JP2004322077A - Exhaust gas clarification catalyst and exhaust gas clarification method - Google Patents

Exhaust gas clarification catalyst and exhaust gas clarification method Download PDF

Info

Publication number
JP2004322077A
JP2004322077A JP2003390088A JP2003390088A JP2004322077A JP 2004322077 A JP2004322077 A JP 2004322077A JP 2003390088 A JP2003390088 A JP 2003390088A JP 2003390088 A JP2003390088 A JP 2003390088A JP 2004322077 A JP2004322077 A JP 2004322077A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
zeolite
nox
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390088A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
正史 杉山
Kengo Soda
健吾 曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003390088A priority Critical patent/JP2004322077A/en
Publication of JP2004322077A publication Critical patent/JP2004322077A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas clarification catalyst which has excellent durability, excellent practicality and excellent denitrification performance in that nitrogen oxides (NOx) can be removed even if exhaust gas contains sulfur oxides and that is not deteriorated even when the exhaust gas has comparatively low temperature of 300-400°C, and to provide an exhaust gas clarification method using the catalyst. <P>SOLUTION: This catalyst is β-zeolite on which at least one metal selected from iron, cobalt, silver, molybdenum and tungsten is deposited. The molar ratio of SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>in the β-zeolite is preferably made to be 20-70. NOx in the exhaust gas is reduced/removed by bringing the oxygen-excessive exhaust gas into contact with this catalyst in the presence of methanol and/or dimethyl ether being reducing agents. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ボイラー、ディーゼルエンジン発電機、またはディーゼルエンジン自動車からの各種燃焼排ガスや、産業設備からの排ガスに含まれる窒素酸化物の除去に有効な排ガス浄化用触媒、並びにその触媒を使用する排ガス浄化方法に関する。   The present invention relates to an exhaust gas purifying catalyst effective for removing various combustion exhaust gas from a boiler, a diesel engine generator, or a diesel engine vehicle, and nitrogen oxides contained in exhaust gas from industrial equipment, and an exhaust gas using the catalyst. It relates to a purification method.

工場、発電設備、その他の産業設備や、自動車などから排出される各種の排ガス中には、一酸化窒素や二酸化窒素などの窒素酸化物(NOx)が含まれている。このNOxは人体、特に呼吸器系に悪影響を及ぼすばかりでなく、地球環境保全の上から問題視される酸性雨の原因の一つとなっている。   Various exhaust gases emitted from factories, power generation facilities, other industrial facilities, automobiles, and the like contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide. This NOx not only has an adverse effect on the human body, especially the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection.

そのため、これら各種の排ガスから、窒素酸化物(NOx)を効率よく除去する技術の開発が望まれている。このような排煙脱硝法の一つとして、自動車(ガソリン車)の排ガス処理に用いられている三元触媒法が知られている。しかし、この三元触媒法は、排ガス中に残存する炭化水素や一酸化炭素などの未燃焼分を完全酸化するのに必要な理論量より過剰な酸素を含む排ガスには適用することができない。   Therefore, development of a technology for efficiently removing nitrogen oxides (NOx) from these various exhaust gases is desired. As one of such flue gas denitration methods, a three-way catalyst method used for exhaust gas treatment of automobiles (gasoline vehicles) is known. However, this three-way catalyst method cannot be applied to exhaust gas containing oxygen in excess of the theoretical amount required to completely oxidize unburned components such as hydrocarbons and carbon monoxide remaining in the exhaust gas.

一方、酸素が過剰に存在する雰囲気下でNOxを還元除去する方法としては、V−TiO触媒を用い、アンモニアを還元剤とするアンモニア選択接触還元法が知られている。しかし、この方法においては、臭気が強く有害なアンモニアを用いるため、取り扱いが容易でない。また、未反応のアンモニアの排出を防ぐための特別な装置を必要とするため、設備が大型化することから、小規模な排ガス発生源や移動型発生源への適用には不向きであるうえ、経済性においても好ましいものではない。 On the other hand, as a method for reducing and removing NOx in an atmosphere in which oxygen is excessively present, an ammonia selective catalytic reduction method using a V 2 O 5 —TiO 2 catalyst and using ammonia as a reducing agent is known. However, in this method, harmful ammonia having a strong odor is used, so that handling is not easy. In addition, since it requires a special device to prevent the emission of unreacted ammonia, the equipment becomes large, so it is not suitable for application to small-scale exhaust gas sources or mobile sources, It is not preferable in terms of economy.

近年、酸素過剰の希薄燃焼排ガス中に残存する未燃焼の炭化水素を還元剤として用いることにより、その排ガス中のNOxの還元反応を促進させることができるという報告がなされた。この報告以来、NOxの還元反応を促進するための触媒が種々開発され、例えば、アルミナやアルミナに遷移金属を担時した触媒などが、炭化水素類を還元剤として用いるNOxの還元除去反応に有効であるとする数多くの報告がなされている。   In recent years, it has been reported that the use of unburned hydrocarbons remaining in an oxygen-rich lean combustion exhaust gas as a reducing agent can promote the reduction reaction of NOx in the exhaust gas. Since this report, various catalysts have been developed to promote the NOx reduction reaction. For example, alumina and a catalyst supporting a transition metal on alumina are effective for the reduction removal reaction of NOx using hydrocarbons as a reducing agent. There have been many reports that

このような炭化水素類を還元剤として酸素過剰の燃焼排ガス中の窒素酸化物を還元除去する触媒の一例として、アルミナやアルミナに遷移金属を担時した触媒のほか、0.1〜4重量%のCu、Fe、Cr、Zn、Ni、又はVを含有するアルミナ若しくはシリカ−アルミナからなる還元触媒が報告されている(特開平4−284848号公報参照)。   Examples of catalysts for reducing and removing nitrogen oxides in combustion exhaust gas containing excess oxygen by using such hydrocarbons as a reducing agent include, in addition to alumina and a catalyst having a transition metal supported on alumina, 0.1 to 4% by weight. A reduction catalyst comprising alumina or silica-alumina containing Cu, Fe, Cr, Zn, Ni, or V has been reported (see JP-A-4-284848).

