JP3150519B2 - Regeneration method of denitration catalyst - Google Patents

Regeneration method of denitration catalyst

Info

Publication number
JP3150519B2
JP3150519B2 JP01910094A JP1910094A JP3150519B2 JP 3150519 B2 JP3150519 B2 JP 3150519B2 JP 01910094 A JP01910094 A JP 01910094A JP 1910094 A JP1910094 A JP 1910094A JP 3150519 B2 JP3150519 B2 JP 3150519B2
Authority
JP
Japan
Prior art keywords
catalyst
tungsten
oxalic acid
washing
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01910094A
Other languages
Japanese (ja)
Other versions
JPH07222924A (en
Inventor
淳 守井
昌則 出本
耕三 飯田
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01910094A priority Critical patent/JP3150519B2/en
Publication of JPH07222924A publication Critical patent/JPH07222924A/en
Application granted granted Critical
Publication of JP3150519B2 publication Critical patent/JP3150519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はダスト成分の付着又は蓄
積によって脱硝性能が低下しSO2 酸化能が上昇した使
用済のチタン−タングステン及び/又はモリブデン系脱
硝触媒の再生方法に関する。
The present invention relates to a deposition or titanium spent the denitration performance was increased decreased SO 2 oxidizing ability by the accumulation of dust components - a reproducing method of tungsten and / or molybdenum-based denitration catalyst.

【0002】[0002]

【従来の技術】排ガス中のNOxの除去方法として、ア
ンモニアを還元剤として触媒の存在下、NOxを無害な
窒素まで還元する接触還元法が実用化されている。とこ
ろが硫黄分の高い重油(C重油)を使用するボイラ排ガ
ス処理においては処理ガス中に高濃度のSO2 が存在す
るため、NOx還元除去反応と同時に生じるSO2 の三
酸化硫黄(SO3 )への酸化反応により高濃度のSO3
が発生し、還元剤として使用するNH3 の未反応分と低
温領域で容易に結合し酸性硫酸アンモニウムその他の化
合物を生成するため、後流の熱交換器などの各種装置内
への閉塞現象、集塵機の能力アップなどが必要となる。
前記方法で使用され、優れた活性を示す触媒としてチタ
ン−タングステン及び/又はモリブデン系脱硝触媒があ
る。この触媒でも、硫黄分の高い重油の燃焼排ガス中に
はSO2 の他にバナジウム、ニッケル、鉄等の重金属類
や芒硝等のアルカリ塩を含むダストが存在し、該排ガス
の長時間の処理により触媒表面にダスト中の成分が付
着、蓄積するため触媒の脱硝性能が低下するとともにS
2 酸化能が上昇する現象が認められる。この脱硝性能
の低下は排ガス中のダストに含まれるNa、Kなどのア
ルカリ成分の触媒への蓄積が主な原因であり、またSO
2 酸化能の上昇は排ガス中のダストに含まれるバナジウ
ムの触媒への蓄積が主原因である。
2. Description of the Related Art As a method for removing NOx from exhaust gas, a catalytic reduction method for reducing NOx to harmless nitrogen in the presence of a catalyst using ammonia as a reducing agent has been put to practical use. However due to the presence of high concentrations of SO 2 in the process gas in the boiler exhaust gas treatment using sulfur high oil (C heavy oil), the SO 2 produced simultaneously with the NOx reduction reaction for removing the sulfur trioxide (SO 3) High concentration of SO 3
Is generated and easily binds with the unreacted portion of NH 3 used as a reducing agent in the low-temperature region to form ammonium sulfate and other compounds, so that the clogging phenomenon in various devices such as a downstream heat exchanger and a dust collector It is necessary to improve the ability of
As a catalyst used in the above method and exhibiting excellent activity, there is a titanium-tungsten and / or molybdenum-based denitration catalyst. Even with this catalyst, dust containing heavy metals such as vanadium, nickel and iron and alkali salts such as sodium sulfate are present in the combustion exhaust gas of heavy oil having a high sulfur content in addition to SO 2. The components in the dust adhere to and accumulate on the catalyst surface, which degrades the denitration performance of the catalyst and reduces
A phenomenon in which the O 2 oxidizing ability increases is observed. This decrease in the denitration performance is mainly caused by the accumulation of alkali components such as Na and K contained in the dust in the exhaust gas on the catalyst.
(2) The increase in oxidation ability is mainly caused by the accumulation of vanadium contained in dust in exhaust gas on the catalyst.

