in automobile exhaust gas and flue gas from factory plants (denitration technology) is selective catalytic reduction (SCR). The method of ammonia was added as a reducing agent in a gas containing NO x, is a method of reducing the NO x to N 2 with a catalyst. Many types of SCR catalysts have been known so far and some have been put into practical use, but the required important performance is high NO x in both low temperature range (<350 ° C.) and high temperature range (> 350 ° C.). It was difficult to satisfy all of the demands that show the conversion rate, the NO x conversion rate does not decrease even in the presence of water vapor, and that the generation of nitrous oxide N 2 O is low at high temperatures.

例えば特許文献1は、Feでイオン交換した合成ゼオライトからなるSCR触媒を開示する。Feをイオン交換することによってNOの生成が抑制されるとしている。しかしながら水蒸気の存在による触媒性能の低下は避けられない。特許文献2は、Feと希土類金属とでイオン交換された合成ゼオライトよりなるSCR触媒を開示する。Feに加え、希土類金属でイオン交換することにより、水蒸気を含む高温雰囲気へ曝された場合の活性の低下が抑制されるとしている。しかしながらFe単独でイオン交換された対応する触媒に比較すると、低温域での転化率が低下する。 For example, Patent Document 1 discloses an SCR catalyst made of synthetic zeolite ion-exchanged with Fe. It is said that the production of N 2 O is suppressed by ion exchange of Fe. However, a decrease in catalyst performance due to the presence of water vapor is inevitable. Patent Document 2 discloses an SCR catalyst made of synthetic zeolite ion-exchanged with Fe and rare earth metal. In addition to Fe, ion exchange with rare earth metals is said to suppress a decrease in activity when exposed to a high-temperature atmosphere containing water vapor. However, the conversion rate in the low temperature range is lower than the corresponding catalyst ion-exchanged with Fe alone.

実用化されているSCR触媒の1種にVを活性種としたチタン/タングステン複合酸化物触媒がある。この触媒はVが大気中拡散禁止物質であるため自動車排気ガス浄化用途には不向である。 One type of SCR catalyst in practical use is a titanium / tungsten composite oxide catalyst using V 2 O 5 as an active species. This catalyst is not suitable for automobile exhaust gas purification because V 2 O 5 is a substance that prohibits diffusion in the atmosphere.

非特許文献1は、150℃以下の低温域において活性が高いMn−Ce二成分系複合酸化物およびこれに第3の金属酸化物を加えた三成分系複合酸化物よりなるSCR触媒を開示している。しかしながらこれら触媒は水蒸気による活性低下が著しく、300℃以上の高温においてNOが発生し、またはNHの酸化が起こるため活性も低下する。
Non-Patent Document 1 discloses an SCR catalyst comprising a Mn—Ce binary composite oxide having a high activity in a low temperature range of 150 ° C. or lower and a ternary composite oxide obtained by adding a third metal oxide thereto. ing. However, the activity of these catalysts is remarkably lowered by water vapor, and N 2 O is generated at a high temperature of 300 ° C. or higher, and the activity is also lowered because of the oxidation of NH 3 .

特開2006−136776号公報JP 2006-136776 A 特開2006−305423号公報JP 2006-305423 A G.Qi et al.,Applied Catalysis B:Environmental 51(2004)93−106G. Qi et al. , Applied Catalysis B: Environmental 51 (2004) 93-106.

本発明の課題は、これまで知られているSCR触媒の欠点を少なくとも部分的に改良することである。これらの触媒は、(a)低温域および高温域での高い活性、(b)水蒸気の存在下において低下しない活性、および(c)特に高温域において低いNO生成のいずれかの性能において満足ではなかった。 The object of the present invention is to at least partially remedy the drawbacks of the previously known SCR catalysts. These catalysts are satisfactory in any performance of (a) high activity at low and high temperatures, (b) activity that does not decrease in the presence of water vapor, and (c) low N 2 O production, especially at high temperatures. It wasn't.

本発明は、これら性能のいずれにおいてもこれまで知られた触媒に比較して改良されているSCR触媒を提供する。   The present invention provides an SCR catalyst that is improved in any of these performances compared to previously known catalysts.

上述したように、MnO/CeO 二成分系複合酸化物触媒は水蒸気による活性低下が著しく、また300℃以上で多量のNOを発生するのみならず、アンモニアの酸化も起こるため活性も低下する。本発明によれば、この二成分系複合酸化物触媒へ、酸化タングステンをさらに混合し、MnO/CeO/WO 三成分系複合酸化物とすることにより、意外にも二成分系複合酸化物の欠点が有意に改善し得ることがわかった。
As described above, MnO x / CeO 2 binary composite oxide catalyst significantly reduced activity by water vapor, but also includes generating a large amount of N 2 O at 300 ° C. or higher, even active for oxidation also occurs ammonia descend. According to the present invention, to the two-component composite oxide catalyst, further mixing the tungsten oxide by the MnO x / CeO 2 / WO 3 ternary composite oxide, surprisingly a two-component composite oxide It has been found that the defects of objects can be improved significantly.

