JP2000000464A - Support for catalyst, its production and denitration catalyst and denitration method - Google Patents

Support for catalyst, its production and denitration catalyst and denitration method

Info

Publication number
JP2000000464A
JP2000000464A JP10181599A JP18159998A JP2000000464A JP 2000000464 A JP2000000464 A JP 2000000464A JP 10181599 A JP10181599 A JP 10181599A JP 18159998 A JP18159998 A JP 18159998A JP 2000000464 A JP2000000464 A JP 2000000464A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
carrier
exhaust gas
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10181599A
Other languages
Japanese (ja)
Other versions
JP4346706B2 (en
Inventor
Masanao Yonemura
将直 米村
Yoshiaki Obayashi
良昭 尾林
Kozo Iida
耕三 飯田
Shigeru Nojima
野島  繁
Rie Nakano
理恵 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18159998A priority Critical patent/JP4346706B2/en
Publication of JP2000000464A publication Critical patent/JP2000000464A/en
Application granted granted Critical
Publication of JP4346706B2 publication Critical patent/JP4346706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a support used for a denitration catalyst having high durability against a poisonous material such as As contained in a waste gas and low in SO2 oxidation ratio, the producing method, the denitration catalyst and the denitration method. SOLUTION: Denitration active metals of at least one kind among V2O5, WO3 and MoO3 are supported on the support for catalyst composed of a multiple oxide, which is obtained by mixing a Ti salt aq. solution with at least one kind of each alkoxide of Si, P and B, neutralizing, aging and after that, washing, drying and firing and has composition ratio, by weight, between TiO2 and the total of SiO2, P2O5 and B2O3 of 50:50-99:1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種触媒担体として
有用な固体酸量の多い触媒用担体、特に発電所、各種化
学工場又は焼結炉等に設置されている排煙脱硝装置で使
用される脱硝触媒用担体、中でも排ガス中の触媒毒物質
が多く含まれている石炭焚ボイラ燃焼排ガス用の脱硝装
置に好適な脱硝触媒用担体及びその製造方法、該担体に
活性金属を担持した脱硝触媒およびそれを使用した燃焼
排ガスの脱硝方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst carrier having a high solid acid content useful as various catalyst carriers, particularly to a flue gas denitration apparatus installed in a power plant, various chemical factories or sintering furnaces. Denitration catalyst carrier, especially a denitration catalyst carrier suitable for a denitration apparatus for coal-fired boiler combustion exhaust gas containing a large amount of catalyst poisons in the exhaust gas, a method for producing the same, a denitration catalyst supporting an active metal on the carrier, and The present invention relates to a method for denitrifying combustion exhaust gas using the same.

【0002】[0002]

【従来の技術】種々の燃焼プロセスから排出される排ガ
ス中の窒素酸化物(NOx)は、土壌汚染、森林破壊等
の原因となる酸性雨を発生させることから、その低減化
は今や全世界的な重要課題として取り上げられるように
なった。このNOxを除去する方法として現在最も実績
の多い脱硝方法は、アンモニア(NH3)による選択的
接触還元法であり、この方法は、排ガスに還元剤として
NH3を添加し、酸化剤として必要により空気を添加
(燃焼排ガス中に必要量の酸素が存在する場合には添加
不要)して、触媒上でNOxを選択的に接触還元して、
無害な窒素(N2)と水(H2O)を生成するものであ
る。下記にNOのアンモニア及び酸素の選択的接触還元
の反応式を示す。 4NO+4NH3+O2→4N2+6H2O NO2も、触媒によりNOと同様に窒素と水を生成す
る。
2. Description of the Related Art Nitrogen oxides (NOx) in exhaust gas discharged from various combustion processes generate acid rain which causes soil pollution, deforestation, etc., and its reduction is now worldwide. Important issues. The most successful denitration method for removing NOx at present is a selective catalytic reduction method using ammonia (NH 3 ). In this method, NH 3 is added to the exhaust gas as a reducing agent and optionally used as an oxidizing agent. By adding air (addition is unnecessary if the required amount of oxygen is present in the combustion exhaust gas), NOx is selectively catalytically reduced on the catalyst,
It produces harmless nitrogen (N 2 ) and water (H 2 O). The reaction formula of the selective catalytic reduction of ammonia and oxygen of NO is shown below. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O NO 2 also generates nitrogen and water by the catalyst similarly to NO.

【0003】上記反応を進行させるため、TiO2系の
触媒担体にV25、WO3またはMoO3等の活性金属を
担持させた触媒が広く適用されており、TiO2上の固
体酸点とその上に担持された活性金属の活性点が脱硝反
応に作用している。しかし、燃料として石炭又は重油を
使用した場合には、排煙脱硝にTiO2系触媒を用いる
と、排ガス中に含まれるヒ素(As)、カルシウム(C
a)等の触媒被毒成分が触媒上に堆積し、活性点を被覆
してしまい、触媒の性能が時間の経過により低下してい
く。特に排ガス中のAsは蒸気圧の高いAs23とな
り、これが触媒上で蒸気圧の低いAs25に酸化され触
媒活性点を被覆してしまう。 As23+O2→As25 このため、特に触媒の劣化に対して影響の大きいAsが
多く存在している石炭を燃料として用いる場合、Asに
対する触媒の耐久性が重要な問題となる。
[0003] In order to proceed the reaction, the catalyst was supported active metal such as V 2 O 5, WO 3 or MoO 3 catalyst support of TiO 2 system has been widely applied, the solid acid points on the TiO 2 And the active site of the active metal supported thereon acts on the denitration reaction. However, when coal or heavy oil is used as a fuel, if a TiO 2 -based catalyst is used for flue gas denitration, arsenic (As), calcium (C) contained in exhaust gas
Components poisoned by the catalyst such as a) accumulate on the catalyst and cover the active sites, and the performance of the catalyst decreases over time. In particular, As in the exhaust gas becomes As 2 O 3 having a high vapor pressure, which is oxidized to As 2 O 5 having a low vapor pressure on the catalyst and covers the catalytically active sites. As 2 O 3 + O 2 → As 2 O 5 For this reason, especially when coal containing a large amount of As, which has a large influence on the deterioration of the catalyst, is used as a fuel, the durability of the catalyst against As becomes an important issue. .