【0003】[0003]

【発明が解決しようとする課題】このように脱硝性能が
低下し、SO2 酸化能が上昇したチタン−タングステン
及び/又はモリブデン系脱硝触媒の再生方法として特開
昭60−209252号公報に記載された方法がある。
この方法は使用済のバナジウム−タングステン−チタニ
ア系脱硝触媒の再生に当たり、先ず使用済触媒を水又は
希無機酸水溶液で洗浄後、しゅう酸水溶液で洗浄し、S
2 酸化能の上昇の原因となっているバナジウム化合物
を除去するものである。そして、この処理により触媒成
分であるタングステンも同時に溶出し脱硝性能が低下す
るためしゅう酸水溶液で洗浄後に再度タングステン化合
物を含浸担持させることを特徴としている。この方法で
は洗浄操作後に改めてタングステン成分の含浸、焼成を
行わなければならず、コストが高くなるという問題があ
った。また、この方法ではしゅう酸洗浄後にタングステ
ン成分の含浸担持を行わない場合には触媒の脱硝性能が
回復しないほか、触媒の強度も低下するという問題もあ
った。本発明は前記従来技術の問題点を解決し、洗浄操
作のみによって触媒の活性を回復させることができるチ
タン−タングステン及び/又はモリブデン系脱硝触媒の
再生方法を提供するものである。
[Problems that the Invention is to Solve reduces the thus denitrification performance, titanium SO 2 oxidation ability is raised - as described in JP 60-209252 Laid as a reproduction method of the tungsten and / or molybdenum-based denitration catalyst There is a method.
In this method, in regenerating a used vanadium-tungsten-titania denitration catalyst, first, the used catalyst is washed with water or a dilute inorganic acid aqueous solution, and then washed with an oxalic acid aqueous solution.
It removes vanadium compounds that cause an increase in O 2 oxidizing ability. Tungsten as a catalyst component is simultaneously eluted by this treatment, and the denitration performance is reduced. Therefore, the tungsten compound is washed with an oxalic acid aqueous solution and then impregnated with a tungsten compound again. In this method, the tungsten component must be impregnated and fired again after the cleaning operation, and there is a problem that the cost is increased. Further, in this method, if the tungsten component is not impregnated and supported after oxalic acid washing, the denitration performance of the catalyst does not recover, and the strength of the catalyst also decreases. The present invention solves the above-mentioned problems of the prior art, and provides a method for regenerating a titanium-tungsten and / or molybdenum-based denitration catalyst capable of restoring the activity of a catalyst only by a washing operation.

【0004】[0004]

【課題を解決するための手段】本発明は、ダスト成分の
付着又は蓄積によって脱硝性能が低下しSO 2 酸化能が
上昇した使用済のチタンとタングステン及び/又はモリ
ブデンとの複合酸化物よりなる触媒、若しくは該複合酸
化物にバナジウム化合物を担持させた触媒の再生方法で
あって、水又は希無機酸水溶液で該触媒を洗浄した後、
0.1〜5重量%のしゅう酸水溶液で洗浄し、さらに水
洗により触媒に残留するしゅう酸を除去することを特徴
とする使用済脱硝触媒の再生方法である。
SUMMARY OF THE INVENTION The present invention is directed to a dust component.
Denitration performance decreases due to adhesion or accumulation and SO 2 oxidation ability
Raised used titanium and tungsten and / or moly
A catalyst comprising a composite oxide with butene, or the composite acid
Regenerating a catalyst in which a vanadium compound is supported on a chloride
Then, after washing the catalyst with water or a dilute inorganic acid aqueous solution,
Wash with 0.1 to 5% by weight aqueous oxalic acid, then add water
Features to remove oxalic acid remaining in catalyst by washing
Of the used denitration catalyst.

【0005】本発明の方法が適用される触媒はチタンと
タングステン及び/又はモリブデンとの複合酸化物より
なる触媒若しくは予めチタンとタングステン及び/又は
モリブデンとの複合酸化物を形成させ、該複合酸化物に
バナジウム化合物を担持させた触媒である
[0005] The catalyst process of the present invention is applied to form a composite oxide with the catalyst or pre-titanium and tungsten and / or molybdenum consisting composite oxide of titanium and tungsten and / or molybdenum, the composite oxide This is a catalyst in which a vanadium compound is supported on a substance .