そこで本発明は、酸化セリウムを主体とし、酸化マンガンおよび酸化タングステンを含む窒素酸化物除去のためのSCR触媒を提供する。   Therefore, the present invention provides an SCR catalyst for removing nitrogen oxides mainly composed of cerium oxide and containing manganese oxide and tungsten oxide.

本発明のSCR触媒は、共沈法によってCeO/MnO複合酸化物およびCeO/WO複合酸化物を製造し、両者を混合し、CeOを主体とし、CeO>MnO>WO重量比を有する混合物とすることによって得られる。
SCR catalyst of the present invention is to produce a CeO 2 / MnO x complex oxide and CeO 2 / WO 3 composite oxide by a coprecipitation method, mixing the two, mainly the CeO 2, CeO 2> MnO x > WO To obtain a mixture having a weight ratio of 3 .

このように得られた触媒は、ハニカム構造の支持体の表面に被覆固定して脱硝に用いることができる。   The catalyst thus obtained can be used for denitration by coating and fixing on the surface of a support having a honeycomb structure.

本発明のSCR触媒は、共沈法によって製造したCeO/MnO複合酸化物と、同じく共沈法によって製造したCeO/WO複合酸化物を混合することによって得ることができる。CeOとMnOとの複合酸化物は、硝酸セリウムのような水溶性セリウム塩と、硝酸マンガンのような水溶性マンガン塩を含む水溶液をアンモニア水のようなアルカリで中和し、生成した沈澱を濾過して得たケーキを乾燥後、高温、例えば550℃で焼成することによって製造することができる。CeOとWOとの複合酸化物は、硝酸セリウムのような水溶性セリウム塩の水溶液をアンモニア水で中和し、生成した沈澱を濾過しケーキをメタタングステン酸アンモニウムのような水溶性タングステン化合物の水溶液へ投じ、水分を蒸発して乾燥後、550℃で焼成することによって得ることができる。 The SCR catalyst of the present invention can be obtained by mixing a CeO 2 / MnO x composite oxide produced by the coprecipitation method and a CeO 2 / WO 3 composite oxide produced by the coprecipitation method. A composite oxide of CeO 2 and MnO x is formed by neutralizing an aqueous solution containing a water-soluble cerium salt such as cerium nitrate and a water-soluble manganese salt such as manganese nitrate with an alkali such as aqueous ammonia. The cake obtained by filtering can be produced by baking at a high temperature, for example, 550 ° C. after drying. A composite oxide of CeO 2 and WO 3 is prepared by neutralizing an aqueous solution of a water-soluble cerium salt such as cerium nitrate with aqueous ammonia, filtering the formed precipitate, and treating the cake with a water-soluble tungsten compound such as ammonium metatungstate. It can be obtained by pouring it into an aqueous solution, evaporating the moisture and drying it, followed by firing at 550 ° C.

MnOを含む二成分系複合酸化物と、WOを含む二成分系複合酸化物を混合して得られる本発明の触媒は、CeO>MnO>WOの組成比が維持されることを条件に、酸化セリウムを基準にして、酸化マンガンが5〜30重量%、酸化タングステンが2〜10%の範囲にあることが適当である。この範囲を外れ、酸化セリウムに対する酸化マンガンの比が大きくなるにつれCeO/MnO 二成分系複合酸化物に近付き、水蒸気による活性の低下および高温において亜酸化窒素の生成が増加する傾向にある。反対に酸化セリウムに対する酸化マンガンの比が小さくなり、相対的に酸化タングステンの比が大きくなるにつれNOのSCR触媒活性全体が低下する傾向にある。また、重量比がCeO>WO>MnOの触媒も全体の活性が低い。
A two-component composite oxide containing MnO x, the catalyst of the present invention obtained by mixing a two-component composite oxide containing WO 3 is that the composition ratio of CeO 2> MnO x> WO 3 is maintained In the above conditions, it is appropriate that manganese oxide is in the range of 5 to 30% by weight and tungsten oxide is in the range of 2 to 10% based on cerium oxide. Outside this range, as the ratio of manganese oxide to cerium oxide increases, it approaches the CeO 2 / MnO x binary composite oxide, and tends to decrease activity due to water vapor and increase the production of nitrous oxide at high temperatures. On the contrary, the ratio of manganese oxide to cerium oxide decreases, and the overall SCR catalytic activity of NO x tends to decrease as the ratio of tungsten oxide increases relatively. A catalyst having a weight ratio of CeO 2 > WO 3 > MnO x is also low in overall activity.