また、Ptなどをアルミナに担時した触媒を用いると、NOxの還元反応が200〜300℃程度の低温領域でも進行することが報告されている(特開平4−267946号公報、特開平5−68855号公報、特開平5−103949号公報参照)。しかしながら、これらの貴金属担持触媒では、還元剤である炭化水素の燃焼反応が過度に促進されたり、地球温暖化の原因物質の1つとされているNOが多量に副生したりするため、無害なNへの還元反応を選択的に進行させることが困難であるという欠点を有していた。 It is also reported that when a catalyst in which Pt or the like is carried on alumina is used, the reduction reaction of NOx proceeds even in a low temperature range of about 200 to 300 ° C. (JP-A-4-267946, JP-A-5-267946). 68855, JP-A-5-103949). However, in these noble metal-supported catalysts, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and a large amount of N 2 O, which is one of the substances causing global warming, is by-produced. be advanced reduction reaction to harmless N 2 selectively had the disadvantage that it is difficult.

更に、アルミナなどに銀を担持した触媒が、酸素過剰雰囲気下で炭化水素を還元剤として、NOxの還元反応を選択的に進行させることが報告されている(特開平4−281844号公報参照)。この報告後、銀を含有する触媒を用いた類似のNOxの還元除去方法が数多く開発され、報告されている(特開平4−354536号公報参照)。   Further, it has been reported that a catalyst in which silver is supported on alumina or the like selectively promotes a NOx reduction reaction using a hydrocarbon as a reducing agent in an oxygen-excess atmosphere (see JP-A-4-281844). . After this report, many similar NOx reduction and removal methods using a catalyst containing silver have been developed and reported (see JP-A-4-354536).

しかしながら、上記した脱硝触媒を用いた排ガスの浄化方法は、いずれも、硫黄酸化物を含む酸素過剰の排ガス中ではNOxの除去性能が著しく低下し、実用的な耐久性が不十分であるという問題があった。また、排ガスの温度が300℃〜400℃程度の比較的低温である場合には、NOxの除去性能が低いという問題もあった。   However, any of the above-mentioned methods for purifying exhaust gas using a denitration catalyst has the problem that the NOx removal performance is significantly reduced in an oxygen-excess exhaust gas containing sulfur oxides, and the practical durability is insufficient. was there. In addition, when the temperature of the exhaust gas is relatively low, such as about 300 ° C. to 400 ° C., there is a problem that the NOx removal performance is low.

また、水素化したゼオライト触媒や、V、Cr、Mn、Fe、Co、Niなどをゼオライトに担持した触媒を用いて、有機化合物の共存下にNOxを還元除去する方法が報告され、そのゼオライトとしてY型ゼオライト、L型ゼオライト、オフレタイト・エリオナイト混晶型ゼオライト、フェリエライト型ゼオライト、ZSM−5型ゼオライトが示されている(特許第2139645号公報参照)。更に、プロトン型ゼオライトを用いてエタノールの存在下にNOxを還元除去する方法も報告され、そのゼオライトとしてY型ゼオライト、ZSM−5型ゼオライト、モルデナイトが示されている(特許第2506598号公報参照)。   Further, a method of reducing and removing NOx in the presence of an organic compound using a hydrogenated zeolite catalyst or a catalyst in which V, Cr, Mn, Fe, Co, Ni, or the like is supported on the zeolite has been reported. Y-type zeolites, L-type zeolites, offretite-erionite mixed crystal zeolites, ferrierite-type zeolites, and ZSM-5-type zeolites are disclosed (see Japanese Patent No. 2139645). Furthermore, a method of reducing and removing NOx in the presence of ethanol using a proton-type zeolite has also been reported, and as the zeolites, Y-type zeolites, ZSM-5-type zeolites, and mordenite are disclosed (see Japanese Patent No. 2506598). .

しかしながら、上記した特定のゼオライトからなる触媒を用いたNOxの還元除去方法は、いずれも実用的に十分なNOxの除去性能が得られず、未だ実用化に至っていない現状である。   However, none of the above-described methods for reducing and removing NOx using a catalyst composed of a specific zeolite has provided practically sufficient NOx removal performance and has not yet been put to practical use.

特開平4−284848号公報JP-A-4-284848 特開平4−267946号公報JP-A-4-267946 特開平5−68855号公報JP-A-5-68855 特開平5−103949号公報JP-A-5-103949 特開平4−281844号公報JP-A-4-281844 特開平4−354536号公報JP-A-4-354536 特許第2139645号公報Japanese Patent No. 2139645 特許第2506598号公報Japanese Patent No. 2506598

本発明は、このような従来の事情に鑑み、硫黄酸化物を含む酸素過剰の排ガスにおいても優れたNOx除去性能と耐久性を有し、排ガス温度が300℃〜400℃の比較的低温でも脱硝性能が高く、実用性に優れた排ガス浄化触媒、及びそれを用いた排ガス浄化方法を提供することを目的とする。   In view of such conventional circumstances, the present invention has excellent NOx removal performance and durability even in an oxygen-excess exhaust gas containing sulfur oxides, and denitration even at a relatively low exhaust gas temperature of 300 ° C to 400 ° C. An object of the present invention is to provide an exhaust gas purifying catalyst having high performance and excellent practicality, and an exhaust gas purifying method using the same.