【0006】このような複合酸化物型の触媒は、タング
ステン化合物及びモリブデン化合物から選ばれる少なく
とも1種の化合物を含有するゾル化したメタチタン酸を
焼成し、この焼成品あるいはこの焼成品にバナジウム酸
化物を添加したものに、適量の助剤及び水を加えて混
合、混練した後、押出し機により格子状に押出し、乾
燥、焼成する方法(特公平1−14808号公報など)
などにより製造することができる。例えばメタチタン酸
に所定量のパラタングステン酸アンモニウム水溶液又は
モリブデン酸アンモニウム水溶液を加えて脱水、成形、
乾燥後焼成する方法、あるいはメタチタン酸に所定量の
パラタングステン酸アンモニウム水溶液又はモリブデン
酸アンモニウム水溶液を加えて脱水、乾燥後メタバナジ
ン酸アンモニウム水溶液を含浸させ、成形後乾燥し、焼
成するなどの方法が好適である。
[0006] Such a catalyst of the composite oxide type is obtained by calcining a sol-formed metatitanic acid containing at least one compound selected from a tungsten compound and a molybdenum compound, and applying the calcined product or the vanadium oxide to the calcined product. A method in which an appropriate amount of an auxiliary agent and water are added to the mixture, mixed, and kneaded, and then extruded in a lattice shape using an extruder, dried, and fired (Japanese Patent Publication No. 1-1808, etc.).
It can be manufactured by such as. For example, adding a predetermined amount of an aqueous solution of ammonium paratungstate or an aqueous solution of ammonium molybdate to metatitanic acid, dehydrating, molding,
A method of baking after drying, or a method of adding a predetermined amount of an aqueous solution of ammonium paratungstate or an aqueous solution of ammonium molybdate to metatitanic acid, dehydrating, impregnating with an aqueous solution of ammonium metavanadate after drying, drying after forming, and firing is preferable. It is.

【0007】[0007]

【作用】本発明の方法においては、しゅう酸洗浄前に水
洗することにより、SO2 酸化能上昇の原因となるバナ
ジウム成分は溶出しにくいが、他のダスト成分であるア
ルカリ金属成分、未燃炭素等を除去できるので、水洗な
しに直接しゅう酸洗浄を行う場合と比較してしゅう酸溶
液中へのダスト成分の混入が極めて少なくなるためしゅ
う酸によるバナジウム分の溶出効果が十分発揮される。
また、しゅう酸水溶液による洗浄後、反応器に充填する
までに保管する必要があるが、触媒中にしゅう酸成分が
残留したままの状態で保管すると触媒自体の強度低下が
発生したり、反応器に充填して再起動する際、残留しゅ
う酸が飛散して好ましくないが、本発明の方法では、し
ゅう酸水溶液洗浄後にさらに水洗を行うようにしている
ので、触媒中に残留するしゅう酸成分は完全に除去され
ているのでこのようなトラブルは発生しない。
In the method of the present invention, by washing with water before oxalic acid washing, the vanadium component which causes an increase in SO 2 oxidizing ability is hardly eluted, but other dust components such as an alkali metal component and unburned carbon. And the like, so that the mixing of dust components into the oxalic acid solution is extremely small as compared with the case where oxalic acid washing is performed directly without washing with water, so that the effect of vanadium elution by oxalic acid is sufficiently exhibited.
In addition, after washing with an aqueous oxalic acid solution, it is necessary to store the oxalic acid component before filling it in the reactor. When refilling and restarting, the residual oxalic acid is scattered, which is not preferable.However, in the method of the present invention, the oxalic acid component remaining in the catalyst is reduced because the oxalic acid aqueous solution is further washed with water after washing. Such trouble does not occur because it has been completely removed.