本発明の触媒はこれを気相反応に使用するため支持体に固定しなければならない。この場合一般にステンレス鋼のような金属や、コージェライトのようなセラミック等の耐熱性支持体の表面に、例えばウオッシュコート法によって触媒被覆層を固定して用いるのが、一般的である。排気ガスとの接触面積を確保するため、200〜600セル/inのセル密度を有するハニカム支持体が一般に使用される。本発明のSCR触媒もこのようにハニカム構造の支持体に固定して用いることができる。この場合、本発明の触媒は、ハニカム支持体の容積を基準にして、30〜300g/Lの量で担持させることが好ましい。 The catalyst of the present invention must be fixed to a support in order to use it for a gas phase reaction. In this case, it is general to use a catalyst coating layer fixed on the surface of a heat-resistant support such as a metal such as stainless steel or a ceramic such as cordierite by, for example, a wash coating method. In order to ensure a contact area with the exhaust gas, a honeycomb support having a cell density of 200 to 600 cells / in 2 is generally used. The SCR catalyst of the present invention can also be used by being fixed to the honeycomb structure support. In this case, the catalyst of the present invention is preferably supported in an amount of 30 to 300 g / L based on the volume of the honeycomb support.

また、これまでSCR反応に使用する還元剤としてアンモニアを示して来たが、尿素を還元剤として使用することもできる。   In addition, ammonia has been shown as the reducing agent used in the SCR reaction so far, but urea can also be used as the reducing agent.

以下に限定を意図しない実施例によって本発明をさらに詳しく説明する。   The invention is explained in more detail below by means of non-limiting examples.

実施例1
1)触媒の調製
a)硝酸セリウム6水和物120gと、硝酸マンガン6水和物195gを水3Lに溶解した。この溶液に28%アンモニア水を攪拌しながらゆっくり滴下し、pH8.5になるまで中和した。生成した沈澱を濾過し、ケーキを120℃で18時間乾燥した後、550℃で6時間焼成し、酸化マンガン/酸化セリウム複合酸化物粉体(酸化物基準重量比50/50)を定量的収量で得た。
Example 1
1) Preparation of catalyst a) 120 g of cerium nitrate hexahydrate and 195 g of manganese nitrate hexahydrate were dissolved in 3 L of water. To this solution, 28% ammonia water was slowly added dropwise with stirring, and neutralized to pH 8.5. The formed precipitate was filtered, and the cake was dried at 120 ° C. for 18 hours and then calcined at 550 ° C. for 6 hours to obtain a quantitative yield of manganese oxide / cerium oxide composite oxide powder (weight ratio of oxide based on 50/50). Got in.

b)別に、硝酸セリウム6水和物126gを水3Lに溶解し、この溶液に28%アンモニア水を攪拌しながらゆっくり滴下し、pH8.5になるまで中和した。生成した沈澱を濾過し、ケーキをメタタングステン酸アンモニウム10g/Lを含む水溶液1Lに投入し、攪拌した。このスラリーをそのまま120℃で18時間加熱して蒸発乾固し、550℃で6時間焼成し、酸化タングステン/酸化セリウム複合酸化物粉体(酸化物基準タングステン/セリウム重量比=9.1/90.9)を得た。 b) Separately, 126 g of cerium nitrate hexahydrate was dissolved in 3 L of water, and 28% aqueous ammonia was slowly added dropwise to this solution while stirring to neutralize the solution to pH 8.5. The produced precipitate was filtered, and the cake was put into 1 L of an aqueous solution containing 10 g / L of ammonium metatungstate and stirred. This slurry was directly heated at 120 ° C. for 18 hours to evaporate to dryness, calcined at 550 ° C. for 6 hours, and tungsten oxide / cerium oxide composite oxide powder (oxide-based tungsten / cerium weight ratio = 9.1 / 90). .9) was obtained.

c)ステップa)で得た粉体と、ステップb)で得た粉体を重量比で1:2となるように乳鉢に取り、よく粉砕して均一になるまで混合し、酸化セリウム/酸化マンガン/酸化タングステン複合酸化物(酸化物基準セリウム/マンガン/タングステン重量比=77.3/16.7/6)を得た。この触媒の酸化セリウムに対する酸化マンガンおよび酸化タングステンの含有量は、重量基準でそれぞれ26.6%および7.8%である。 c) Take the powder obtained in step a) and the powder obtained in step b) into a mortar so that the weight ratio is 1: 2, thoroughly grind and mix until uniform, cerium oxide / oxidation Manganese / tungsten oxide composite oxide (oxide-based cerium / manganese / tungsten weight ratio = 77.3 / 16.7 / 6) was obtained. The contents of manganese oxide and tungsten oxide with respect to cerium oxide of this catalyst are 26.6% and 7.8%, respectively, on a weight basis.