上記目的を達成するため、本発明が提供する排ガス浄化触媒は、酸素過剰の排ガス中の窒素酸化物を、メタノール及び/又はジメチルエーテルの存在下に還元除去する触媒であって、βゼオライトに鉄、コバルト、銀、モリブデン、及びタングステンの中から選ばれた少なくとも1種の金属を担持させたことを特徴とする。   In order to achieve the above object, an exhaust gas purifying catalyst provided by the present invention is a catalyst for reducing and removing nitrogen oxides in an oxygen-excess exhaust gas in the presence of methanol and / or dimethyl ether. It is characterized by supporting at least one metal selected from cobalt, silver, molybdenum and tungsten.

また、本発明が提供する排ガス浄化方法は、酸素過剰の排ガスを、還元剤としてのメタノール及び/又はジメチルエーテルの存在下に、βゼオライトに鉄、コバルト、銀、モリブデン、及びタングステンの中から選ばれた少なくとも1種の金属を担持させた触媒に接触させ、排ガス中の窒素酸化物を還元除去することを特徴とする。   Further, the exhaust gas purification method provided by the present invention is characterized in that an excess oxygen exhaust gas is selected from iron, cobalt, silver, molybdenum, and tungsten in β zeolite in the presence of methanol and / or dimethyl ether as a reducing agent. And contacting the catalyst with at least one metal supported thereon to reduce and remove nitrogen oxides in the exhaust gas.

上記した本発明の排ガス浄化触媒及び排ガス浄化方法においては、前記βゼオライトのSiO/Alモル比が20〜70であることが好ましい。 In the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, the β zeolite preferably has a SiO 2 / Al 2 O 3 molar ratio of 20 to 70.

本発明によれば、優れたNOxの除去性能と耐久性を兼ね備えた排ガス浄化触媒を提供することができ、この触媒を用いて酸素過剰の排ガスから窒素酸化物NOxを効率よく除去することができる。しかも、本発明の排ガス浄化触媒は、多量の硫黄酸化物を含む燃焼排ガス中においても高い脱硝率を示し、また排ガス温度が300℃〜400℃程度の比較的低温でも脱硝性能が低下しないため、極めて実用性に優れている。   According to the present invention, it is possible to provide an exhaust gas purifying catalyst having both excellent NOx removal performance and durability, and it is possible to efficiently remove nitrogen oxides NOx from an oxygen-excess exhaust gas using this catalyst. . Moreover, the exhaust gas purifying catalyst of the present invention exhibits a high denitration rate even in a combustion exhaust gas containing a large amount of sulfur oxides, and the denitration performance does not decrease even at a relatively low exhaust gas temperature of about 300 ° C to 400 ° C. Extremely practical.

本発明においては、酸素過剰な排ガス中の窒素酸化物(NOx)をメタノール及び/又はジメチルエーテルの存在下に還元除去する触媒として、βゼオライトを担体とし、これに鉄、コバルト、銀、モリブデン、及びタングステンから選ばれた1種以上を担持させたものを用いる。ゼオライトには、β型のほかにも、Y型、L型、ZSM−5(MFI)型、モルデナイト型など多くの種類があるが、その内でも特にβゼオライトを担体として用いた触媒が、硫黄酸化物を含む排ガスの浄化に極めて有効であることが分かった。   In the present invention, as a catalyst for reducing and removing nitrogen oxides (NOx) in an oxygen-excess exhaust gas in the presence of methanol and / or dimethyl ether, β zeolite is used as a carrier, and iron, cobalt, silver, molybdenum, and One supporting at least one selected from tungsten is used. There are many types of zeolite such as Y type, L type, ZSM-5 (MFI) type, mordenite type in addition to β type. Among them, a catalyst using β zeolite as a carrier is particularly sulfur type. It was found to be extremely effective in purifying exhaust gas containing oxides.

βゼオライトに、鉄、コバルト、銀、モリブデン、又はタングステンを担持させる方法は特に制限されず、従来知られている担持方法を用いることができる。例えば、鉄、コバルト、銀、モリブデン、又はタングステンの水溶性塩の水溶液中にβゼオライトを投入し、撹拌してイオン交換させた後、ろ過及び水洗を行うイオン交換法や、βゼオライトに鉄、コバルト、銀、モリブデン、又はタングステンの水溶性塩の水溶液を含浸させる含浸法などが挙げられる。   The method of supporting iron, cobalt, silver, molybdenum, or tungsten on the β zeolite is not particularly limited, and a conventionally known supporting method can be used. For example, iron, cobalt, silver, molybdenum, or β zeolite in an aqueous solution of a water-soluble salt of tungsten, and ion-exchange by stirring, followed by filtration and washing with an ion-exchange method, or iron in β zeolite, An impregnation method in which an aqueous solution of a water-soluble salt of cobalt, silver, molybdenum, or tungsten is impregnated may be used.

鉄、コバルト、銀、モリブデン、及びタングステンから選ばれた少なくとも1種の金属を担持させたβゼオライトは、その後、これを乾燥・焼成することにより触媒が調製される。触媒調製時の乾燥温度は、特に制限されるものではないが、通常は80〜120℃程度で乾燥する。また、焼成温度は300〜600℃が好ましい。焼成時の雰囲気は特に限定されないが、触媒組成に応じて、空気、不活性ガス、酸素などの雰囲気を適宜選択すればよい。   A β zeolite supporting at least one metal selected from iron, cobalt, silver, molybdenum, and tungsten is then dried and calcined to prepare a catalyst. The drying temperature at the time of preparing the catalyst is not particularly limited, but it is usually dried at about 80 to 120 ° C. The firing temperature is preferably from 300 to 600 ° C. The atmosphere during firing is not particularly limited, but an atmosphere such as air, an inert gas, or oxygen may be appropriately selected according to the catalyst composition.