【0008】さらにチタン−タングステン及び/又はモ
リブデン系触媒として、チタンとタングステン及び/又
はモリブデンとの複合酸化物よりなる触媒若しくは予め
チタンとタングステン及び/又はモリブデンとの複合酸
化物を形成させ、該複合酸化物にバナジウム化合物を担
持させた触媒を使用するので、しゅう酸水溶液による洗
浄時に一旦触媒に担持された活性金属であるタングステ
ンやモリブデンが溶出しにくくなるため脱硝性能が低下
することはなく、再生に際して活性金属の再担持等の操
作が不要となる。
Further, as a titanium-tungsten and / or molybdenum-based catalyst, a catalyst comprising a composite oxide of titanium and tungsten and / or molybdenum or a composite oxide of titanium and tungsten and / or molybdenum is formed in advance, and because it uses was supported vanadium compound oxide catalyst, not that the denitration performance decreases since once made of tungsten or molybdenum is hardly eluted is supported active metal catalyst at the time of cleaning by oxalic acid aqueous solution, reproduction At this time, an operation such as reloading of the active metal is not required.

【0009】[0009]

【実施例】【Example】

(触媒の調製) (1)酸化チタンを7mmピッチのハニカム状(幅15
0mm、高さ150mm、長さ500mm)に成形した
後乾燥し、550℃で焼成したハニカム担体に所定濃度
のメタバナジン酸アンモニウム水溶液及びパラタングス
テン酸アンモニウム水溶液を含浸し乾燥後、500℃で
焼成し酸化チタン−バナジウム−タングステン系触媒
(触媒A)を得た。 (2)メタチタン酸に所定濃度のパラタングステン酸ア
ンモニウムを加えて脱水、成形後乾燥し、500℃で焼
成し酸化チタン−タングステン系触媒(触媒B)を得
た。 (3)メタチタン酸に所定濃度のパラタングステン酸ア
ンモニウムを加えて脱水、乾燥後、所定濃度のメタバナ
ジン酸アンモニウム水溶液を含浸し、成形、乾燥後、5
00℃で焼成し酸化チタン−バナジウム−タングステン
系触媒(触媒C)を得た。 (4)メタチタン酸に所定濃度のモリブデン酸アンモニ
ウムを加えて脱水、乾燥後、所定濃度のメタバナジン酸
アンモニウム水溶液を含浸し、成形、乾燥後、500℃
で焼成し酸化チタン−バナジウム−モリブデン系触媒
(触媒D)を得た。 これらの触媒A、B、C及びDの組成を表1に示す。
(Preparation of catalyst) (1) Titanium oxide was formed into a honeycomb shape having a pitch of 7 mm (width: 15 mm).
(0 mm, height 150 mm, length 500 mm), dried, impregnated with a predetermined concentration of ammonium metavanadate aqueous solution and ammonium paratungstate aqueous solution into a honeycomb carrier fired at 550 ° C., dried, fired at 500 ° C., and oxidized. A titanium-vanadium-tungsten catalyst (catalyst A) was obtained. (2) A predetermined concentration of ammonium paratungstate was added to metatitanic acid, dehydrated, molded, dried and calcined at 500 ° C. to obtain a titanium oxide-tungsten catalyst (catalyst B). (3) A predetermined concentration of ammonium paratungstate is added to metatitanic acid, dehydrated, dried, impregnated with a predetermined concentration of ammonium metavanadate aqueous solution, formed, dried, and then dried.
The mixture was calcined at 00 ° C. to obtain a titanium oxide-vanadium-tungsten-based catalyst (catalyst C). (4) A predetermined concentration of ammonium molybdate is added to metatitanic acid, dehydrated and dried, then impregnated with a predetermined concentration of ammonium metavanadate aqueous solution, molded, dried, and then dried at 500 ° C.
To obtain a titanium oxide-vanadium-molybdenum catalyst (catalyst D). Table 1 shows the compositions of these catalysts A, B, C and D.

【0010】[0010]

【表1】 [Table 1]