【0004】また、石炭又は重油を燃料として用いる場
合、排ガス中に硫黄酸化物(SOx:特にSO2)が存
在し、これが触媒上でSO3に酸化される。 SO2+1/2O2→SO3 生成したSO3は、脱硝装置下流で未反応のNH3及び水
分と反応して酸性硫安(NH4HSO4)を生成し、熱交
換器等の各種排ガス処理装置内で閉塞や腐食等の原因と
なるため、脱硝活性とともにSO2酸化率が低いことも
脱硝触媒の重要な条件となる。
When coal or heavy oil is used as fuel, sulfur oxides (SOx: especially SO 2 ) are present in the exhaust gas and are oxidized to SO 3 on the catalyst. SO 2 + 1 / 2O 2 → SO 3 The generated SO 3 reacts with unreacted NH 3 and moisture downstream of the denitration apparatus to generate acidic ammonium sulfate (NH 4 HSO 4 ), and treats various exhaust gases such as a heat exchanger. Since it causes blockage and corrosion in the apparatus, the low SO 2 oxidation rate as well as the denitration activity are also important conditions for the denitration catalyst.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、As
等の触媒被毒物質に対しても強い耐久性を有し、かつS
2酸化率が低い脱硝触媒用担体及びその製造方法、該
担体に活性金属を担持した脱硝触媒並びに該触媒を使用
した燃焼排ガスの脱硝方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide As
Has strong durability against catalyst poisoning substances such as
An object of the present invention is to provide a carrier for a denitration catalyst having a low O 2 oxidation rate, a method for producing the same, a denitration catalyst having an active metal supported on the carrier, and a method for denitration of combustion exhaust gas using the catalyst.

【0006】[0006]

【課題を解決するための手段】本発明者らは、今までの
研究により、固体酸(すなわち固体表面の電荷の偏りに
よって生じる酸性点)量の多い触媒がAsによる劣化を
抑制することが可能であることを見出した。一方、酸化
物を複合化すると、元素によっては単独の酸化物よりも
多い固体酸量を示すことが知られている。そして、均質
な複合酸化物の調製法として共沈法が適当であることを
見いだした。本発明者らは、前記課題を解決するため
に、上記知見に基いて、鋭意研究の結果、Ti硫酸塩あ
るいは酢酸塩を溶液にした後、Si、P及びBのアルコ
キシドのうち少なくとも1種を混合し、これにアルカリ
を加えて中和、熟成して複合酸化物を共沈させることに
より、従来よりも固体酸量が多く、なおかつ性能の優れ
た脱硝触媒用担体が得られることを見出し、本発明を完
成した。
SUMMARY OF THE INVENTION The inventors of the present invention have found that a catalyst having a large amount of solid acid (that is, an acid point generated by bias of electric charge on a solid surface) can suppress deterioration due to As by a study to date. Was found. On the other hand, it is known that when an oxide is complexed, some elements show a higher solid acid amount than a single oxide. Then, they have found that the coprecipitation method is suitable as a method for preparing a homogeneous composite oxide. The present inventors have conducted intensive studies based on the above findings to solve the above-mentioned problems, and as a result, after making a solution of Ti sulfate or acetate, at least one of the alkoxides of Si, P and B has been prepared. By mixing and neutralizing the mixture by adding an alkali thereto, aging and co-precipitating the composite oxide, the solid acid amount is larger than before, and it has been found that a carrier for a denitration catalyst having excellent performance can be obtained. The present invention has been completed.

【0007】すなわち本発明の第1は、Ti硫酸塩及び
/又は酢酸塩溶液と、Si、P及びBの各アルコキシド
のうち少なくとも1種とを混合して混合液を得る工程、
該混合液をアルカリ溶液により中和、熟成して沈殿物を
得る工程、該沈殿物を洗浄、乾燥及び焼成して複合酸化
物を得る工程からなり、該複合酸化物が [TiO2の重量]:[SiO2、P25及びB23の合計
重量]=50:50〜99:1 の組成を有することを特徴とする触媒用担体の製造方法
を提供する。本発明の第2は、本発明の第1の製造方法
により得られた触媒用担体を提供する。本発明の第3
は、本発明の第2に記載の触媒用担体に脱硝活性金属を
担持してなる脱硝触媒を提供する。本発明の第4は、本
発明の第3に記載の脱硝触媒の存在下に、NOx並びに
SOx及び/又は酸化砒素を含有する燃焼排ガスをアン
モニアにより接触還元することを特徴とする脱硝方法を
提供する。
That is, a first aspect of the present invention is a step of mixing a Ti sulfate and / or acetate solution with at least one of alkoxides of Si, P and B to obtain a mixed solution.
A step of obtaining a precipitate by neutralizing and aging the mixture with an alkaline solution, and a step of washing, drying and calcining the precipitate to obtain a composite oxide, wherein the composite oxide has a weight of [TiO 2 ] : [Total weight of SiO 2 , P 2 O 5 and B 2 O 3 ] = 50: 50 to 99: 1. A second aspect of the present invention provides a catalyst carrier obtained by the first production method of the present invention. Third of the present invention
The present invention provides a denitration catalyst comprising the catalyst carrier according to the second aspect of the present invention and a denitration active metal supported thereon. According to a fourth aspect of the present invention, there is provided a denitration method comprising catalytically reducing combustion exhaust gas containing NOx and SOx and / or arsenic oxide with ammonia in the presence of the denitration catalyst according to the third aspect of the present invention. I do.

【0008】[0008]

【発明の実施の形態】本発明の触媒用担体は、Ti硫酸
塩及び/又は酢酸塩溶液と、Si、P及びBの各アルコ
キシドのうち少なくとも1種とを混合して混合液を得る
工程、該混合液をアルカリ溶液により中和、熟成して沈
殿物を得る工程、該沈殿物を洗浄、乾燥及び焼成して複
合酸化物を得る工程からなる製造方法で作られ、得られ
た複合酸化物がTiO2の重量:SiO2、P25及びB
23の合計重量の比率が50:50〜99:1の組成比
を有するものである。以下、元素Si、P及びBをMで
表し、これらのアルコキシドをMアルコキシド、これら
の酸化物をM酸化物という。そして、M酸化物の合計量
とは、混合されたSi、P及びBの各アルコキシドのう
ち少なくとも1種に由来するM酸化物の量であるので、
含まれていない種類の元素の酸化物の量を0として、形
式上SiO2、P25及びB23の合計重量と表され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst carrier of the present invention comprises a step of mixing a Ti sulfate and / or acetate solution with at least one of alkoxides of Si, P and B to obtain a mixed solution. A mixed oxide produced and produced by a process comprising the steps of neutralizing and aging the mixed solution with an alkaline solution to obtain a precipitate, washing, drying and calcining the precipitate to obtain a composite oxide Is the weight of TiO 2 : SiO 2 , P 2 O 5 and B
The composition has a composition ratio of the total weight of 2 O 3 of 50:50 to 99: 1. Hereinafter, the elements Si, P and B are represented by M, their alkoxides are called M alkoxides, and their oxides are called M oxides. The total amount of the M oxide is the amount of the M oxide derived from at least one of the mixed alkoxides of Si, P, and B.
The amount of the oxide of the element not included is defined as 0, and is formally expressed as the total weight of SiO 2 , P 2 O 5 and B 2 O 3 .

