JP4895090B2 - NOX selective reduction catalyst - Google Patents

NOX selective reduction catalyst Download PDF

Info

Publication number
JP4895090B2
JP4895090B2 JP2005377389A JP2005377389A JP4895090B2 JP 4895090 B2 JP4895090 B2 JP 4895090B2 JP 2005377389 A JP2005377389 A JP 2005377389A JP 2005377389 A JP2005377389 A JP 2005377389A JP 4895090 B2 JP4895090 B2 JP 4895090B2
Authority
JP
Japan
Prior art keywords
catalyst
selective reduction
reduction catalyst
supported
selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005377389A
Other languages
Japanese (ja)
Other versions
JP2007175630A (en
Inventor
正興 岩崎
幸次 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2005377389A priority Critical patent/JP4895090B2/en
Publication of JP2007175630A publication Critical patent/JP2007175630A/en
Application granted granted Critical
Publication of JP4895090B2 publication Critical patent/JP4895090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、希薄燃焼方式の内燃機関等から排出される排ガス中のNOをNHにより還元するためのNO選択還元触媒に関する。 The present invention relates to a NO X selective reduction catalyst for reducing NO X in exhaust gas discharged from a lean combustion internal combustion engine or the like with NH 3 .

酸素過剰雰囲気下においてNOをNHにより選択的に還元するNO選択還元触媒は、火力発電ボイラ、焼結炉、コークス炉、ガスタービンといった固定発生源において実用化されている。このような触媒成分としては、活性種としてV、担体としてTiOが主に用いられている。一方、自動車のディーゼルエンジンといった移動発生源においても、NHもしくは尿素等のNH前駆体によるNO選択還元の利用が望まれており、最近実用化に至っている。このような触媒成分としては、固定発生源にも用いられているV/TiO系触媒、もしくはFeをゼオライトに担持したFe/ゼオライト系触媒が主流であった。 A NO X selective reduction catalyst that selectively reduces NO X with NH 3 in an oxygen-excess atmosphere has been put into practical use in fixed sources such as a thermal power generation boiler, a sintering furnace, a coke oven, and a gas turbine. As such a catalyst component, V as an active species and TiO 2 as a carrier are mainly used. On the other hand, also in mobile sources such as automotive diesel engines, the use of the NO X selective reduction with NH 3 or NH 3 precursor such as urea have been demanded, it has led recently commercialized. As such a catalyst component, a V / TiO 2 catalyst that is also used as a fixed source or an Fe / zeolite catalyst in which Fe is supported on zeolite has been the mainstream.

しかしながら、V/TiO系触媒やFe/ゼオライト系触媒では、自動車のディーゼルエンジンといった移動発生源から排出される排ガスのように温度が200〜700℃の範囲で大きく変化する排ガスを所定の水準以上に安定して浄化することはできなかった。さらに、V/TiO系触媒においては、700℃以上の高温雰囲気下に曝されるとバナジウム酸化物の融解や飛散が起こるという問題があり、また、Fe/ゼオライト系触媒においては、700℃以上の高温雰囲気下に曝されるとゼオライト格子内のアルミニウムが格子から抜け出すという脱アルミニウム現象によってNO浄化活性が低下するといった問題があった。 However, in the V / TiO 2 catalyst and the Fe / zeolite catalyst, the exhaust gas whose temperature changes greatly in the range of 200 to 700 ° C. such as exhaust gas discharged from a moving generation source such as an automobile diesel engine exceeds a predetermined level. Could not be purified stably. Furthermore, the V / TiO 2 catalyst has a problem that vanadium oxide melts and scatters when exposed to a high temperature atmosphere of 700 ° C. or higher, and the Fe / zeolite catalyst has a temperature of 700 ° C. or higher. aluminum in the the zeolite lattice exposed to a high temperature atmosphere of a problem such that NO X purification activity decreased by dealumination phenomenon get out of the lattice.