使用するβゼオライトのシリカ(SiO)/アルミナ(Al)比は、NOxの除去性能(脱硝性能)の点から、モル比で20〜70の範囲が好ましい。このモル比が40を越えて大きくなるほど脱硝性能が低くなり、また熱や水蒸気に対する安定性などを考慮すると、SiO/Alモル比は20〜40の範囲が更に好ましい。 The silica (SiO 2 ) / alumina (Al 2 O 3 ) ratio of the β zeolite used is preferably in the range of 20 to 70 in terms of molar ratio from the viewpoint of NOx removal performance (denitration performance). The denitration performance becomes lower as the molar ratio becomes larger than 40, and considering the stability against heat and water vapor, the SiO 2 / Al 2 O 3 molar ratio is more preferably in the range of 20 to 40.

本発明の触媒は、従来から知られている成形方法によって、球状、ハニカム状、ペレット状などの種々の形状に成形することができる。これらの形状及び大きさなどは、触媒の使用条件に応じて任意に選択すればよい。また、排ガスの流れ方向に対して多数の貫通孔を有する耐火性一体構造の支持基体の表面に、鉄、コバルト、銀、モリブデン、及びタングステンから選ばれた少なくとも1種の金属を担持させたβゼオライトを、ウォッシュコート法などにより被覆して触媒とすることもできる。   The catalyst of the present invention can be formed into various shapes such as a spherical shape, a honeycomb shape, and a pellet shape by a conventionally known forming method. These shapes and sizes may be arbitrarily selected according to the conditions for using the catalyst. Further, at least one metal selected from iron, cobalt, silver, molybdenum, and tungsten is supported on the surface of a support base having a refractory integrated structure having a large number of through holes in the flow direction of the exhaust gas. The zeolite can be coated as a catalyst by a wash coat method or the like.

窒素酸化物を還元除去する排ガスの浄化方法においては、上記した本発明の触媒に、排ガスをメタノール及び/又はジメチルエーテルの存在下で接触させればよい。還元剤として排ガス中に添加するメタノール及び/又はジメチルエーテルの量は、操業上求められる脱硝率及びランニングコストなどに応じて適宜選択すればよいが、通常、排ガス中の窒素酸化物に対するモル比(炭素(C)換算)として0.5〜5程度が好ましい。   In the method of purifying exhaust gas for reducing and removing nitrogen oxides, the exhaust gas may be brought into contact with the above-described catalyst of the present invention in the presence of methanol and / or dimethyl ether. The amount of methanol and / or dimethyl ether to be added to the exhaust gas as a reducing agent may be appropriately selected according to the denitration ratio and running cost required in operation, but usually, the molar ratio (carbon As (C) conversion, about 0.5 to 5 is preferable.

本発明の処理対象となる窒素酸化物(NOx)を含む排ガスとしては、ボイラーなどの各種燃焼設備、ディーゼルエンジン自動車や定置式のディーゼル機関などの内燃機関、硝酸製造設備などの産業設備などからの排ガスを挙げることができる。これら排ガスは、一般に、CO、HC(炭化水素)及びHといった還元性成分と、NOx及びOといった酸化性成分とを含有するが、両者相互の完全な酸化還元反応に必要な化学量論量よりも過剰量の酸素を含有している。このような酸素過剰の排ガスが、メタノール及び/又はジメチルエーテルの存在下に本発明の触媒と接触することにより、NOxはNとHOに還元分解される。 The exhaust gas containing nitrogen oxides (NOx) to be treated in the present invention includes various combustion facilities such as a boiler, an internal combustion engine such as a diesel engine automobile and a stationary diesel engine, and industrial facilities such as a nitric acid production facility. Exhaust gas can be mentioned. These exhaust gases generally contain reducing components such as CO, HC (hydrocarbon) and H 2 and oxidizing components such as NOx and O 2 , and the stoichiometry required for a complete redox reaction between them. It contains an excess amount of oxygen. NOx is reductively decomposed into N 2 and H 2 O by contacting such an oxygen-excess exhaust gas with the catalyst of the present invention in the presence of methanol and / or dimethyl ether.

本発明の触媒を用いた排ガス浄化方法におけるガス空間速度(SV)については、特に限定されるものではないが、1,000〜100,000/hとすることが好ましい。また、本発明の触媒によれば、排ガスの温度が300〜400℃程度の比較的低温であっても、窒素酸化物の優れた除去性能が得られる。更に、硫黄酸化物を含む排ガスであっても、優れた脱硝性能を有し、且つその脱硝性能が低下せず耐久性にも優れている。   The gas space velocity (SV) in the exhaust gas purifying method using the catalyst of the present invention is not particularly limited, but is preferably 1,000 to 100,000 / h. Further, according to the catalyst of the present invention, excellent performance for removing nitrogen oxides can be obtained even when the temperature of the exhaust gas is relatively low at about 300 to 400 ° C. Furthermore, even an exhaust gas containing a sulfur oxide has excellent denitration performance, and its denitration performance does not decrease and is excellent in durability.

尚、本発明方法で排ガスを処理した場合、反応条件によっては、未燃焼のメタノールやジメチルエーテル、あるいは不完全燃焼生成物が排ガス中に排出される場合がある。このような場合には、上記本発明の脱硝触媒通過後の排ガスを、酸化触媒、例えばPt系やPd系などの貴金属担持触媒に接触させて、未燃焼成分や不完全燃焼生成物を除去することができる。   When the exhaust gas is treated by the method of the present invention, unburned methanol, dimethyl ether, or incomplete combustion products may be discharged into the exhaust gas depending on the reaction conditions. In such a case, the exhaust gas after passing through the denitration catalyst of the present invention is brought into contact with an oxidation catalyst, for example, a noble metal-supported catalyst such as a Pt-based or Pd-based catalyst to remove unburned components and incomplete combustion products. be able to.

(1)触媒の調製
(1−a)本発明の触媒1〜2:Fe担持βゼオライト
100gのイオン交換水に塩化鉄(II)四水和物0.5gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを加圧成型した後、粉砕して粒度を350〜500μmに整粒し、本発明の触媒1とした。尚、この触媒1において、Fe担持量は金属換算で触媒全体の1.0重量%であった。また、同様に触媒を調製する際に、βゼオライト粉末にSiO/Alモル比37のものを用いて、触媒2(Fe担持量0.8重量%)を調製した。
(1) Preparation of catalyst (1-a) Catalysts 1-2 of the present invention: Fe-supported β zeolite 0.5 g of iron (II) chloride tetrahydrate was dissolved in 100 g of ion-exchanged water, and β zeolite was added to this solution. 10 g of powder (SiO 2 / Al 2 O 3 molar ratio 27) was dispersed, and the mixture was stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was press-molded, crushed and sized to a particle size of 350 to 500 μm to obtain Catalyst 1 of the present invention. In this catalyst 1, the amount of Fe supported was 1.0% by weight of the entire catalyst in terms of metal. Similarly, when preparing a catalyst, a catalyst 2 (Fe support amount: 0.8% by weight) was prepared by using a β zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of 37.

(1−b)本発明例の触媒3:Co担持βゼオライト
100gのイオン交換水に酢酸コバルト四水和物1.3gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒3を得た。尚、この触媒3のCo担持量は金属換算で触媒全体の2.7重量%であった。
(1-b) Catalyst 3: Inventive Example 3: Co-Supported β Zeolite 1.3 g of cobalt acetate tetrahydrate was dissolved in 100 g of ion-exchanged water, and β zeolite powder ( 3 moles of SiO 2 / Al 2 O) was added to this solution. Ratio 27) 10 g were dispersed, and the mixture was stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 3 of the present invention. The amount of Co supported on the catalyst 3 was 2.7% by weight of the entire catalyst in terms of metal.

(1−c)本発明例の触媒4:Ag担持βゼオライト
100gのイオン交換水に硝酸銀1.6gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)20gを分散させ、温度を60℃に維持して12時間撹拌した。その後、ろ過及び水洗を行い、110℃で乾燥した後、空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒4を得た。尚、この触媒4のAg担持量は、金属換算で触媒全体の2.5重量%であった。
(1-c) Catalyst 4 of the present invention: Ag-supported β zeolite 1.6 g of silver nitrate was dissolved in 100 g of ion-exchanged water, and 20 g of β zeolite powder (SiO 2 / Al 2 O 3 molar ratio 27) was dissolved in this solution. It was dispersed and stirred for 12 hours while maintaining the temperature at 60 ° C. Thereafter, the resultant was filtered and washed with water, dried at 110 ° C., and fired in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 4 of the present invention. The amount of Ag carried on the catalyst 4 was 2.5% by weight of the entire catalyst in terms of metal.

(1−d)本発明例の触媒5:Mo担持βゼオライト
30gのイオン交換水に七モリブデン酸六アンモニウム四水和物0.38gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを浸漬しした後、撹拌しながら加熱して水分を蒸発させ、更に110℃で通風乾燥し、次に空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒5を得た。尚、この触媒5のMo担持量は、金属換算で触媒全体の2.0重量%であった。
(1-d) Catalyst 5 of the present invention: Mo-supported β zeolite 0.38 g of hexaammonium hexamolybdate tetrahydrate was dissolved in 30 g of ion-exchanged water, and β zeolite powder (SiO 2 / Al 2 After immersing 10 g of O 3 in a molar ratio of 27), the mixture was heated with stirring to evaporate water, dried by ventilation at 110 ° C., and then fired in air at 500 ° C. for 3 hours. This was sized in the same manner as above to obtain Catalyst 5 of the present invention. The amount of Mo supported on the catalyst 5 was 2.0% by weight of the entire catalyst in terms of metal.

(1−e)本発明例の触媒6:W担持βゼオライト
30gのイオン交換水にタングステン酸アンモニウムパラ五水和物0.29gとシュウ酸二水和物0.15gを溶解し、この溶液にβゼオライト粉末(SiO/Alモル比27)10gを浸漬しした後、撹拌しながら加熱して水分を蒸発させ、更に110℃で通風乾燥し、次に空気中にて500℃で3時間焼成した。これを上記と同様に整粒して、本発明の触媒6を得た。尚、この触媒5のW担持量は、金属換算で触媒全体の2.0重量%であった。
(1-e) Catalyst 6 of the present invention example: 0.29 g of ammonium tungstate parapentahydrate and 0.15 g of oxalic acid dihydrate were dissolved in 30 g of ion-exchanged water containing β zeolite carrying W, and the solution was added to this solution. After immersing 10 g of β zeolite powder (SiO 2 / Al 2 O 3 molar ratio: 27), the mixture is heated with stirring to evaporate the water, and further dried by ventilation at 110 ° C., and then in air at 500 ° C. It was baked for 3 hours. This was sized in the same manner as above to obtain Catalyst 6 of the present invention. The amount of W carried on the catalyst 5 was 2.0% by weight of the entire catalyst in terms of metal.

(1−f)比較例の触媒C1〜C3
βゼオライト粉末としてSiO/Alモル比75のものを用い、上記触媒1の調製と同様にしてFeを担持した比較例の触媒C1、上記触媒4の調製と同様にしてAgを担持した比較例の触媒C2、及び上記触媒5の調整と同様にしてMoを担持した比較例の触媒C3を得た。尚、触媒C1におけるFe担持量は金属換算で触媒全体の0.8重量%、触媒C2のAg担持量は金属換算で触媒全体の2.2重量%、及び触媒C3のMo担持量は金属換算で触媒全体の2.0重量%であった。
(1-f) Catalysts C1 to C3 of Comparative Example
A β-zeolite powder having a SiO 2 / Al 2 O 3 molar ratio of 75 was used, and Fe was supported in the same manner as in the preparation of the catalyst 1 and Ag was supported in the same manner as in the preparation of the catalyst 4 in the comparative example. Catalyst C2 of Comparative Example and Catalyst C3 of Comparative Example carrying Mo in the same manner as in the preparation of Catalyst 5 were obtained. The amount of Fe supported in the catalyst C1 was 0.8% by weight of the entire catalyst in terms of metal, the amount of Ag supported in the catalyst C2 was 2.2% by weight in total of the catalyst in terms of metal, and the amount of Mo supported in the catalyst C3 was metal conversion. Was 2.0% by weight of the whole catalyst.