2)触媒の固定
上のステップc)で得た本発明の触媒30gに、アルミナゾル(日産化学製アルミナゾル、Alとして20重量%)4gと、シリカゾル(日産化学製スノーテックO、SiOとして20重量%)8gと、適量の水を混合した後、粉砕媒体として1.5mmのガラスビーズ50gを加えてペイントコンディショナーにて10分間粉砕し、ウオッシュコート用スラリーを得た。これを1inあたり400セルのコージェライト製ハニカム基体に塗布し、550℃で6時間焼成を行い、表面に上記触媒成分を200g/L(ハニカム容積)の割合で担持するハニカム触媒構造体を製造した。
2) Immobilization of catalyst 30 g of the catalyst of the present invention obtained in the above step c), 4 g of alumina sol (Nissan Chemical's alumina sol, 20 wt% as Al 2 O 3 ) and silica sol (Nissan Chemical's Snowtech O, SiO 2) 8 g) and an appropriate amount of water were mixed, 50 g of 1.5 mm glass beads were added as a grinding medium, and pulverized for 10 minutes with a paint conditioner to obtain a washcoat slurry. This is applied to a cordierite honeycomb substrate of 400 cells per in 2 and fired at 550 ° C. for 6 hours to produce a honeycomb catalyst structure carrying the catalyst component on the surface at a rate of 200 g / L (honeycomb volume). did.

実施例2
1)触媒の調製
a)硝酸セリウム6水和物195gと、硝酸マンガン6水和物86gを水3Lに溶解した。この溶液に28%アンモニア水を攪拌しながらゆっくり滴下し、pH8.5になるまで中和した。生成した沈澱を濾過し、ケーキを120℃で18時間乾燥した後、550℃で6時間焼成し、酸化マンガン/酸化セリウム複合酸化物粉体(酸化物基準Mn/Ce重量比=25/75)を得た。
b)別に、実施例1のステップb)を繰り返し、酸化タングステン/酸化セリウム複合酸化物粉体(酸化物基準タングステン/セリウム重量比=9.1/90.9)を得た。
c)ステップa)で得た粉体と、ステップb)で得た粉体を重量比で1:2となるように乳鉢に取り、よく粉砕して均一になるまで混合し、酸化セリウム/酸化マンガン/酸化タングステン複合酸化物を得た。
この触媒の酸化セリウムに対する酸化マンガンおよび酸化タングステンの含有量は、重量基準でそれぞれ9.7%および7.0%である。
2)触媒の固定
実施例1と同様に、上で得た触媒をハニカム触媒構造体として固定した。
Example 2
1) Preparation of catalyst a) 195 g of cerium nitrate hexahydrate and 86 g of manganese nitrate hexahydrate were dissolved in 3 L of water. To this solution, 28% ammonia water was slowly added dropwise with stirring, and neutralized to pH 8.5. The formed precipitate was filtered, and the cake was dried at 120 ° C. for 18 hours and then calcined at 550 ° C. for 6 hours to obtain a manganese oxide / cerium oxide composite oxide powder (oxide reference Mn / Ce weight ratio = 25/75 ). Got.
b) Separately, Step b) of Example 1 was repeated to obtain a tungsten oxide / cerium oxide composite oxide powder (oxide-based tungsten / cerium weight ratio = 9.1 / 90.9).
c) Take the powder obtained in step a) and the powder obtained in step b) into a mortar so that the weight ratio is 1: 2, thoroughly grind and mix until uniform, cerium oxide / oxidation Manganese / tungsten oxide composite oxide was obtained.
The contents of manganese oxide and tungsten oxide with respect to cerium oxide of this catalyst are 9.7% and 7.0%, respectively, on a weight basis.
2) Fixation of catalyst As in Example 1, the catalyst obtained above was fixed as a honeycomb catalyst structure.

実施例3
1)触媒の調製
a)実施例2のステップa)を繰り返し、酸化マンガン/酸化セリウム複合酸化物粉体(酸化物基準Mn/Ce重量比=25/75)を得た。
b)別に硝酸セリウム6水和物126gを水3Lに溶解し、この溶液に28%アンモニア水を攪拌しながらゆっくり滴下し、pH8.5になるまで中和した。生成した沈殿を濾過し、ケーキをメタタングステン酸アンモニウム5g/Lを含む水溶液1Lに投入し、攪拌した。このスラリーをそのまま120℃で18時間加熱して蒸発乾固し、550℃で6時間焼成し、酸化タングステン/酸化セリウム複合体酸化物粉体(酸化物換算タングステン/セリウム重量比=4.7/95.3)を得た。
c)ステップa)で得た粉体と、ステップb)で得た粉体を重量比で1:2となるように乳鉢に取り、よく粉砕して均一になるまで混合し、酸化セリウム/酸化マンガン/酸化タングステン複合酸化物を得た。この触媒の酸化セリウムに対する酸化マンガンおよび酸化タングステンの含有量は、重量基準でそれぞれ9.4%および3.5%である。
2)触媒の固定
実施例1と同様に、上で得た触媒をハニカム触媒構造体として固定した。
Example 3
1) Preparation of catalyst a) Step a) of Example 2 was repeated to obtain manganese oxide / cerium oxide composite oxide powder (oxide reference Mn / Ce weight ratio = 25/75 ).
b) Separately, 126 g of cerium nitrate hexahydrate was dissolved in 3 L of water, and 28% aqueous ammonia was slowly added dropwise to this solution while stirring to neutralize it to pH 8.5. The produced precipitate was filtered, and the cake was put into 1 L of an aqueous solution containing 5 g / L of ammonium metatungstate and stirred. This slurry was directly heated at 120 ° C. for 18 hours to evaporate to dryness, and calcined at 550 ° C. for 6 hours. 95.3) was obtained.
c) Take the powder obtained in step a) and the powder obtained in step b) into a mortar so that the weight ratio is 1: 2, thoroughly grind and mix until uniform, cerium oxide / oxidation Manganese / tungsten oxide composite oxide was obtained. The contents of manganese oxide and tungsten oxide with respect to cerium oxide of this catalyst are 9.4% and 3.5%, respectively, on a weight basis.
2) Fixation of catalyst As in Example 1, the catalyst obtained above was fixed as a honeycomb catalyst structure.