【0009】本発明において原料として使用するTi硫
酸塩、酢酸塩等の塩は、好ましい例としてTiOS
4、Ti(SO42、Ti2(SO43、Ti(OCO
CH34、TiO(OCOCH32、Ti2(OCOC
36等が挙げられる。Ti源として安価なTi硫酸
塩、酢酸塩を使用することにより、触媒担体の大幅なコ
ストダウンが可能となる。Ti硫酸塩及び/又は酢酸塩
(以下Ti塩と略す。)は水に溶かして溶液にする。後
の工程である中和処理を円滑に進行させて均質な担体を
得るためには、水の量はTi塩のモル数の10倍モル比
以上とすることが好ましく、40倍モル比以上が特に好
ましい。水の量に特に制限は無いが、必要以上に水の量
を増やしても特に効果は増大せず、逆に装置が大型化し
コストアップにつながるため、使用するTi塩のモル数
の300倍モル比程度で十分である。
Salts such as Ti sulfate and acetate used as a raw material in the present invention are preferably TiOS
O 4 , Ti (SO 4 ) 2 , Ti 2 (SO 4 ) 3 , Ti (OCO
CH 3 ) 4 , TiO (OCOCH 3 ) 2 , Ti 2 (OCOC
H 3 ) 6 and the like. By using inexpensive Ti sulfates and acetates as Ti sources, it is possible to significantly reduce the cost of the catalyst carrier. Ti sulfate and / or acetate (hereinafter abbreviated as Ti salt) is dissolved in water to form a solution. In order to smoothly proceed the neutralization treatment in the subsequent step to obtain a homogeneous carrier, the amount of water is preferably at least 10 times the molar ratio of the moles of the Ti salt, more preferably at least 40 times the molar ratio. Particularly preferred. The amount of water is not particularly limited. However, if the amount of water is increased more than necessary, the effect is not particularly increased, and conversely, the apparatus is increased in size and leads to an increase in cost. The ratio is sufficient.

【0010】本発明において原料として使用するSi、
P及びBの各アルコキシドは、一般式、MOm(OR1
n(R1は炭素数1〜20、好ましくは1〜5のアルキル
基であり、nはM−OR結合の数であり、mはM=O結
合酸素の数であり、2m+nはMの酸化数である。)で
表される。Mアルコキシドの好ましい例としてはSi
(OCH34、Si(OC254、P(OCH33
PO(OCH33、B(OCH33、B(OC253
等が挙げられる。これらのアルコキシドはアルコールや
水に可溶な固体でもよいが、常温付近で液体のものが望
ましい。アルコールに可溶な場合はMアルコキシドのア
ルコール溶液をTi塩溶液と混合してもよい。
In the present invention, Si used as a raw material,
Each of the alkoxides of P and B is represented by the general formula: MOm (OR 1 )
n (R 1 is an alkyl group having 1 to 20, preferably 1 to 5 carbon atoms, n is the number of M-OR bonds, m is the number of M = O-bonded oxygen, and 2m + n is the oxidation of M It is a number.) Preferred examples of the M alkoxide include Si
(OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , P (OCH 3 ) 3 ,
PO (OCH 3 ) 3 , B (OCH 3 ) 3 , B (OC 2 H 5 ) 3
And the like. These alkoxides may be solids soluble in alcohol or water, but are preferably liquid at around room temperature. When soluble in alcohol, an alcohol solution of M alkoxide may be mixed with a Ti salt solution.

【0011】本発明の担体は以下のようなプロセスによ
り製造される。まず、上記のようにして得られたTi塩
溶液と、Mアルコキシドの1種以上とを攪拌しながら所
定の割合で混合し、さらに5分以上、好ましくは1時間
以上かけて攪拌、混合して混合液を得る。両者の混合
は、Ti塩溶液にMアルコキシドを加えてもよいし、M
アルコキシドまたはその溶液にTi塩溶液を加えてもよ
いが、好ましくはTi硫酸塩溶液にMアルコキシドを加
える。混合は常温で行うが、水に難溶な性質を持つアル
コキシドに対しては溶解速度を速めるため、加熱及びア
ルコール等の溶媒を加えても特に支障はない。
The carrier of the present invention is produced by the following process. First, the Ti salt solution obtained as described above and one or more M alkoxides are mixed at a predetermined ratio while stirring, and further stirred and mixed for 5 minutes or more, preferably for 1 hour or more. Obtain a mixture. For mixing both, M alkoxide may be added to the Ti salt solution,
A Ti salt solution may be added to the alkoxide or its solution, but preferably, the M alkoxide is added to the Ti sulfate solution. Mixing is carried out at room temperature, but there is no particular problem with heating and addition of a solvent such as alcohol in order to increase the dissolution rate of alkoxides having a property of being hardly soluble in water.

【0012】得られた混合液はアルカリ溶液により中和
され、沈殿物を得る。中和により、Ti化合物及びM化
合物は偏析することなく、沈殿物を焼成すると好ましい
複合酸化物が得られるように共沈する。中和処理にはア
ルカリ溶液の種類には特に制限はないが、アンモニア水
溶液(NH4OH)、又はアンモニア発生源としての尿
素(CO(NH22)等の使用が一般的である。また、
アルカリ溶液の濃度にも特に制限はないが高濃度では中
和処理が困難となり、また低濃度では中和処理に時間が
かかり作業上好ましくないので、7〜10vo1%のア
ンモニア水又は相当する尿素の水溶液が特に望ましい。
なお、混合液とアルカリ液の加える順序に制限はない。
The obtained mixture is neutralized with an alkaline solution to obtain a precipitate. By the neutralization, the Ti compound and the M compound are co-precipitated without segregation so that a preferable composite oxide is obtained by firing the precipitate. The type of the alkaline solution is not particularly limited in the neutralization treatment, but an aqueous ammonia solution (NH 4 OH) or urea (CO (NH 2 ) 2 ) as an ammonia generation source is generally used. Also,
Although the concentration of the alkaline solution is not particularly limited, the neutralization treatment is difficult at a high concentration, and the neutralization treatment takes a long time at a low concentration, which is not preferable in terms of work. Therefore, 7 to 10 vol. Aqueous solutions are particularly desirable.
The order of adding the mixed solution and the alkaline solution is not limited.

【0013】混合液を中和し沈殿物を得た後、さらに5
分以上、望ましくは2時間以上攪拌して熟成させる。熟
成により、さらに−Ti−O−M−の結合及び比表面積
が増加する。そして、電子の過不足のある酸素原子が増
加するため固体酸量も増加する。
After the mixture is neutralized to obtain a precipitate, 5
The mixture is aged by stirring for at least 2 minutes, preferably at least 2 hours. Aging further increases the bond and specific surface area of -Ti-OM-. Then, since the number of oxygen atoms having excess or deficiency of electrons increases, the amount of solid acid also increases.