上記のような問題を解決するために、例えば、特開2005−81189号公報(特許文献1)には、窒素酸化物を含む高温排ガス用脱硝触媒であって、酸強度がHo≦−11.35の担体、又は、固体酸量が0.2mmol/g以上の担体上に、バナジウム、タングステン、モリブデン、鉄、クロム、銅、マンガン及びコバルトからなる群より選ばれる少なくとも1種以上の酸化物又はそれらの複合酸化物が担持されていることを特徴とする高温排ガス用脱硝触媒が開示されており、明細書中において、硫酸根チタニアジルコニアに鉄等の金属が担持された高温排ガス用脱硝触媒が記載されている。また、特開2005−137984号公報(特許文献2)には、アンモニアの存在下に窒素酸化物を還元するための触媒であって、鉄を含有する硫酸根ジルコニアで構成されている触媒が開示されている。   In order to solve the above problems, for example, Japanese Patent Laying-Open No. 2005-81189 (Patent Document 1) discloses a denitration catalyst for high-temperature exhaust gas containing nitrogen oxide, and has an acid strength of Ho ≦ −11. 35 supports, or at least one oxide selected from the group consisting of vanadium, tungsten, molybdenum, iron, chromium, copper, manganese and cobalt on a support having a solid acid amount of 0.2 mmol / g or more, or A denitration catalyst for high-temperature exhaust gas characterized in that these composite oxides are supported is disclosed. In the specification, a denitration catalyst for high-temperature exhaust gas in which a metal such as iron is supported on sulfate titania zirconia is disclosed. Are listed. Japanese Patent Application Laid-Open No. 2005-137984 (Patent Document 2) discloses a catalyst for reducing nitrogen oxides in the presence of ammonia, which is composed of iron-containing sulfate zirconia. Has been.

しかしながら、上記文献等に記載のような脱硝触媒においても、特に200〜350℃の温度範囲におけるNO浄化活性が未だ十分なものではなかった。
特開2005−81189号公報 特開2005−137984号公報
However, even in the denitration catalyst as described in literature, particularly NO X purification activity in the temperature range of 200 to 350 ° C. it was not yet sufficient.
JP 2005-81189 A JP 2005-137984 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、700℃以上の高温雰囲気下において優れた耐熱性を有し、且つ200〜700℃の温度範囲において高水準のNO浄化活性を有するNO選択還元触媒を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, has excellent heat resistance in a high temperature atmosphere of 700 ° C. or higher, and has a high level of NO X purification in a temperature range of 200 to 700 ° C. An object is to provide an NO X selective reduction catalyst having activity.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ジルコニア担体にW及びMoからなる群から選択される少なくとも1種と、Feとの組み合わせで担持せしめることにより、700℃以上の高温雰囲気下において優れた耐熱性を有し、且つ200〜700℃の温度範囲において高水準のNO浄化活性を有するNO選択還元触媒が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have supported at least one selected from the group consisting of W and Mo on a zirconia support and a combination of Fe and 700 ° C. or higher. It has been found that a NO X selective reduction catalyst having excellent heat resistance in a high temperature atmosphere and having a high level of NO X purification activity in a temperature range of 200 to 700 ° C. is achieved, and the present invention has been completed. It was.

すなわち、本発明のNO選択還元触媒は、内燃機関から排出されるNOをNHにより還元するNO選択還元触媒であって、ジルコニア担体と、前記担体に担持されているW及び/又はMoと、前記担体に担持されているFeとを備えており、前記ジルコニア担体にW及び/又はMoを担持せしめて焼成により固定化した後にFeを更に担持せしめてなるものであることを特徴とするものである。 That, the NO X selective reducing catalyst of the present invention is a the NO X selective reducing catalyst for reducing NO X discharged from the internal combustion engine by NH 3, and a zirconia support, W is supported on the carrier and / or features and Mo, said has a Fe carried on the carrier, the der Rukoto made by brought further carrying Fe after immobilizing by firing allowed carrying W and / or Mo in the zirconia support It is what.

さらに、本発明のNO選択還元触媒においては、前記W及び/又はMoの担持量が、前記NO選択還元触媒の全質量に対して0.1〜30質量%の範囲であることが好ましい。 Furthermore, in the NO X selective reduction catalyst of the present invention, the supported amount of W and / or Mo is preferably in the range of 0.1 to 30% by mass with respect to the total mass of the NO X selective reduction catalyst. .

また、本発明のNO選択還元触媒においては、前記Feの担持量が、前記NO選択還元触媒の全質量に対して0.1〜15質量%の範囲であることが好ましい。 In the NO X selective reduction catalyst of the present invention, the amount of Fe supported is preferably in the range of 0.1 to 15% by mass with respect to the total mass of the NO X selective reduction catalyst.