比較例1
実施例1のステップc)で得た酸化セリウム/酸化マンガン/酸化タングステン複合酸化物の代りに、実施例1のステップa)で得た酸化セリウム/酸化マンガン複合酸化物を用い、実施例1の操作を繰り返して比較例1のハニカム触媒構造体を製造した。
Comparative Example 1
Instead of the cerium oxide / manganese oxide / tungsten oxide composite oxide obtained in Step c) of Example 1, the cerium oxide / manganese oxide composite oxide obtained in Step a) of Example 1 was used. The operation was repeated to produce a honeycomb catalyst structure of Comparative Example 1.

比較例2
実施例1のステップc)で得た酸化セリウム/酸化マンガン/酸化タングステン複合酸化物の代りに、実施例1のステップb)で得た酸化セリウム/酸化タングステン複合酸化物を用い、実施例1の操作を繰り返して比較例2のハニカム触媒構造体を製造した。
Comparative Example 2
In place of the cerium oxide / manganese oxide / tungsten oxide composite oxide obtained in step c) of Example 1, the cerium oxide / tungsten oxide composite oxide obtained in step b) of Example 1 was used. The operation was repeated to produce a honeycomb catalyst structure of Comparative Example 2.

比較例3
1)触媒の調製
a)実施例2のステップa)を繰り返し、酸化マンガン/酸化セリウム複合酸化物粉体(酸化物基準Mn/Ce重量比=25/75)を得た。
b)実施例1のステップb)において、メタタングステン酸10g/Lを含む水溶液の代りに、メタタングステン酸15g/Lを含む水溶液を使用し、酸化タングステン/酸化セリウム複合酸化物粉体(酸化物換算タングステン/セリウム重量比=87.0/13.0)を得た。
c)ステップa)で得た粉体と、ステップb)で得た粉体を重量比で1:2となるように乳鉢に取り、よく粉砕して均一になるまで混合し、酸化セリウム/酸化マンガン/酸化タングステン複合酸化物を得た。この触媒の酸化セリウムに対する酸化マンガンおよび酸化タングステンの含有量は、それぞれ10.2%および10.6%である。
2)触媒の固定
実施例1と同様に、上で得た触媒をハニカム触媒構造体として固定した。
Comparative Example 3
1) Preparation of catalyst a) Step a) of Example 2 was repeated to obtain manganese oxide / cerium oxide composite oxide powder (oxide reference Mn / Ce weight ratio = 25/75 ).
b) In step b) of Example 1, an aqueous solution containing 15 g / L of metatungstic acid was used in place of the aqueous solution containing 10 g / L of metatungstic acid, and a tungsten oxide / cerium oxide composite oxide powder (oxide) (Conversion tungsten / cerium weight ratio = 87.0 / 13.0).
c) Take the powder obtained in step a) and the powder obtained in step b) into a mortar so that the weight ratio is 1: 2, thoroughly grind and mix until uniform, cerium oxide / oxidation Manganese / tungsten oxide composite oxide was obtained. The contents of manganese oxide and tungsten oxide with respect to cerium oxide of this catalyst are 10.2% and 10.6%, respectively.
2) Fixation of catalyst As in Example 1, the catalyst obtained above was fixed as a honeycomb catalyst structure.

比較例4
1)触媒担体の調製
硫酸チタニル結晶(テイカ(株)製TM結晶、TiO含量33%)151.7gを水1Lに溶解し、この溶液と28%アンモニア水を攪拌しながらゆっくり滴下し、pH6.5になるまで中和し、10分間攪拌し、熟成を行った。その後再びアンモニア水を滴下してpH6.5に調整し、濾過、水洗を行った後、さらに水溶性不純物を除去するため水にレパルプし、pH調整、濾過、水洗を行った。得られた濾過ケーキを500mLの水に分散して得たスラリーへ、パラタングステン酸アンモニウム(日本無機化学工業(株)製)4.27gを加え、10分間攪拌した後、濾過することなくそのまま120℃で24時間加熱し、蒸発乾固した。このものを600℃で3時間焼成し、Vの担体として使用するチタニア/酸化タングステン複合酸化物粉体(酸化物基準TiO/WO重量比=90/10、比表面積85m/g)を得た。
Comparative Example 4
1) Preparation of catalyst carrier 151.7 g of titanyl sulfate crystal (TM crystal manufactured by Teika Co., Ltd., TiO 2 content 33%) was dissolved in 1 L of water, and this solution and 28% aqueous ammonia were slowly added dropwise with stirring to pH 6 The mixture was neutralized to 5 and stirred for 10 minutes for aging. Thereafter, ammonia water was dropped again to adjust the pH to 6.5, followed by filtration and washing with water, and then repulping into water to remove water-soluble impurities, followed by pH adjustment, filtration and washing with water. To the slurry obtained by dispersing the obtained filter cake in 500 mL of water, 4.27 g of ammonium paratungstate (manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) was added, stirred for 10 minutes, and then directly filtered without filtration. Heat at 24 ° C. for 24 hours and evaporate to dryness. This was calcined at 600 ° C. for 3 hours and used as a support for V 2 O 5 titania / tungsten oxide composite oxide powder (oxide standard TiO 2 / WO 3 weight ratio = 90/10, specific surface area 85 m 2 / g) was obtained.