【0014】このように、Mの原料として反応性の高い
アルコキシドを用いて、これをTiと複合化させること
により、TiとMがより分散されて配位された固体酸量
の多い均質な複合酸化物を得ることが可能となる。Ti
と複合化させるMは排ガス中のSO2によって被毒を受
けにくい元素であるため、脱硝触媒に好適な酸化物であ
る。
As described above, by using a highly reactive alkoxide as a raw material of M and compounding it with Ti, Ti and M are dispersed and coordinated to form a homogeneous composite having a large amount of solid acid and a large amount of solid acid. An oxide can be obtained. Ti
M is an oxide suitable for a denitration catalyst because M is an element that is hardly poisoned by SO 2 in exhaust gas.

【0015】前述した好ましい範囲での混合、中和及び
熟成を施して得られた沈殿物をろ過し、水で洗浄し、乾
燥後、焼成してTiO2とM酸化物の複合酸化物からな
る担体を得ることが出来る。この複合酸化物はアモルフ
ァス及び/又は少なくとも一部がアナターゼTiO2
の結晶構造を有している。焼成温度は複合酸化物の組成
比等によって異なるが、300℃〜1,000℃、好ま
しくは400℃〜550℃の範囲である。焼成時間は複
合酸化物の組成比、焼成温度等によって異なるが、5分
〜24時間、好ましくは4〜5時間の範囲である。上記
焼成温度、時間の範囲未満では焼成が不十分となり、ま
た、上記範囲を超えると比表面積が低下し、脱硝活性が
低下するので好ましくない。
The precipitate obtained by mixing, neutralizing and aging in the preferred range described above is filtered, washed with water, dried and calcined to form a composite oxide of TiO 2 and M oxide. A carrier can be obtained. This composite oxide has an amorphous and / or at least partly anatase TiO 2 type crystal structure. The firing temperature varies depending on the composition ratio of the composite oxide and the like, but is in the range of 300 ° C to 1,000 ° C, preferably 400 ° C to 550 ° C. The firing time varies depending on the composition ratio of the composite oxide, the firing temperature, and the like, but is in the range of 5 minutes to 24 hours, preferably 4 to 5 hours. If the firing temperature and time are less than the above ranges, the firing will be insufficient, and if it exceeds the above range, the specific surface area will decrease and the denitration activity will decrease, which is not preferable.

【0016】本発明において、担体中のTiO2とM酸
化物の合計量との比率は、重量比で50:50〜99:
1の範囲である。M酸化物の比率がこの範囲よりも少な
いと複合化の効果が無く、また、この範囲を超えるとT
iとMが酸素を介して隣り合って(−Ti−O−M−)
結合し、固体表面の電荷の偏りによって酸性を示す点で
ある酸性点を形成する効果が促進されない上、TiO2
の比率が低いため満足する脱硝性能を持つ触媒が得られ
ない。それぞれの酸化物の好ましい範囲はTiO2:S
iO2=80:20〜99:1、TiO2:P25=5
0:50〜99:1、TiO2:B23=50:50〜
99:1である。
In the present invention, the ratio between TiO 2 and the total amount of M oxide in the carrier is 50:50 to 99:99 by weight.
1 range. If the ratio of M oxide is less than this range, there is no effect of compounding, and if it exceeds this range, T
i and M are adjacent via oxygen (-Ti-OM-)
The effect of bonding to form an acid point, which is an acid point due to the bias of charge on the solid surface, is not promoted, and TiO 2
, A catalyst having satisfactory denitration performance cannot be obtained. The preferred range of each oxide is TiO 2 : S
TiO 2 = 80: 20 to 99: 1, TiO 2 : P 2 O 5 = 5
0: 50-99: 1, TiO 2 : B 2 O 3 = 50: 50-
99: 1.

【0017】このようにして得られた担体にV25、W
3及びMoO3のうち少なくとも1種以上の脱硝活性金
属を担持させることによって、NO、NO2等のNOx含
有ガスを酸素の存在下にアンモニアにより効率よく脱硝
し、排ガス中のAs等の触媒被毒物質に対して強い耐久
性を有し、なおかつSO2酸化率の低い脱硝触媒を得る
ことが出来る。これらの触媒は粉体状又は粒状、ペレッ
ト状、ハニカム状等に成形して使用することが出来る。
また、適当な担体を上記のような適当な形状に成形し
て、成形担体上に上記活性金属酸化物を担持して脱硝触
媒を得ることが出来る。活性金属の担持量としては、触
媒中の活性金属含有率(活性金属/(活性金属+担体)
×100)が0.1〜30重量%である。具体的には、
好ましい範囲は、活性金属がVの場合には0.2〜5重
量%、Moの場合には0.1〜20重量%、Wの場合に
は5〜20重量%である。これらの活性金属の担持のさ
せ方等には特に限定はなく従来の方法で製造することが
できる。このようにして得られた脱硝触媒は、ボイラー
排ガス等の燃焼排ガスに使用することができる。特に本
発明の脱硝触媒は、使用時間にもよるが、例えば1万時
間程度以上の使用時間では、排ガス中のAs等の触媒被
毒物質濃度が1ppm以下、好ましくは100ppb以
下の燃焼排ガスに使用できる。使用時間がこれより短け
れば100ppm程度の燃焼排ガスにも使用できる。ま
た、燃焼排ガス中のSOx、具体的にはSO2濃度が5,
000ppm以下、好ましくは1,000ppm以下の
燃焼排ガスに使用できる。
V 2 O 5 and W are added to the carrier thus obtained.
By carrying at least one or more denitration active metals of O 3 and MoO 3 , NOx-containing gases such as NO and NO 2 are efficiently denitrated by ammonia in the presence of oxygen, and a catalyst such as As in exhaust gas It is possible to obtain a denitration catalyst having strong durability against poisoning substances and low SO 2 oxidation rate. These catalysts can be used in the form of a powder, granules, pellets, honeycomb, or the like.
In addition, a suitable carrier can be formed into a suitable shape as described above, and the active metal oxide can be supported on the formed carrier to obtain a denitration catalyst. The amount of active metal carried is determined by the content of active metal in the catalyst (active metal / (active metal + support)
× 100) is 0.1 to 30% by weight. In particular,
Preferred ranges are 0.2 to 5% by weight when the active metal is V, 0.1 to 20% by weight when the active metal is Mo, and 5 to 20% by weight when the active metal is W. There is no particular limitation on the method of supporting these active metals, and the active metal can be produced by a conventional method. The denitration catalyst thus obtained can be used for combustion exhaust gas such as boiler exhaust gas. In particular, the denitration catalyst of the present invention is used for combustion exhaust gas having a concentration of a catalyst poisoning substance such as As in exhaust gas of 1 ppm or less, preferably 100 ppb or less, for example, in an operation time of about 10,000 hours or more, although it depends on the usage time. it can. If the usage time is shorter than this, it can be used for combustion exhaust gas of about 100 ppm. Further, the SOx in the combustion exhaust gas, specifically, the SO 2 concentration is 5,
It can be used for combustion exhaust gas of 000 ppm or less, preferably 1,000 ppm or less.