なお、本発明のNO選択還元触媒において、700℃以上の高温雰囲気下における優れた耐熱性、並びに200〜700℃の温度範囲における高水準のNO浄化活性が達成されている理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、W及びMo自体は400℃以上の温度においてNO選択還元活性を示すものであるが、WやMoがZrO上に固定されることにより強い酸点が発現する。このような強い酸点上にFeが存在し、このような強い酸点とFeとが共存することにより、200〜700℃の温度範囲における高水準のNO浄化活性が達成されると本発明者らは推察する。また、W、Mo、Fe及びZrOについては、700℃以上の温度においてもバナジウム酸化物のように融解や飛散が起こるという問題がなく、アルミニウムのように脱アルミニウム現象が発生することがない。そのため、本発明のNO選択還元触媒は700℃以上の高温雰囲気下において優れた耐熱性を有すると本発明者らは推察する。 In the NO X selective reduction catalyst of the present invention, the reason why excellent heat resistance in a high-temperature atmosphere of 700 ° C. or higher and high-level NO X purification activity in the temperature range of 200 to 700 ° C. is not necessarily clear. However, the present inventors speculate as follows. That is, W and Mo itself exhibit NO X selective reduction activity at a temperature of 400 ° C. or higher, but a strong acid point is expressed by fixing W or Mo on ZrO 2 . When Fe exists on such a strong acid point and such a strong acid point and Fe coexist, a high level of NO x purification activity in a temperature range of 200 to 700 ° C. is achieved. They guess. In addition, W, Mo, Fe, and ZrO 2 do not have the problem of melting or scattering like vanadium oxide even at a temperature of 700 ° C. or higher, and the dealumination phenomenon does not occur like aluminum. Therefore, the present inventors speculate that the NO X selective reduction catalyst of the present invention has excellent heat resistance in a high temperature atmosphere of 700 ° C. or higher.

本発明によれば、700℃以上の高温雰囲気下において優れた耐熱性を有し、且つ200〜700℃の温度範囲において高水準のNO浄化活性を有するNO選択還元触媒を提供することが可能となる。 According to the present invention, it is possible to provide a NO X selective reduction catalyst having excellent heat resistance in a high temperature atmosphere of 700 ° C. or higher and having a high level of NO X purification activity in a temperature range of 200 to 700 ° C. It becomes possible.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明のNO選択還元触媒は、内燃機関から排出されるNOをNHにより還元するNO選択還元触媒であって、ジルコニア担体と、前記担体に担持されているW及び/又はMoと、前記担体に担持されているFeとを備えることを特徴とするものである。 The NO X selective reducing catalyst of the present invention is a the NO X selective reducing catalyst for reducing NO X discharged from the internal combustion engine by NH 3, and a zirconia support, and W and / or Mo, which is supported on the support And Fe supported on the carrier.

このようなジルコニア担体としては、焼成後においてZrOを含むものであればよく、特に限定されないが、例えば、ジルコニウムの酸化物(ZrO)、ジルコニウムの水酸化物(Zr(OH)nHO)を挙げることができる。 Such a zirconia support is not particularly limited as long as it contains ZrO 2 after firing. For example, zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4 nH 2 ). O).

そして、本発明のNO選択還元触媒においては、200〜700℃の温度範囲において高水準のNO浄化活性を達成するという観点から、前記ジルコニア担体に後述するW及び/又はMo、並びに後述するFeが担持されていることが必要である。 In the NO X selective reduction catalyst of the present invention, W and / or Mo described later in the zirconia support and the later described from the viewpoint of achieving a high level of NO X purification activity in a temperature range of 200 to 700 ° C. It is necessary to carry Fe.

このように前記ジルコニア担体にW及び/又はMoを担持せしめる方法としては、例えば、W源及び/又はMo源を含有する水溶液に前記ジルコニア担体を含浸させてW及び/又はMoを担持せしめた後に焼成する方法、W源及び/又はMo源並びに前記ジルコニア担体を物理混合して焼成する方法を挙げることができる。これらの方法の中でも、W及びMoを高分散にジルコニア担体上に担持するという観点から、W源及び/又はMo源を含有する水溶液に前記ジルコニア担体を含浸させてW及び/又はMoを担持せしめた後に焼成する方法が好ましい。   As a method for supporting W and / or Mo on the zirconia support in this way, for example, after impregnating the zirconia support in an aqueous solution containing a W source and / or Mo source and supporting W and / or Mo. Examples thereof include a firing method, a W source and / or Mo source, and a method in which the zirconia support is physically mixed and fired. Among these methods, from the viewpoint of supporting W and Mo on the zirconia support in a highly dispersed state, the aqueous solution containing the W source and / or Mo source is impregnated with the zirconia support to support W and / or Mo. A method of firing after heating is preferable.