2)V/WO/TiO触媒を固定したハニカム触媒構造体の製造
ステップ1)で得たチタニア/酸化タングステン複合酸化物30gに、チタニアゾル(テイカ(株)製TKS−202,チタニアとして30重量%)12gと適量の水を混合した後、粉砕媒体として15mmφのガラスビーズ50gを加え、ペイントコンディショナーにて10分間粉砕し、ウオッシュコート用スラリーを得た。これを実施例で使用したものと同じハニカム基体に塗布し、500℃で1時間焼成して表面に200g/L(ハニカム容積)の割合で上記触媒担体を固定したハニカム構造体を得た。得られたハニカムをあらかじめ用意したメタバナジン酸アンモニウム水溶液に、含浸量がVとして10g/L(ハニカム容積)になるように含浸、乾燥し、再度500℃で2時間焼成してV/WO/TiO複合酸化物系触媒を固定したハニカム触媒構造体を製造した。
2) Manufacture of honeycomb catalyst structure in which V 2 O 5 / WO 3 / TiO 2 catalyst is fixed To titania / tungsten oxide composite oxide 30 g obtained in step 1), titania sol (TKS-202, manufactured by Taca Co., Ltd.) After mixing 12 g and an appropriate amount of water, 50 g of 15 mmφ glass beads were added as a grinding medium, and pulverized for 10 minutes with a paint conditioner to obtain a washcoat slurry. This was applied to the same honeycomb substrate as used in the Examples, and fired at 500 ° C. for 1 hour to obtain a honeycomb structure having the catalyst carrier fixed on the surface at a rate of 200 g / L (honeycomb volume). The obtained honeycomb was impregnated in an ammonium metavanadate aqueous solution prepared in advance so that the impregnation amount was 10 g / L (honeycomb volume) as V 2 O 5 , dried, and fired again at 500 ° C. for 2 hours to obtain V 2 O. A honeycomb catalyst structure having a 5 / WO 3 / TiO 2 composite oxide catalyst fixed thereto was produced.

〔性能試験〕
実施例および比較例の各ハニカム触媒構造体(容積2mL)を常圧固定床に設置し、表1の条件1または2の反応ガスを、空間速度50,000h−1、反応温度150℃〜400℃で通過させ、ケミルミネセンスNO計(柳本製作所製ECL−77型)を用いて装置入口ガスと出口ガスのNO濃度を測定し、次式に従ってNO転化率を算出した。
〔performance test〕
Each honeycomb catalyst structure (volume 2 mL) of the example and the comparative example is installed in an atmospheric pressure fixed bed, the reaction gas of condition 1 or 2 in Table 1 is used at a space velocity of 50,000 h −1 , a reaction temperature of 150 ° C. to 400 ° C. The NO x concentration of the apparatus inlet gas and the outlet gas was measured using a chemiluminescence NO x meter (Yanamoto Seisakusho ECL-77 type), and the NO x conversion rate was calculated according to the following formula.

NO転化率(%)=(入口NO濃度−出口NO濃度)/(入口NO濃度)×100 NO x conversion rate (%) = (inlet NO x concentration−outlet NO x concentration) / (inlet NO x concentration) × 100

結果を、表2および表3と、図1および図2のグラフに示す。また、ガスクロマトグラフィー計(島津製作所製)を用い、出口ガス中の亜酸化窒素NOの濃度(ppm)を測定し、表4および図3のグラフに示す結果を得た。 The results are shown in Tables 2 and 3 and the graphs of FIGS. Further, using a gas chromatography meter (manufactured by Shimadzu Corporation), the concentration (ppm) of nitrous oxide N 2 O in the outlet gas was measured, and the results shown in Table 4 and the graph of FIG. 3 were obtained.