【0018】尚、一般に炭化水素のクラッキング、水素
移行、不均化、水和、重合、骨格及び二重結合の異性化
等の反応に固体酸触媒が使用されているが、本発明の担
体はそれ自体固体酸量が多いので、固体酸触媒としての
機能も有しており、これらの反応用触媒の担体として有
効である。特に、ゼオライト等の準安定状態で合成され
る固体酸触媒と比較して耐熱性に優れているため、この
ような二元機能触媒に好適である。このような二元機能
触媒が適用される例として、酸化能と酸性を必要とする
接触酸化反応がある。
In general, a solid acid catalyst is used for reactions such as hydrocarbon cracking, hydrogen transfer, disproportionation, hydration, polymerization, isomerization of a skeleton and a double bond. Since the solid acid content itself is large, it also has a function as a solid acid catalyst, and is effective as a carrier for these reaction catalysts. In particular, since it has excellent heat resistance as compared with a solid acid catalyst synthesized in a metastable state such as zeolite, it is suitable for such a bifunctional catalyst. As an example to which such a bifunctional catalyst is applied, there is a catalytic oxidation reaction requiring oxidizing ability and acidity.

【0019】[0019]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples.

【0020】[実施例1:担体の調製及び固体酸量] (担体1の調製)320.2gのTiOSO4と1,4
41.8gの水を常温で混合させた後、138.6gの
Si(OC254を混合する。その後9vo1%NH4
OH水をゆっくりと滴下して混合液中のpHを7にして
沈殿物を生成させ、さらに2時間攪拌して熟成させた。
熟成後に得られた沈殿物をろ過して水により十分に洗浄
した後、乾燥、焼成(500℃で5時間)を施して担体
1を調製した。原料の種類、使用量及び担体1の組成を
後述の担体2〜18の例と併せて表1〜3に示す。
Example 1 Preparation of Carrier and Amount of Solid Acid (Preparation of Carrier 1) 320.2 g of TiOSO 4 and 1,4
After mixing 41.8 g of water at room temperature, 138.6 g of Si (OC 2 H 5 ) 4 is mixed. Then 9 vo 1% NH 4
OH water was slowly added dropwise to adjust the pH of the mixture to 7 to form a precipitate, and the mixture was further aged by stirring for 2 hours.
The precipitate obtained after aging was filtered, washed sufficiently with water, dried, and calcined (at 500 ° C. for 5 hours) to prepare Carrier 1. Tables 1 to 3 show the types of raw materials, the amounts used and the composition of the carrier 1 together with examples of the carriers 2 to 18 described below.

【0021】(担体2〜18の調製)Ti源である硫酸
塩及びM源であるアルコキシドの種類及び使用量を表1
〜3に示すように変えた以外は前記担体1と同様の条件
で担体2〜18を調製した。得られた担体の組成を表1
〜3に示す。
(Preparation of Carriers 2 to 18) The types and amounts of sulfates as Ti sources and alkoxides as M sources are shown in Table 1.
Carriers 2 to 18 were prepared under the same conditions as in Carrier 1 except that they were changed as shown in FIGS. Table 1 shows the composition of the obtained carrier.
3 are shown.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】(担体19〜27の調製)Ti源である酢
酸塩及びM源であるアルコキシドの種類及び使用量を表
4〜6に示すようして前記担体1と同様にして担体19
〜27を調製した。得られた担体の組成を表4〜6に示
す。
(Preparation of Carriers 19 to 27) The types and amounts of acetic acid salts as the Ti source and alkoxides as the M source are shown in Tables 4 to 6 in the same manner as in the above-mentioned carrier 1, and
~ 27 were prepared. The compositions of the obtained carriers are shown in Tables 4 to 6.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】(比較担体1の調製)1,899.4gの
20wt%TiC14塩酸水溶液と20wt%のSiO2
を含むシリカゾル(Si(OH)4)を319.8g混
合した後、9vo1%のアンモニア水を添加して中和
し、PHを7にした。生成した沈殿物をろ過、洗浄した
後乾燥、焼成(500℃で5時間)を施して得た担体を
比較担体1とした。
[0029] 20 wt% TiC1 4 aqueous hydrochloric acid (Comparative Preparation of carrier 1) 1,899.4g and 20 wt% of SiO 2
Was mixed with 319.8 g of silica sol (Si (OH) 4 ) containing, and neutralized by adding 9 vol 1% aqueous ammonia to adjust the pH to 7. The resulting precipitate was filtered, washed, dried and calcined (at 500 ° C. for 5 hours) to obtain a carrier as Comparative Carrier 1.

【0030】(比較担体2の調製)1,102.8gの
20wt%メタチタン酸(TiO(OH)2)水溶液に
27.6gのリン酸(H3PO4)を添加して攪拌した
後、蒸発乾固、焼成(500℃で5時間)を施して得た
担体を比較担体2とした。
(Preparation of Comparative Carrier 2) 27.6 g of phosphoric acid (H 3 PO 4 ) was added to 1102.8 g of a 20 wt% aqueous solution of metatitanic acid (TiO (OH) 2 ), stirred, and evaporated. The carrier obtained by drying and calcining (500 ° C. for 5 hours) was used as Comparative Carrier 2.

【0031】(比較担体3の調製)1,213.0gの
20wt%メタチタン酸(TiO(OH)2)水溶液と
3.6gのホウ酸(H3BO3)を添加して攪拌した後、
蒸発乾固、焼成(500℃で5時間)を施して得た担体
を比較担体3とした。比較担体1〜3の原料の種類、使
用量及び得られた担体の組成をまとめて表7に示す。
(Preparation of Comparative Carrier 3) 1,213.0 g of a 20 wt% aqueous solution of metatitanic acid (TiO (OH) 2 ) and 3.6 g of boric acid (H 3 BO 3 ) were added and stirred.
The carrier obtained by evaporating to dryness and calcining (500 ° C. for 5 hours) was used as Comparative Carrier 3. Table 7 summarizes the types of raw materials, the amounts used, and the compositions of the obtained carriers for Comparative Carriers 1 to 3.