このようなW源及び/又はMo源としては、W及び/又はMoの塩であればよく、特に限定されないが、触媒の酸強度の観点から、例えば、アンモニウム塩(例えば、(NH101241、(NHMo24)、PやSiを含むヘテロポリ酸塩(例えば、HPW1240、HPMo1240、HSiW1240、HSiMo1240)が好ましい。 Such a W source and / or Mo source may be a salt of W and / or Mo, and is not particularly limited. From the viewpoint of the acid strength of the catalyst, for example, an ammonium salt (for example, (NH 4 ) 10 W 12 O 41, (NH 4 ) 6 Mo 7 O 24), heteropolyacid salt containing P and Si (e.g., H 3 PW 12 O 40, H 3 PMo 12 O 40, H 4 SiW 12 O 40, H 4 SiMo 12 O 40 ) is preferred.

また、このようなW及び/又はMoの担持量としては、本発明のNO選択還元触媒の全質量に対して0.1〜30質量%の範囲であることが好ましく、1〜20質量%の範囲であることがより好ましい。これらの担持量が前記下限未満では、強酸点の量が十分でないため、強酸点と共存するFeの量が少なくなる傾向にあり、他方、前記上限を超えるとW及び/又はMoが多層吸着して強酸点を覆うため、強酸点と共存するFeの量が少なくなる傾向にある。さらに、このようなW及び/又はMoを担持せしめた後に焼成する条件としては、焼成温度が600〜800℃、焼成時間が1〜5時間であることが好ましい。 In addition, the amount of W and / or Mo supported is preferably in the range of 0.1 to 30% by mass, and 1 to 20% by mass with respect to the total mass of the NO X selective reduction catalyst of the present invention. More preferably, it is the range. If the supported amount is less than the lower limit, the amount of strong acid points is not sufficient, and therefore the amount of Fe coexisting with the strong acid points tends to decrease. On the other hand, if the upper limit is exceeded, W and / or Mo are adsorbed in multiple layers. In order to cover the strong acid point, the amount of Fe coexisting with the strong acid point tends to decrease. Furthermore, as the conditions for firing after supporting W and / or Mo, firing temperature is preferably 600 to 800 ° C. and firing time is 1 to 5 hours.

このように前記ジルコニア担体にFeを担持せしめる方法としては、例えば、Fe源を含有する水溶液に前記ジルコニア担体を含浸させてFeを担持せしめた後に焼成する方法、FeClの昇華を利用してFeを前記ジルコニア担体に化学蒸着担持せしめた後に焼成する方法が挙げられる。これらの方法の中でも、強酸点の近傍にのみFeを担持するという観点から、FeClの昇華を利用してFeを前記ジルコニア担体に化学蒸着担持せしめた後に焼成する方法が好ましい。このようなFe源としては、例えば、FeClを挙げることができる。 Examples of a method for supporting Fe on the zirconia support as described above include, for example, a method in which an aqueous solution containing an Fe source is impregnated with the zirconia support to support Fe and then firing, and FeCl 3 sublimation is utilized. And calcination after carrying the chemical vapor deposition on the zirconia support. Among these methods, from the viewpoint of supporting Fe only in the vicinity of a strong acid point, a method of firing after supporting Fe on the zirconia support by chemical vapor deposition using sublimation of FeCl 3 is preferable. An example of such a Fe source is FeCl 3 .