【0011】(使用済触媒試料の調製)前記により調製
した触媒A、B、C及びDを、硫黄分5重量%の重油燃
焼ボイラ排ガスに設置された脱硝装置内に充填し、10
000時間の耐久試験(エージング)を行い、得られた
試料を使用済触媒試料とした。脱硝の条件はガス量70
000m3 N/h、温度380℃、NH3 /NOx=
0.8(モル比)であった。その後触媒を抜き出し、脱
硝率、SO2 酸化能及び触媒中のバナジウム(V)、タ
ングステン(W)あるいはモリブデン(Mo)の含有量
の変化を調べた。その結果は表2に示すとおりで脱硝率
はほとんど低下していないもののSO2 酸化能の上昇と
バナジウム分の増加が認められた。
(Preparation of Spent Catalyst Sample) The catalysts A, B, C and D prepared as described above were charged into a denitration apparatus installed in a heavy oil combustion boiler exhaust gas having a sulfur content of 5% by weight.
A durability test (aging) for 000 hours was performed, and the obtained sample was used as a used catalyst sample. The denitration conditions are gas volume 70
000 m 3 N / h, temperature 380 ° C., NH 3 / NOx =
0.8 (molar ratio). Thereafter, the catalyst was extracted, and changes in denitration rate, SO 2 oxidizing ability, and content of vanadium (V), tungsten (W), or molybdenum (Mo) in the catalyst were examined. The results are as shown in Table 2. Although the denitration rate was hardly reduced, an increase in SO 2 oxidizing ability and an increase in vanadium content were observed.

【0012】なお、脱硝率及びSO2 酸化率の測定は次
のようにして行った。幅150mm、高さ150mm、
長さ500mmのハニカム触媒4本を活性試験装置に充
填し、燃焼炉で発生させた燃焼排ガス約225m3 N/
hを試験装置に導入し、ガス温度380℃、NH3 /N
Ox=1.0(モル比)、入口NOx200ppm、入
口SO2 1000ppm、入口SO3 10ppm、残り
2 及びCO2 の雰囲気で20時間エージングした後、
試験装置出、入口のNOx濃度、SO2 濃度及びSO3
濃度を測定し、次の式により脱硝率及びSO2 酸化率を
求めた。 脱硝率(%)=100×(入口NOx−出口NOx)/
入口NOx SO2 酸化率(%)=100×(出口SO3 −入口SO
3 )/入口SO2
The denitration rate and SO 2 oxidation rate were measured as follows. 150mm width, 150mm height,
Four honeycomb catalysts having a length of 500 mm were filled in an activity test device, and the combustion exhaust gas generated in a combustion furnace was about 225 m 3 N /
h into the test apparatus, gas temperature 380 ° C., NH 3 / N
Ox = 1.0 (molar ratio), inlet NOx200ppm, inlet SO 2 1000 ppm, inlet SO 3 10 ppm, after 20 hours aging in an atmosphere of the remaining N 2 and CO 2,
NOx concentration, SO 2 concentration and SO 3 at the test equipment
To determine the concentration to obtain the NOx removal efficiency and SO 2 oxidation rate by the following equation. Denitration rate (%) = 100 x (NOx at inlet-NOx at outlet) /
Inlet NOx SO 2 oxidation rate (%) = 100 × (Outlet SO 3 −Inlet SO
3 ) / SO 2 at the entrance

【0013】[0013]

【表2】 [Table 2]

【0014】(実施例1) 前記使用済触媒試料(表2中の10000時間経過後の
試料)を、容量比で4倍量の水に1時間浸漬した後取り
出すことによって水洗し、次いで濃度1重量%のしゅう
酸水溶液(容量比で4倍量)に1時間浸漬し、しゅう酸
水溶液洗浄を行った後、110℃の熱風で乾燥した。し
ゅう酸水溶液洗浄前後での脱硝率、SO2 酸化能及び触
媒中のバナジウム(V)、タングステン(W)及びモリ
ブデン(Mo)の含有量の変化を調べた。その結果は表
3に示すとおりで、いずれの試料についてもエージング
により増加したバナジウム分は除去され、SO2 酸化能
(SO2 酸化率)は初期の値に回復した。しかしながら
触媒中のタングステンあるいはモリブデンの量はチタン
とタングステンあるいはモリブデンが複合酸化物を形成
している触媒B、C及びDではしゅう酸洗浄の前後で変
化がなかったが、複合酸化物を形成していない比較例で
ある触媒Aでは触媒中のタングステン量が減少し、脱硝
率の低下が認められた。
Example 1 A sample of the used catalyst (sample after 10000 hours in Table 2) was immersed in water having a volume ratio of 4 times for 1 hour, and then taken out. It was immersed in a 1% by weight aqueous oxalic acid solution (4 times in volume ratio) for 1 hour, washed with an aqueous oxalic acid solution, and then dried with hot air at 110 ° C. Denitration rate before and after oxalic acid solution wash, SO 2 oxidation ability and vanadium in the catalyst (V), investigating changes in the content of tungsten (W) and molybdenum (Mo). The results are shown in Table 3. In each sample, the vanadium content increased by aging was removed, and the SO 2 oxidizing ability (SO 2 oxidizing rate) was restored to the initial value. However, the amount of tungsten or molybdenum in the catalyst did not change before and after washing with oxalic acid in catalysts B, C and D in which titanium and tungsten or molybdenum formed a composite oxide, but did not. No comparative example
In a certain catalyst A, the amount of tungsten in the catalyst was reduced, and a reduction in the denitration rate was recognized.