表2および図1のグラフが示すように、実施例1〜3の触媒は、条件1において酸化タングステンを含まない比較例1の触媒、および酸化マンガンを含まない比較例2の触媒よりも300℃以上の温度において高いNO転化率を示している。重量比がCeO>WO>MnOである比較例3の触媒は、NO転化率において比較例2の触媒に似ている。また既に実際に使用されている /WO/TiO系の比較例4の触媒に比較すると、実施例1〜3の触媒は250℃までの低温域において高いNO転化率を示している。
As shown in the graph of Table 2 and FIG. 1 , the catalysts of Examples 1 to 3 are 300 ° C. higher than the catalyst of Comparative Example 1 that does not contain tungsten oxide and the catalyst of Comparative Example 2 that does not contain manganese oxide. A high NO x conversion is shown at the above temperatures. The catalyst of Comparative Example 3 having a weight ratio of CeO 2 > WO 3 > MnO x is similar to the catalyst of Comparative Example 2 in NO x conversion. Further, when compared with the catalyst of Comparative Example 4 of the V 2 O 5 / WO 3 / TiO 2 system that has already been actually used, the catalysts of Examples 1 to 3 have a high NO x conversion rate in a low temperature range up to 250 ° C. Show.

表3および図2のグラフを参照すると、実施例1および比較例1の触媒は、HOが存在する条件1よりもHOが存在しない条件2において高いNO転化率を示す傾向にあるが、しかし実施例1の触媒は反応温度が上昇するにつれ条件1と条件2におけるNO転化率の差が小さくなることがわかる。また既に実用されている比較例4の触媒に比較すると、実施例1の触媒は350℃までの温度において触媒活性が高いことも示している。 Referring to the graph of Table 3 and Figure 2, the catalyst of Example 1 and Comparative Example 1, tend to exhibit high NO x conversion in the condition 2 H 2 O is not present than condition 1 H 2 O is present However, the catalyst of Example 1 shows that the difference in the NO x conversion rate under conditions 1 and 2 decreases as the reaction temperature increases. It also shows that the catalyst of Example 1 has high catalytic activity at temperatures up to 350 ° C., compared with the catalyst of Comparative Example 4 that has already been put into practical use.

亜酸化窒素NOの生成濃度を示す表4および図3のグラフを参照すると、実施例1〜3の酸化タングステンを含む三成分系複合酸化物触媒は、酸化タングステンを含まない比較例1の酸化セリウム/酸化マンガン二成分系複合酸化物のように、高温において高濃度のNOを生成することが少ない。 Referring to Table 4 showing the production concentration of nitrous oxide N 2 O and the graph of FIG. 3, the ternary composite oxide catalyst containing tungsten oxide of Examples 1 to 3 is that of Comparative Example 1 containing no tungsten oxide. Like a cerium oxide / manganese oxide binary composite oxide, it is less likely to produce a high concentration of N 2 O at high temperatures.

実施例および比較例の触媒の異なる温度におけるNOの転化率を示すグラフである。Is a graph showing the conversion of the NO x in the different temperatures of the catalysts of Examples and Comparative Examples. 実施例および比較例の触媒の、水蒸気存在下および不存在下における異なる温度におけるNO転化率を示すグラフである。The catalysts of Examples and Comparative Examples, a graph showing the NO x conversion at different temperatures in water vapor presence and absence. 実施例および比較例の高温における亜酸化窒素生成量を示すグラフである。It is a graph which shows the nitrous oxide production amount in the high temperature of an Example and a comparative example.

Claims (6)

アンモニアまたは尿素を還元剤として窒素酸化物含有ガス中の窒素酸化物を窒素へ選択的に接触還元するための触媒であって、酸化セリウムと、酸化マンガンと、酸化タングステンを、CeO>MnO>WO重量比で含んでいる三成分系複合酸化物よりなることを特徴とする触媒。
A catalyst for selectively catalytically reducing nitrogen oxide in a nitrogen oxide-containing gas to nitrogen using ammonia or urea as a reducing agent, comprising cerium oxide, manganese oxide, and tungsten oxide, CeO 2 > MnO x > Catalyst comprising a ternary composite oxide containing WO 3 in a weight ratio .
触媒中の酸化マンガンの含有量が、酸化セリウムに対して5〜30重量%である請求項1の触媒。   The catalyst according to claim 1, wherein the content of manganese oxide in the catalyst is 5 to 30% by weight with respect to cerium oxide. 触媒中の酸化タングステンの含有量が、酸化セリウムに対して2〜10重量%である請求項1または2の触媒。   The catalyst according to claim 1 or 2, wherein the content of tungsten oxide in the catalyst is 2 to 10% by weight based on cerium oxide. 請求項1ないし3のいずれかの触媒をハニカム構造担体の表面に固定してなるハニカム構造触媒床。   A honeycomb structure catalyst bed comprising the catalyst according to any one of claims 1 to 3 fixed on a surface of a honeycomb structure carrier. 前記触媒の固定量が、ハニカム構造担体に対して30〜300g/L(ハニカム容積)である請求項4のハニカム構造触媒床。   The honeycomb structure catalyst bed according to claim 4, wherein the fixed amount of the catalyst is 30 to 300 g / L (honeycomb volume) with respect to the honeycomb structure carrier. (a)酸化セリウムと酸化マンガンの二成分系複合酸化物と、(b)酸化セリウムと酸化タングステンの二成分系複合酸化物とを、重量比がCeO>MnO>WOとなるように混合することを特徴とする請求項1の触媒の製造方法。
The weight ratio of the binary composite oxide of (a) cerium oxide and manganese oxide and the binary composite oxide of (b) cerium oxide and tungsten oxide is such that CeO 2 > MnO x > WO 3. The method for producing a catalyst according to claim 1, wherein the catalyst is mixed.
JP2008319810A 2008-12-16 2008-12-16 Nitrogen oxide selective catalytic reduction catalyst Active JP5164821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319810A JP5164821B2 (en) 2008-12-16 2008-12-16 Nitrogen oxide selective catalytic reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319810A JP5164821B2 (en) 2008-12-16 2008-12-16 Nitrogen oxide selective catalytic reduction catalyst

Publications (2)

Publication Number Publication Date
JP2010142688A JP2010142688A (en) 2010-07-01
JP5164821B2 true JP5164821B2 (en) 2013-03-21

Family

ID=42563680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319810A Active JP5164821B2 (en) 2008-12-16 2008-12-16 Nitrogen oxide selective catalytic reduction catalyst

Country Status (1)

Country Link
JP (1) JP5164821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383916A (en) * 2014-11-05 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 Catalyst for removing low-concentration nitric oxide and preparation method and application of catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715450B2 (en) * 2011-03-09 2015-05-07 テイカ株式会社 Nitrogen oxide selective reduction catalyst and production method thereof
JP2013241859A (en) * 2012-05-18 2013-12-05 Isuzu Motors Ltd Exhaust gas purification system and method for purifying exhaust gas
CN105797715B (en) * 2016-05-24 2018-04-17 吉林省电力科学研究院有限公司 The preparation method of support type manganese-cerium composite oxide nano-wire catalyst
CN114768861B (en) * 2022-04-02 2023-12-15 潍柴动力股份有限公司 Oxide-molecular sieve composite catalyst and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576972B2 (en) * 1973-12-13 1982-02-08
JP3790943B2 (en) * 1997-07-30 2006-06-28 バブコック日立株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP3474514B2 (en) * 2000-03-13 2003-12-08 川崎重工業株式会社 Low temperature denitration catalyst and low temperature denitration method
JP4508584B2 (en) * 2003-09-05 2010-07-21 三菱重工業株式会社 Denitration catalyst for high temperature exhaust gas
US20080095682A1 (en) * 2006-10-19 2008-04-24 Kharas Karl C Ce-Zr-R-O CATALYSTS, ARTICLES COMPRISING THE Ce Zr R O CATALYSTS AND METHODS OF MAKING AND USING THE Ce-Zr-R-O CATALYSTS
FR2907445B1 (en) * 2006-10-20 2010-09-03 Rhodia Recherches & Tech HIGH ACIDITY COMPOSITION BASED ON ZIRCONIUM OXIDE, TITANIUM OXIDE AND TUNGSTEN OXIDE, PROCESS FOR THE PREPARATION AND USE IN THE TREATMENT OF EXHAUST GASES
JP5305133B2 (en) * 2007-09-19 2013-10-02 株式会社豊田中央研究所 Nitrogen oxide purification catalyst and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383916A (en) * 2014-11-05 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 Catalyst for removing low-concentration nitric oxide and preparation method and application of catalyst

Also Published As

Publication number Publication date
JP2010142688A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5784699B2 (en) Catalyst composition for selective catalytic reduction of exhaust gas
JP5982280B2 (en) Catalyst composition for selective catalytic reduction of exhaust gas
JP4757027B2 (en) Catalyst for catalytic reduction of nitrogen oxides
US8148295B2 (en) Catalyst promoters in vanadium-free mobile catalyst
EP2406006B1 (en) Mobile denox catalyst
JP5422087B2 (en) Low noble metal supported three way catalyst
US20180195425A1 (en) Nitrous oxide removal catalysts for exhaust systems
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JPWO2015099024A1 (en) Ammonia decomposition catalyst
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
JP2007167803A (en) Denitration catalyst, honeycomb structure type denitration catalyst and denitration method using it
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
KR20070004536A (en) Exhaust gas catalyst
JP2006289211A (en) Ammonia oxidation catalyst
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
KR20150023523A (en) Scr catalyst and method of preparation thereof
Sagar et al. A New Class of Environmental Friendly Vanadate Based NH₃ SCR Catalysts Exhibiting Good Low Temperature Activity and High Temperature Stability
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP5715450B2 (en) Nitrogen oxide selective reduction catalyst and production method thereof
US20160332118A1 (en) Non noble metal based diesel oxidation catalyst
KR20170098505A (en) Ceria-alumina Mixed Carrier, Preparation Method Thereof and Catalyst Containing a Ceria-alumina Mixed Carrier
JP4895090B2 (en) NOX selective reduction catalyst
JP2015208712A (en) Catalyst for exhaust gas purification and selective reduction method of nitrogen oxide and oxidative removal method of solid carbon ingredient using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250