また、このようなFeの担持量としては、本発明のNO選択還元触媒の全質量に対して0.1〜15質量%の範囲であることが好ましく、1〜10質量%の範囲であることがより好ましい。Feの担持量が前記下限未満では、強酸点と共存するFe量が少ないためにNO浄化活性が低い傾向にあり、他方、前記上限を超えると、強酸点と共存するFe量が飽和し、Feが多層吸着するためにNO浄化活性が低下する傾向にある。さらに、このようなFeを担持せしめた後に焼成する条件としては、焼成温度が600〜800℃、焼成時間が1〜5時間であることが好ましい。 The amount of Fe supported is preferably in the range of 0.1 to 15% by mass and preferably in the range of 1 to 10% by mass with respect to the total mass of the NO X selective reduction catalyst of the present invention. It is more preferable. The Fe loading amount is less than the lower limit of, located in the NO X purification activity is low tendency to amount of Fe coexist with a strong acid point is small, whereas if it exceeds the upper limit, the amount of Fe coexisting with a strong acid point is saturated, Fe tends to NO X purifying activity decreases to multilayer adsorption. Furthermore, as conditions for firing after supporting Fe, it is preferable that the firing temperature is 600 to 800 ° C. and the firing time is 1 to 5 hours.

また、本発明のNO選択還元触媒は、強酸点の近傍にFeを担持するという観点から、前記ジルコニア担体にW及び/又はMoを担持せしめて焼成により固定化して強酸点を発現させた後に、Feを更に担持せしめてなるものであることが好ましい。 In addition, the NO X selective reduction catalyst of the present invention has W and / or Mo supported on the zirconia support and immobilized by calcination to express a strong acid point from the viewpoint of supporting Fe in the vicinity of the strong acid point. It is preferable that Fe is further supported.

なお、このような担体にFeを担持せしめる方法としては、前述したジルコニア担体にFeを担持させる方法と同様の方法を挙げることができる。   Examples of the method for supporting Fe on such a carrier include the same methods as those for supporting Fe on the zirconia carrier described above.

さらに、本発明のNO選択還元触媒の形状としては、特に限定されないが、例えば、粉粒状、粒状、ペレット状、ハニカム状が挙げられる。また、本発明のNO選択還元触媒は、非多孔質であってもよく、多孔質であってもよい。 Furthermore, the shape of the NO X selective reduction catalyst of the present invention is not particularly limited, and examples thereof include powder, granule, pellet, and honeycomb. Further, the NO X selective reduction catalyst of the present invention may be non-porous or porous.

また、本発明のNO選択還元触媒を用いて内燃機関から排出されるNOをNHにより還元する方法としては、特に制限されず公知の方法を適宜選択することができる。さらに、このような方法においては、本発明のNO選択還元触媒の他に公知のNO選択還元触媒を併せて用いることができる。 In addition, the method for reducing NO X discharged from the internal combustion engine with NH 3 using the NO X selective reduction catalyst of the present invention is not particularly limited, and a known method can be appropriately selected. Further, in such a method, a known NO X selective reduction catalyst can be used in addition to the NO X selective reduction catalyst of the present invention.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
先ず、1.0mol/Lのオキシ硝酸ジルコニウム水溶液350mlをプロペラ攪拌器で攪拌しながら25%アンモニア水溶液300mlを加えて、ジルコニウムの水酸化物を沈殿させた。次に、得られた沈殿物をイオン交換水での洗浄した後にろ過するという作業を3回繰り返して残存する硝酸イオンやアンモニウムイオンを除去した。その後、100℃で12時間乾燥させて白色の水酸化ジルコニウムを得た。
Example 1
First, 300 ml of a 25% aqueous ammonia solution was added while stirring 350 ml of a 1.0 mol / L zirconium oxynitrate aqueous solution with a propeller stirrer to precipitate zirconium hydroxide. Next, the operation of filtering the obtained precipitate after washing with ion-exchanged water was repeated three times to remove remaining nitrate ions and ammonium ions. Then, it was made to dry at 100 degreeC for 12 hours, and white zirconium hydroxide was obtained.

次に、イオン交換水150mlにモリブデン酸アンモニウム4gを溶解した溶液に得られた水酸化ジルコニウム10gを含浸させ、蒸発乾固後に600℃で5時間焼成してMo担持ZrO粉末を得た。次いで、得られたMo担持ZrO粉末5gとFeCl粉末0.83gとを窒素中で物理混合し、窒素流通下において600℃で1.5時間熱処理した。そして、洗浄、乾燥を行った後に、大気中において600℃で5時間焼成することによりFeを担持せしめて、さらに約1000kgf/cmで圧粉成型後、破砕、整粒することにより0.5〜1.0mmのペレットとしてNO選択還元触媒を得た。 Next, 10 g of zirconium hydroxide obtained was impregnated in a solution of 4 g of ammonium molybdate dissolved in 150 ml of ion-exchanged water, evaporated and dried, and then fired at 600 ° C. for 5 hours to obtain Mo-supported ZrO 2 powder. Next, 5 g of the obtained Mo-supported ZrO 2 powder and 0.83 g of FeCl 3 powder were physically mixed in nitrogen and heat-treated at 600 ° C. for 1.5 hours under a nitrogen flow. After washing and drying, Fe is supported by firing in the atmosphere at 600 ° C. for 5 hours, and further compacted and sized after being compacted at about 1000 kgf / cm 2 to 0.5. The NO X selective reduction catalyst was obtained as a pellet of ˜1.0 mm.