【0015】(実施例2)実施例1でしゅう酸水溶液に
よる洗浄を行った触媒及びしゅう酸水溶液洗浄後さらに
容積比で4倍量の水に1時間浸漬して水洗した触媒を、
1週間室温に放置後110℃の熱風で乾燥した後、圧縮
強度を測定した。圧縮強度の測定はハニカム形状の試料
を側面から圧縮する方法で行った。結果は表3に示すと
おりで、しゅう酸水溶液で洗浄したままで乾燥した場合
は、いずれの触媒も強度の低下がみられたが、しゅう酸
水溶液で洗浄後に水洗することによって強度の低下が防
止できることが分かる。また、脱硝率、SO2 酸化能及
び触媒中のバナジウム(V)、タングステン(W)及び
モリブデン(Mo)の含有量はしゅう酸水溶液洗浄後の
水洗によって変化することはない。
(Example 2) The catalyst which was washed with an oxalic acid aqueous solution in Example 1 and the catalyst which was washed with an oxalic acid aqueous solution and then immersed in 4 times the volume of water for 1 hour and washed with water,
After leaving at room temperature for one week and drying with hot air at 110 ° C., the compressive strength was measured. The measurement of the compressive strength was performed by a method of compressing a honeycomb-shaped sample from the side. The results are shown in Table 3. When the catalyst was dried while being washed with an oxalic acid aqueous solution, the strength of all the catalysts was reduced. However, the strength was prevented by washing with an oxalic acid aqueous solution and then washing with water. You can see what you can do. Further, the denitration rate, SO 2 oxidizing ability, and the contents of vanadium (V), tungsten (W) and molybdenum (Mo) in the catalyst do not change by washing with oxalic acid aqueous solution.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【発明の効果】ダスト成分の付着又は蓄積によって脱硝
性能が低下しSO2 酸化能が上昇した使用済のチタン−
タングステン及び/又はモリブデン系脱硝触媒を水洗、
しゅう酸水溶液による洗浄により再生するにあたり、し
ゅう酸水溶液で洗浄後、さらに水洗することにより、触
媒自体の強度低下、残留しゅう酸の飛散によるトラブル
を防止することができる。さらにチタン−タングステン
及び/又はモリブデン系触媒として、チタンとタングス
テン及び/又はモリブデンとの複合酸化物よりなる触媒
若しくは予めチタンとタングステン及び/又はモリブデ
ンとの複合酸化物を形成せしめ、該複合酸化物にバナジ
ウム化合物を担持させた触媒を使用すれば、しゅう酸水
溶液による洗浄時に一旦触媒に担持された活性金属であ
るタングステンやモリブデンが溶出しにくくなるため脱
硝性能が低下することがなく、再生に際して活性金属の
再担持等の操作が不要となる。
Deposition of dust components according to the present invention or the denitration performance decreases due to the accumulation of titanium spent for SO 2 oxidation ability is increased -
Washing the tungsten and / or molybdenum-based denitration catalyst with water,
Upon regeneration by washing with an aqueous oxalic acid solution, washing with an aqueous oxalic acid solution and then washing with water can prevent a decrease in the strength of the catalyst itself and troubles caused by scattering of residual oxalic acid. Further, as a titanium-tungsten and / or molybdenum-based catalyst, a catalyst composed of a composite oxide of titanium and tungsten and / or molybdenum or a composite oxide of titanium and tungsten and / or molybdenum is formed in advance, and If a catalyst carrying a vanadium compound is used, tungsten and molybdenum, which are active metals once supported on the catalyst, are less likely to elute during washing with an oxalic acid aqueous solution. This eliminates the need for operations such as reloading.

フロントページの続き (72)発明者 尾林 良昭 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 昭60−209252(JP,A) 特開 昭54−10294(JP,A) 特公 昭60−41611(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 B01D 53/94 B01D 53/96 Continuation of the front page (72) Inventor Yoshiaki Obayashi 4-6-22 Kanonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (56) References JP-A-60-209252 (JP, A) JP-A Sho 54-10294 (JP, A) JP 60-41611 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86 B01D 53 / 94 B01D 53/96

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ダスト成分の付着又は蓄積によって脱硝
性能が低下しSO2 酸化能が上昇した使用済のチタンと
タングステン及び/又はモリブデンとの複合酸化物より
なる触媒、若しくは該複合酸化物にバナジウム化合物を
担持させた触媒の再生方法であって、水又は希無機酸水
溶液で該触媒を洗浄した後、0.1〜5重量%のしゅう
酸水溶液で洗浄し、さらに水洗により触媒に残留するし
ゅう酸を除去することを特徴とする使用済脱硝触媒の再
生方法。
Claims: 1. Used titanium whose denitration performance has been reduced due to adhesion or accumulation of dust components and SO 2 oxidation ability has been increased.
From composite oxide with tungsten and / or molybdenum
Or a vanadium compound to the composite oxide
A method for regenerating a supported catalyst, comprising washing the catalyst with water or a dilute inorganic acid aqueous solution, then washing with a 0.1 to 5% by weight aqueous oxalic acid solution, and further removing oxalic acid remaining on the catalyst by washing with water. A method for regenerating a used denitration catalyst, which comprises removing the catalyst.
JP01910094A 1994-02-16 1994-02-16 Regeneration method of denitration catalyst Expired - Lifetime JP3150519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01910094A JP3150519B2 (en) 1994-02-16 1994-02-16 Regeneration method of denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01910094A JP3150519B2 (en) 1994-02-16 1994-02-16 Regeneration method of denitration catalyst

Publications (2)

Publication Number Publication Date
JPH07222924A JPH07222924A (en) 1995-08-22
JP3150519B2 true JP3150519B2 (en) 2001-03-26

Family

ID=11990065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01910094A Expired - Lifetime JP3150519B2 (en) 1994-02-16 1994-02-16 Regeneration method of denitration catalyst

Country Status (1)

Country Link
JP (1) JP3150519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309567B1 (en) 1998-06-26 2001-10-30 Sumitomo Electric Industries, Ltd. Collectively coating die device for manufacturing separable optical fiber ribbon and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19832057C1 (en) * 1998-07-16 2000-03-16 Siemens Ag Process for the regeneration of a deactivated catalyst
JP4578048B2 (en) 2002-06-21 2010-11-10 中国電力株式会社 Denitration catalyst regeneration method
WO2005056165A1 (en) 2003-12-11 2005-06-23 The Chugoku Electric Power Co.,Inc. Method for restoring performance capabilities of exhaust gas treatment apparatus
JP4436124B2 (en) 2003-12-25 2010-03-24 三菱重工業株式会社 Denitration catalyst regeneration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309567B1 (en) 1998-06-26 2001-10-30 Sumitomo Electric Industries, Ltd. Collectively coating die device for manufacturing separable optical fiber ribbon and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07222924A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
US4615991A (en) Method for recovering denitrating catalyst
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP4264643B2 (en) Regeneration method of deteriorated catalyst
JP4436124B2 (en) Denitration catalyst regeneration method
JP3059137B2 (en) Reprocessing method for denitration catalyst
JP3150519B2 (en) Regeneration method of denitration catalyst
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JP5804980B2 (en) NOx removal catalyst for exhaust gas treatment and exhaust gas treatment method
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JPS5812057B2 (en) Shiyokubaisosabutsu
JPH0468975B2 (en)
JPS6248537B2 (en)
JPH11267459A (en) Reducing method of nitrogen oxide and so3 in exhaust gas
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH0446621B2 (en)
JPS60209252A (en) Regeneration method of denitration catalyst
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
JP3521933B2 (en) Catalyst for removing nitrogen oxides in exhaust gas
JPH0421545B2 (en)
KR20210049215A (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
JPS629368B2 (en)
JP4300351B2 (en) Denitration catalyst regeneration method
JPS6041611B2 (en) Method for treating catalyst composition
JPS6018450B2 (en) Method for treating exhaust gas containing nitrogen oxides

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

EXPY Cancellation because of completion of term