【0032】[0032]

【表7】 [Table 7]

【0033】(担体の固体酸量の測定)実施例1で調製
した本発明の担体1〜27及び比較担体1〜3の固体酸
量をピリジン昇温吸着脱離法により測定した。測定方法
の概略は以下の通りである。担体粉末を各12.5mg
ずつ秤りとり、40ml/分のヘリウム(He)気流中
で450℃で30分間処理した後、試料を150℃に保
ち、ピリジン0.2μlをパルス的に注入し、ピリジン
を飽和するまで吸着させた。その後、担体粉末を30℃
/分で昇温し、脱離するピリジン量をFID(水素炎イ
オン化)検出器で測定し、この値(触媒1g当たりの脱
離ピリジンのmol数)から固体酸量を求めた。結果を
表8〜14に示す。この結果、同一組成の本発明の担体
と比較担体の固体酸量を比較すると、本発明の担体の固
体酸量の方がいずれも大きいことが分かった。
(Measurement of Solid Acid Content of Carrier) The solid acid contents of the carriers 1 to 27 of the present invention prepared in Example 1 and the comparative carriers 1 to 3 were measured by a pyridine temperature programmed adsorption / desorption method. The outline of the measuring method is as follows. 12.5mg each carrier powder
After weighing each sample and treating at 450 ° C. for 30 minutes in a helium (He) stream of 40 ml / min, the sample was kept at 150 ° C., 0.2 μl of pyridine was injected in a pulsed manner, and pyridine was adsorbed until saturation. Was. Then, the carrier powder is cooled to 30 ° C.
The amount of pyridine to be desorbed was measured by a FID (hydrogen flame ionization) detector, and the amount of solid acid was determined from this value (moles of pyridine to be desorbed per 1 g of catalyst). The results are shown in Tables 8 to 14. As a result, when the solid acid content of the carrier of the present invention and the comparative carrier having the same composition were compared, it was found that the solid acid content of the carrier of the present invention was all larger.

【0034】[0034]

【表8】 [Table 8]

【0035】[0035]

【表9】 [Table 9]

【0036】[0036]

【表10】 [Table 10]

【0037】[0037]

【表11】 [Table 11]

【0038】[0038]

【表12】 [Table 12]

【0039】[0039]

【表13】 [Table 13]

【0040】[0040]

【表14】 [Table 14]

【0041】[実施例2:ハニカム触媒の製造及び脱硝
活性] (ハニカム触媒1〜27の製造)メタバナジン酸アンモ
ニウム(NH4VO3)7.7gとパラタングステン酸ア
ンモニウム((NH4101241・5H2O)18.6
gを10wt%メチルアミン水溶液110mlに溶解
し、前記にて調製した担体1〜27の粉末各178.0
gに含浸させた後、乾燥、焼成(500℃で5時間)を
施し、前記担体にV25を3wt%及びWO3を8wt
%担持させた触媒粉末を得た。この触媒粉末を800g
の水に加え、ボールミルにて十分に攪拌、粉砕して20
wt%触媒粉末のウォッシュコート用スラリーを調製し
た。次に、91.4wt%TiO2−0.6wt%V2
5−8wt%WO3の組成を有するハニカム基材(形状の
大きさ16×16×60mm、格子間隔7.5mm、壁
厚1.0mm、図1参照)を前記のウォッシュコート用
スラリーに充分浸漬した後、余分なスラリーを除去し2
00℃で乾燥させた。コート量は基材1m2あたり10
0gとし、このコート物をハニカム触媒1〜27とし
た。
Example 2: Manufacture of honeycomb catalyst and denitration activity (Manufacture of honeycomb catalysts 1 to 27) 7.7 g of ammonium metavanadate (NH 4 VO 3 ) and ammonium paratungstate ((NH 4 ) 10 W 12 ) O 41 · 5H 2 O) 18.6
g of the carrier 1 to 27 prepared above was dissolved in 110 ml of a 10 wt% aqueous solution of methylamine, and the powder of each of the carriers 1 to 27 was 178.0.
g, impregnated, dried and fired (at 500 ° C. for 5 hours), and 3 wt% of V 2 O 5 and 8 wt% of WO 3 were added to the carrier.
% Supported catalyst powder was obtained. 800 g of this catalyst powder
Of water, sufficiently stirred and crushed with a ball mill, and
A slurry for wash coating of a wt% catalyst powder was prepared. Next, 91.4 wt% TiO 2 -0.6 wt% V 2 O
5 -8wt% honeycomb substrate with the composition of WO 3 sufficiently immersed (shape of size 16 × 16 × 60mm, the lattice spacing 7.5 mm, wall thickness 1.0 mm, see Fig. 1) to the slurry for the washcoat After removing excess slurry,
Dried at 00 ° C. Court amount of substrate 1m 2 per 10
0 g, and this coated material was used as honeycomb catalysts 1 to 27.

【0042】(比較ハニカム触媒1〜3の製造)前記比
較担体1〜3を用いて、ハニカム触媒1の製造と同様に
してV25及びWO3を担持させた触媒粉末をコーティ
ングした比較ハニカム触媒1〜3を製造した。
(Production of Comparative Honeycomb Catalysts 1 to 3) Comparative honeycombs coated with catalyst powders supporting V 2 O 5 and WO 3 using the above-mentioned comparative supports 1 to 3 in the same manner as in the production of the honeycomb catalyst 1 Catalysts 1 to 3 were produced.

【0043】(脱硝活性評価試験)実施例2で調製した
ハニカム触媒1〜27を、高濃度のAsを含むガスに曝
露して強制的に劣化させ、曝露前後での脱硝活性を評価
した。曝露処理は、強制劣化装置に上記ハニカム触媒1
〜27を入れ、As23ガス側を200℃、ハニカム触
媒側を350℃に加熱しながら、表15に示す組成のガ
スを流し、ハニカム触媒表面にAs23を含んだガスを
接触させ、2時間経過後、触媒を取り出すことによって
実施した。次に、As強制劣化処理前及び後のハニカム
触媒を用いて表16に示す条件で脱硝活性試験を行い、
脱硝性能を評価した。脱硝率は次式(1)により算出し
た。 脱硝率(%)=[(入口NOx濃度−出口NOx濃度)/入口NOx濃度]×100 (1) 評価結果を表17〜23に示す。表11〜14から本発
明の担体を用いた触媒は、比較担体を用いた触媒に比べ
てAs強制劣化処理前後における脱硝率の低下幅が小さ
いことより、Asに対して優れた耐被毒性を有している
ことが分かる。
(Test for Evaluating Denitration Activity) The honeycomb catalysts 1 to 27 prepared in Example 2 were forcibly deteriorated by exposure to a gas containing a high concentration of As, and the denitration activity before and after the exposure was evaluated. The exposure treatment is performed by using the honeycomb catalyst 1 in the forced deterioration device.
While heating the As 2 O 3 gas side to 200 ° C. and the honeycomb catalyst side to 350 ° C., a gas having a composition shown in Table 15 was flowed, and the gas containing As 2 O 3 was brought into contact with the honeycomb catalyst surface. After 2 hours, the reaction was carried out by removing the catalyst. Next, using the honeycomb catalyst before and after the forced degradation treatment of As, a denitration activity test was performed under the conditions shown in Table 16,
The denitration performance was evaluated. The denitration rate was calculated by the following equation (1). Denitration rate (%) = [(inlet NOx concentration-outlet NOx concentration) / inlet NOx concentration] × 100 (1) The evaluation results are shown in Tables 17 to 23. Tables 11 to 14 show that the catalyst using the carrier of the present invention has excellent resistance to poisoning with respect to As because the decrease in the denitration rate before and after the forced degradation treatment of As is smaller than that of the catalyst using the comparative carrier. It turns out that it has.

【0044】[0044]

【表15】 [Table 15]

【0045】[0045]

【表16】 [Table 16]

【0046】[0046]

【表17】 [Table 17]

【0047】[0047]

【表18】 [Table 18]

【0048】[0048]

【表19】 [Table 19]

【0049】[0049]

【表20】 [Table 20]

【0050】[0050]

【表21】 [Table 21]

【0051】[0051]

【表22】 [Table 22]

【0052】[0052]

【表23】 [Table 23]

【0053】(脱硝活性及びSO2酸化率の評価試験)
排ガス中にはSO2が含まれていることが多く、これが
触媒上でSO3に酸化される。そしてSO3と未反応のN
3と水が反応して生成したNH4HSO4が各種排ガス
処理装置に堆積する不具合が生じるため、脱硝触媒とし
ては脱硝活性とともにSO2酸化率が低いことも重要な
条件となる。そこで実施例2で調製したハニカム触媒
1,3,5及び比較ハニカム触媒1〜3を用いて表24
に示す条件にてSO2酸化率及び脱硝率を評価した。脱
硝率は前述の式(1)を用いて算出し、SO2酸化率は
次式(2)により算出した。 SO2酸化率(%)=(出口SO3濃度/入口SO2濃度)×100 (2) 試験結果を表25に示す。この結果、本発明のハニカム
触媒のSO2酸化率は、比較ハニカム触媒に比べてほぼ
半減しており、充分に低いことが確認された。
(Evaluation test of denitration activity and SO 2 oxidation rate)
Exhaust gas often contains SO 2 , which is oxidized to SO 3 on a catalyst. And N that has not reacted with SO 3
Since NH 4 HSO 4 generated by the reaction between H 3 and water is disadvantageously deposited on various exhaust gas treatment apparatuses, it is also important that the denitration catalyst has a low SO 2 oxidation rate as well as a denitration activity. Therefore, using the honeycomb catalysts 1, 3, and 5 prepared in Example 2 and the comparative honeycomb catalysts 1 to 3, Table 24 was used.
The SO 2 oxidation rate and the denitration rate were evaluated under the conditions shown below. The denitration rate was calculated using the above equation (1), and the SO 2 oxidation rate was calculated by the following equation (2). SO 2 oxidation rate (%) = (concentration of SO 3 at outlet / concentration of SO 2 at inlet) × 100 (2) Table 25 shows the test results. As a result, it was confirmed that the SO 2 oxidation rate of the honeycomb catalyst of the present invention was almost halved as compared with the comparative honeycomb catalyst, and was sufficiently low.

【0054】[0054]

【表24】 [Table 24]

【0055】[0055]

【表25】 [Table 25]

【0056】[0056]

【発明の効果】本発明の触媒用担体は固体酸量が多く、
これに活性金属酸化物を担持させた脱硝触媒は、Asを
含む排ガス中においても高い脱硝活性を長時間維持する
ことが可能であり、かつSO2酸化性能が低く、従来の
ものに比較して極めて優れている。本発明の触媒用担体
は固体酸量が多く、かつ酸性点の多い触媒を必要とする
反応に好適である。
The catalyst carrier of the present invention has a large amount of solid acid,
Active metal oxide denitration catalyst was supported on this, it is possible for a long time maintaining a high denitration activity even in exhaust gas containing As, and SO 2 oxidation performance is low, as compared with the conventional Very good. The catalyst carrier of the present invention is suitable for a reaction requiring a catalyst having a large amount of solid acid and a high acid point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒用担体の粉末をハニカム型に成形
したものの一部を示す斜視図である。
FIG. 1 is a perspective view showing a part of a catalyst carrier powder of the present invention formed into a honeycomb mold.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 耕三 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 野島 繁 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 中野 理恵 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4D048 AA06 AB02 AC04 BA04X BA04Y BA06X BA06Y BA23Y BA26Y BA27Y BA42X BA42Y BA44X BA44Y BB02 BC03 BC05 4G069 AA01 AA03 AA08 AA09 BA02A BA02B BA04A BA04B BA45C BB04A BB04B BB06A BB06B BB10C BC50C BC54B BC59B BC60B BD03A BD03B BD03C BD05A BD05B BD05C BD07A BD07B BD07C BE06C BE08C CA08 CA13 DA06 EA01Y EA18 ED07 FB05 FB08 FB15 FB27 FB30 FB31 FC02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kozo Iida 4--22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside the Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Shigeru Nojima 4-chome Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture No. 6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Rie Nakano 4-62 Kanon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory F-term (reference) 4D048 AA06 AB02 AC04 BA04X BA04Y BA06X BA06Y BA23Y BA26Y BA27Y BA42X BA42Y BA44X BA44Y BB02 BC03 BC05 4G069 AA01 AA03 AA08 AA09 BA02A BA02B BA04A BA04B BA45C BB04A BB04B BB06A BB06B BB10C BC50C BC54B BC59B BC60B BD03A BD03B BD03C BD05A BD05B BD05C BD07A BD07B BD07C BE06C BE08C CA08 CA13 DA06 EA01Y EA18 ED07 FB05 FB08 FB15 FB27 FB30 FB31 FC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti硫酸塩及び/又は酢酸塩溶液と、S
i、P及びBの各アルコキシドのうち少なくとも1種と
を混合して混合液を得る工程、該混合液をアルカリ溶液
により中和、熟成して沈殿物を得る工程、該沈殿物を洗
浄、乾燥及び焼成して複合酸化物を得る工程からなり、
該複合酸化物が [TiO2の重量]:[SiO2、P25及びB23の合計
重量]=50:50〜99:1 の組成を有することを特徴とする触媒用担体の製造方
法。
1. A method according to claim 1, wherein said solution comprises Ti sulfate and / or acetate.
mixing at least one of the alkoxides of i, P and B to obtain a mixture, neutralizing and aging the mixture with an alkali solution to obtain a precipitate, washing and drying the precipitate And firing to obtain a composite oxide,
The composite oxide has a composition of [weight of TiO 2 ]: [total weight of SiO 2 , P 2 O 5 and B 2 O 3 ] = 50: 50 to 99: 1. Production method.
【請求項2】 請求項1記載の製造方法により得られた
触媒用担体。
2. A catalyst carrier obtained by the method according to claim 1.
【請求項3】 請求項2記載の触媒用担体に脱硝活性金
属を担持してなる脱硝触媒。
3. A denitration catalyst comprising the catalyst carrier according to claim 2 carrying a denitration active metal.
【請求項4】 請求項3記載の脱硝触媒の存在下に、N
Ox並びにSOx及び/又は酸化砒素を含有する燃焼排ガ
スをアンモニアにより接触還元することを特徴とする脱
硝方法。
4. The method according to claim 3, wherein
A denitration method comprising catalytically reducing combustion exhaust gas containing Ox, SOx and / or arsenic oxide with ammonia.
JP18159998A 1998-06-12 1998-06-12 Catalyst carrier, production method thereof, denitration catalyst and denitration method Expired - Lifetime JP4346706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18159998A JP4346706B2 (en) 1998-06-12 1998-06-12 Catalyst carrier, production method thereof, denitration catalyst and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18159998A JP4346706B2 (en) 1998-06-12 1998-06-12 Catalyst carrier, production method thereof, denitration catalyst and denitration method

Publications (2)

Publication Number Publication Date
JP2000000464A true JP2000000464A (en) 2000-01-07
JP4346706B2 JP4346706B2 (en) 2009-10-21

Family

ID=16103634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18159998A Expired - Lifetime JP4346706B2 (en) 1998-06-12 1998-06-12 Catalyst carrier, production method thereof, denitration catalyst and denitration method

Country Status (1)

Country Link
JP (1) JP4346706B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086413A1 (en) * 2010-12-20 2012-06-28 三菱重工業株式会社 Carrier for nox reduction catalyst
CN106238035A (en) * 2016-08-30 2016-12-21 山东海润环保科技有限公司 SCO takes off two English catalyst
CN106238067A (en) * 2016-08-30 2016-12-21 山东海润环保科技有限公司 Denitration takes off VOC catalyst
CN106799224A (en) * 2017-01-03 2017-06-06 广西大学 A kind of preparation method of sol-gel-dip method SCR denitration
CN107754833A (en) * 2017-10-21 2018-03-06 复旦大学 A kind of iron-based non-toxic catalyst for middle low-temperature denitration and preparation method thereof
CN109012712A (en) * 2018-09-30 2018-12-18 北京方信立华科技有限公司 A kind of low temperature vanadium titanium-based SCR catalyst and preparation method
CN109562367A (en) * 2016-06-13 2019-04-02 巴斯夫公司 The catalytic article of co-precipitate comprising vanadium oxide, tungsten oxide and titanium oxide
CN112121788A (en) * 2020-09-22 2020-12-25 江苏大学 Preparation method and application of B-modified vanadium-titanium low-temperature SCR catalyst
CN112275294A (en) * 2020-11-05 2021-01-29 中国科学院兰州化学物理研究所 Honeycomb type ultralow-temperature denitration catalyst and preparation method thereof
CN112473654A (en) * 2020-11-17 2021-03-12 天津浩创节能环保设备有限公司 Flue gas denitration catalyst

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086413A1 (en) * 2010-12-20 2012-06-28 三菱重工業株式会社 Carrier for nox reduction catalyst
JPWO2012086413A1 (en) * 2010-12-20 2014-05-22 三菱重工業株式会社 NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
US8758711B2 (en) 2010-12-20 2014-06-24 Mitsubishi Heavy Industries, Ltd. Carrier for NOx reduction catalyst
JP5787901B2 (en) * 2010-12-20 2015-09-30 三菱日立パワーシステムズ株式会社 NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
CN109562367A (en) * 2016-06-13 2019-04-02 巴斯夫公司 The catalytic article of co-precipitate comprising vanadium oxide, tungsten oxide and titanium oxide
CN106238067A (en) * 2016-08-30 2016-12-21 山东海润环保科技有限公司 Denitration takes off VOC catalyst
CN106238035A (en) * 2016-08-30 2016-12-21 山东海润环保科技有限公司 SCO takes off two English catalyst
CN106799224A (en) * 2017-01-03 2017-06-06 广西大学 A kind of preparation method of sol-gel-dip method SCR denitration
CN107754833A (en) * 2017-10-21 2018-03-06 复旦大学 A kind of iron-based non-toxic catalyst for middle low-temperature denitration and preparation method thereof
CN109012712A (en) * 2018-09-30 2018-12-18 北京方信立华科技有限公司 A kind of low temperature vanadium titanium-based SCR catalyst and preparation method
CN112121788A (en) * 2020-09-22 2020-12-25 江苏大学 Preparation method and application of B-modified vanadium-titanium low-temperature SCR catalyst
CN112121788B (en) * 2020-09-22 2023-07-18 江苏大学 Preparation method and application of B-modified vanadium-titanium low-temperature SCR catalyst
CN112275294A (en) * 2020-11-05 2021-01-29 中国科学院兰州化学物理研究所 Honeycomb type ultralow-temperature denitration catalyst and preparation method thereof
CN112473654A (en) * 2020-11-17 2021-03-12 天津浩创节能环保设备有限公司 Flue gas denitration catalyst

Also Published As

Publication number Publication date
JP4346706B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
RU2531195C2 (en) Catalytic composition for selective catalytic neutralisation of spent gases
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
US20130040808A1 (en) Catalyst composition for selective catalytic reduction of exhaust gases
EP0714693A1 (en) Exhaust gas cleaner and method for cleaning exhaust gas
CN104941630A (en) Low-temperature high-activity flue gas denitrification catalyst and preparation thereof
CN105771961B (en) A kind of CeO2Nanotube supported denitrating catalyst and preparation method thereof
US10882031B2 (en) Catalyst for treating an exhaust gas, an exhaust system and a method
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JP5787901B2 (en) NOx removal catalyst carrier, NOx removal catalyst and NOx removal device
CN112774687A (en) SCR catalyst for synergistically removing NO and VOCs and preparation method thereof
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
Sagar et al. A New Class of Environmental Friendly Vanadate Based NH₃ SCR Catalysts Exhibiting Good Low Temperature Activity and High Temperature Stability
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
JP2020515385A (en) Catalyst, exhaust system and method for treating exhaust gas
KR20220072360A (en) Low Temperature SCR Catalyst for Treating of the Exhaust Gas from a Fixed Source and Preparation Method Thereof
JP5360834B2 (en) Exhaust gas purification catalyst that suppresses the influence of iron compounds
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2583912B2 (en) Nitrogen oxide removal catalyst
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3150519B2 (en) Regeneration method of denitration catalyst
JP2548756B2 (en) Catalyst for removing nitrogen oxides
US20240066503A1 (en) Nitrogen oxide removing denitrification catalyst having high durability against sulfur dioxide, method for preparing the same, and method for removing nitrogen oxide using the same
JPH11347408A (en) Catalyst carrier and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term