(実施例2〜6)
モリブデン酸アンモニウム4gに代えてケイモリブデン酸2g(実施例2)、ケイモリブデン酸4g(実施例3)、ケイタングステン酸2g(実施例4)、ケイタングステン酸4g(実施例5)又はリンタングステン酸2g(実施例6)を用いた以外は実施例1と同様にして、NO選択還元触媒を得た。
(Examples 2 to 6)
Instead of 4 g of ammonium molybdate, 2 g of silicomolybdic acid (Example 2), 4 g of silicomolybdic acid (Example 3), 2 g of silicotungstic acid (Example 4), 4 g of silicotungstic acid (Example 5) or phosphotungstic acid A NO X selective reduction catalyst was obtained in the same manner as in Example 1 except that 2 g (Example 6) was used.

(比較例1)
Mo担持ZrO粉末に代えてMoが担持されていないZrO粉末を用いた以外は実施例1と同様にして、比較用NO選択還元触媒を得た。
(Comparative Example 1)
A comparative NO X selective reduction catalyst was obtained in the same manner as in Example 1 except that ZrO 2 powder not supporting Mo was used instead of the Mo-supporting ZrO 2 powder.

(比較例2)
Mo担持ZrO粉末にFeを担持しなかったこと以外は実施例1と同様にして、比較用NO選択還元触媒を得た。
(Comparative Example 2)
A comparative NO X selective reduction catalyst was obtained in the same manner as in Example 1 except that Fe was not supported on the Mo-supported ZrO 2 powder.

(比較例3)
水酸化ジルコニウムに代えてSiO(日本アエロジル社製、AEROSIL(登録商標)380PE)を用いた以外は実施例1と同様にして、比較用NO選択還元触媒を得た。
(Comparative Example 3)
A comparative NO X selective reduction catalyst was obtained in the same manner as in Example 1 except that SiO 2 (manufactured by Nippon Aerosil Co., Ltd., AEROSIL (registered trademark) 380PE) was used instead of zirconium hydroxide.

<NO選択還元触媒の特性評価>
(i)耐熱試験
実施例1〜6及び比較例1〜3で得られたNO選択還元触媒に、それぞれ700℃でHOが3%含まれる空気を1L/分のガス流量で、5時間供給し、耐熱試験を行った。
<Characteristic evaluation of NO X selective reduction catalyst>
(I) Heat resistance test Each of the NO X selective reduction catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 3 contains air containing 3% H 2 O at 700 ° C. at a gas flow rate of 1 L / min. The heat supply test was conducted by supplying for hours.

(ii)NO浄化率
実施例1〜6及び比較例1〜3で得られたNO選択還元触媒について、上記耐熱試験前後の各NO選択還元触媒を触媒試料としてNO浄化率の測定を行った。すなわち、先ず、各NO選択還元触媒1gを触媒試料として常圧固定床流通型反応装置(ベスト測器社製、CATA−5000)に設置した。次に、NO(0.1%)、NH(0.1%)、O(8%)、CO(10%)、HO(8%)及びN(残部)からなるモデルガスを3.5L/分のガス流量で供給し、触媒入りガス温度が150℃となるように調整した。その後、触媒入りガス温度を150℃に15分間保持しつつ、定常状態における触媒入りガス及び触媒出ガスのNO濃度を測定し、それらの測定値からNO浄化率を算出した。そして、触媒入りガス温度を25℃ずつ上昇させて、150℃から350℃まで25℃毎に上記と同様の方法で定常状態におけるNO浄化率を算出した。
(Ii) NO X purification rate With respect to the NO X selective reduction catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 3, measurement of the NO X purification rate using each NO X selective reduction catalyst before and after the heat resistance test as a catalyst sample. Went. That is, first, 1 g of each NO X selective reduction catalyst was installed as a catalyst sample in an atmospheric pressure fixed bed flow type reactor (Cata-5000, manufactured by Best Sokki Co., Ltd.). Next, a model composed of NO (0.1%), NH 3 (0.1%), O 2 (8%), CO 2 (10%), H 2 O (8%), and N 2 (balance). The gas was supplied at a gas flow rate of 3.5 L / min, and the gas temperature with catalyst was adjusted to 150 ° C. Thereafter, while maintaining the temperature of the gas containing the catalyst at 150 ° C. for 15 minutes, the NO X concentration of the gas containing the catalyst and the gas emitted from the catalyst in the steady state was measured, and the NO X purification rate was calculated from those measured values. Then, the temperature of the gas containing the catalyst was increased by 25 ° C., and the NO X purification rate in the steady state was calculated every 150 ° C. from 150 ° C. to 350 ° C. in the same manner as described above.