(1−g)比較例の触媒C4〜C9
上記βゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つFe担持量を1.2重量%とした比較例の触媒C4を調製した。同じく上記βゼオライトに代えてモルデナイト(SiO/Alモル比20)を担体とし、且つAg担持量を2.7重量%とした比較例の触媒C5を調製した。同じく上記βゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つCo担持量を2.3重量%とした比較例の触媒C6を調製した。同じく上記βゼオライトに代えてZSM−5(SiO/Alモル比27)を担体とし、且つMo担持量を2.0重量%とした比較例の触媒C7を調製した。同じく上記βゼオライトに代えてモルデナイト(SiO/Alモル比20)を担体とし、且つW担持量を2.0重量%とした比較例の触媒C8を調製した。更に、同じく上記βゼオライトに代えてY型ゼオライト(SiO/Alモル比30)を担体とし、且つAg担持量を2.2重量%とした比較例の触媒C9を調製した。
(1-g) Comparative catalysts C4 to C9
A catalyst C4 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier in place of the β zeolite and the amount of Fe supported was 1.2% by weight. Similarly, a catalyst C5 of a comparative example was prepared in which mordenite (SiO 2 / Al 2 O 3 molar ratio: 20) was used as a carrier in place of the β zeolite and the amount of Ag supported was 2.7% by weight. Similarly, a catalyst C6 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier in place of the β zeolite and the amount of Co supported was 2.3% by weight. Similarly, a catalyst C7 of a comparative example was prepared in which ZSM-5 (SiO 2 / Al 2 O 3 molar ratio 27) was used as a carrier instead of the β zeolite and the amount of Mo supported was 2.0% by weight. Similarly, a catalyst C8 of a comparative example was prepared in which mordenite (SiO 2 / Al 2 O 3 molar ratio: 20) was used as a carrier in place of the above-mentioned β zeolite and the amount of W supported was 2.0% by weight. Further, a catalyst C9 of a comparative example was prepared in which a Y-type zeolite (SiO 2 / Al 2 O 3 molar ratio of 30) was used as a carrier instead of the β zeolite, and the amount of Ag supported was 2.2% by weight.

(2)触媒の評価
上記した本発明の触媒1〜6及び比較例の触媒C1〜C9を、それぞれ内径15mmのステンレス製反応管に充填して触媒体を形成し、これを常圧固定床流通反応装置に装着した。この反応管内に、モデル排ガスとしてNO:1,000ppm、O:10%、メタノール:2,000ppm、HO:10%、SO:100ppm、残部:Nからなる混合ガスを、空間速度30,000/hの条件で供給して、上記各触媒の脱硝性能を調べた。
(2) Evaluation of Catalysts The catalysts 1 to 6 of the present invention and the catalysts C1 to C9 of the comparative examples were each filled in a stainless steel reaction tube having an inner diameter of 15 mm to form a catalyst, which was then passed through a fixed pressure bed under normal pressure. It was attached to the reactor. In the reaction tube, as a model exhaust gas, a mixed gas consisting of NO: 1,000 ppm, O 2 : 10%, methanol: 2,000 ppm, H 2 O: 10%, SO 2 : 100 ppm, and the balance: N 2 was charged at a space velocity. The catalyst was supplied under the condition of 30,000 / h, and the denitration performance of each of the above catalysts was examined.

触媒のNOx除去性能(脱硝性能)としての脱硝率は、下記の数式1に従って算出した。尚、反応管出口のガス組成の分析については、NOxの濃度は化学発光式NOx計で測定し、NO濃度はPorapack
Qカラムを装着したガスクロマトグラフ・熱伝導度検出器を用いて測定した。
The denitration rate as the NOx removal performance (denitration performance) of the catalyst was calculated according to the following formula 1. Incidentally, the reaction tube analysis of the outlet gas composition, the concentration of NOx was measured by chemiluminescence NOx meter, N 2 O concentration Porapack
The measurement was performed using a gas chromatograph / thermal conductivity detector equipped with a Q column.

Figure 2004322077
Figure 2004322077

上記のごとく脱硝性能を評価する際、排ガス温度を300℃、350℃、400℃にそれぞれ変化させ、得られた結果を下記表1に示した。尚、上記メタノールは還元剤として添加したものであり、モデル排ガス中の窒素酸化物に対するメタノールのモル比(C換算)は2である。また、いずれの触媒の場合も、反応管の出口ガス中にNOは殆ど認められなかった。 When the denitration performance was evaluated as described above, the exhaust gas temperature was changed to 300 ° C., 350 ° C., and 400 ° C., respectively, and the obtained results are shown in Table 1 below. The methanol was added as a reducing agent, and the molar ratio of methanol to nitrogen oxide in the model exhaust gas (in terms of C) was 2. Also, in the case of any of the catalysts, almost no N 2 O was found in the outlet gas of the reaction tube.

Figure 2004322077
Figure 2004322077

また、上記モデル排ガスの組成(還元剤)を変え、上記した本発明の触媒1、3〜6と、比較例の触媒C4、C6〜9を用いて、各触媒の脱硝性能を評価した。即ち、上記モデル排ガス中に還元剤として添加したメタノール:2,000ppmの代りに、ジメチルエーテル:1000ppmを添加した以外は上記と同様にして脱硝性能を評価し、その結果を下記表2に示した。尚、モデル排ガス中の窒素酸化物に対するジメチルエーテルのモル比(C換算)は2である。また、いずれの触媒の場合も、反応管の出口ガス中にNOは殆ど認められなかった。 The denitration performance of each catalyst was evaluated using the above-described catalysts 1, 3 to 6 of the present invention and the catalysts C4 and C6 to 9 of the comparative examples while changing the composition (reducing agent) of the model exhaust gas. That is, the denitration performance was evaluated in the same manner as above except that dimethyl ether: 1000 ppm was added instead of 2,000 ppm of methanol added as a reducing agent to the model exhaust gas, and the results are shown in Table 2 below. The molar ratio of dimethyl ether to nitrogen oxides in the model exhaust gas (in terms of C) was 2. Also, in the case of any of the catalysts, almost no N 2 O was found in the outlet gas of the reaction tube.

Figure 2004322077
Figure 2004322077

更に、上記した本発明の触媒1、3〜6と、比較例の触媒C4、C6〜9を用いて、還元剤として添加するメタノールの添加量を上記の2,000ppmから1,500ppmに変えた以外は上記と同様にして、各触媒の脱硝性能を評価した結果を下記表3に示した。尚、モデル排ガス中の窒素酸化物に対するメタノールのモル比(C換算)は1.5である。また、いずれの触媒の場合も、反応管の出口ガス中にNOは殆ど認められなかった。 Further, using the catalysts 1, 3 to 6 of the present invention described above and the catalysts C4, C6 to 9 of the comparative examples, the amount of methanol added as a reducing agent was changed from the above 2,000 ppm to 1,500 ppm. The results of evaluating the denitration performance of each catalyst in the same manner as above except for the above are shown in Table 3 below. The molar ratio of methanol to nitrogen oxides in the model exhaust gas (in terms of C) was 1.5. Also, in the case of any of the catalysts, almost no N 2 O was found in the outlet gas of the reaction tube.

Figure 2004322077
Figure 2004322077

これらの結果から分かるように、本発明の触媒1〜6は、還元剤としてメタノール又はジメチルエーテルを用いることにより、硫黄化合物が多量に存在する酸素過剰な排ガスにおいて、排ガス温度が300〜400℃の比較的低温であっても、比較例の触媒C1〜C9に比べて、著しくNOxの除去性能に優れていることが分かる。尚、担体としてβゼオライトを用いた場合でも、そのSiO/Alモル比が70を超える比較例の触媒C1〜C3では、脱硝率が著しく低下することが分かる。 As can be seen from these results, the catalysts 1 to 6 of the present invention were prepared by using methanol or dimethyl ether as a reducing agent. It can be seen that even at very low temperatures, the NOx removal performance is remarkably superior to the catalysts C1 to C9 of the comparative example. Note that, even when β zeolite is used as the carrier, the catalysts C1 to C3 of the comparative examples whose SiO 2 / Al 2 O 3 molar ratio exceeds 70 significantly decrease the denitration rate.

また、表3に示すように、排ガス中の窒素酸化物に対する還元剤のメタノールのモル比(C換算)が小さくなった場合、本発明の触媒の中で触媒3(Co担持βゼオライト)及び触媒6(W担持βゼオライト)のNOx除去性能は、触媒1(Fe担持βゼオライト)、触媒4(Ag担持βゼオライト)及び触媒5(Mo担持βゼオライト)に比べて低下幅が大きいが、担体としてβゼオライト以外を用いた比較例の各触媒に比べれば十分高い性能を有している。   Further, as shown in Table 3, when the molar ratio of the methanol of the reducing agent to the nitrogen oxides in the exhaust gas (in terms of C) was reduced, the catalysts of the present invention, Catalyst 3 (Co-supported β zeolite) The NOx removal performance of 6 (W-supported β zeolite) is larger than that of Catalyst 1 (Fe-supported β zeolite), Catalyst 4 (Ag-supported β zeolite) and Catalyst 5 (Mo-supported β zeolite), It has sufficiently high performance as compared with the catalysts of Comparative Examples using other than β zeolite.

次に、触媒の硫黄酸化物に対する耐久性について、上記した本発明の触媒1、3〜6と、比較例の触媒C4〜C8を用い、以下の耐久試験により評価した。即ち、上記と同様に構成した各反応管内に、SO濃度の高いモデル排ガスとして、NO:1,000ppm、O:10%、メタノール:2,000ppm又はジメチルエーテル:1,000ppm、HO:10%、SO:1,000ppm、残部:Nからなる混合ガスを、排ガス温度350℃、空間速度30,000/hの条件で20時間供給した。 Next, the durability of the catalyst against sulfur oxides was evaluated by the following durability test using the above-described catalysts 1, 3 to 6 of the present invention and the catalysts C4 to C8 of the comparative examples. That is, in each of the reaction tubes constructed in the same manner as above, as model exhaust gas having a high SO 2 concentration, NO: 1,000 ppm, O 2 : 10%, methanol: 2,000 ppm or dimethyl ether: 1,000 ppm, H 2 O: A mixed gas consisting of 10%, SO 2 : 1,000 ppm, and balance: N 2 was supplied for 20 hours under the conditions of an exhaust gas temperature of 350 ° C. and a space velocity of 30,000 / h.

上記SO濃度を高めたモデル排ガスでの耐久試験の後、各反応管内に、SO濃度を100ppmとした以外は上記組成と同じモデル排ガスを、同じく排ガス温度350℃及び空間速度30,000/hの条件で供給し、上記と同様にして脱硝率を求めた。得られた結果を、下記表4に示した。 After the endurance test using the model exhaust gas with the increased SO 2 concentration, a model exhaust gas having the same composition as that described above except that the SO 2 concentration was changed to 100 ppm was similarly placed in each reaction tube at an exhaust gas temperature of 350 ° C. and a space velocity of 30,000 / h, and the denitration rate was determined in the same manner as described above. The results obtained are shown in Table 4 below.

Figure 2004322077
Figure 2004322077

この結果から分かるように、高濃度のSOを含む排ガスによる20時間の耐久試験後においても、本発明の金属担持βゼオライトからなる触媒は、還元剤としてのメタノール又はジメチルエーテルの存在下に、高い脱硝性能を維持しており、耐久性に優れている。 As can be seen from the results, even after the endurance test for 20 hours using the exhaust gas containing high concentration of SO 2 , the catalyst composed of the metal-supported β zeolite of the present invention shows a high catalytic activity in the presence of methanol or dimethyl ether as the reducing agent. Denitration performance is maintained and durability is excellent.

Claims (4)

酸素過剰の排ガス中の窒素酸化物を、メタノール及び/又はジメチルエーテルの存在下に還元除去する触媒であって、βゼオライトに鉄、コバルト、銀、モリブデン、及びタングステンの中から選ばれた少なくとも1種の金属を担持させたことを特徴とする排ガス浄化触媒。 A catalyst for reducing and removing nitrogen oxides in an oxygen-excess exhaust gas in the presence of methanol and / or dimethyl ether, wherein β zeolite is at least one selected from iron, cobalt, silver, molybdenum, and tungsten An exhaust gas purifying catalyst characterized by carrying the above metals. 前記βゼオライトのSiO/Alモル比が20〜70であることを特徴とする、請求項1に記載の排ガス浄化触媒。 2. The exhaust gas purifying catalyst according to claim 1, wherein the β zeolite has a SiO 2 / Al 2 O 3 molar ratio of 20 to 70. 3 . 酸素過剰の排ガスを、還元剤としてのメタノール及び/又はジメチルエーテルの存在下に、βゼオライトに鉄、コバルト、銀、モリブデン、及びタングステンの中から選ばれた少なくとも1種の金属を担持させた触媒に接触させ、排ガス中の窒素酸化物を還元除去することを特徴とする排ガス浄化方法。 The exhaust gas containing excess oxygen is converted to a catalyst in which β zeolite supports at least one metal selected from iron, cobalt, silver, molybdenum, and tungsten in the presence of methanol and / or dimethyl ether as a reducing agent. A method for purifying exhaust gas, comprising contacting and reducing nitrogen oxides in exhaust gas. 前記βゼオライトのSiO/Alモル比が20〜70であることを特徴とする、請求項3に記載の排ガス浄化方法。 Wherein the SiO 2 / Al 2 O 3 molar ratio of said β-zeolite is from 20 to 70, the exhaust gas purifying method according to claim 3.
JP2003390088A 2003-04-11 2003-11-20 Exhaust gas clarification catalyst and exhaust gas clarification method Pending JP2004322077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390088A JP2004322077A (en) 2003-04-11 2003-11-20 Exhaust gas clarification catalyst and exhaust gas clarification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003107548 2003-04-11
JP2003390088A JP2004322077A (en) 2003-04-11 2003-11-20 Exhaust gas clarification catalyst and exhaust gas clarification method

Publications (1)

Publication Number Publication Date
JP2004322077A true JP2004322077A (en) 2004-11-18

Family

ID=33513070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390088A Pending JP2004322077A (en) 2003-04-11 2003-11-20 Exhaust gas clarification catalyst and exhaust gas clarification method

Country Status (1)

Country Link
JP (1) JP2004322077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp beta-ZEOLITE AND METHOD OF REMOVING NITROGEN OXIDES BY USING THE SAME
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
WO2015119069A1 (en) * 2014-02-07 2015-08-13 日立造船株式会社 Catalyst and method for purifying combustion exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076990A (en) * 2005-09-16 2007-03-29 Tosoh Corp beta-ZEOLITE AND METHOD OF REMOVING NITROGEN OXIDES BY USING THE SAME
WO2013146729A1 (en) * 2012-03-30 2013-10-03 日立造船株式会社 Method for cleaning discharged combustion gas, and denitration catalyst
WO2015119069A1 (en) * 2014-02-07 2015-08-13 日立造船株式会社 Catalyst and method for purifying combustion exhaust gas
JPWO2015119069A1 (en) * 2014-02-07 2017-03-23 日立造船株式会社 Combustion exhaust gas purification catalyst and combustion exhaust gas purification method

Similar Documents

Publication Publication Date Title
JP4901129B2 (en) Nitrogen oxide catalytic reduction catalyst
JP2004358454A (en) Exhaust gas cleaning catalyst and cleaning method
JPH07108136A (en) Denitrification method for methane-containing exhaust gas
JP3994862B2 (en) Exhaust gas purification catalyst and purification method
JP2006220107A (en) Method and device for denitrating and purifying exhaust gas
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP2004261754A (en) Exhaust gas purifying catalyst and purifying method
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JP4624598B2 (en) Exhaust gas purification catalyst and production method thereof
JP2006150301A (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH06218233A (en) Purifying method for waste gas containing nitrous oxide
JP2006346642A (en) Catalyst for decomposing ammonia and method for treating ammonia
JPH04193347A (en) Catalyst for purification of exhaust gas
JP3291316B2 (en) Exhaust gas purification catalyst
KR20050019708A (en) Catalyst and method for clarifying exhaust gas
JPH06210137A (en) Denitration method
JP2004268021A (en) Method and apparatus for removing nitrogen oxide
JP2009056459A (en) Catalyst and method for cleaning exhaust gas
JP2002370031A (en) Exhaust cleaning catalyst, catalyst body, exhaust- cleaning-catalyst-coated structure each using the catalyst, and exhaust cleaning method