(iii)評価結果
耐熱試験前の触媒試料について得られた結果を表1に示す。また、耐熱試験後の触媒試料について得られた結果を表2に示す。さらに、触媒入りガス温度350℃における各NO選択還元触媒のNO浄化率を示すグラフを図1に示す。
(Iii) Evaluation results Table 1 shows the results obtained for the catalyst samples before the heat resistance test. The results obtained for the catalyst sample after the heat test are shown in Table 2. Furthermore, Figure 1 shows the graph showing the NO X purification rate of each the NO X selective reducing catalyst in the catalyst-containing gas temperature 350 ° C..

Figure 0004895090
Figure 0004895090

Figure 0004895090
Figure 0004895090

表1、2及び図1に示した結果から明らかなように、本発明のNO選択還元触媒(実施例1〜6)は高水準のNO浄化活性を示し、さらに耐熱試験後においてもNO浄化活性を維持していた。これに対し、Mo、Wが含まれていない比較用NO選択還元触媒(比較例1)、Feが含まれていない比較用NO選択還元触媒(比較例2)、並びにZrOに代えてSiOを用いた比較用NO選択還元触媒(比較例3)は、十分なNO浄化活性を示さなかった。したがって、本発明のNO選択還元触媒は、700℃以上の高温雰囲気下において優れた耐熱性を有し、且つ200〜700℃の温度範囲において高水準のNO浄化活性を有することが確認された。 As apparent from the results shown in Tables 1 and 2 and FIG. 1, the NO X selective reduction catalysts (Examples 1 to 6) of the present invention exhibit a high level of NO X purification activity, and further NO after the heat resistance test. X purification activity was maintained. On the other hand, instead of a comparative NO X selective reduction catalyst that does not contain Mo and W (Comparative Example 1), a comparative NO X selective reduction catalyst that does not contain Fe (Comparative Example 2), and ZrO 2 The comparative NO X selective reduction catalyst using SiO 2 (Comparative Example 3) did not show sufficient NO X purification activity. Therefore, it is confirmed that the NO X selective reduction catalyst of the present invention has excellent heat resistance in a high temperature atmosphere of 700 ° C. or higher, and has a high level of NO X purification activity in a temperature range of 200 to 700 ° C. It was.

以上説明したように、本発明によれば、700℃以上の高温雰囲気下において優れた耐熱性を有し、且つ200〜700℃の温度範囲において高水準のNO浄化活性を有するNO選択還元触媒を提供することが可能となる。 As described above, according to the present invention, NO X selective reduction having excellent heat resistance in a high temperature atmosphere of 700 ° C. or higher and having a high level of NO X purification activity in a temperature range of 200 to 700 ° C. A catalyst can be provided.

したがって、本発明のNO選択還元触媒は、希薄燃焼方式の内燃機関等から排出される排ガス中のNOをNHにより還元するためのNO選択還元触媒として有用である。 Therefore, the NO X selective reduction catalyst of the present invention is useful as a NO X selective reduction catalyst for reducing NO X in exhaust gas discharged from a lean combustion type internal combustion engine or the like with NH 3 .

触媒入りガス温度350℃における各NO選択還元触媒のNO浄化率を示すグラフである。Is a graph showing the NO X purification rate of each the NO X selective reducing catalyst in the catalyst-containing gas temperature 350 ° C..

Claims (3)

内燃機関から排出されるNOをNHにより還元するNO選択還元触媒であって、ジルコニア担体と、前記担体に担持されているW及び/又はMoと、前記担体に担持されているFeとを備えており、前記ジルコニア担体にW及び/又はMoを担持せしめて焼成により固定化した後にFeを更に担持せしめてなるものであることを特徴とするNO選択還元触媒。 A NO X selective reduction catalyst for reducing NO X discharged from an internal combustion engine with NH 3 , comprising a zirconia support, W and / or Mo supported on the support, Fe supported on the support, and includes a, NO X selective reducing catalyst, characterized in der Rukoto made by brought further carrying Fe after immobilizing by firing allowed carrying W and / or Mo in the zirconia support. 前記W及び/又はMoの担持量が、前記NO選択還元触媒の全質量に対して0.1〜30質量%の範囲であることを特徴とする請求項1に記載のNO選択還元触媒。 Wherein W and / or the loading amount of Mo is, the NO X selective reducing catalyst according to claim 1, characterized in that in the range of 0.1 to 30% by weight relative to the total weight of the the NO X selective reducing catalyst . 前記Feの担持量が、前記NO選択還元触媒の全質量に対して0.1〜15質量%の範囲であることを特徴とする請求項1又は2に記載のNO選択還元触媒。 The supported amount of Fe, the the NO X selective reducing the NO X selective reducing catalyst according to claim 1 or 2, characterized in that in the range of 0.1 to 15% by weight relative to the total weight of the catalyst.
JP2005377389A 2005-12-28 2005-12-28 NOX selective reduction catalyst Expired - Fee Related JP4895090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377389A JP4895090B2 (en) 2005-12-28 2005-12-28 NOX selective reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377389A JP4895090B2 (en) 2005-12-28 2005-12-28 NOX selective reduction catalyst

Publications (2)

Publication Number Publication Date
JP2007175630A JP2007175630A (en) 2007-07-12
JP4895090B2 true JP4895090B2 (en) 2012-03-14

Family

ID=38301342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377389A Expired - Fee Related JP4895090B2 (en) 2005-12-28 2005-12-28 NOX selective reduction catalyst

Country Status (1)

Country Link
JP (1) JP4895090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305133B2 (en) * 2007-09-19 2013-10-02 株式会社豊田中央研究所 Nitrogen oxide purification catalyst and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046556A (en) * 1973-06-30 1975-04-25
JPS5057946A (en) * 1973-07-17 1975-05-20
JPS5152361A (en) * 1974-11-01 1976-05-08 Hitachi Ltd Haigasuchuno chitsusosankabutsu ojokyosuru hoho
JP3283350B2 (en) * 1992-10-26 2002-05-20 大阪瓦斯株式会社 Nitric oxide reduction catalyst and nitric oxide treatment equipment
JP4102974B2 (en) * 2002-05-13 2008-06-18 日立造船株式会社 High temperature denitration catalyst and method for producing the same

Also Published As

Publication number Publication date
JP2007175630A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5185942B2 (en) Vanadium-free catalyst for selective catalytic reduction and process for producing the same
JP4617253B2 (en) NOx removal catalyst, honeycomb structure type NOx removal catalyst, and NOx removal method using the same
US6191061B1 (en) Method of purifying exhaust gas and catalyst for purifying exhaust gas
JP2006289211A (en) Ammonia oxidation catalyst
JPWO2017203863A1 (en) Three-way catalyst for purification of gasoline engine exhaust gas
JP5305133B2 (en) Nitrogen oxide purification catalyst and method for producing the same
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
JP4895090B2 (en) NOX selective reduction catalyst
JP4779461B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP5806157B2 (en) Exhaust gas purification catalyst composition
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
CN113840655A (en) SCR catalyst having excellent sulfur resistance
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
KR100558695B1 (en) Hybrid catalyst for removing NOx and method for removing NOx using the same
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
KR100892520B1 (en) Ruthenium and potassium containing nitric oxide storage and reduction catalyst
JP5324414B2 (en) Exhaust purification catalyst
JP4157515B2 (en) Catalytic converter
JP6325042B2 (en) Exhaust gas purification device for heat engine
JPH1066867A (en) Catalyst for cleaning exhaust gas and method for cleaning exhaust gas by the catalyst
JPH078028Y2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees